Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.9
      1  1.9    kardel /* $NetBSD: kern_tc.c,v 1.9 2006/09/02 13:45:04 kardel Exp $ */
      2  1.2    kardel 
      3  1.1    simonb /*-
      4  1.1    simonb  * ----------------------------------------------------------------------------
      5  1.1    simonb  * "THE BEER-WARE LICENSE" (Revision 42):
      6  1.1    simonb  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
      7  1.1    simonb  * can do whatever you want with this stuff. If we meet some day, and you think
      8  1.1    simonb  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
      9  1.2    kardel  * ---------------------------------------------------------------------------
     10  1.1    simonb  */
     11  1.1    simonb 
     12  1.1    simonb #include <sys/cdefs.h>
     13  1.2    kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     14  1.9    kardel __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.9 2006/09/02 13:45:04 kardel Exp $");
     15  1.1    simonb 
     16  1.1    simonb #include "opt_ntp.h"
     17  1.1    simonb 
     18  1.1    simonb #include <sys/param.h>
     19  1.2    kardel #ifdef __HAVE_TIMECOUNTER	/* XXX */
     20  1.1    simonb #include <sys/kernel.h>
     21  1.2    kardel #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     22  1.1    simonb #include <sys/sysctl.h>
     23  1.1    simonb #include <sys/syslog.h>
     24  1.1    simonb #include <sys/systm.h>
     25  1.1    simonb #include <sys/timepps.h>
     26  1.1    simonb #include <sys/timetc.h>
     27  1.1    simonb #include <sys/timex.h>
     28  1.2    kardel #include <sys/evcnt.h>
     29  1.2    kardel #include <sys/kauth.h>
     30  1.2    kardel 
     31  1.2    kardel /*
     32  1.1    simonb  * A large step happens on boot.  This constant detects such steps.
     33  1.1    simonb  * It is relatively small so that ntp_update_second gets called enough
     34  1.1    simonb  * in the typical 'missed a couple of seconds' case, but doesn't loop
     35  1.1    simonb  * forever when the time step is large.
     36  1.1    simonb  */
     37  1.1    simonb #define LARGE_STEP	200
     38  1.1    simonb 
     39  1.1    simonb /*
     40  1.1    simonb  * Implement a dummy timecounter which we can use until we get a real one
     41  1.1    simonb  * in the air.  This allows the console and other early stuff to use
     42  1.1    simonb  * time services.
     43  1.1    simonb  */
     44  1.1    simonb 
     45  1.1    simonb static u_int
     46  1.1    simonb dummy_get_timecount(struct timecounter *tc)
     47  1.1    simonb {
     48  1.1    simonb 	static u_int now;
     49  1.1    simonb 
     50  1.1    simonb 	return (++now);
     51  1.1    simonb }
     52  1.1    simonb 
     53  1.1    simonb static struct timecounter dummy_timecounter = {
     54  1.8  christos 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
     55  1.1    simonb };
     56  1.1    simonb 
     57  1.1    simonb struct timehands {
     58  1.1    simonb 	/* These fields must be initialized by the driver. */
     59  1.1    simonb 	struct timecounter	*th_counter;
     60  1.1    simonb 	int64_t			th_adjustment;
     61  1.1    simonb 	u_int64_t		th_scale;
     62  1.1    simonb 	u_int	 		th_offset_count;
     63  1.1    simonb 	struct bintime		th_offset;
     64  1.1    simonb 	struct timeval		th_microtime;
     65  1.1    simonb 	struct timespec		th_nanotime;
     66  1.1    simonb 	/* Fields not to be copied in tc_windup start with th_generation. */
     67  1.1    simonb 	volatile u_int		th_generation;
     68  1.1    simonb 	struct timehands	*th_next;
     69  1.1    simonb };
     70  1.1    simonb 
     71  1.1    simonb static struct timehands th0;
     72  1.1    simonb static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
     73  1.1    simonb static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
     74  1.1    simonb static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
     75  1.1    simonb static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
     76  1.1    simonb static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
     77  1.1    simonb static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
     78  1.1    simonb static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
     79  1.1    simonb static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
     80  1.1    simonb static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
     81  1.1    simonb static struct timehands th0 = {
     82  1.1    simonb 	&dummy_timecounter,
     83  1.1    simonb 	0,
     84  1.1    simonb 	(uint64_t)-1 / 1000000,
     85  1.1    simonb 	0,
     86  1.1    simonb 	{1, 0},
     87  1.1    simonb 	{0, 0},
     88  1.1    simonb 	{0, 0},
     89  1.1    simonb 	1,
     90  1.1    simonb 	&th1
     91  1.1    simonb };
     92  1.1    simonb 
     93  1.1    simonb static struct timehands *volatile timehands = &th0;
     94  1.1    simonb struct timecounter *timecounter = &dummy_timecounter;
     95  1.1    simonb static struct timecounter *timecounters = &dummy_timecounter;
     96  1.1    simonb 
     97  1.1    simonb time_t time_second = 1;
     98  1.1    simonb time_t time_uptime = 1;
     99  1.1    simonb 
    100  1.4    kardel static struct bintime timebasebin;
    101  1.1    simonb 
    102  1.1    simonb static int timestepwarnings;
    103  1.2    kardel 
    104  1.2    kardel #ifdef __FreeBSD__
    105  1.1    simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    106  1.1    simonb     &timestepwarnings, 0, "");
    107  1.2    kardel #endif /* __FreeBSD__ */
    108  1.2    kardel 
    109  1.2    kardel /*
    110  1.2    kardel  * sysctl helper routine for kern.timercounter.current
    111  1.2    kardel  */
    112  1.2    kardel static int
    113  1.2    kardel sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    114  1.2    kardel {
    115  1.2    kardel 	struct sysctlnode node;
    116  1.2    kardel 	int error;
    117  1.2    kardel 	char newname[MAX_TCNAMELEN];
    118  1.2    kardel 	struct timecounter *newtc, *tc;
    119  1.2    kardel 
    120  1.2    kardel 	tc = timecounter;
    121  1.2    kardel 
    122  1.2    kardel 	strlcpy(newname, tc->tc_name, sizeof(newname));
    123  1.2    kardel 
    124  1.2    kardel 	node = *rnode;
