Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.1.1.1.2.4
      1 /* $NetBSD: kern_tc.c,v 1.1.1.1.2.4 2006/02/04 13:36:18 simonb Exp $ */
      2 
      3 /*-
      4  * ----------------------------------------------------------------------------
      5  * "THE BEER-WARE LICENSE" (Revision 42):
      6  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
      7  * can do whatever you want with this stuff. If we meet some day, and you think
      8  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
      9  * ----------------------------------------------------------------------------
     10  */
     11 
     12 #include <sys/cdefs.h>
     13 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     14 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.1.1.1.2.4 2006/02/04 13:36:18 simonb Exp $");
     15 
     16 #include "opt_ntp.h"
     17 
     18 #include <sys/param.h>
     19 #ifdef __HAVE_TIMECOUNTER	/* XXX */
     20 #include <sys/kernel.h>
     21 #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     22 #include <sys/sysctl.h>
     23 #include <sys/syslog.h>
     24 #include <sys/systm.h>
     25 #include <sys/timepps.h>
     26 #include <sys/timetc.h>
     27 #include <sys/timex.h>
     28 
     29 /*
     30  * A large step happens on boot.  This constant detects such steps.
     31  * It is relatively small so that ntp_update_second gets called enough
     32  * in the typical 'missed a couple of seconds' case, but doesn't loop
     33  * forever when the time step is large.
     34  */
     35 #define LARGE_STEP	200
     36 
     37 /*
     38  * Implement a dummy timecounter which we can use until we get a real one
     39  * in the air.  This allows the console and other early stuff to use
     40  * time services.
     41  */
     42 
     43 static u_int
     44 dummy_get_timecount(struct timecounter *tc)
     45 {
     46 	static u_int now;
     47 
     48 	return (++now);
     49 }
     50 
     51 static struct timecounter dummy_timecounter = {
     52 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
     53 };
     54 
     55 struct timehands {
     56 	/* These fields must be initialized by the driver. */
     57 	struct timecounter	*th_counter;
     58 	int64_t			th_adjustment;
     59 	u_int64_t		th_scale;
     60 	u_int	 		th_offset_count;
     61 	struct bintime		th_offset;
     62 	struct timeval		th_microtime;
     63 	struct timespec		th_nanotime;
     64 	/* Fields not to be copied in tc_windup start with th_generation. */
     65 	volatile u_int		th_generation;
     66 	struct timehands	*th_next;
     67 };
     68 
     69 static struct timehands th0;
     70 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
     71 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
     72 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
     73 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
     74 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
     75 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
     76 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
     77 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
     78 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
     79 static struct timehands th0 = {
     80 	&dummy_timecounter,
     81 	0,
     82 	(uint64_t)-1 / 1000000,
     83 	0,
     84 	{1, 0},
     85 	{0, 0},
     86 	{0, 0},
     87 	1,
     88 	&th1
     89 };
     90 
     91 static struct timehands *volatile timehands = &th0;
     92 struct timecounter *timecounter = &dummy_timecounter;
     93 static struct timecounter *timecounters = &dummy_timecounter;
     94 
     95 time_t time_second = 1;
     96 time_t time_uptime = 1;
     97 
     98 static struct bintime boottimebin;
     99 struct timeval boottime;
    100 #ifdef __FreeBSD__
    101 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
    102 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
    103     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
    104 
    105 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
    106 #endif /* __FreeBSD__ */
    107 
    108 static int timestepwarnings;
    109 #ifdef __FreeBSD__
    110 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    111     &timestepwarnings, 0, "");
    112 #endif /* __FreeBSD__ */
    113 
    114 #define	TC_STATS(name)							\
    115 static struct evcnt name =						\
    116     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    117 EVCNT_ATTACH_STATIC(name)
    118 
    119 TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
    120 TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
    121 TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
    122 TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
    123 TC_STATS(nsetclock);
    124 
    125 #undef TC_STATS
    126 
    127 static void tc_windup(void);
    128 
    129 #ifdef __FreeBSD__
    130 static int
    131 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
    132 {
    133 #ifdef SCTL_MASK32
    134 	int tv[2];
    135 
    136 	if (req->flags & SCTL_MASK32) {
    137 		tv[0] = boottime.tv_sec;
    138 		tv[1] = boottime.tv_usec;
    139 		return SYSCTL_OUT(req, tv, sizeof(tv));
    140 	} else
    141 #endif
    142 		return SYSCTL_OUT(req, &boottime, sizeof(boottime));
    143 }
    144 #endif /* __FreeBSD__ */
    145 
    146 /*
    147  * Return the difference between the timehands' counter value now and what
    148  * was when we copied it to the timehands' offset_count.
