Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.1.1.1.2.3
      1 /* $NetBSD: kern_tc.c,v 1.1.1.1.2.3 2006/02/04 08:19:04 simonb Exp $ */
      2 
      3 /*-
      4  * ----------------------------------------------------------------------------
      5  * "THE BEER-WARE LICENSE" (Revision 42):
      6  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
      7  * can do whatever you want with this stuff. If we meet some day, and you think
      8  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
      9  * ----------------------------------------------------------------------------
     10  */
     11 
     12 #include <sys/cdefs.h>
     13 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     14 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.1.1.1.2.3 2006/02/04 08:19:04 simonb Exp $");
     15 
     16 #include "opt_ntp.h"
     17 
     18 #include <sys/param.h>
     19 #include <sys/kernel.h>
     20 #include <sys/sysctl.h>
     21 #include <sys/syslog.h>
     22 #include <sys/systm.h>
     23 #include <sys/timepps.h>
     24 #include <sys/timetc.h>
     25 #include <sys/timex.h>
     26 
     27 /*
     28  * A large step happens on boot.  This constant detects such steps.
     29  * It is relatively small so that ntp_update_second gets called enough
     30  * in the typical 'missed a couple of seconds' case, but doesn't loop
     31  * forever when the time step is large.
     32  */
     33 #define LARGE_STEP	200
     34 
     35 /*
     36  * Implement a dummy timecounter which we can use until we get a real one
     37  * in the air.  This allows the console and other early stuff to use
     38  * time services.
     39  */
     40 
     41 static u_int
     42 dummy_get_timecount(struct timecounter *tc)
     43 {
     44 	static u_int now;
     45 
     46 	return (++now);
     47 }
     48 
     49 static struct timecounter dummy_timecounter = {
     50 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
     51 };
     52 
     53 struct timehands {
     54 	/* These fields must be initialized by the driver. */
     55 	struct timecounter	*th_counter;
     56 	int64_t			th_adjustment;
     57 	u_int64_t		th_scale;
     58 	u_int	 		th_offset_count;
     59 	struct bintime		th_offset;
     60 	struct timeval		th_microtime;
     61 	struct timespec		th_nanotime;
     62 	/* Fields not to be copied in tc_windup start with th_generation. */
     63 	volatile u_int		th_generation;
     64 	struct timehands	*th_next;
     65 };
     66 
     67 static struct timehands th0;
     68 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
     69 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
     70 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
     71 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
     72 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
     73 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
     74 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
     75 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
     76 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
     77 static struct timehands th0 = {
     78 	&dummy_timecounter,
     79 	0,
     80 	(uint64_t)-1 / 1000000,
     81 	0,
     82 	{1, 0},
     83 	{0, 0},
     84 	{0, 0},
     85 	1,
     86 	&th1
     87 };
     88 
     89 static struct timehands *volatile timehands = &th0;
     90 struct timecounter *timecounter = &dummy_timecounter;
     91 static struct timecounter *timecounters = &dummy_timecounter;
     92 
     93 time_t time_second = 1;
     94 time_t time_uptime = 1;
     95 
     96 static struct bintime boottimebin;
     97 struct timeval boottime;
     98 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
     99 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
    100     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
    101 
    102 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
    103 
    104 static int timestepwarnings;
    105 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    106     &timestepwarnings, 0, "");
    107 
    108 #define TC_STATS(foo) \
    109 	static u_int foo; \
    110 	SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
    111 	struct __hack
    112 
    113 TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
    114 TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
    115 TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
    116 TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
    117 TC_STATS(nsetclock);
    118 
    119 #undef TC_STATS
    120 
    121 static void tc_windup(void);
    122 
    123 static int
    124 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
    125 {
    126 #ifdef SCTL_MASK32
    127 	int tv[2];
    128 
    129 	if (req->flags & SCTL_MASK32) {
    130 		tv[0] = boottime.tv_sec;
    131 		tv[1] = boottime.tv_usec;
    132 		return SYSCTL_OUT(req, tv, sizeof(tv));
    133 	} else
    134 #endif
    135 		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
    136 }
    137 /*
    138  * Return the difference between the timehands' counter value now and what
    139  * was when we copied it to the timehands' offset_count.
