kern_tc.c revision 1.1.1.1.2.6 1 /* $NetBSD: kern_tc.c,v 1.1.1.1.2.6 2006/02/28 21:04:27 kardel Exp $ */
2
3 /*-
4 * ----------------------------------------------------------------------------
5 * "THE BEER-WARE LICENSE" (Revision 42):
6 * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 * can do whatever you want with this stuff. If we meet some day, and you think
8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 * ---------------------------------------------------------------------------
10 */
11
12 #include <sys/cdefs.h>
13 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.1.1.1.2.6 2006/02/28 21:04:27 kardel Exp $");
15
16 #include "opt_ntp.h"
17
18 #include <sys/param.h>
19 #ifdef __HAVE_TIMECOUNTER /* XXX */
20 #include <sys/kernel.h>
21 #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
22 #include <sys/sysctl.h>
23 #include <sys/syslog.h>
24 #include <sys/systm.h>
25 #include <sys/timepps.h>
26 #include <sys/timetc.h>
27 #include <sys/timex.h>
28
29 /*
30 * A large step happens on boot. This constant detects such steps.
31 * It is relatively small so that ntp_update_second gets called enough
32 * in the typical 'missed a couple of seconds' case, but doesn't loop
33 * forever when the time step is large.
34 */
35 #define LARGE_STEP 200
36
37 /*
38 * Implement a dummy timecounter which we can use until we get a real one
39 * in the air. This allows the console and other early stuff to use
40 * time services.
41 */
42
43 static u_int
44 dummy_get_timecount(struct timecounter *tc)
45 {
46 static u_int now;
47
48 return (++now);
49 }
50
51 static struct timecounter dummy_timecounter = {
52 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
53 };
54
55 struct timehands {
56 /* These fields must be initialized by the driver. */
57 struct timecounter *th_counter;
58 int64_t th_adjustment;
59 u_int64_t th_scale;
60 u_int th_offset_count;
61 struct bintime th_offset;
62 struct timeval th_microtime;
63 struct timespec th_nanotime;
64 /* Fields not to be copied in tc_windup start with th_generation. */
65 volatile u_int th_generation;
66 struct timehands *th_next;
67 };
68
69 static struct timehands th0;
70 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
71 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
72 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
73 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
74 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
75 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
76 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
77 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
78 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
79 static struct timehands th0 = {
80 &dummy_timecounter,
81 0,
82 (uint64_t)-1 / 1000000,
83 0,
84 {1, 0},
85 {0, 0},
86 {0, 0},
87 1,
88 &th1
89 };
90
91 static struct timehands *volatile timehands = &th0;
92 struct timecounter *timecounter = &dummy_timecounter;
93 static struct timecounter *timecounters = &dummy_timecounter;
94
95 time_t time_second = 1;
96 time_t time_uptime = 1;
97
98 static struct bintime boottimebin;
99 struct timeval boottime;
100 #ifdef __FreeBSD__
101 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
102 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
103 NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
104
105 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
106 #endif /* __FreeBSD__ */
107
108 static int timestepwarnings;
109 #ifdef __FreeBSD__
110 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
111 ×tepwarnings, 0, "");
112 #endif /* __FreeBSD__ */
113
114 /*
115 * sysctl helper routine for kern.timercounter.current
116 */
117 static int
118 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
119 {
120 struct sysctlnode node;
121 int error;
122 char newname[32];
123 struct timecounter *newtc, *tc;
124
125 tc = timecounter;
126
127 strlcpy(newname, tc->tc_name, sizeof(newname));
128
129 node = *rnode;
130 node.sysctl_data = newname;
131 node.sysctl_size = sizeof(newname);
132
133 error = sysctl_lookup(SYSCTLFN_CALL(&node));
134
135 if (error ||
136 newp == NULL ||