    149  */
    150 static __inline u_int
    151 tc_delta(struct timehands *th)
    152 {
    153 	struct timecounter *tc;
    154 
    155 	tc = th->th_counter;
    156 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
    157 	    tc->tc_counter_mask);
    158 }
    159 
    160 /*
    161  * Functions for reading the time.  We have to loop until we are sure that
    162  * the timehands that we operated on was not updated under our feet.  See
    163  * the comment in <sys/time.h> for a description of these 12 functions.
    164  */
    165 
    166 void
    167 binuptime(struct bintime *bt)
    168 {
    169 	struct timehands *th;
    170 	u_int gen;
    171 
    172 	nbinuptime.ev_count++;
    173 	do {
    174 		th = timehands;
    175 		gen = th->th_generation;
    176 		*bt = th->th_offset;
    177 		bintime_addx(bt, th->th_scale * tc_delta(th));
    178 	} while (gen == 0 || gen != th->th_generation);
    179 }
    180 
    181 void
    182 nanouptime(struct timespec *tsp)
    183 {
    184 	struct bintime bt;
    185 
    186 	nnanouptime.ev_count++;
    187 	binuptime(&bt);
    188 	bintime2timespec(&bt, tsp);
    189 }
    190 
    191 void
    192 microuptime(struct timeval *tvp)
    193 {
    194 	struct bintime bt;
    195 
    196 	nmicrouptime.ev_count++;
    197 	binuptime(&bt);
    198 	bintime2timeval(&bt, tvp);
    199 }
    200 
    201 void
    202 bintime(struct bintime *bt)
    203 {
    204 
    205 	nbintime.ev_count++;
    206 	binuptime(bt);
    207 	bintime_add(bt, &boottimebin);
    208 }
    209 
    210 void
    211 nanotime(struct timespec *tsp)
    212 {
    213 	struct bintime bt;
    214 
    215 	nnanotime.ev_count++;
    216 	bintime(&bt);
    217 	bintime2timespec(&bt, tsp);
    218 }
    219 
    220 void
    221 microtime(struct timeval *tvp)
    222 {
    223 	struct bintime bt;
    224 
    225 	nmicrotime.ev_count++;
    226 	bintime(&bt);
    227 	bintime2timeval(&bt, tvp);
    228 }
    229 
    230 void
    231 getbinuptime(struct bintime *bt)
    232 {
    233 	struct timehands *th;
    234 	u_int gen;
    235 
    236 	ngetbinuptime.ev_count++;
    237 	do {
    238 		th = timehands;
    239 		gen = th->th_generation;
    240 		*bt = th->th_offset;
    241 	} while (gen == 0 || gen != th->th_generation);
    242 }
    243 
    244 void
    245 getnanouptime(struct timespec *tsp)
    246 {
    247 	struct timehands *th;
    248 	u_int gen;
    249 
    250 	ngetnanouptime.ev_count++;
    251 	do {
    252 		th = timehands;
    253 		gen = th->th_generation;
    254 		bintime2timespec(&th->th_offset, tsp);
    255 	} while (gen == 0 || gen != th->th_generation);
    256 }
    257 
    258 void
    259 getmicrouptime(struct timeval *tvp)
    260 {
    261 	struct timehands *th;
    262 	u_int gen;
    263 
    264 	ngetmicrouptime.ev_count++;
    265 	do {
    266 		th = timehands;
    267 		gen = th->th_generation;
    268 		bintime2timeval(&th->th_offset, tvp);
    269 	} while (gen == 0 || gen != th->th_generation);