    140  */
    141 static __inline u_int
    142 tc_delta(struct timehands *th)
    143 {
    144 	struct timecounter *tc;
    145 
    146 	tc = th->th_counter;
    147 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
    148 	    tc->tc_counter_mask);
    149 }
    150 
    151 /*
    152  * Functions for reading the time.  We have to loop until we are sure that
    153  * the timehands that we operated on was not updated under our feet.  See
    154  * the comment in <sys/time.h> for a description of these 12 functions.
    155  */
    156 
    157 void
    158 binuptime(struct bintime *bt)
    159 {
    160 	struct timehands *th;
    161 	u_int gen;
    162 
    163 	nbinuptime++;
    164 	do {
    165 		th = timehands;
    166 		gen = th->th_generation;
    167 		*bt = th->th_offset;
    168 		bintime_addx(bt, th->th_scale * tc_delta(th));
    169 	} while (gen == 0 || gen != th->th_generation);
    170 }
    171 
    172 void
    173 nanouptime(struct timespec *tsp)
    174 {
    175 	struct bintime bt;
    176 
    177 	nnanouptime++;
    178 	binuptime(&bt);
    179 	bintime2timespec(&bt, tsp);
    180 }
    181 
    182 void
    183 microuptime(struct timeval *tvp)
    184 {
    185 	struct bintime bt;
    186 
    187 	nmicrouptime++;
    188 	binuptime(&bt);
    189 	bintime2timeval(&bt, tvp);
    190 }
    191 
    192 void
    193 bintime(struct bintime *bt)
    194 {
    195 
    196 	nbintime++;
    197 	binuptime(bt);
    198 	bintime_add(bt, &boottimebin);
    199 }
    200 
    201 void
    202 nanotime(struct timespec *tsp)
    203 {
    204 	struct bintime bt;
    205 
    206 	nnanotime++;
    207 	bintime(&bt);
    208 	bintime2timespec(&bt, tsp);
    209 }
    210 
    211 void
    212 microtime(struct timeval *tvp)
    213 {
    214 	struct bintime bt;
    215 
    216 	nmicrotime++;
    217 	bintime(&bt);
    218 	bintime2timeval(&bt, tvp);
    219 }
    220 
    221 void
    222 getbinuptime(struct bintime *bt)
    223 {
    224 	struct timehands *th;
    225 	u_int gen;
    226 
    227 	ngetbinuptime++;
    228 	do {
    229 		th = timehands;
    230 		gen = th->th_generation;
    231 		*bt = th->th_offset;
    232 	} while (gen == 0 || gen != th->th_generation);
    233 }
    234 
    235 void
    236 getnanouptime(struct timespec *tsp)
    237 {
    238 	struct timehands *th;
    239 	u_int gen;
    240 
    241 	ngetnanouptime++;
    242 	do {
    243 		th = timehands;
    244 		gen = th->th_generation;
    245 		bintime2timespec(&th->th_offset, tsp);
    246 	} while (gen == 0 || gen != th->th_generation);
    247 }
    248 
    249 void
    250 getmicrouptime(struct timeval *tvp)
    251 {
    252 	struct timehands *th;
    253 	u_int gen;
    254 
    255 	ngetmicrouptime++;
    256 	do {
    257 		th = timehands;
    258 		gen = th->th_generation;
    259 		bintime2timeval(&th->th_offset, tvp);
    260 	} while (gen == 0 || gen != th->th_generation);
    261 }
    262 
    263 void
    264 getbintime(struct bintime *bt)
    265 {
    266 	struct timehands *th;
    267 	u_int gen;
    268 
    269 	ngetbintime++;
    270 	do {
    271 		th = timehands;
    272 		gen = th->th_generation;
    273 		*bt = th->th_offset;
    274 	} while (gen == 0 || gen != th->th_generation);
    275 	bintime_add(bt, &boottimebin);
    276 }
    277 
    278 void
    279 getnanotime(struct timespec *tsp)
    280 {
    281 	struct timehands *th;
    282 	u_int gen;
    283 
    284 	ngetnanotime++;
    285 	do {
    286 		th = timehands;
    287 		gen = th->th_generation;
    288 		*tsp = th->th_nanotime;
    289 	} while (gen == 0 || gen != th->th_generation);
    290 }
    291 
    292 void
    293 getmicrotime(struct timeval *tvp)
    294 {
    295 	struct timehands *th;
    296 	u_int gen;
    297 
    298 	ngetmicrotime++;
    299 	do {
    300 		th = timehands;
    301 		gen = th->th_generation;
    302 		*tvp = th->th_microtime;
    303 	} while (gen == 0 || gen != th->th_generation);
    304 }
    305 
    306 /*
    307  * Initialize a new timecounter and possibly use it.