137 strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
138 return error;
139
140 if (l && (error = suser(l->l_proc->p_ucred, &l->l_proc->p_acflag)) != 0)
141 return (error);
142
143 /* XXX locking */
144
145 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
146 if (strcmp(newname, newtc->tc_name) != 0)
147 continue;
148
149 /* Warm up new timecounter. */
150 (void)newtc->tc_get_timecount(newtc);
151 (void)newtc->tc_get_timecount(newtc);
152
153 timecounter = newtc;
154
155 return (0);
156 }
157
158 /* XXX unlock */
159
160 return (EINVAL);
161 }
162
163 static int
164 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
165 {
166 char buf[32];
167 char *where = oldp;
168 const char *spc;
169 struct timecounter *tc;
170 size_t needed, left, slen;
171 int error;
172
173 if (newp != NULL)
174 return (EPERM);
175 if (namelen != 0)
176 return (EINVAL);
177
178 spc = "";
179 error = 0;
180 needed = 0;
181 left = *oldlenp;
182
183 /* XXX locking */
184
185 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
186 if (where == NULL) {
187 needed += sizeof(buf); /* be conservative */
188 } else {
189 slen = snprintf(buf, sizeof(buf), "%s%s(%d)",
190 spc, tc->tc_name, tc->tc_quality);
191 if (left < slen + 1)
192 break;
193 /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
194 error = copyout(buf, where, slen + 1);
195 spc = " ";
196 where += slen;
197 needed += slen;
198 left -= slen;
199 }
200 }
201
202 /* XXX unlock */
203
204 *oldlenp = needed;
205 return (error);
206 }
207
208 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
209 {
210 const struct sysctlnode *node;
211
212 sysctl_createv(clog, 0, NULL, &node,
213 CTLFLAG_PERMANENT,
214 CTLTYPE_NODE, "timecounter",
215 SYSCTL_DESCR("time counter information"),
216 NULL, 0, NULL, 0,
217 CTL_KERN, CTL_CREATE, CTL_EOL);
218
219 if (node != NULL) {
220 sysctl_createv(clog, 0, NULL, NULL,
221 CTLFLAG_PERMANENT,
222 CTLTYPE_STRING, "choice",
223 SYSCTL_DESCR("available counters"),
224 sysctl_kern_timecounter_choice, 0, NULL, 0,
225 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
226
227 sysctl_createv(clog, 0, NULL, NULL,
228 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
229 CTLTYPE_STRING, "hardware",
230 SYSCTL_DESCR("currently active time counter"),
231 sysctl_kern_timecounter_hardware, 0, NULL, 0,
232 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
233
234 sysctl_createv(clog, 0, NULL, NULL,
235 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
236 CTLTYPE_INT, "timestepwarnings",
237 SYSCTL_DESCR("log time steps"),
238 NULL, 0, ×tepwarnings, 0,
239 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
240 }
241 }
242
243 #define TC_STATS(name) \
244 static struct evcnt n##name = \
245 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
246 EVCNT_ATTACH_STATIC(n##name)
247
248 TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
249 TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
250 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
251 TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
252 TC_STATS(setclock);
253
254 #undef TC_STATS
255
256 static void tc_windup(void);
257
258 #ifdef __FreeBSD__
259 static int
260 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
261 {
262 #ifdef SCTL_MASK32
263 int tv[2];
264
265 if (req->flags & SCTL_MASK32) {
266 tv[0] = boottime.tv_sec;
267 tv[1] = boottime.tv_usec;
268 return SYSCTL_OUT(req, tv, sizeof(tv));
269 } else
270 #endif
271 return SYSCTL_OUT(req, &boottime, sizeof(boottime));
272 }
273 #endif /* __FreeBSD__ */
274
275 /*
276 * Return the difference between the timehands' counter value now and what
277 * was when we copied it to the timehands' offset_count.
278 */
279 static __inline u_int
280 tc_delta(struct timehands *th)
281 {
282 struct timecounter *tc;
283
284 tc = th->th_counter;
285 return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
286 tc->tc_counter_mask);
287 }
288
289 /*
290 * Functions for reading the time. We have to loop until we are sure that
291 * the timehands that we operated on was not updated under our feet. See
292 * the comment in <sys/time.h> for a description of these 12 functions.