    125  1.2    kardel 	node.sysctl_data = newname;
    126  1.2    kardel 	node.sysctl_size = sizeof(newname);
    127  1.2    kardel 
    128  1.2    kardel 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    129  1.2    kardel 
    130  1.2    kardel 	if (error ||
    131  1.2    kardel 	    newp == NULL ||
    132  1.2    kardel 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    133  1.2    kardel 		return error;
    134  1.1    simonb 
    135  1.5        ad 	if (l != NULL && (error = kauth_authorize_generic(l->l_cred,
    136  1.5        ad 	    KAUTH_GENERIC_ISSUSER, &l->l_acflag)) != 0)
    137  1.2    kardel 		return (error);
    138  1.2    kardel 
    139  1.2    kardel 	/* XXX locking */
    140  1.2    kardel 
    141  1.2    kardel 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    142  1.2    kardel 		if (strcmp(newname, newtc->tc_name) != 0)
    143  1.2    kardel 			continue;
    144  1.2    kardel 
    145  1.2    kardel 		/* Warm up new timecounter. */
    146  1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    147  1.2    kardel 		(void)newtc->tc_get_timecount(newtc);
    148  1.2    kardel 
    149  1.2    kardel 		timecounter = newtc;
    150  1.2    kardel 
    151  1.2    kardel 		/* XXX unlock */
    152  1.2    kardel 
    153  1.2    kardel 		return (0);
    154  1.2    kardel 	}
    155  1.2    kardel 
    156  1.2    kardel 	/* XXX unlock */
    157  1.2    kardel 
    158  1.2    kardel 	return (EINVAL);
    159  1.2    kardel }
    160  1.2    kardel 
    161  1.2    kardel static int
    162  1.2    kardel sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    163  1.2    kardel {
    164  1.9    kardel 	char buf[MAX_TCNAMELEN+48];
    165  1.2    kardel 	char *where = oldp;
    166  1.2    kardel 	const char *spc;
    167  1.2    kardel 	struct timecounter *tc;
    168  1.2    kardel 	size_t needed, left, slen;
    169  1.2    kardel 	int error;
    170  1.2    kardel 
    171  1.2    kardel 	if (newp != NULL)
    172  1.2    kardel 		return (EPERM);
    173  1.2    kardel 	if (namelen != 0)
    174  1.2    kardel 		return (EINVAL);
    175  1.2    kardel 
    176  1.2    kardel 	spc = "";
    177  1.2    kardel 	error = 0;
    178  1.2    kardel 	needed = 0;
    179  1.2    kardel 	left = *oldlenp;
    180  1.2    kardel 
    181  1.2    kardel 	/* XXX locking */
    182  1.2    kardel 
    183  1.2    kardel 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    184  1.2    kardel 		if (where == NULL) {
    185  1.2    kardel 			needed += sizeof(buf);  /* be conservative */
    186  1.2    kardel 		} else {
    187  1.2    kardel 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    188  1.2    kardel 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    189  1.2    kardel 					tc->tc_frequency);
    190  1.2    kardel 			if (left < slen + 1)
    191  1.2    kardel 				break;
    192  1.2    kardel 			/* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
    193  1.2    kardel 			error = copyout(buf, where, slen + 1);
    194  1.2    kardel 			spc = " ";
    195  1.2    kardel 			where += slen;
    196  1.2    kardel 			needed += slen;
    197  1.2    kardel 			left -= slen;
    198  1.2    kardel 		}
    199  1.2    kardel 	}
    200  1.2    kardel 
    201  1.2    kardel 	/* XXX unlock */
    202  1.2    kardel 
    203  1.2    kardel 	*oldlenp = needed;
    204  1.2    kardel 	return (error);
    205  1.2    kardel }
    206  1.2    kardel 
    207  1.2    kardel SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    208  1.2    kardel {
    209  1.2    kardel 	const struct sysctlnode *node;
    210  1.2    kardel 
    211  1.2    kardel 	sysctl_createv(clog, 0, NULL, &node,
    212  1.2    kardel 		       CTLFLAG_PERMANENT,
    213  1.2    kardel 		       CTLTYPE_NODE, "timecounter",
    214  1.2    kardel 		       SYSCTL_DESCR("time counter information"),
    215  1.2    kardel 		       NULL, 0, NULL, 0,
    216  1.2    kardel 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    217  1.2    kardel 
    218  1.2    kardel 	if (node != NULL) {
    219  1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    220  1.2    kardel 			       CTLFLAG_PERMANENT,
    221  1.2    kardel 			       CTLTYPE_STRING, "choice",
    222  1.2    kardel 			       SYSCTL_DESCR("available counters"),
    223  1.2    kardel 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    224  1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    225  1.2    kardel 
    226  1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    227  1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    228  1.2    kardel 			       CTLTYPE_STRING, "hardware",
    229  1.2    kardel 			       SYSCTL_DESCR("currently active time counter"),
    230  1.2    kardel 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    231  1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    232  1.2    kardel 
    233  1.2    kardel 		sysctl_createv(clog, 0, NULL, NULL,
    234  1.2    kardel 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    235  1.2    kardel 			       CTLTYPE_INT, "timestepwarnings",
    236  1.2    kardel 			       SYSCTL_DESCR("log time steps"),
    237  1.2    kardel 			       NULL, 0, &timestepwarnings, 0,
    238  1.2    kardel 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    239  1.2    kardel 	}
    240  1.2    kardel }
    241  1.2    kardel 
    242  1.2    kardel #define	TC_STATS(name)							\
    243  1.2    kardel static struct evcnt n##name =						\
    244  1.2    kardel     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    245  1.2    kardel EVCNT_ATTACH_STATIC(n##name)
    246  1.2    kardel 
    247  1.2    kardel TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    248  1.2    kardel TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    249  1.2    kardel TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    250  1.2    kardel TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    251  1.2    kardel TC_STATS(setclock);
    252  1.1    simonb 
    253  1.1    simonb #undef TC_STATS
    254  1.1    simonb 
    255  1.1    simonb static void tc_windup(void);
    256  1.1    simonb 
    257  1.1    simonb /*
    258  1.1    simonb  * Return the difference between the timehands' counter value now and what
    259  1.1    simonb  * was when we copied it to the timehands' offset_count.