    270 }
    271 
    272 void
    273 getbintime(struct bintime *bt)
    274 {
    275 	struct timehands *th;
    276 	u_int gen;
    277 
    278 	ngetbintime.ev_count++;
    279 	do {
    280 		th = timehands;
    281 		gen = th->th_generation;
    282 		*bt = th->th_offset;
    283 	} while (gen == 0 || gen != th->th_generation);
    284 	bintime_add(bt, &boottimebin);
    285 }
    286 
    287 void
    288 getnanotime(struct timespec *tsp)
    289 {
    290 	struct timehands *th;
    291 	u_int gen;
    292 
    293 	ngetnanotime.ev_count++;
    294 	do {
    295 		th = timehands;
    296 		gen = th->th_generation;
    297 		*tsp = th->th_nanotime;
    298 	} while (gen == 0 || gen != th->th_generation);
    299 }
    300 
    301 void
    302 getmicrotime(struct timeval *tvp)
    303 {
    304 	struct timehands *th;
    305 	u_int gen;
    306 
    307 	ngetmicrotime.ev_count++;
    308 	do {
    309 		th = timehands;
    310 		gen = th->th_generation;
    311 		*tvp = th->th_microtime;
    312 	} while (gen == 0 || gen != th->th_generation);
    313 }
    314 
    315 /*
    316  * Initialize a new timecounter and possibly use it.
    317  */
    318 void
    319 tc_init(struct timecounter *tc)
    320 {
    321 	u_int u;
    322 
    323 	u = tc->tc_frequency / tc->tc_counter_mask;
    324 	/* XXX: We need some margin here, 10% is a guess */
    325 	u *= 11;
    326 	u /= 10;
    327 	if (u > hz && tc->tc_quality >= 0) {
    328 		tc->tc_quality = -2000;
    329 		if (bootverbose) {
    330 			printf("Timecounter \"%s\" frequency %ju Hz",
    331 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    332 			printf(" -- Insufficient hz, needs at least %u\n", u);
    333 		}
    334 	} else if (tc->tc_quality >= 0 || bootverbose) {
    335 		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
    336 		    tc->tc_name, (uintmax_t)tc->tc_frequency,
    337 		    tc->tc_quality);
    338 	}
    339 
    340 	tc->tc_next = timecounters;
    341 	timecounters = tc;
    342 	/*
    343 	 * Never automatically use a timecounter with negative quality.
    344 	 * Even though we run on the dummy counter, switching here may be
    345 	 * worse since this timecounter may not be monotonous.
    346 	 */
    347 	if (tc->tc_quality < 0)
    348 		return;
    349 	if (tc->tc_quality < timecounter->tc_quality)
    350 		return;
    351 	if (tc->tc_quality == timecounter->tc_quality &&
    352 	    tc->tc_frequency < timecounter->tc_frequency)
    353 		return;
    354 	(void)tc->tc_get_timecount(tc);
    355 	(void)tc->tc_get_timecount(tc);
    356 	timecounter = tc;
    357 }
    358 
    359 /* Report the frequency of the current timecounter. */
    360 u_int64_t
    361 tc_getfrequency(void)
    362 {
    363 
    364 	return (timehands->th_counter->tc_frequency);
    365 }
    366 
    367 /*
    368  * Step our concept of UTC.  This is done by modifying our estimate of
    369  * when we booted.
    370  * XXX: not locked.