    308  */
    309 void
    310 tc_init(struct timecounter *tc)
    311 {
    312 	u_int u;
    313 
    314 	u = tc->tc_frequency / tc->tc_counter_mask;
    315 	/* XXX: We need some margin here, 10% is a guess */
    316 	u *= 11;
    317 	u /= 10;
    318 	if (u > hz && tc->tc_quality >= 0) {
    319 		tc->tc_quality = -2000;
    320 		if (bootverbose) {
    321 			printf("Timecounter \"%s\" frequency %ju Hz",
    322 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    323 			printf(" -- Insufficient hz, needs at least %u\n", u);
    324 		}
    325 	} else if (tc->tc_quality >= 0 || bootverbose) {
    326 		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
    327 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
    328 		    tc->tc_quality);
    329 	}
    330 
    331 	tc->tc_next = timecounters;
    332 	timecounters = tc;
    333 	/*
    334 	 * Never automatically use a timecounter with negative quality.
    335 	 * Even though we run on the dummy counter, switching here may be
    336 	 * worse since this timecounter may not be monotonous.
    337 	 */
    338 	if (tc->tc_quality < 0)
    339 		return;
    340 	if (tc->tc_quality < timecounter->tc_quality)
    341 		return;
    342 	if (tc->tc_quality == timecounter->tc_quality &&
    343 	    tc->tc_frequency < timecounter->tc_frequency)
    344 		return;
    345 	(void)tc->tc_get_timecount(tc);
    346 	(void)tc->tc_get_timecount(tc);
    347 	timecounter = tc;
    348 }
    349 
    350 /* Report the frequency of the current timecounter. */
    351 u_int64_t
    352 tc_getfrequency(void)
    353 {
    354 
    355 	return (timehands->th_counter->tc_frequency);
    356 }
    357 
    358 /*
    359  * Step our concept of UTC.  This is done by modifying our estimate of
    360  * when we booted.
    361  * XXX: not locked.
    362  */
    363 void
    364 tc_setclock(struct timespec *ts)
    365 {
    366 	struct timespec ts2;
    367 	struct bintime bt, bt2;
    368 
    369 	nsetclock++;
    370 	binuptime(&bt2);
    371 	timespec2bintime(ts, &bt);
    372 	bintime_sub(&bt, &bt2);
    373 	bintime_add(&bt2, &boottimebin);
    374 	boottimebin = bt;
    375 	bintime2timeval(&bt, &boottime);
    376 
    377 	/* XXX fiddle all the little crinkly bits around the fiords... */
    378 	tc_windup();
    379 	if (timestepwarnings) {
    380 		bintime2timespec(&bt2, &ts2);
    381 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
    382 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
    383 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
    384 	}
    385 }
    386 
    387 /*
    388  * Initialize the next struct timehands in the ring and make
    389  * it the active timehands.  Along the way we might switch to a different
    390  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    391  */
    392 static void
    393 tc_windup(void)
    394 {
    395 	struct bintime bt;
    396 	struct timehands *th, *tho;
    397 	u_int64_t scale;
    398 	u_int delta, ncount, ogen;
    399 	int i;
    400 	time_t t;
    401 
    402 	/*
    403 	 * Make the next timehands a copy of the current one, but do not
    404 	 * overwrite the generation or next pointer.  While we update
    405 	 * the contents, the generation must be zero.
    406 	 */
    407 	tho = timehands;
    408 	th = tho->th_next;
    409 	ogen = th->th_generation;
    410 	th->th_generation = 0;
    411 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    412 
    413 	/*
    414 	 * Capture a timecounter delta on the current timecounter and if
    415 	 * changing timecounters, a counter value from the new timecounter.
    416 	 * Update the offset fields accordingly.
