kern_tc.c revision 1.1.1.1.2.9 1 /* $NetBSD: kern_tc.c,v 1.1.1.1.2.9 2006/06/01 23:19:21 kardel Exp $ */
2
3 /*-
4 * ----------------------------------------------------------------------------
5 * "THE BEER-WARE LICENSE" (Revision 42):
6 * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 * can do whatever you want with this stuff. If we meet some day, and you think
8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 * ---------------------------------------------------------------------------
10 */
11
12 #include <sys/cdefs.h>
13 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.1.1.1.2.9 2006/06/01 23:19:21 kardel Exp $");
15
16 #include "opt_ntp.h"
17
18 #include <sys/param.h>
19 #ifdef __HAVE_TIMECOUNTER /* XXX */
20 #include <sys/kernel.h>
21 #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
22 #include <sys/sysctl.h>
23 #include <sys/syslog.h>
24 #include <sys/systm.h>
25 #include <sys/timepps.h>
26 #include <sys/timetc.h>
27 #include <sys/timex.h>
28 #include <sys/evcnt.h>
29
30 /*
31 * maximum name length for TC names in sysctl interface
32 */
33 #define MAX_TCNAMELEN 64
34
35 /*
36 * A large step happens on boot. This constant detects such steps.
37 * It is relatively small so that ntp_update_second gets called enough
38 * in the typical 'missed a couple of seconds' case, but doesn't loop
39 * forever when the time step is large.
40 */
41 #define LARGE_STEP 200
42
43 /*
44 * Implement a dummy timecounter which we can use until we get a real one
45 * in the air. This allows the console and other early stuff to use
46 * time services.
47 */
48
49 static u_int
50 dummy_get_timecount(struct timecounter *tc)
51 {
52 static u_int now;
53
54 return (++now);
55 }
56
57 static struct timecounter dummy_timecounter = {
58 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
59 };
60
61 struct timehands {
62 /* These fields must be initialized by the driver. */
63 struct timecounter *th_counter;
64 int64_t th_adjustment;
65 u_int64_t th_scale;
66 u_int th_offset_count;
67 struct bintime th_offset;
68 struct timeval th_microtime;
69 struct timespec th_nanotime;
70 /* Fields not to be copied in tc_windup start with th_generation. */
71 volatile u_int th_generation;
72 struct timehands *th_next;
73 };
74
75 static struct timehands th0;
76 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
77 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
78 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
79 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
80 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
81 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
82 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
83 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
84 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
85 static struct timehands th0 = {
86 &dummy_timecounter,
87 0,
88 (uint64_t)-1 / 1000000,
89 0,
90 {1, 0},
91 {0, 0},
92 {0, 0},
93 1,
94 &th1
95 };
96
97 static struct timehands *volatile timehands = &th0;
98 struct timecounter *timecounter = &dummy_timecounter;
99 static struct timecounter *timecounters = &dummy_timecounter;
100
101 time_t time_second = 1;
102 time_t time_uptime = 1;
103
104 static struct bintime boottimebin;
105 struct timeval boottime;
106 #ifdef __FreeBSD__
107 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
108 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
109 NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
110
111 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
112 #endif /* __FreeBSD__ */
113
114 static int timestepwarnings;
115
116 #ifdef __FreeBSD__
117 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
118 ×tepwarnings, 0, "");
119 #endif /* __FreeBSD__ */
120
121 /*
122 * sysctl helper routine for kern.timercounter.current
123 */
124 static int
125 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
126 {
127 struct sysctlnode node;
128 int error;
129 char newname[MAX_TCNAMELEN];
130 struct timecounter *newtc, *tc;
131
132 tc = timecounter;
133
134 strlcpy(newname, tc->tc_name, sizeof(newname));
135
136 node = *rnode;
137 node.sysctl_data = newname;
138 node.sysctl_size = sizeof(newname);
139
140 error = sysctl_lookup(SYSCTLFN_CALL(&node));
141
142 if (error ||