293 */
294
295 void
296 binuptime(struct bintime *bt)
297 {
298 struct timehands *th;
299 u_int gen;
300
301 nbinuptime.ev_count++;
302 do {
303 th = timehands;
304 gen = th->th_generation;
305 *bt = th->th_offset;
306 bintime_addx(bt, th->th_scale * tc_delta(th));
307 } while (gen == 0 || gen != th->th_generation);
308 }
309
310 void
311 nanouptime(struct timespec *tsp)
312 {
313 struct bintime bt;
314
315 nnanouptime.ev_count++;
316 binuptime(&bt);
317 bintime2timespec(&bt, tsp);
318 }
319
320 void
321 microuptime(struct timeval *tvp)
322 {
323 struct bintime bt;
324
325 nmicrouptime.ev_count++;
326 binuptime(&bt);
327 bintime2timeval(&bt, tvp);
328 }
329
330 void
331 bintime(struct bintime *bt)
332 {
333
334 nbintime.ev_count++;
335 binuptime(bt);
336 bintime_add(bt, &boottimebin);
337 }
338
339 void
340 nanotime(struct timespec *tsp)
341 {
342 struct bintime bt;
343
344 nnanotime.ev_count++;
345 bintime(&bt);
346 bintime2timespec(&bt, tsp);
347 }
348
349 void
350 microtime(struct timeval *tvp)
351 {
352 struct bintime bt;
353
354 nmicrotime.ev_count++;
355 bintime(&bt);
356 bintime2timeval(&bt, tvp);
357 }
358
359 void
360 getbinuptime(struct bintime *bt)
361 {
362 struct timehands *th;
363 u_int gen;
364
365 ngetbinuptime.ev_count++;
366 do {
367 th = timehands;
368 gen = th->th_generation;
369 *bt = th->th_offset;
370 } while (gen == 0 || gen != th->th_generation);
371 }
372
373 void
374 getnanouptime(struct timespec *tsp)
375 {
376 struct timehands *th;
377 u_int gen;
378
379 ngetnanouptime.ev_count++;
380 do {
381 th = timehands;
382 gen = th->th_generation;
383 bintime2timespec(&th->th_offset, tsp);
384 } while (gen == 0 || gen != th->th_generation);
385 }
386
387 void
388 getmicrouptime(struct timeval *tvp)
389 {
390 struct timehands *th;
391 u_int gen;
392
393 ngetmicrouptime.ev_count++;
394 do {
395 th = timehands;
396 gen = th->th_generation;
397 bintime2timeval(&th->th_offset, tvp);
398 } while (gen == 0 || gen != th->th_generation);
399 }
400
401 void
402 getbintime(struct bintime *bt)
403 {
404 struct timehands *th;
405 u_int gen;
406
407 ngetbintime.ev_count++;
408 do {
409 th = timehands;
410 gen = th->th_generation;
411 *bt = th->th_offset;
412 } while (gen == 0 || gen != th->th_generation);
413 bintime_add(bt, &boottimebin);
414 }
415
416 void
417 getnanotime(struct timespec *tsp)
418 {
419 struct timehands *th;
420 u_int gen;
421
422 ngetnanotime.ev_count++;
423 do {
424 th = timehands;
425 gen = th->th_generation;
426 *tsp = th->th_nanotime;
427 } while (gen == 0 || gen != th->th_generation);
428 }
429
430 void
431 getmicrotime(struct timeval *tvp)
432 {
433 struct timehands *th;
434 u_int gen;
435
436 ngetmicrotime.ev_count++;
437 do {
438 th = timehands;
439 gen = th->th_generation;
440 *tvp = th->th_microtime;
441 } while (gen == 0 || gen != th->th_generation);
442 }
443
444 /*
445 * Initialize a new timecounter and possibly use it.