    260  1.1    simonb  */
    261  1.1    simonb static __inline u_int
    262  1.1    simonb tc_delta(struct timehands *th)
    263  1.1    simonb {
    264  1.1    simonb 	struct timecounter *tc;
    265  1.1    simonb 
    266  1.1    simonb 	tc = th->th_counter;
    267  1.2    kardel 	return ((tc->tc_get_timecount(tc) -
    268  1.2    kardel 		 th->th_offset_count) & tc->tc_counter_mask);
    269  1.1    simonb }
    270  1.1    simonb 
    271  1.1    simonb /*
    272  1.1    simonb  * Functions for reading the time.  We have to loop until we are sure that
    273  1.1    simonb  * the timehands that we operated on was not updated under our feet.  See
    274  1.1    simonb  * the comment in <sys/time.h> for a description of these 12 functions.
    275  1.1    simonb  */
    276  1.1    simonb 
    277  1.1    simonb void
    278  1.1    simonb binuptime(struct bintime *bt)
    279  1.1    simonb {
    280  1.1    simonb 	struct timehands *th;
    281  1.1    simonb 	u_int gen;
    282  1.1    simonb 
    283  1.2    kardel 	nbinuptime.ev_count++;
    284  1.1    simonb 	do {
    285  1.1    simonb 		th = timehands;
    286  1.1    simonb 		gen = th->th_generation;
    287  1.1    simonb 		*bt = th->th_offset;
    288  1.1    simonb 		bintime_addx(bt, th->th_scale * tc_delta(th));
    289  1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    290  1.1    simonb }
    291  1.1    simonb 
    292  1.1    simonb void
    293  1.1    simonb nanouptime(struct timespec *tsp)
    294  1.1    simonb {
    295  1.1    simonb 	struct bintime bt;
    296  1.1    simonb 
    297  1.2    kardel 	nnanouptime.ev_count++;
    298  1.1    simonb 	binuptime(&bt);
    299  1.1    simonb 	bintime2timespec(&bt, tsp);
    300  1.1    simonb }
    301  1.1    simonb 
    302  1.1    simonb void
    303  1.1    simonb microuptime(struct timeval *tvp)
    304  1.1    simonb {
    305  1.1    simonb 	struct bintime bt;
    306  1.1    simonb 
    307  1.2    kardel 	nmicrouptime.ev_count++;
    308  1.1    simonb 	binuptime(&bt);
    309  1.1    simonb 	bintime2timeval(&bt, tvp);
    310  1.1    simonb }
    311  1.1    simonb 
    312  1.1    simonb void
    313  1.1    simonb bintime(struct bintime *bt)
    314  1.1    simonb {
    315  1.1    simonb 
    316  1.2    kardel 	nbintime.ev_count++;
    317  1.1    simonb 	binuptime(bt);
    318  1.4    kardel 	bintime_add(bt, &timebasebin);
    319  1.1    simonb }
    320  1.1    simonb 
    321  1.1    simonb void
    322  1.1    simonb nanotime(struct timespec *tsp)
    323  1.1    simonb {
    324  1.1    simonb 	struct bintime bt;
    325  1.1    simonb 
    326  1.2    kardel 	nnanotime.ev_count++;
    327  1.1    simonb 	bintime(&bt);
    328  1.1    simonb 	bintime2timespec(&bt, tsp);
    329  1.1    simonb }
    330  1.1    simonb 
    331  1.1    simonb void
    332  1.1    simonb microtime(struct timeval *tvp)
    333  1.1    simonb {
    334  1.1    simonb 	struct bintime bt;
    335  1.1    simonb 
    336  1.2    kardel 	nmicrotime.ev_count++;
    337  1.1    simonb 	bintime(&bt);
    338  1.1    simonb 	bintime2timeval(&bt, tvp);
    339  1.1    simonb }
    340  1.1    simonb 
    341  1.1    simonb void
    342  1.1    simonb getbinuptime(struct bintime *bt)
    343  1.1    simonb {
    344  1.1    simonb 	struct timehands *th;
    345  1.1    simonb 	u_int gen;
    346  1.1    simonb 
    347  1.2    kardel 	ngetbinuptime.ev_count++;
    348  1.1    simonb 	do {
    349  1.1    simonb 		th = timehands;
    350  1.1    simonb 		gen = th->th_generation;
    351  1.1    simonb 		*bt = th->th_offset;
    352  1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    353  1.1    simonb }
    354  1.1    simonb 
    355  1.1    simonb void
    356  1.1    simonb getnanouptime(struct timespec *tsp)
    357  1.1    simonb {
    358  1.1    simonb 	struct timehands *th;
    359  1.1    simonb 	u_int gen;
    360  1.1    simonb 
    361  1.2    kardel 	ngetnanouptime.ev_count++;
    362  1.1    simonb 	do {
    363  1.1    simonb 		th = timehands;
    364  1.1    simonb 		gen = th->th_generation;
    365  1.1    simonb 		bintime2timespec(&th->th_offset, tsp);
    366  1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    367  1.1    simonb }
    368  1.1    simonb 
    369  1.1    simonb void
    370  1.1    simonb getmicrouptime(struct timeval *tvp)
    371  1.1    simonb {
    372  1.1    simonb 	struct timehands *th;
    373  1.1    simonb 	u_int gen;
    374  1.1    simonb 
    375  1.2    kardel 	ngetmicrouptime.ev_count++;
    376  1.1    simonb 	do {
    377  1.1    simonb 		th = timehands;
    378  1.1    simonb 		gen = th->th_generation;