143 newp == NULL ||
144 strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
145 return error;
146
147 if (l && (error = suser(l->l_proc->p_ucred, &l->l_proc->p_acflag)) != 0)
148 return (error);
149
150 /* XXX locking */
151
152 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
153 if (strcmp(newname, newtc->tc_name) != 0)
154 continue;
155
156 /* Warm up new timecounter. */
157 (void)newtc->tc_get_timecount(newtc);
158 (void)newtc->tc_get_timecount(newtc);
159
160 timecounter = newtc;
161
162 /* XXX unlock */
163
164 return (0);
165 }
166
167 /* XXX unlock */
168
169 return (EINVAL);
170 }
171
172 static int
173 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
174 {
175 char buf[48];
176 char *where = oldp;
177 const char *spc;
178 struct timecounter *tc;
179 size_t needed, left, slen;
180 int error;
181
182 if (newp != NULL)
183 return (EPERM);
184 if (namelen != 0)
185 return (EINVAL);
186
187 spc = "";
188 error = 0;
189 needed = 0;
190 left = *oldlenp;
191
192 /* XXX locking */
193
194 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
195 if (where == NULL) {
196 needed += sizeof(buf); /* be conservative */
197 } else {
198 slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
199 " Hz)", spc, tc->tc_name, tc->tc_quality,
200 tc->tc_frequency);
201 if (left < slen + 1)
202 break;
203 /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
204 error = copyout(buf, where, slen + 1);
205 spc = " ";
206 where += slen;
207 needed += slen;
208 left -= slen;
209 }
210 }
211
212 /* XXX unlock */
213
214 *oldlenp = needed;
215 return (error);
216 }
217
218 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
219 {
220 const struct sysctlnode *node;
221
222 sysctl_createv(clog, 0, NULL, &node,
223 CTLFLAG_PERMANENT,
224 CTLTYPE_NODE, "timecounter",
225 SYSCTL_DESCR("time counter information"),
226 NULL, 0, NULL, 0,
227 CTL_KERN, CTL_CREATE, CTL_EOL);
228
229 if (node != NULL) {
230 sysctl_createv(clog, 0, NULL, NULL,
231 CTLFLAG_PERMANENT,
232 CTLTYPE_STRING, "choice",
233 SYSCTL_DESCR("available counters"),
234 sysctl_kern_timecounter_choice, 0, NULL, 0,
235 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
236
237 sysctl_createv(clog, 0, NULL, NULL,
238 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
239 CTLTYPE_STRING, "hardware",
240 SYSCTL_DESCR("currently active time counter"),
241 sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
242 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
243
244 sysctl_createv(clog, 0, NULL, NULL,
245 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
246 CTLTYPE_INT, "timestepwarnings",
247 SYSCTL_DESCR("log time steps"),
248 NULL, 0, ×tepwarnings, 0,
249 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
250 }
251 }
252
253 #define TC_STATS(name) \
254 static struct evcnt n##name = \
255 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
256 EVCNT_ATTACH_STATIC(n##name)
257
258 TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
259 TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
260 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
261 TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
262 TC_STATS(setclock);
263
264 #undef TC_STATS
265
266 static void tc_windup(void);
267
268 #ifdef __FreeBSD__
269 static int
270 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
271 {
272 #ifdef SCTL_MASK32
273 int tv[2];
274
275 if (req->flags & SCTL_MASK32) {
276 tv[0] = boottime.tv_sec;
277 tv[1] = boottime.tv_usec;
278 return SYSCTL_OUT(req, tv, sizeof(tv));
279 } else
280 #endif
281 return SYSCTL_OUT(req, &boottime, sizeof(boottime));
282 }
283 #endif /* __FreeBSD__ */
284
285 /*
286 * Return the difference between the timehands' counter value now and what
287 * was when we copied it to the timehands' offset_count.
288 */
289 static __inline u_int
290 tc_delta(struct timehands *th)
291 {
292 struct timecounter *tc;
293
294 tc = th->th_counter;
295 return ((tc->tc_get_timecount(tc) -
296 th->th_offset_count) & tc->tc_counter_mask);
297 }
298
299 /*
300 * Functions for reading the time. We have to loop until we are sure that
301 * the timehands that we operated on was not updated under our feet. See
302 * the comment in <sys/time.h> for a description of these 12 functions.