446 */
447 void
448 tc_init(struct timecounter *tc)
449 {
450 u_int u;
451
452 u = tc->tc_frequency / tc->tc_counter_mask;
453 /* XXX: We need some margin here, 10% is a guess */
454 u *= 11;
455 u /= 10;
456 if (u > hz && tc->tc_quality >= 0) {
457 tc->tc_quality = -2000;
458 if (bootverbose) {
459 printf("timecounter: Timecounter \"%s\" frequency %ju Hz",
460 tc->tc_name, (uintmax_t)tc->tc_frequency);
461 printf(" -- Insufficient hz, needs at least %u\n", u);
462 }
463 } else if (tc->tc_quality >= 0 || bootverbose) {
464 printf("timecounter: Timecounter \"%s\" frequency %ju Hz quality %d\n",
465 tc->tc_name, (uintmax_t)tc->tc_frequency,
466 tc->tc_quality);
467 }
468
469 /* XXX locking */
470 tc->tc_next = timecounters;
471 timecounters = tc;
472 /*
473 * Never automatically use a timecounter with negative quality.
474 * Even though we run on the dummy counter, switching here may be
475 * worse since this timecounter may not be monotonous.
476 */
477 if (tc->tc_quality < 0)
478 return;
479 if (tc->tc_quality < timecounter->tc_quality)
480 return;
481 if (tc->tc_quality == timecounter->tc_quality &&
482 tc->tc_frequency < timecounter->tc_frequency)
483 return;
484 (void)tc->tc_get_timecount(tc);
485 (void)tc->tc_get_timecount(tc);
486 timecounter = tc;
487 }
488
489 /* Report the frequency of the current timecounter. */
490 u_int64_t
491 tc_getfrequency(void)
492 {
493
494 return (timehands->th_counter->tc_frequency);
495 }
496
497 /*
498 * Step our concept of UTC. This is done by modifying our estimate of
499 * when we booted.
500 * XXX: not locked.
501 */
502 void
503 tc_setclock(struct timespec *ts)
504 {
505 struct timespec ts2;
506 struct bintime bt, bt2;
507
508 nsetclock.ev_count++;
509 binuptime(&bt2);
510 timespec2bintime(ts, &bt);
511 bintime_sub(&bt, &bt2);
512 bintime_add(&bt2, &boottimebin);
513 boottimebin = bt;
514 bintime2timeval(&bt, &boottime);
515
516 /* XXX fiddle all the little crinkly bits around the fiords... */
517 tc_windup();
518 if (timestepwarnings) {
519 bintime2timespec(&bt2, &ts2);
520 log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
521 (intmax_t)ts2.tv_sec, ts2.tv_nsec,
522 (intmax_t)ts->tv_sec, ts->tv_nsec);
523 }
524 }
525
526 /*
527 * Initialize the next struct timehands in the ring and make
528 * it the active timehands. Along the way we might switch to a different
529 * timecounter and/or do seconds processing in NTP. Slightly magic.
530 */
531 static void
532 tc_windup(void)
533 {
534 struct bintime bt;
535 struct timehands *th, *tho;
536 u_int64_t scale;
537 u_int delta, ncount, ogen;
538 int i;
539 time_t t;
540
541 /*
542 * Make the next timehands a copy of the current one, but do not
543 * overwrite the generation or next pointer. While we update
544 * the contents, the generation must be zero.
545 */
546 tho = timehands;
547 th = tho->th_next;
548 ogen = th->th_generation;
549 th->th_generation = 0;
550 bcopy(tho, th, offsetof(struct timehands, th_generation));
551
552 /*
553 * Capture a timecounter delta on the current timecounter and if
554 * changing timecounters, a counter value from the new timecounter.
555 * Update the offset fields accordingly.
556 */
557 delta = tc_delta(th);
558 if (th->th_counter != timecounter)
559 ncount = timecounter->tc_get_timecount(timecounter);
560 else
561 ncount = 0;
562 th->th_offset_count += delta;
563 th->th_offset_count &= th->th_counter->tc_counter_mask;
564 bintime_addx(&th->th_offset, th->th_scale * delta);
565
566 #ifdef PPS_SYNC
567 /*
568 * Hardware latching timecounters may not generate interrupts on
569 * PPS events, so instead we poll them. There is a finite risk that
570 * the hardware might capture a count which is later than the one we
571 * got above, and therefore possibly in the next NTP second which might
572 * have a different rate than the current NTP second. It doesn't
573 * matter in practice.