    379  1.1    simonb 		bintime2timeval(&th->th_offset, tvp);
    380  1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    381  1.1    simonb }
    382  1.1    simonb 
    383  1.1    simonb void
    384  1.1    simonb getbintime(struct bintime *bt)
    385  1.1    simonb {
    386  1.1    simonb 	struct timehands *th;
    387  1.1    simonb 	u_int gen;
    388  1.1    simonb 
    389  1.2    kardel 	ngetbintime.ev_count++;
    390  1.1    simonb 	do {
    391  1.1    simonb 		th = timehands;
    392  1.1    simonb 		gen = th->th_generation;
    393  1.1    simonb 		*bt = th->th_offset;
    394  1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    395  1.4    kardel 	bintime_add(bt, &timebasebin);
    396  1.1    simonb }
    397  1.1    simonb 
    398  1.1    simonb void
    399  1.1    simonb getnanotime(struct timespec *tsp)
    400  1.1    simonb {
    401  1.1    simonb 	struct timehands *th;
    402  1.1    simonb 	u_int gen;
    403  1.1    simonb 
    404  1.2    kardel 	ngetnanotime.ev_count++;
    405  1.1    simonb 	do {
    406  1.1    simonb 		th = timehands;
    407  1.1    simonb 		gen = th->th_generation;
    408  1.1    simonb 		*tsp = th->th_nanotime;
    409  1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    410  1.1    simonb }
    411  1.1    simonb 
    412  1.1    simonb void
    413  1.1    simonb getmicrotime(struct timeval *tvp)
    414  1.1    simonb {
    415  1.1    simonb 	struct timehands *th;
    416  1.1    simonb 	u_int gen;
    417  1.1    simonb 
    418  1.2    kardel 	ngetmicrotime.ev_count++;
    419  1.1    simonb 	do {
    420  1.1    simonb 		th = timehands;
    421  1.1    simonb 		gen = th->th_generation;
    422  1.1    simonb 		*tvp = th->th_microtime;
    423  1.1    simonb 	} while (gen == 0 || gen != th->th_generation);
    424  1.1    simonb }
    425  1.1    simonb 
    426  1.1    simonb /*
    427  1.1    simonb  * Initialize a new timecounter and possibly use it.
    428  1.1    simonb  */
    429  1.1    simonb void
    430  1.1    simonb tc_init(struct timecounter *tc)
    431  1.1    simonb {
    432  1.1    simonb 	u_int u;
    433  1.1    simonb 
    434  1.1    simonb 	u = tc->tc_frequency / tc->tc_counter_mask;
    435  1.1    simonb 	/* XXX: We need some margin here, 10% is a guess */
    436  1.1    simonb 	u *= 11;
    437  1.1    simonb 	u /= 10;
    438  1.1    simonb 	if (u > hz && tc->tc_quality >= 0) {
    439  1.1    simonb 		tc->tc_quality = -2000;
    440  1.1    simonb 		if (bootverbose) {
    441  1.7     bjh21 			printf("timecounter: Timecounter \"%s\" frequency %ju Hz",
    442  1.7     bjh21 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    443  1.1    simonb 			printf(" -- Insufficient hz, needs at least %u\n", u);
    444  1.1    simonb 		}
    445  1.1    simonb 	} else if (tc->tc_quality >= 0 || bootverbose) {
    446  1.7     bjh21 		printf("timecounter: Timecounter \"%s\" frequency %ju Hz quality %d\n",
    447  1.7     bjh21 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
    448  1.7     bjh21 		    tc->tc_quality);
    449  1.1    simonb 	}
    450  1.1    simonb 
    451  1.2    kardel 	/* XXX locking */
    452  1.1    simonb 	tc->tc_next = timecounters;
    453  1.1    simonb 	timecounters = tc;
    454  1.1    simonb 	/*
    455  1.1    simonb 	 * Never automatically use a timecounter with negative quality.
    456  1.1    simonb 	 * Even though we run on the dummy counter, switching here may be
    457  1.1    simonb 	 * worse since this timecounter may not be monotonous.
    458  1.1    simonb 	 */
    459  1.1    simonb 	if (tc->tc_quality < 0)
    460  1.1    simonb 		return;
    461  1.1    simonb 	if (tc->tc_quality < timecounter->tc_quality)
    462  1.1    simonb 		return;
    463  1.1    simonb 	if (tc->tc_quality == timecounter->tc_quality &&
    464  1.1    simonb 	    tc->tc_frequency < timecounter->tc_frequency)
    465  1.1    simonb 		return;
    466  1.1    simonb 	(void)tc->tc_get_timecount(tc);
    467  1.1    simonb 	(void)tc->tc_get_timecount(tc);
    468  1.1    simonb 	timecounter = tc;
    469  1.3    kardel 	tc_windup();
    470  1.1    simonb }
    471  1.1    simonb 
    472  1.1    simonb /* Report the frequency of the current timecounter. */
    473  1.1    simonb u_int64_t
    474  1.1    simonb tc_getfrequency(void)
    475  1.1    simonb {
    476  1.1    simonb 
    477  1.1    simonb 	return (timehands->th_counter->tc_frequency);
    478  1.1    simonb }
    479  1.1    simonb 
    480  1.1    simonb /*
    481  1.1    simonb  * Step our concept of UTC.  This is done by modifying our estimate of
    482  1.1    simonb  * when we booted.
    483  1.1    simonb  * XXX: not locked.