303 */
304
305 void
306 binuptime(struct bintime *bt)
307 {
308 struct timehands *th;
309 u_int gen;
310
311 nbinuptime.ev_count++;
312 do {
313 th = timehands;
314 gen = th->th_generation;
315 *bt = th->th_offset;
316 bintime_addx(bt, th->th_scale * tc_delta(th));
317 } while (gen == 0 || gen != th->th_generation);
318 }
319
320 void
321 nanouptime(struct timespec *tsp)
322 {
323 struct bintime bt;
324
325 nnanouptime.ev_count++;
326 binuptime(&bt);
327 bintime2timespec(&bt, tsp);
328 }
329
330 void
331 microuptime(struct timeval *tvp)
332 {
333 struct bintime bt;
334
335 nmicrouptime.ev_count++;
336 binuptime(&bt);
337 bintime2timeval(&bt, tvp);
338 }
339
340 void
341 bintime(struct bintime *bt)
342 {
343
344 nbintime.ev_count++;
345 binuptime(bt);
346 bintime_add(bt, &boottimebin);
347 }
348
349 void
350 nanotime(struct timespec *tsp)
351 {
352 struct bintime bt;
353
354 nnanotime.ev_count++;
355 bintime(&bt);
356 bintime2timespec(&bt, tsp);
357 }
358
359 void
360 microtime(struct timeval *tvp)
361 {
362 struct bintime bt;
363
364 nmicrotime.ev_count++;
365 bintime(&bt);
366 bintime2timeval(&bt, tvp);
367 }
368
369 void
370 getbinuptime(struct bintime *bt)
371 {
372 struct timehands *th;
373 u_int gen;
374
375 ngetbinuptime.ev_count++;
376 do {
377 th = timehands;
378 gen = th->th_generation;
379 *bt = th->th_offset;
380 } while (gen == 0 || gen != th->th_generation);
381 }
382
383 void
384 getnanouptime(struct timespec *tsp)
385 {
386 struct timehands *th;
387 u_int gen;
388
389 ngetnanouptime.ev_count++;
390 do {
391 th = timehands;
392 gen = th->th_generation;
393 bintime2timespec(&th->th_offset, tsp);
394 } while (gen == 0 || gen != th->th_generation);
395 }
396
397 void
398 getmicrouptime(struct timeval *tvp)
399 {
400 struct timehands *th;
401 u_int gen;
402
403 ngetmicrouptime.ev_count++;
404 do {
405 th = timehands;
406 gen = th->th_generation;
407 bintime2timeval(&th->th_offset, tvp);
408 } while (gen == 0 || gen != th->th_generation);
409 }
410
411 void
412 getbintime(struct bintime *bt)
413 {
414 struct timehands *th;
415 u_int gen;
416
417 ngetbintime.ev_count++;
418 do {
419 th = timehands;
420 gen = th->th_generation;
421 *bt = th->th_offset;
422 } while (gen == 0 || gen != th->th_generation);
423 bintime_add(bt, &boottimebin);
424 }
425
426 void
427 getnanotime(struct timespec *tsp)
428 {
429 struct timehands *th;
430 u_int gen;
431
432 ngetnanotime.ev_count++;
433 do {
434 th = timehands;
435 gen = th->th_generation;
436 *tsp = th->th_nanotime;
437 } while (gen == 0 || gen != th->th_generation);
438 }
439
440 void
441 getmicrotime(struct timeval *tvp)
442 {
443 struct timehands *th;
444 u_int gen;
445
446 ngetmicrotime.ev_count++;
447 do {
448 th = timehands;
449 gen = th->th_generation;
450 *tvp = th->th_microtime;
451 } while (gen == 0 || gen != th->th_generation);
452 }
453
454 /*
455 * Initialize a new timecounter and possibly use it.