574 */
575 if (tho->th_counter->tc_poll_pps)
576 tho->th_counter->tc_poll_pps(tho->th_counter);
577 #endif /* PPS_SYNC */
578
579 /*
580 * Deal with NTP second processing. The for loop normally
581 * iterates at most once, but in extreme situations it might
582 * keep NTP sane if timeouts are not run for several seconds.
583 * At boot, the time step can be large when the TOD hardware
584 * has been read, so on really large steps, we call
585 * ntp_update_second only twice. We need to call it twice in
586 * case we missed a leap second.
587 * If NTP is not compiled in ntp_update_second still calculates
588 * the adjustment resulting from adjtime() calls.
589 */
590 bt = th->th_offset;
591 bintime_add(&bt, &boottimebin);
592 i = bt.sec - tho->th_microtime.tv_sec;
593 if (i > LARGE_STEP)
594 i = 2;
595 for (; i > 0; i--) {
596 t = bt.sec;
597 ntp_update_second(&th->th_adjustment, &bt.sec);
598 if (bt.sec != t)
599 boottimebin.sec += bt.sec - t;
600 }
601
602 /* Update the UTC timestamps used by the get*() functions. */
603 /* XXX shouldn't do this here. Should force non-`get' versions. */
604 bintime2timeval(&bt, &th->th_microtime);
605 bintime2timespec(&bt, &th->th_nanotime);
606
607 /* Now is a good time to change timecounters. */
608 if (th->th_counter != timecounter) {
609 th->th_counter = timecounter;
610 th->th_offset_count = ncount;
611
612 printf("timecounter: selected timecounter \"%s\" frequency %ju Hz quality %d\n",
613 timecounter->tc_name, (uintmax_t)timecounter->tc_frequency,
614 timecounter->tc_quality);
615 }
616
617 /*-
618 * Recalculate the scaling factor. We want the number of 1/2^64
619 * fractions of a second per period of the hardware counter, taking
620 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
621 * processing provides us with.
622 *
623 * The th_adjustment is nanoseconds per second with 32 bit binary
624 * fraction and we want 64 bit binary fraction of second:
625 *
626 * x = a * 2^32 / 10^9 = a * 4.294967296
627 *
628 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
629 * we can only multiply by about 850 without overflowing, but that
630 * leaves suitably precise fractions for multiply before divide.
631 *
632 * Divide before multiply with a fraction of 2199/512 results in a
633 * systematic undercompensation of 10PPM of th_adjustment. On a
634 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
635 *
636 * We happily sacrifice the lowest of the 64 bits of our result
637 * to the goddess of code clarity.
638 *
639 */
640 scale = (u_int64_t)1 << 63;
641 scale += (th->th_adjustment / 1024) * 2199;
642 scale /= th->th_counter->tc_frequency;
643 th->th_scale = scale * 2;
644
645 /*
646 * Now that the struct timehands is again consistent, set the new
647 * generation number, making sure to not make it zero.
648 */
649 if (++ogen == 0)
650 ogen = 1;
651 th->th_generation = ogen;
652
653 /* Go live with the new struct timehands. */
654 time_second = th->th_microtime.tv_sec;
655 time_uptime = th->th_offset.sec;
656 timehands = th;
657 }
658
659 #ifdef __FreeBSD__
660 /* Report or change the active timecounter hardware. */
661 static int
662 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
663 {
664 char newname[32];
665 struct timecounter *newtc, *tc;
666 int error;
667
668 tc = timecounter;
669 strlcpy(newname, tc->tc_name, sizeof(newname));
670
671 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
672 if (error != 0 || req->newptr == NULL ||
673 strcmp(newname, tc->tc_name) == 0)
674 return (error);
675
676 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
677 if (strcmp(newname, newtc->tc_name) != 0)
678 continue;
679
680 /* Warm up new timecounter. */
681 (void)newtc->tc_get_timecount(newtc);
682 (void)newtc->tc_get_timecount(newtc);
683
684 timecounter = newtc;
685 return (0);
686 }
687 return (EINVAL);
688 }
689
690 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
691 0, 0, sysctl_kern_timecounter_hardware, "A", "");
692
693
694 /* Report or change the active timecounter hardware. */
695 static int
696 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
697 {
698 char buf[32], *spc;
699 struct timecounter *tc;
700 int error;
701
702 spc = "";
703 error = 0;
704 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
705 sprintf(buf, "%s%s(%d)",
706 spc, tc->tc_name, tc->tc_quality);
707 error = SYSCTL_OUT(req, buf, strlen(buf));
708 spc = " ";
709 }
710 return (error);
711 }
712
713 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
714 0, 0, sysctl_kern_timecounter_choice, "A", "");
715 #endif /* __FreeBSD__ */
716
717 /*
718 * RFC 2783 PPS-API implementation.