    484  1.1    simonb  */
    485  1.1    simonb void
    486  1.1    simonb tc_setclock(struct timespec *ts)
    487  1.1    simonb {
    488  1.1    simonb 	struct timespec ts2;
    489  1.1    simonb 	struct bintime bt, bt2;
    490  1.1    simonb 
    491  1.2    kardel 	nsetclock.ev_count++;
    492  1.1    simonb 	binuptime(&bt2);
    493  1.1    simonb 	timespec2bintime(ts, &bt);
    494  1.1    simonb 	bintime_sub(&bt, &bt2);
    495  1.4    kardel 	bintime_add(&bt2, &timebasebin);
    496  1.4    kardel 	timebasebin = bt;
    497  1.1    simonb 
    498  1.1    simonb 	/* XXX fiddle all the little crinkly bits around the fiords... */
    499  1.1    simonb 	tc_windup();
    500  1.1    simonb 	if (timestepwarnings) {
    501  1.1    simonb 		bintime2timespec(&bt2, &ts2);
    502  1.1    simonb 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
    503  1.1    simonb 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
    504  1.1    simonb 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
    505  1.1    simonb 	}
    506  1.1    simonb }
    507  1.1    simonb 
    508  1.1    simonb /*
    509  1.1    simonb  * Initialize the next struct timehands in the ring and make
    510  1.1    simonb  * it the active timehands.  Along the way we might switch to a different
    511  1.1    simonb  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    512  1.1    simonb  */
    513  1.1    simonb static void
    514  1.1    simonb tc_windup(void)
    515  1.1    simonb {
    516  1.1    simonb 	struct bintime bt;
    517  1.1    simonb 	struct timehands *th, *tho;
    518  1.1    simonb 	u_int64_t scale;
    519  1.1    simonb 	u_int delta, ncount, ogen;
    520  1.1    simonb 	int i;
    521  1.1    simonb 	time_t t;
    522  1.1    simonb 
    523  1.1    simonb 	/*
    524  1.1    simonb 	 * Make the next timehands a copy of the current one, but do not
    525  1.1    simonb 	 * overwrite the generation or next pointer.  While we update
    526  1.1    simonb 	 * the contents, the generation must be zero.
    527  1.1    simonb 	 */
    528  1.1    simonb 	tho = timehands;
    529  1.1    simonb 	th = tho->th_next;
    530  1.1    simonb 	ogen = th->th_generation;
    531  1.1    simonb 	th->th_generation = 0;
    532  1.1    simonb 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    533  1.1    simonb 
    534  1.1    simonb 	/*
    535  1.1    simonb 	 * Capture a timecounter delta on the current timecounter and if
    536  1.1    simonb 	 * changing timecounters, a counter value from the new timecounter.
    537  1.1    simonb 	 * Update the offset fields accordingly.
    538  1.1    simonb 	 */
    539  1.1    simonb 	delta = tc_delta(th);
    540  1.1    simonb 	if (th->th_counter != timecounter)
    541  1.1    simonb 		ncount = timecounter->tc_get_timecount(timecounter);
    542  1.1    simonb 	else
    543  1.1    simonb 		ncount = 0;
    544  1.1    simonb 	th->th_offset_count += delta;
    545  1.1    simonb 	th->th_offset_count &= th->th_counter->tc_counter_mask;
    546  1.1    simonb 	bintime_addx(&th->th_offset, th->th_scale * delta);
    547  1.1    simonb 
    548  1.1    simonb 	/*
    549  1.1    simonb 	 * Hardware latching timecounters may not generate interrupts on
    550  1.1    simonb 	 * PPS events, so instead we poll them.  There is a finite risk that
    551  1.1    simonb 	 * the hardware might capture a count which is later than the one we
    552  1.1    simonb 	 * got above, and therefore possibly in the next NTP second which might
    553  1.1    simonb 	 * have a different rate than the current NTP second.  It doesn't
    554  1.1    simonb 	 * matter in practice.
    555  1.1    simonb 	 */
    556  1.1    simonb 	if (tho->th_counter->tc_poll_pps)
    557  1.1    simonb 		tho->th_counter->tc_poll_pps(tho->th_counter);
    558  1.1    simonb 
    559  1.1    simonb 	/*
    560  1.1    simonb 	 * Deal with NTP second processing.  The for loop normally
    561  1.1    simonb 	 * iterates at most once, but in extreme situations it might
    562  1.1    simonb 	 * keep NTP sane if timeouts are not run for several seconds.
    563  1.1    simonb 	 * At boot, the time step can be large when the TOD hardware
    564  1.1    simonb 	 * has been read, so on really large steps, we call
    565  1.1    simonb 	 * ntp_update_second only twice.  We need to call it twice in
    566  1.1    simonb 	 * case we missed a leap second.
    567  1.2    kardel 	 * If NTP is not compiled in ntp_update_second still calculates
    568  1.2    kardel 	 * the adjustment resulting from adjtime() calls.
    569  1.1    simonb 	 */
    570  1.1    simonb 	bt = th->th_offset;
    571  1.4    kardel 	bintime_add(&bt, &timebasebin);
    572  1.1    simonb 	i = bt.sec - tho->th_microtime.tv_sec;
    573  1.1    simonb 	if (i > LARGE_STEP)
    574  1.1    simonb 		i = 2;
    575  1.1    simonb 	for (; i > 0; i--) {
    576  1.1    simonb 		t = bt.sec;
    577  1.1    simonb 		ntp_update_second(&th->th_adjustment, &bt.sec);
    578  1.1    simonb 		if (bt.sec != t)
    579  1.4    kardel 			timebasebin.sec += bt.sec - t;
    580  1.1    simonb 	}
    581  1.2    kardel 
    582  1.1    simonb 	/* Update the UTC timestamps used by the get*() functions. */
    583  1.1    simonb 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    584  1.1    simonb 	bintime2timeval(&bt, &th->th_microtime);
    585  1.1    simonb 	bintime2timespec(&bt, &th->th_nanotime);
    586  1.1    simonb 
    587  1.1    simonb 	/* Now is a good time to change timecounters. */
    588  1.1    simonb 	if (th->th_counter != timecounter) {
    589  1.1    simonb 		th->th_counter = timecounter;
    590  1.1    simonb 		th->th_offset_count = ncount;
    591  1.2    kardel 
    592  1.7     bjh21 		printf("timecounter: selected timecounter \"%s\" frequency %ju Hz quality %d\n",
    593  1.7     bjh21 		    timecounter->tc_name, (uintmax_t)timecounter->tc_frequency,
    594  1.7     bjh21 		    timecounter->tc_quality);
    595  1.1    simonb 	}
    596  1.1    simonb 
    597  1.1    simonb 	/*-
    598  1.1    simonb 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    599  1.1    simonb 	 * fractions of a second per period of the hardware counter, taking
    600  1.1    simonb 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    601  1.1    simonb 	 * processing provides us with.