    371  */
    372 void
    373 tc_setclock(struct timespec *ts)
    374 {
    375 	struct timespec ts2;
    376 	struct bintime bt, bt2;
    377 
    378 	nsetclock.ev_count++;
    379 	binuptime(&bt2);
    380 	timespec2bintime(ts, &bt);
    381 	bintime_sub(&bt, &bt2);
    382 	bintime_add(&bt2, &boottimebin);
    383 	boottimebin = bt;
    384 	bintime2timeval(&bt, &boottime);
    385 
    386 	/* XXX fiddle all the little crinkly bits around the fiords... */
    387 	tc_windup();
    388 	if (timestepwarnings) {
    389 		bintime2timespec(&bt2, &ts2);
    390 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
    391 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
    392 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
    393 	}
    394 }
    395 
    396 /*
    397  * Initialize the next struct timehands in the ring and make
    398  * it the active timehands.  Along the way we might switch to a different
    399  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    400  */
    401 static void
    402 tc_windup(void)
    403 {
    404 	struct bintime bt;
    405 	struct timehands *th, *tho;
    406 	u_int64_t scale;
    407 	u_int delta, ncount, ogen;
    408 #ifdef NTP
    409 	int i;
    410 	time_t t;
    411 #endif /* NTP */
    412 
    413 	/*
    414 	 * Make the next timehands a copy of the current one, but do not
    415 	 * overwrite the generation or next pointer.  While we update
    416 	 * the contents, the generation must be zero.
    417 	 */
    418 	tho = timehands;
    419 	th = tho->th_next;
    420 	ogen = th->th_generation;
    421 	th->th_generation = 0;
    422 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    423 
    424 	/*
    425 	 * Capture a timecounter delta on the current timecounter and if
    426 	 * changing timecounters, a counter value from the new timecounter.
    427 	 * Update the offset fields accordingly.
    428 	 */
    429 	delta = tc_delta(th);
    430 	if (th->th_counter != timecounter)
    431 		ncount = timecounter->tc_get_timecount(timecounter);
    432 	else
    433 		ncount = 0;
    434 	th->th_offset_count += delta;
    435 	th->th_offset_count &= th->th_counter->tc_counter_mask;
    436 	bintime_addx(&th->th_offset, th->th_scale * delta);
    437 
    438 #ifdef PPS_SYNC
    439 	/*
    440 	 * Hardware latching timecounters may not generate interrupts on
    441 	 * PPS events, so instead we poll them.  There is a finite risk that
    442 	 * the hardware might capture a count which is later than the one we
    443 	 * got above, and therefore possibly in the next NTP second which might
    444 	 * have a different rate than the current NTP second.  It doesn't
    445 	 * matter in practice.
    446 	 */
    447 	if (tho->th_counter->tc_poll_pps)
    448 		tho->th_counter->tc_poll_pps(tho->th_counter);
    449 #endif /* PPS_SYNC */
    450 
    451 #ifdef NTP
    452 	/*
    453 	 * Deal with NTP second processing.  The for loop normally
    454 	 * iterates at most once, but in extreme situations it might
    455 	 * keep NTP sane if timeouts are not run for several seconds.
    456 	 * At boot, the time step can be large when the TOD hardware
    457 	 * has been read, so on really large steps, we call
    458 	 * ntp_update_second only twice.  We need to call it twice in
    459 	 * case we missed a leap second.
    460 	 */
    461 	bt = th->th_offset;
    462 	bintime_add(&bt, &boottimebin);
    463 	i = bt.sec - tho->th_microtime.tv_sec;
    464 	if (i > LARGE_STEP)
    465 		i = 2;
    466 	for (; i > 0; i--) {
    467 		t = bt.sec;
    468 		ntp_update_second(&th->th_adjustment, &bt.sec);
    469 		if (bt.sec != t)
    470 			boottimebin.sec += bt.sec - t;
    471 	}
    472 #endif /* NTP */
    473 
    474 	/* Update the UTC timestamps used by the get*() functions. */
    475 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    476 	bintime2timeval(&bt, &th->th_microtime);
    477 	bintime2timespec(&bt, &th->th_nanotime);
    478 
    479 	/* Now is a good time to change timecounters. */
    480 	if (th->th_counter != timecounter) {
    481 		th->th_counter = timecounter;
    482 		th->th_offset_count = ncount;
    483 	}
    484 
    485 	/*-
    486 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    487 	 * fractions of a second per period of the hardware counter, taking
    488 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    489 	 * processing provides us with.