456 */
457 void
458 tc_init(struct timecounter *tc)
459 {
460 u_int u;
461
462 u = tc->tc_frequency / tc->tc_counter_mask;
463 /* XXX: We need some margin here, 10% is a guess */
464 u *= 11;
465 u /= 10;
466 if (u > hz && tc->tc_quality >= 0) {
467 tc->tc_quality = -2000;
468 if (bootverbose) {
469 printf("timecounter: Timecounter \"%s\" frequency %ju Hz",
470 tc->tc_name, (uintmax_t)tc->tc_frequency);
471 printf(" -- Insufficient hz, needs at least %u\n", u);
472 }
473 } else if (tc->tc_quality >= 0 || bootverbose) {
474 printf("timecounter: Timecounter \"%s\" frequency %ju Hz quality %d\n",
475 tc->tc_name, (uintmax_t)tc->tc_frequency,
476 tc->tc_quality);
477 }
478
479 /* XXX locking */
480 tc->tc_next = timecounters;
481 timecounters = tc;
482 /*
483 * Never automatically use a timecounter with negative quality.
484 * Even though we run on the dummy counter, switching here may be
485 * worse since this timecounter may not be monotonous.
486 */
487 if (tc->tc_quality < 0)
488 return;
489 if (tc->tc_quality < timecounter->tc_quality)
490 return;
491 if (tc->tc_quality == timecounter->tc_quality &&
492 tc->tc_frequency < timecounter->tc_frequency)
493 return;
494 (void)tc->tc_get_timecount(tc);
495 (void)tc->tc_get_timecount(tc);
496 timecounter = tc;
497 }
498
499 /* Report the frequency of the current timecounter. */
500 u_int64_t
501 tc_getfrequency(void)
502 {
503
504 return (timehands->th_counter->tc_frequency);
505 }
506
507 /*
508 * Step our concept of UTC. This is done by modifying our estimate of
509 * when we booted.
510 * XXX: not locked.
511 */
512 void
513 tc_setclock(struct timespec *ts)
514 {
515 struct timespec ts2;
516 struct bintime bt, bt2;
517
518 nsetclock.ev_count++;
519 binuptime(&bt2);
520 timespec2bintime(ts, &bt);
521 bintime_sub(&bt, &bt2);
522 bintime_add(&bt2, &boottimebin);
523 boottimebin = bt;
524 bintime2timeval(&bt, &boottime);
525
526 /* XXX fiddle all the little crinkly bits around the fiords... */
527 tc_windup();
528 if (timestepwarnings) {
529 bintime2timespec(&bt2, &ts2);
530 log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
531 (intmax_t)ts2.tv_sec, ts2.tv_nsec,
532 (intmax_t)ts->tv_sec, ts->tv_nsec);
533 }
534 }
535
536 /*
537 * Initialize the next struct timehands in the ring and make
538 * it the active timehands. Along the way we might switch to a different
539 * timecounter and/or do seconds processing in NTP. Slightly magic.
540 */
541 static void
542 tc_windup(void)
543 {
544 struct bintime bt;
545 struct timehands *th, *tho;
546 u_int64_t scale;
547 u_int delta, ncount, ogen;
548 int i;
549 time_t t;
550
551 /*
552 * Make the next timehands a copy of the current one, but do not
553 * overwrite the generation or next pointer. While we update
554 * the contents, the generation must be zero.
555 */
556 tho = timehands;
557 th = tho->th_next;
558 ogen = th->th_generation;
559 th->th_generation = 0;
560 bcopy(tho, th, offsetof(struct timehands, th_generation));
561
562 /*
563 * Capture a timecounter delta on the current timecounter and if
564 * changing timecounters, a counter value from the new timecounter.
565 * Update the offset fields accordingly.
566 */
567 delta = tc_delta(th);
568 if (th->th_counter != timecounter)
569 ncount = timecounter->tc_get_timecount(timecounter);
570 else
571 ncount = 0;
572 th->th_offset_count += delta;
573 th->th_offset_count &= th->th_counter->tc_counter_mask;
574 bintime_addx(&th->th_offset, th->th_scale * delta);
575
576 /*
577 * Hardware latching timecounters may not generate interrupts on
578 * PPS events, so instead we poll them. There is a finite risk that
579 * the hardware might capture a count which is later than the one we
580 * got above, and therefore possibly in the next NTP second which might
581 * have a different rate than the current NTP second. It doesn't
582 * matter in practice.