    602  1.1    simonb 	 *
    603  1.1    simonb 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    604  1.1    simonb 	 * fraction and we want 64 bit binary fraction of second:
    605  1.1    simonb 	 *
    606  1.1    simonb 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    607  1.1    simonb 	 *
    608  1.1    simonb 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    609  1.1    simonb 	 * we can only multiply by about 850 without overflowing, but that
    610  1.1    simonb 	 * leaves suitably precise fractions for multiply before divide.
    611  1.1    simonb 	 *
    612  1.1    simonb 	 * Divide before multiply with a fraction of 2199/512 results in a
    613  1.1    simonb 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    614  1.1    simonb 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    615  1.1    simonb  	 *
    616  1.1    simonb 	 * We happily sacrifice the lowest of the 64 bits of our result
    617  1.1    simonb 	 * to the goddess of code clarity.
    618  1.1    simonb 	 *
    619  1.1    simonb 	 */
    620  1.1    simonb 	scale = (u_int64_t)1 << 63;
    621  1.1    simonb 	scale += (th->th_adjustment / 1024) * 2199;
    622  1.1    simonb 	scale /= th->th_counter->tc_frequency;
    623  1.1    simonb 	th->th_scale = scale * 2;
    624  1.1    simonb 
    625  1.1    simonb 	/*
    626  1.1    simonb 	 * Now that the struct timehands is again consistent, set the new
    627  1.1    simonb 	 * generation number, making sure to not make it zero.
    628  1.1    simonb 	 */
    629  1.1    simonb 	if (++ogen == 0)
    630  1.1    simonb 		ogen = 1;
    631  1.1    simonb 	th->th_generation = ogen;
    632  1.1    simonb 
    633  1.1    simonb 	/* Go live with the new struct timehands. */
    634  1.1    simonb 	time_second = th->th_microtime.tv_sec;
    635  1.1    simonb 	time_uptime = th->th_offset.sec;
    636  1.1    simonb 	timehands = th;
    637  1.1    simonb }
    638  1.1    simonb 
    639  1.2    kardel #ifdef __FreeBSD__
    640  1.1    simonb /* Report or change the active timecounter hardware. */
    641  1.1    simonb static int
    642  1.1    simonb sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
    643  1.1    simonb {
    644  1.1    simonb 	char newname[32];
    645  1.1    simonb 	struct timecounter *newtc, *tc;
    646  1.1    simonb 	int error;
    647  1.1    simonb 
    648  1.1    simonb 	tc = timecounter;
    649  1.1    simonb 	strlcpy(newname, tc->tc_name, sizeof(newname));
    650  1.1    simonb 
    651  1.1    simonb 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
    652  1.1    simonb 	if (error != 0 || req->newptr == NULL ||
    653  1.1    simonb 	    strcmp(newname, tc->tc_name) == 0)
    654  1.1    simonb 		return (error);
    655  1.2    kardel 
    656  1.1    simonb 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    657  1.1    simonb 		if (strcmp(newname, newtc->tc_name) != 0)
    658  1.1    simonb 			continue;
    659  1.1    simonb 
    660  1.1    simonb 		/* Warm up new timecounter. */
    661  1.1    simonb 		(void)newtc->tc_get_timecount(newtc);
    662  1.1    simonb 		(void)newtc->tc_get_timecount(newtc);
    663  1.1    simonb 
    664  1.1    simonb 		timecounter = newtc;
    665  1.1    simonb 		return (0);
    666  1.1    simonb 	}
    667  1.1    simonb 	return (EINVAL);
    668  1.1    simonb }
    669  1.1    simonb 
    670  1.1    simonb SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
    671  1.1    simonb     0, 0, sysctl_kern_timecounter_hardware, "A", "");
    672  1.1    simonb 
    673  1.1    simonb 
    674  1.1    simonb /* Report or change the active timecounter hardware. */
    675  1.1    simonb static int
    676  1.1    simonb sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
    677  1.1    simonb {
    678  1.1    simonb 	char buf[32], *spc;
    679  1.1    simonb 	struct timecounter *tc;
    680  1.1    simonb 	int error;
    681  1.1    simonb 
    682  1.1    simonb 	spc = "";
    683  1.1    simonb 	error = 0;
    684  1.1    simonb 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    685  1.1    simonb 		sprintf(buf, "%s%s(%d)",
    686  1.1    simonb 		    spc, tc->tc_name, tc->tc_quality);
    687  1.1    simonb 		error = SYSCTL_OUT(req, buf, strlen(buf));
    688  1.1    simonb 		spc = " ";
    689  1.1    simonb 	}
    690  1.1    simonb 	return (error);
    691  1.1    simonb }
    692  1.1    simonb 
    693  1.1    simonb SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
    694  1.1    simonb     0, 0, sysctl_kern_timecounter_choice, "A", "");
    695  1.2    kardel #endif /* __FreeBSD__ */
    696  1.1    simonb 
    697  1.1    simonb /*
    698  1.1    simonb  * RFC 2783 PPS-API implementation.