    490 	 *
    491 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    492 	 * fraction and we want 64 bit binary fraction of second:
    493 	 *
    494 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    495 	 *
    496 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    497 	 * we can only multiply by about 850 without overflowing, but that
    498 	 * leaves suitably precise fractions for multiply before divide.
    499 	 *
    500 	 * Divide before multiply with a fraction of 2199/512 results in a
    501 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    502 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    503  	 *
    504 	 * We happily sacrifice the lowest of the 64 bits of our result
    505 	 * to the goddess of code clarity.
    506 	 *
    507 	 */
    508 	scale = (u_int64_t)1 << 63;
    509 	scale += (th->th_adjustment / 1024) * 2199;
    510 	scale /= th->th_counter->tc_frequency;
    511 	th->th_scale = scale * 2;
    512 
    513 	/*
    514 	 * Now that the struct timehands is again consistent, set the new
    515 	 * generation number, making sure to not make it zero.
    516 	 */
    517 	if (++ogen == 0)
    518 		ogen = 1;
    519 	th->th_generation = ogen;
    520 
    521 	/* Go live with the new struct timehands. */
    522 	time_second = th->th_microtime.tv_sec;
    523 	time_uptime = th->th_offset.sec;
    524 	timehands = th;
    525 }
    526 
    527 #ifdef __FreeBSD__
    528 /* Report or change the active timecounter hardware. */
    529 static int
    530 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
    531 {
    532 	char newname[32];
    533 	struct timecounter *newtc, *tc;
    534 	int error;
    535 
    536 	tc = timecounter;
    537 	strlcpy(newname, tc->tc_name, sizeof(newname));
    538 
    539 	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
    540 	if (error != 0 || req->newptr == NULL ||
    541 	    strcmp(newname, tc->tc_name) == 0)
    542 		return (error);
    543 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    544 		if (strcmp(newname, newtc->tc_name) != 0)
    545 			continue;
    546 
    547 		/* Warm up new timecounter. */
    548 		(void)newtc->tc_get_timecount(newtc);
    549 		(void)newtc->tc_get_timecount(newtc);
    550 
    551 		timecounter = newtc;
    552 		return (0);
    553 	}
    554 	return (EINVAL);
    555 }
    556 
    557 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
    558     0, 0, sysctl_kern_timecounter_hardware, "A", "");
    559 
    560 
    561 /* Report or change the active timecounter hardware. */
    562 static int
    563 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
    564 {
    565 	char buf[32], *spc;
    566 	struct timecounter *tc;
    567 	int error;
    568 
    569 	spc = "";
    570 	error = 0;
    571 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    572 		sprintf(buf, "%s%s(%d)",
    573 		    spc, tc->tc_name, tc->tc_quality);
    574 		error = SYSCTL_OUT(req, buf, strlen(buf));
    575 		spc = " ";
    576 	}
    577 	return (error);
    578 }
    579 
    580 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
    581     0, 0, sysctl_kern_timecounter_choice, "A", "");
    582 #endif /* __FreeBSD__ */
    583 
    584 /*
    585  * RFC 2783 PPS-API implementation.