583 */
584 if (tho->th_counter->tc_poll_pps)
585 tho->th_counter->tc_poll_pps(tho->th_counter);
586
587 /*
588 * Deal with NTP second processing. The for loop normally
589 * iterates at most once, but in extreme situations it might
590 * keep NTP sane if timeouts are not run for several seconds.
591 * At boot, the time step can be large when the TOD hardware
592 * has been read, so on really large steps, we call
593 * ntp_update_second only twice. We need to call it twice in
594 * case we missed a leap second.
595 * If NTP is not compiled in ntp_update_second still calculates
596 * the adjustment resulting from adjtime() calls.
597 */
598 bt = th->th_offset;
599 bintime_add(&bt, &boottimebin);
600 i = bt.sec - tho->th_microtime.tv_sec;
601 if (i > LARGE_STEP)
602 i = 2;
603 for (; i > 0; i--) {
604 t = bt.sec;
605 ntp_update_second(&th->th_adjustment, &bt.sec);
606 if (bt.sec != t)
607 boottimebin.sec += bt.sec - t;
608 }
609
610 /* Update the UTC timestamps used by the get*() functions. */
611 /* XXX shouldn't do this here. Should force non-`get' versions. */
612 bintime2timeval(&bt, &th->th_microtime);
613 bintime2timespec(&bt, &th->th_nanotime);
614
615 /* Now is a good time to change timecounters. */
616 if (th->th_counter != timecounter) {
617 th->th_counter = timecounter;
618 th->th_offset_count = ncount;
619
620 printf("timecounter: selected timecounter \"%s\" frequency %ju Hz quality %d\n",
621 timecounter->tc_name, (uintmax_t)timecounter->tc_frequency,
622 timecounter->tc_quality);
623 }
624
625 /*-
626 * Recalculate the scaling factor. We want the number of 1/2^64
627 * fractions of a second per period of the hardware counter, taking
628 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
629 * processing provides us with.
630 *
631 * The th_adjustment is nanoseconds per second with 32 bit binary
632 * fraction and we want 64 bit binary fraction of second:
633 *
634 * x = a * 2^32 / 10^9 = a * 4.294967296
635 *
636 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
637 * we can only multiply by about 850 without overflowing, but that
638 * leaves suitably precise fractions for multiply before divide.
639 *
640 * Divide before multiply with a fraction of 2199/512 results in a
641 * systematic undercompensation of 10PPM of th_adjustment. On a
642 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
643 *
644 * We happily sacrifice the lowest of the 64 bits of our result
645 * to the goddess of code clarity.
646 *
647 */
648 scale = (u_int64_t)1 << 63;
649 scale += (th->th_adjustment / 1024) * 2199;
650 scale /= th->th_counter->tc_frequency;
651 th->th_scale = scale * 2;
652
653 /*
654 * Now that the struct timehands is again consistent, set the new
655 * generation number, making sure to not make it zero.