    699  1.1    simonb  */
    700  1.1    simonb 
    701  1.1    simonb int
    702  1.1    simonb pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
    703  1.1    simonb {
    704  1.1    simonb 	pps_params_t *app;
    705  1.2    kardel 	pps_info_t *pipi;
    706  1.1    simonb #ifdef PPS_SYNC
    707  1.2    kardel 	int *epi;
    708  1.1    simonb #endif
    709  1.1    simonb 
    710  1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
    711  1.1    simonb 	switch (cmd) {
    712  1.1    simonb 	case PPS_IOC_CREATE:
    713  1.1    simonb 		return (0);
    714  1.1    simonb 	case PPS_IOC_DESTROY:
    715  1.1    simonb 		return (0);
    716  1.1    simonb 	case PPS_IOC_SETPARAMS:
    717  1.1    simonb 		app = (pps_params_t *)data;
    718  1.1    simonb 		if (app->mode & ~pps->ppscap)
    719  1.1    simonb 			return (EINVAL);
    720  1.1    simonb 		pps->ppsparam = *app;
    721  1.1    simonb 		return (0);
    722  1.1    simonb 	case PPS_IOC_GETPARAMS:
    723  1.1    simonb 		app = (pps_params_t *)data;
    724  1.1    simonb 		*app = pps->ppsparam;
    725  1.1    simonb 		app->api_version = PPS_API_VERS_1;
    726  1.1    simonb 		return (0);
    727  1.1    simonb 	case PPS_IOC_GETCAP:
    728  1.1    simonb 		*(int*)data = pps->ppscap;
    729  1.1    simonb 		return (0);
    730  1.1    simonb 	case PPS_IOC_FETCH:
    731  1.2    kardel 		pipi = (pps_info_t *)data;
    732  1.1    simonb 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    733  1.2    kardel 		*pipi = pps->ppsinfo;
    734  1.1    simonb 		return (0);
    735  1.1    simonb 	case PPS_IOC_KCBIND:
    736  1.1    simonb #ifdef PPS_SYNC
    737  1.2    kardel 		epi = (int *)data;
    738  1.1    simonb 		/* XXX Only root should be able to do this */
    739  1.2    kardel 		if (*epi & ~pps->ppscap)
    740  1.1    simonb 			return (EINVAL);
    741  1.2    kardel 		pps->kcmode = *epi;
    742  1.1    simonb 		return (0);
    743  1.1    simonb #else
    744  1.1    simonb 		return (EOPNOTSUPP);
    745  1.1    simonb #endif
    746  1.1    simonb 	default:
    747  1.2    kardel 		return (EPASSTHROUGH);
    748  1.1    simonb 	}
    749  1.1    simonb }
    750  1.1    simonb 
    751  1.1    simonb void
    752  1.1    simonb pps_init(struct pps_state *pps)
    753  1.1    simonb {
    754  1.1    simonb 	pps->ppscap |= PPS_TSFMT_TSPEC;
    755  1.1    simonb 	if (pps->ppscap & PPS_CAPTUREASSERT)
    756  1.1    simonb 		pps->ppscap |= PPS_OFFSETASSERT;
    757  1.1    simonb 	if (pps->ppscap & PPS_CAPTURECLEAR)
    758  1.1    simonb 		pps->ppscap |= PPS_OFFSETCLEAR;
    759  1.1    simonb }
    760  1.1    simonb 
    761  1.1    simonb void
    762  1.1    simonb pps_capture(struct pps_state *pps)
    763  1.1    simonb {
    764  1.1    simonb 	struct timehands *th;
    765  1.1    simonb 
    766  1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
    767  1.1    simonb 	th = timehands;
    768  1.1    simonb 	pps->capgen = th->th_generation;
    769  1.1    simonb 	pps->capth = th;
    770  1.1    simonb 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
    771  1.1    simonb 	if (pps->capgen != th->th_generation)
    772  1.1    simonb 		pps->capgen = 0;
    773  1.1    simonb }
    774  1.1    simonb 
    775  1.1    simonb void
    776  1.1    simonb pps_event(struct pps_state *pps, int event)
    777  1.1    simonb {
    778  1.1    simonb 	struct bintime bt;
    779  1.1    simonb 	struct timespec ts, *tsp, *osp;
    780  1.1    simonb 	u_int tcount, *pcount;
    781  1.1    simonb 	int foff, fhard;
    782  1.1    simonb 	pps_seq_t *pseq;
    783  1.1    simonb 
    784  1.2    kardel 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
    785  1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    786  1.1    simonb 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
    787  1.1    simonb 		return;
    788  1.1    simonb 
    789  1.1    simonb 	/* Things would be easier with arrays. */
    790  1.1    simonb 	if (event == PPS_CAPTUREASSERT) {
    791  1.1    simonb 		tsp = &pps->ppsinfo.assert_timestamp;
    792  1.1    simonb 		osp = &pps->ppsparam.assert_offset;
    793  1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
    794  1.1    simonb 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
    795  1.1    simonb 		pcount = &pps->ppscount[0];
    796  1.1    simonb 		pseq = &pps->ppsinfo.assert_sequence;
    797  1.1    simonb 	} else {
    798  1.1    simonb 		tsp = &pps->ppsinfo.clear_timestamp;
    799  1.1    simonb 		osp = &pps->ppsparam.clear_offset;
    800  1.1    simonb 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
    801  1.1    simonb 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
    802  1.1    simonb 		pcount = &pps->ppscount[1];
    803  1.1    simonb 		pseq = &pps->ppsinfo.clear_sequence;
    804  1.1    simonb 	}
    805  1.1    simonb 
    806  1.1    simonb 	/*
    807  1.1    simonb 	 * If the timecounter changed, we cannot compare the count values, so
    808  1.1    simonb 	 * we have to drop the rest of the PPS-stuff until the next event.