    417 	 */
    418 	delta = tc_delta(th);
    419 	if (th->th_counter != timecounter)
    420 		ncount = timecounter->tc_get_timecount(timecounter);
    421 	else
    422 		ncount = 0;
    423 	th->th_offset_count += delta;
    424 	th->th_offset_count &= th->th_counter->tc_counter_mask;
    425 	bintime_addx(&th->th_offset, th->th_scale * delta);
    426 
    427 	/*
    428 	 * Hardware latching timecounters may not generate interrupts on
    429 	 * PPS events, so instead we poll them.  There is a finite risk that
    430 	 * the hardware might capture a count which is later than the one we
    431 	 * got above, and therefore possibly in the next NTP second which might
    432 	 * have a different rate than the current NTP second.  It doesn't
    433 	 * matter in practice.
    434 	 */
    435 	if (tho->th_counter->tc_poll_pps)
    436 		tho->th_counter->tc_poll_pps(tho->th_counter);
    437 
    438 	/*
    439 	 * Deal with NTP second processing.  The for loop normally
    440 	 * iterates at most once, but in extreme situations it might
    441 	 * keep NTP sane if timeouts are not run for several seconds.
    442 	 * At boot, the time step can be large when the TOD hardware
    443 	 * has been read, so on really large steps, we call
    444 	 * ntp_update_second only twice.  We need to call it twice in
    445 	 * case we missed a leap second.
    446 	 */
    447 	bt = th->th_offset;
    448 	bintime_add(&bt, &boottimebin);
    449 	i = bt.sec - tho->th_microtime.tv_sec;
    450 	if (i > LARGE_STEP)
    451 		i = 2;
    452 	for (; i > 0; i--) {
    453 		t = bt.sec;
    454 		ntp_update_second(&th->th_adjustment, &bt.sec);
    455 		if (bt.sec != t)
    456 			boottimebin.sec += bt.sec - t;
    457 	}
    458 	/* Update the UTC timestamps used by the get*() functions. */
    459 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    460 	bintime2timeval(&bt, &th->th_microtime);
    461 	bintime2timespec(&bt, &th->th_nanotime);
    462 
    463 	/* Now is a good time to change timecounters. */
    464 	if (th->th_counter != timecounter) {
    465 		th->th_counter = timecounter;
    466 		th->th_offset_count = ncount;
    467 	}
    468 
    469 	/*-
    470 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    471 	 * fractions of a second per period of the hardware counter, taking
    472 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    473 	 * processing provides us with.
    474 	 *
    475 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    476 	 * fraction and we want 64 bit binary fraction of second:
    477 	 *
    478 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    479 	 *
    480 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    481 	 * we can only multiply by about 850 without overflowing, but that
    482 	 * leaves suitably precise fractions for multiply before divide.
    483 	 *
    484 	 * Divide before multiply with a fraction of 2199/512 results in a
    485 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    486 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    487  	 *
    488 	 * We happily sacrifice the lowest of the 64 bits of our result
    489 	 * to the goddess of code clarity.
    490 	 *
    491 	 */
    492 	scale = (u_int64_t)1 << 63;
    493 	scale += (th->th_adjustment / 1024) * 2199;
    494 	scale /= th->th_counter->tc_frequency;
    495 	th->th_scale = scale * 2;
    496 
    497 	/*
    498 	 * Now that the struct timehands is again consistent, set the new
    499 	 * generation number, making sure to not make it zero.
    500 	 */
    501 	if (++ogen == 0)
    502 		ogen = 1;
    503 	th->th_generation = ogen;
    504 
    505 	/* Go live with the new struct timehands. */
    506 	time_second = th->th_microtime.tv_sec;
    507 	time_uptime = th->th_offset.sec;
    508 	timehands = th;
    509 }
    510 
    511 /* Report or change the active timecounter hardware. */
    512 static int
    513 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
    514 {
    515 	char newname[32];
    516 	struct timecounter *newtc, *tc;
    517 	int error;
    518 
    519 	tc = timecounter;
    520 	strlcpy(newname, tc->tc_name, sizeof(newname));
    521 
    522 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
    523 	if (error != 0 || req->newptr == NULL ||
    524 	    strcmp(newname, tc->tc_name) == 0)
    525 		return (error);
    526 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    527 		if (strcmp(newname, newtc->tc_name) != 0)
    528 			continue;
    529 
    530 		/* Warm up new timecounter. */
    531 		(void)newtc->tc_get_timecount(newtc);
    532 		(void)newtc->tc_get_timecount(newtc);
    533 
    534 		timecounter = newtc;
    535 		return (0);
    536 	}
    537 	return (EINVAL);
    538 }
    539 
    540 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
    541     0, 0, sysctl_kern_timecounter_hardware, "A", "");
    542 
    543 
    544 /* Report or change the active timecounter hardware. */
    545 static int
    546 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
    547 {
    548 	char buf[32], *spc;
    549 	struct timecounter *tc;
    550 	int error;
    551 
    552 	spc = "";
    553 	error = 0;
    554 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    555 		sprintf(buf, "%s%s(%d)",
    556 		    spc, tc->tc_name, tc->tc_quality);
    557 		error = SYSCTL_OUT(req, buf, strlen(buf));
    558 		spc = " ";
    559 	}
    560 	return (error);
    561 }
    562 
    563 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
    564     0, 0, sysctl_kern_timecounter_choice, "A", "");
    565 
    566 /*
    567  * RFC 2783 PPS-API implementation.