    586  */
    587 
    588 int
    589 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
    590 {
    591 	pps_params_t *app;
    592 	struct pps_fetch_args *fapi;
    593 #ifdef PPS_SYNC
    594 	struct pps_kcbind_args *kapi;
    595 #endif
    596 
    597 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
    598 	switch (cmd) {
    599 	case PPS_IOC_CREATE:
    600 		return (0);
    601 	case PPS_IOC_DESTROY:
    602 		return (0);
    603 	case PPS_IOC_SETPARAMS:
    604 		app = (pps_params_t *)data;
    605 		if (app->mode & ~pps->ppscap)
    606 			return (EINVAL);
    607 		pps->ppsparam = *app;
    608 		return (0);
    609 	case PPS_IOC_GETPARAMS:
    610 		app = (pps_params_t *)data;
    611 		*app = pps->ppsparam;
    612 		app->api_version = PPS_API_VERS_1;
    613 		return (0);
    614 	case PPS_IOC_GETCAP:
    615 		*(int*)data = pps->ppscap;
    616 		return (0);
    617 	case PPS_IOC_FETCH:
    618 		fapi = (struct pps_fetch_args *)data;
    619 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
    620 			return (EINVAL);
    621 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
    622 			return (EOPNOTSUPP);
    623 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    624 		fapi->pps_info_buf = pps->ppsinfo;
    625 		return (0);
    626 	case PPS_IOC_KCBIND:
    627 #ifdef PPS_SYNC
    628 		kapi = (struct pps_kcbind_args *)data;
    629 		/* XXX Only root should be able to do this */
    630 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
    631 			return (EINVAL);
    632 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
    633 			return (EINVAL);
    634 		if (kapi->edge & ~pps->ppscap)
    635 			return (EINVAL);
    636 		pps->kcmode = kapi->edge;
    637 		return (0);
    638 #else
    639 		return (EOPNOTSUPP);
    640 #endif
    641 	default:
    642 		return (EPASSTHROUGH);
    643 	}
    644 }
    645 
    646 void
    647 pps_init(struct pps_state *pps)
    648 {
    649 	pps->ppscap |= PPS_TSFMT_TSPEC;
    650 	if (pps->ppscap & PPS_CAPTUREASSERT)
    651 		pps->ppscap |= PPS_OFFSETASSERT;
    652 	if (pps->ppscap & PPS_CAPTURECLEAR)
    653 		pps->ppscap |= PPS_OFFSETCLEAR;
    654 }
    655 
    656 void
    657 pps_capture(struct pps_state *pps)
    658 {
    659 	struct timehands *th;
    660 
    661 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
    662 	th = timehands;
    663 	pps->capgen = th->th_generation;
    664 	pps->capth = th;
    665 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
    666 	if (pps->capgen != th->th_generation)
    667 		pps->capgen = 0;
    668 }
    669 
    670 void
    671 pps_event(struct pps_state *pps, int event)
    672 {
    673 	struct bintime bt;
    674 	struct timespec ts, *tsp, *osp;
    675 	u_int tcount, *pcount;
    676 	int foff, fhard;
    677 	pps_seq_t *pseq;
    678 
    679 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
    680 	/* If the timecounter was wound up underneath us, bail out. */
    681 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
    682 		return;
    683 
    684 	/* Things would be easier with arrays. */
    685 	if (event == PPS_CAPTUREASSERT) {
    686 		tsp = &pps->ppsinfo.assert_timestamp;
    687 		osp = &pps->ppsparam.assert_offset;
    688 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
    689 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
    690 		pcount = &pps->ppscount[0];
    691 		pseq = &pps->ppsinfo.assert_sequence;
    692 	} else {
    693 		tsp = &pps->ppsinfo.clear_timestamp;
    694 		osp = &pps->ppsparam.clear_offset;
    695 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
    696 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
    697 		pcount = &pps->ppscount[1];
    698 		pseq = &pps->ppsinfo.clear_sequence;
    699 	}
    700 
    701 	/*
    702 	 * If the timecounter changed, we cannot compare the count values, so
    703 	 * we have to drop the rest of the PPS-stuff until the next event.