    809  1.1    simonb 	 */
    810  1.1    simonb 	if (pps->ppstc != pps->capth->th_counter) {
    811  1.1    simonb 		pps->ppstc = pps->capth->th_counter;
    812  1.1    simonb 		*pcount = pps->capcount;
    813  1.1    simonb 		pps->ppscount[2] = pps->capcount;
    814  1.1    simonb 		return;
    815  1.1    simonb 	}
    816  1.1    simonb 
    817  1.1    simonb 	/* Convert the count to a timespec. */
    818  1.1    simonb 	tcount = pps->capcount - pps->capth->th_offset_count;
    819  1.1    simonb 	tcount &= pps->capth->th_counter->tc_counter_mask;
    820  1.1    simonb 	bt = pps->capth->th_offset;
    821  1.1    simonb 	bintime_addx(&bt, pps->capth->th_scale * tcount);
    822  1.4    kardel 	bintime_add(&bt, &timebasebin);
    823  1.1    simonb 	bintime2timespec(&bt, &ts);
    824  1.1    simonb 
    825  1.1    simonb 	/* If the timecounter was wound up underneath us, bail out. */
    826  1.1    simonb 	if (pps->capgen != pps->capth->th_generation)
    827  1.1    simonb 		return;
    828  1.1    simonb 
    829  1.1    simonb 	*pcount = pps->capcount;
    830  1.1    simonb 	(*pseq)++;
    831  1.1    simonb 	*tsp = ts;
    832  1.1    simonb 
    833  1.1    simonb 	if (foff) {
    834  1.2    kardel 		timespecadd(tsp, osp, tsp);
    835  1.1    simonb 		if (tsp->tv_nsec < 0) {
    836  1.1    simonb 			tsp->tv_nsec += 1000000000;
    837  1.1    simonb 			tsp->tv_sec -= 1;
    838  1.1    simonb 		}
    839  1.1    simonb 	}
    840  1.1    simonb #ifdef PPS_SYNC
    841  1.1    simonb 	if (fhard) {
    842  1.1    simonb 		u_int64_t scale;
    843  1.1    simonb 
    844  1.1    simonb 		/*
    845  1.1    simonb 		 * Feed the NTP PLL/FLL.
    846  1.1    simonb 		 * The FLL wants to know how many (hardware) nanoseconds
    847  1.1    simonb 		 * elapsed since the previous event.
    848  1.1    simonb 		 */
    849  1.1    simonb 		tcount = pps->capcount - pps->ppscount[2];
    850  1.1    simonb 		pps->ppscount[2] = pps->capcount;
    851  1.1    simonb 		tcount &= pps->capth->th_counter->tc_counter_mask;
    852  1.1    simonb 		scale = (u_int64_t)1 << 63;
    853  1.1    simonb 		scale /= pps->capth->th_counter->tc_frequency;
    854  1.1    simonb 		scale *= 2;
    855  1.1    simonb 		bt.sec = 0;
    856  1.1    simonb 		bt.frac = 0;
    857  1.1    simonb 		bintime_addx(&bt, scale * tcount);
    858  1.1    simonb 		bintime2timespec(&bt, &ts);
    859  1.1    simonb 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
    860  1.1    simonb 	}
    861  1.1    simonb #endif
    862  1.1    simonb }
    863  1.1    simonb 
    864  1.1    simonb /*
    865  1.1    simonb  * Timecounters need to be updated every so often to prevent the hardware
    866  1.1    simonb  * counter from overflowing.  Updating also recalculates the cached values
    867  1.1    simonb  * used by the get*() family of functions, so their precision depends on
    868  1.1    simonb  * the update frequency.
    869  1.1    simonb  */
    870  1.1    simonb 
    871  1.1    simonb static int tc_tick;
    872  1.2    kardel #ifdef __FreeBSD__
    873  1.1    simonb SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
    874  1.2    kardel #endif /* __FreeBSD__ */
    875  1.1    simonb 
    876  1.1    simonb void
    877  1.1    simonb tc_ticktock(void)
    878  1.1    simonb {
    879  1.1    simonb 	static int count;
    880  1.1    simonb 
    881  1.1    simonb 	if (++count < tc_tick)
    882  1.1    simonb 		return;
    883  1.1    simonb 	count = 0;
    884  1.1    simonb 	tc_windup();
    885  1.1    simonb }
    886  1.1    simonb 
    887  1.2    kardel void
    888  1.2    kardel inittimecounter(void)
    889  1.1    simonb {
    890  1.1    simonb 	u_int p;
    891  1.1    simonb 
    892  1.1    simonb 	/*
    893  1.1    simonb 	 * Set the initial timeout to
    894  1.1    simonb 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
    895  1.1    simonb 	 * People should probably not use the sysctl to set the timeout
    896  1.1    simonb 	 * to smaller than its inital value, since that value is the
    897  1.1    simonb 	 * smallest reasonable one.  If they want better timestamps they
    898  1.1    simonb 	 * should use the non-"get"* functions.
    899  1.1    simonb 	 */
    900  1.1    simonb 	if (hz > 1000)
    901  1.1    simonb 		tc_tick = (hz + 500) / 1000;
    902  1.1    simonb 	else
    903  1.1    simonb 		tc_tick = 1;
    904  1.1    simonb 	p = (tc_tick * 1000000) / hz;
    905  1.2    kardel 	printf("timecounter: Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
    906  1.1    simonb 
    907  1.1    simonb 	/* warm up new timecounter (again) and get rolling. */
    908  1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
    909  1.1    simonb 	(void)timecounter->tc_get_timecount(timecounter);
    910  1.1    simonb }
    911  1.1    simonb 
    912  1.2    kardel #ifdef __FreeBSD__
    913  1.1    simonb SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
    914  1.2    kardel #endif /* __FreeBSD__ */
    915  1.2    kardel #endif /* __HAVE_TIMECOUNTER */
    916