    568  */
    569 
    570 int
    571 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
    572 {
    573 	pps_params_t *app;
    574 	struct pps_fetch_args *fapi;
    575 #ifdef PPS_SYNC
    576 	struct pps_kcbind_args *kapi;
    577 #endif
    578 
    579 	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
    580 	switch (cmd) {
    581 	case PPS_IOC_CREATE:
    582 		return (0);
    583 	case PPS_IOC_DESTROY:
    584 		return (0);
    585 	case PPS_IOC_SETPARAMS:
    586 		app = (pps_params_t *)data;
    587 		if (app->mode & ~pps->ppscap)
    588 			return (EINVAL);
    589 		pps->ppsparam = *app;
    590 		return (0);
    591 	case PPS_IOC_GETPARAMS:
    592 		app = (pps_params_t *)data;
    593 		*app = pps->ppsparam;
    594 		app->api_version = PPS_API_VERS_1;
    595 		return (0);
    596 	case PPS_IOC_GETCAP:
    597 		*(int*)data = pps->ppscap;
    598 		return (0);
    599 	case PPS_IOC_FETCH:
    600 		fapi = (struct pps_fetch_args *)data;
    601 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
    602 			return (EINVAL);
    603 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
    604 			return (EOPNOTSUPP);
    605 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    606 		fapi->pps_info_buf = pps->ppsinfo;
    607 		return (0);
    608 	case PPS_IOC_KCBIND:
    609 #ifdef PPS_SYNC
    610 		kapi = (struct pps_kcbind_args *)data;
    611 		/* XXX Only root should be able to do this */
    612 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
    613 			return (EINVAL);
    614 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
    615 			return (EINVAL);
    616 		if (kapi->edge & ~pps->ppscap)
    617 			return (EINVAL);
    618 		pps->kcmode = kapi->edge;
    619 		return (0);
    620 #else
    621 		return (EOPNOTSUPP);
    622 #endif
    623 	default:
    624 		return (ENOIOCTL);
    625 	}
    626 }
    627 
    628 void
    629 pps_init(struct pps_state *pps)
    630 {
    631 	pps->ppscap |= PPS_TSFMT_TSPEC;
    632 	if (pps->ppscap & PPS_CAPTUREASSERT)
    633 		pps->ppscap |= PPS_OFFSETASSERT;
    634 	if (pps->ppscap & PPS_CAPTURECLEAR)
    635 		pps->ppscap |= PPS_OFFSETCLEAR;
    636 }
    637 
    638 void
    639 pps_capture(struct pps_state *pps)
    640 {
    641 	struct timehands *th;
    642 
    643 	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
    644 	th = timehands;
    645 	pps->capgen = th->th_generation;
    646 	pps->capth = th;
    647 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
    648 	if (pps->capgen != th->th_generation)
    649 		pps->capgen = 0;
    650 }
    651 
    652 void
    653 pps_event(struct pps_state *pps, int event)
    654 {
    655 	struct bintime bt;
    656 	struct timespec ts, *tsp, *osp;
    657 	u_int tcount, *pcount;
    658 	int foff, fhard;
    659 	pps_seq_t *pseq;
    660 
    661 	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
    662 	/* If the timecounter was wound up underneath us, bail out. */
    663 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
    664 		return;
    665 
    666 	/* Things would be easier with arrays. */
    667 	if (event == PPS_CAPTUREASSERT) {
    668 		tsp = &pps->ppsinfo.assert_timestamp;
    669 		osp = &pps->ppsparam.assert_offset;
    670 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
    671 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
    672 		pcount = &pps->ppscount[0];
    673 		pseq = &pps->ppsinfo.assert_sequence;
    674 	} else {
    675 		tsp = &pps->ppsinfo.clear_timestamp;
    676 		osp = &pps->ppsparam.clear_offset;
    677 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
    678 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
    679 		pcount = &pps->ppscount[1];
    680 		pseq = &pps->ppsinfo.clear_sequence;
    681 	}
    682 
    683 	/*
    684 	 * If the timecounter changed, we cannot compare the count values, so
    685 	 * we have to drop the rest of the PPS-stuff until the next event.