719 */
720
721 int
722 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
723 {
724 pps_params_t *app;
725 struct pps_fetch_args *fapi;
726 #ifdef PPS_SYNC
727 struct pps_kcbind_args *kapi;
728 #endif
729
730 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
731 switch (cmd) {
732 case PPS_IOC_CREATE:
733 return (0);
734 case PPS_IOC_DESTROY:
735 return (0);
736 case PPS_IOC_SETPARAMS:
737 app = (pps_params_t *)data;
738 if (app->mode & ~pps->ppscap)
739 return (EINVAL);
740 pps->ppsparam = *app;
741 return (0);
742 case PPS_IOC_GETPARAMS:
743 app = (pps_params_t *)data;
744 *app = pps->ppsparam;
745 app->api_version = PPS_API_VERS_1;
746 return (0);
747 case PPS_IOC_GETCAP:
748 *(int*)data = pps->ppscap;
749 return (0);
750 case PPS_IOC_FETCH:
751 fapi = (struct pps_fetch_args *)data;
752 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
753 return (EINVAL);
754 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
755 return (EOPNOTSUPP);
756 pps->ppsinfo.current_mode = pps->ppsparam.mode;
757 fapi->pps_info_buf = pps->ppsinfo;
758 return (0);
759 case PPS_IOC_KCBIND:
760 #ifdef PPS_SYNC
761 kapi = (struct pps_kcbind_args *)data;
762 /* XXX Only root should be able to do this */
763 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
764 return (EINVAL);
765 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
766 return (EINVAL);
767 if (kapi->edge & ~pps->ppscap)
768 return (EINVAL);
769 pps->kcmode = kapi->edge;
770 return (0);
771 #else
772 return (EOPNOTSUPP);
773 #endif
774 default:
775 return (EPASSTHROUGH);
776 }
777 }
778
779 void
780 pps_init(struct pps_state *pps)
781 {
782 pps->ppscap |= PPS_TSFMT_TSPEC;
783 if (pps->ppscap & PPS_CAPTUREASSERT)
784 pps->ppscap |= PPS_OFFSETASSERT;
785 if (pps->ppscap & PPS_CAPTURECLEAR)
786 pps->ppscap |= PPS_OFFSETCLEAR;
787 }
788
789 void
790 pps_capture(struct pps_state *pps)
791 {
792 struct timehands *th;
793
794 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
795 th = timehands;
796 pps->capgen = th->th_generation;
797 pps->capth = th;
798 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
799 if (pps->capgen != th->th_generation)
800 pps->capgen = 0;
801 }
802
803 void
804 pps_event(struct pps_state *pps, int event)
805 {
806 struct bintime bt;
807 struct timespec ts, *tsp, *osp;
808 u_int tcount, *pcount;
809 int foff, fhard;
810 pps_seq_t *pseq;
811
812 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
813 /* If the timecounter was wound up underneath us, bail out. */
814 if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
815 return;
816
817 /* Things would be easier with arrays. */
818 if (event == PPS_CAPTUREASSERT) {
819 tsp = &pps->ppsinfo.assert_timestamp;
820 osp = &pps->ppsparam.assert_offset;
821 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
822 fhard = pps->kcmode & PPS_CAPTUREASSERT;
823 pcount = &pps->ppscount[0];
824 pseq = &pps->ppsinfo.assert_sequence;
825 } else {
826 tsp = &pps->ppsinfo.clear_timestamp;
827 osp = &pps->ppsparam.clear_offset;
828 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
829 fhard = pps->kcmode & PPS_CAPTURECLEAR;
830 pcount = &pps->ppscount[1];
831 pseq = &pps->ppsinfo.clear_sequence;
832 }
833
834 /*
835 * If the timecounter changed, we cannot compare the count values, so
836 * we have to drop the rest of the PPS-stuff until the next event.