    704 	 */
    705 	if (pps->ppstc != pps->capth->th_counter) {
    706 		pps->ppstc = pps->capth->th_counter;
    707 		*pcount = pps->capcount;
    708 		pps->ppscount[2] = pps->capcount;
    709 		return;
    710 	}
    711 
    712 	/* Convert the count to a timespec. */
    713 	tcount = pps->capcount - pps->capth->th_offset_count;
    714 	tcount &= pps->capth->th_counter->tc_counter_mask;
    715 	bt = pps->capth->th_offset;
    716 	bintime_addx(&bt, pps->capth->th_scale * tcount);
    717 	bintime_add(&bt, &boottimebin);
    718 	bintime2timespec(&bt, &ts);
    719 
    720 	/* If the timecounter was wound up underneath us, bail out. */
    721 	if (pps->capgen != pps->capth->th_generation)
    722 		return;
    723 
    724 	*pcount = pps->capcount;
    725 	(*pseq)++;
    726 	*tsp = ts;
    727 
    728 	if (foff) {
    729 		timespecadd(tsp, osp, tsp);
    730 		if (tsp->tv_nsec < 0) {
    731 			tsp->tv_nsec += 1000000000;
    732 			tsp->tv_sec -= 1;
    733 		}
    734 	}
    735 #ifdef PPS_SYNC
    736 	if (fhard) {
    737 		u_int64_t scale;
    738 
    739 		/*
    740 		 * Feed the NTP PLL/FLL.
    741 		 * The FLL wants to know how many (hardware) nanoseconds
    742 		 * elapsed since the previous event.
    743 		 */
    744 		tcount = pps->capcount - pps->ppscount[2];
    745 		pps->ppscount[2] = pps->capcount;
    746 		tcount &= pps->capth->th_counter->tc_counter_mask;
    747 		scale = (u_int64_t)1 << 63;
    748 		scale /= pps->capth->th_counter->tc_frequency;
    749 		scale *= 2;
    750 		bt.sec = 0;
    751 		bt.frac = 0;
    752 		bintime_addx(&bt, scale * tcount);
    753 		bintime2timespec(&bt, &ts);
    754 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
    755 	}
    756 #endif
    757 }
    758 
    759 /*
    760  * Timecounters need to be updated every so often to prevent the hardware
    761  * counter from overflowing.  Updating also recalculates the cached values
    762  * used by the get*() family of functions, so their precision depends on
    763  * the update frequency.
    764  */
    765 
    766 static int tc_tick;
    767 #ifdef __FreeBSD__
    768 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
    769 #endif /* __FreeBSD__ */
    770 
    771 void
    772 tc_ticktock(void)
    773 {
    774 	static int count;
    775 
    776 	if (++count < tc_tick)
    777 		return;
    778 	count = 0;
    779 	tc_windup();
    780 }
    781 
    782 void
    783 inittimecounter(void)
    784 {
    785 	u_int p;
    786 
    787 	/*
    788 	 * Set the initial timeout to
    789 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
    790 	 * People should probably not use the sysctl to set the timeout
    791 	 * to smaller than its inital value, since that value is the
    792 	 * smallest reasonable one.  If they want better timestamps they
    793 	 * should use the non-"get"* functions.
    794 	 */
    795 	if (hz > 1000)
    796 		tc_tick = (hz + 500) / 1000;
    797 	else
    798 		tc_tick = 1;
    799 	p = (tc_tick * 1000000) / hz;
    800 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
    801 
    802 	/* warm up new timecounter (again) and get rolling. */
    803 	(void)timecounter->tc_get_timecount(timecounter);
    804 	(void)timecounter->tc_get_timecount(timecounter);
    805 }
    806 
    807 #ifdef __FreeBSD__
    808 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
    809 #endif /* __FreeBSD__ */
    810 #endif /* __HAVE_TIMECOUNTER */
    811