    686 	 */
    687 	if (pps->ppstc != pps->capth->th_counter) {
    688 		pps->ppstc = pps->capth->th_counter;
    689 		*pcount = pps->capcount;
    690 		pps->ppscount[2] = pps->capcount;
    691 		return;
    692 	}
    693 
    694 	/* Convert the count to a timespec. */
    695 	tcount = pps->capcount - pps->capth->th_offset_count;
    696 	tcount &= pps->capth->th_counter->tc_counter_mask;
    697 	bt = pps->capth->th_offset;
    698 	bintime_addx(&bt, pps->capth->th_scale * tcount);
    699 	bintime_add(&bt, &boottimebin);
    700 	bintime2timespec(&bt, &ts);
    701 
    702 	/* If the timecounter was wound up underneath us, bail out. */
    703 	if (pps->capgen != pps->capth->th_generation)
    704 		return;
    705 
    706 	*pcount = pps->capcount;
    707 	(*pseq)++;
    708 	*tsp = ts;
    709 
    710 	if (foff) {
    711 		timespecadd(tsp, osp);
    712 		if (tsp->tv_nsec < 0) {
    713 			tsp->tv_nsec += 1000000000;
    714 			tsp->tv_sec -= 1;
    715 		}
    716 	}
    717 #ifdef PPS_SYNC
    718 	if (fhard) {
    719 		u_int64_t scale;
    720 
    721 		/*
    722 		 * Feed the NTP PLL/FLL.
    723 		 * The FLL wants to know how many (hardware) nanoseconds
    724 		 * elapsed since the previous event.
    725 		 */
    726 		tcount = pps->capcount - pps->ppscount[2];
    727 		pps->ppscount[2] = pps->capcount;
    728 		tcount &= pps->capth->th_counter->tc_counter_mask;
    729 		scale = (u_int64_t)1 << 63;
    730 		scale /= pps->capth->th_counter->tc_frequency;
    731 		scale *= 2;
    732 		bt.sec = 0;
    733 		bt.frac = 0;
    734 		bintime_addx(&bt, scale * tcount);
    735 		bintime2timespec(&bt, &ts);
    736 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
    737 	}
    738 #endif
    739 }
    740 
    741 /*
    742  * Timecounters need to be updated every so often to prevent the hardware
    743  * counter from overflowing.  Updating also recalculates the cached values
    744  * used by the get*() family of functions, so their precision depends on
    745  * the update frequency.
    746  */
    747 
    748 static int tc_tick;
    749 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
    750 
    751 void
    752 tc_ticktock(void)
    753 {
    754 	static int count;
    755 
    756 	if (++count < tc_tick)
    757 		return;
    758 	count = 0;
    759 	tc_windup();
    760 }
    761 
    762 static void
    763 inittimecounter(void *dummy)
    764 {
    765 	u_int p;
    766 
    767 	/*
    768 	 * Set the initial timeout to
    769 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
    770 	 * People should probably not use the sysctl to set the timeout
    771 	 * to smaller than its inital value, since that value is the
    772 	 * smallest reasonable one.  If they want better timestamps they
    773 	 * should use the non-"get"* functions.
    774 	 */
    775 	if (hz > 1000)
    776 		tc_tick = (hz + 500) / 1000;
    777 	else
    778 		tc_tick = 1;
    779 	p = (tc_tick * 1000000) / hz;
    780 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
    781 
    782 	/* warm up new timecounter (again) and get rolling. */
    783 	(void)timecounter->tc_get_timecount(timecounter);
    784 	(void)timecounter->tc_get_timecount(timecounter);
    785 }
    786 
    787 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
    788