837 */
838 if (pps->ppstc != pps->capth->th_counter) {
839 pps->ppstc = pps->capth->th_counter;
840 *pcount = pps->capcount;
841 pps->ppscount[2] = pps->capcount;
842 return;
843 }
844
845 /* Convert the count to a timespec. */
846 tcount = pps->capcount - pps->capth->th_offset_count;
847 tcount &= pps->capth->th_counter->tc_counter_mask;
848 bt = pps->capth->th_offset;
849 bintime_addx(&bt, pps->capth->th_scale * tcount);
850 bintime_add(&bt, &boottimebin);
851 bintime2timespec(&bt, &ts);
852
853 /* If the timecounter was wound up underneath us, bail out. */
854 if (pps->capgen != pps->capth->th_generation)
855 return;
856
857 *pcount = pps->capcount;
858 (*pseq)++;
859 *tsp = ts;
860
861 if (foff) {
862 timespecadd(tsp, osp, tsp);
863 if (tsp->tv_nsec < 0) {
864 tsp->tv_nsec += 1000000000;
865 tsp->tv_sec -= 1;
866 }
867 }
868 #ifdef PPS_SYNC
869 if (fhard) {
870 u_int64_t scale;
871
872 /*
873 * Feed the NTP PLL/FLL.
874 * The FLL wants to know how many (hardware) nanoseconds
875 * elapsed since the previous event.
876 */
877 tcount = pps->capcount - pps->ppscount[2];
878 pps->ppscount[2] = pps->capcount;
879 tcount &= pps->capth->th_counter->tc_counter_mask;
880 scale = (u_int64_t)1 << 63;
881 scale /= pps->capth->th_counter->tc_frequency;
882 scale *= 2;
883 bt.sec = 0;
884 bt.frac = 0;
885 bintime_addx(&bt, scale * tcount);
886 bintime2timespec(&bt, &ts);
887 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
888 }
889 #endif
890 }
891
892 /*
893 * Timecounters need to be updated every so often to prevent the hardware
894 * counter from overflowing. Updating also recalculates the cached values
895 * used by the get*() family of functions, so their precision depends on
896 * the update frequency.
897 */
898
899 static int tc_tick;
900 #ifdef __FreeBSD__
901 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
902 #endif /* __FreeBSD__ */
903
904 void
905 tc_ticktock(void)
906 {
907 static int count;
908
909 if (++count < tc_tick)
910 return;
911 count = 0;
912 tc_windup();
913 }
914
915 void
916 inittimecounter(void)
917 {
918 u_int p;
919
920 /*
921 * Set the initial timeout to
922 * max(1, <approx. number of hardclock ticks in a millisecond>).
923 * People should probably not use the sysctl to set the timeout
924 * to smaller than its inital value, since that value is the
925 * smallest reasonable one. If they want better timestamps they
926 * should use the non-"get"* functions.
927 */
928 if (hz > 1000)
929 tc_tick = (hz + 500) / 1000;
930 else
931 tc_tick = 1;
932 p = (tc_tick * 1000000) / hz;
933 printf("timecounter: Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
934
935 /* warm up new timecounter (again) and get rolling. */
936 (void)timecounter->tc_get_timecount(timecounter);
937 (void)timecounter->tc_get_timecount(timecounter);
938 }
939
940 #ifdef __FreeBSD__
941 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
942 #endif /* __FreeBSD__ */
943 #endif /* __HAVE_TIMECOUNTER */
944