656 */
657 if (++ogen == 0)
658 ogen = 1;
659 th->th_generation = ogen;
660
661 /* Go live with the new struct timehands. */
662 time_second = th->th_microtime.tv_sec;
663 time_uptime = th->th_offset.sec;
664 timehands = th;
665 }
666
667 #ifdef __FreeBSD__
668 /* Report or change the active timecounter hardware. */
669 static int
670 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
671 {
672 char newname[32];
673 struct timecounter *newtc, *tc;
674 int error;
675
676 tc = timecounter;
677 strlcpy(newname, tc->tc_name, sizeof(newname));
678
679 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
680 if (error != 0 || req->newptr == NULL ||
681 strcmp(newname, tc->tc_name) == 0)
682 return (error);
683
684 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
685 if (strcmp(newname, newtc->tc_name) != 0)
686 continue;
687
688 /* Warm up new timecounter. */
689 (void)newtc->tc_get_timecount(newtc);
690 (void)newtc->tc_get_timecount(newtc);
691
692 timecounter = newtc;
693 return (0);
694 }
695 return (EINVAL);
696 }
697
698 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
699 0, 0, sysctl_kern_timecounter_hardware, "A", "");
700
701
702 /* Report or change the active timecounter hardware. */
703 static int
704 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
705 {
706 char buf[32], *spc;
707 struct timecounter *tc;
708 int error;
709
710 spc = "";
711 error = 0;
712 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
713 sprintf(buf, "%s%s(%d)",
714 spc, tc->tc_name, tc->tc_quality);
715 error = SYSCTL_OUT(req, buf, strlen(buf));
716 spc = " ";
717 }
718 return (error);
719 }
720
721 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
722 0, 0, sysctl_kern_timecounter_choice, "A", "");
723 #endif /* __FreeBSD__ */
724
725 /*
726 * RFC 2783 PPS-API implementation.
727 */
728
729 int
730 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
731 {
732 pps_params_t *app;
733 struct pps_fetch_args *fapi;
734 #ifdef PPS_SYNC
735 struct pps_kcbind_args *kapi;
736 #endif
737
738 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
739 switch (cmd) {
740 case PPS_IOC_CREATE:
741 return (0);
742 case PPS_IOC_DESTROY:
743 return (0);
744 case PPS_IOC_SETPARAMS:
745 app = (pps_params_t *)data;
746 if (app->mode & ~pps->ppscap)
747 return (EINVAL);
748 pps->ppsparam = *app;
749 return (0);
750 case PPS_IOC_GETPARAMS:
751 app = (pps_params_t *)data;
752 *app = pps->ppsparam;
753 app->api_version = PPS_API_VERS_1;
754 return (0);
755 case PPS_IOC_GETCAP:
756 *(int*)data = pps->ppscap;
757 return (0);
758 case PPS_IOC_FETCH:
759 fapi = (struct pps_fetch_args *)data;
760 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
761 return (EINVAL);
762 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
763 return (EOPNOTSUPP);
764 pps->ppsinfo.current_mode = pps->ppsparam.mode;
765 fapi->pps_info_buf = pps->ppsinfo;
766 return (0);
767 case PPS_IOC_KCBIND:
768 #ifdef PPS_SYNC
769 kapi = (struct pps_kcbind_args *)data;
770 /* XXX Only root should be able to do this */
771 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
772 return (EINVAL);
773 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
774 return (EINVAL);
775 if (kapi->edge & ~pps->ppscap)
776 return (EINVAL);
777 pps->kcmode = kapi->edge;
778 return (0);
779 #else
780 return (EOPNOTSUPP);
781 #endif
782 default:
783 return (EPASSTHROUGH);
784 }
785 }
786
787 void
788 pps_init(struct pps_state *pps)
789 {
790 pps->ppscap |= PPS_TSFMT_TSPEC;
791 if (pps->ppscap & PPS_CAPTUREASSERT)
792 pps->ppscap |= PPS_OFFSETASSERT;
793 if (pps->ppscap & PPS_CAPTURECLEAR)
794 pps->ppscap |= PPS_OFFSETCLEAR;
795 }
796
797 void
798 pps_capture(struct pps_state *pps)
799 {
800 struct timehands *th;
801
802 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
803 th = timehands;
804 pps->capgen = th->th_generation;
805 pps->capth = th;
806 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
807 if (pps->capgen != th->th_generation)
808 pps->capgen = 0;
809 }
810
811 void
812 pps_event(struct pps_state *pps, int event)
813 {
814 struct bintime bt;
815 struct timespec ts, *tsp, *osp;
816 u_int tcount, *pcount;
817 int foff, fhard;
818 pps_seq_t *pseq;
819
820 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
821 /* If the timecounter was wound up underneath us, bail out. */
822 if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
823 return;
824
825 /* Things would be easier with arrays. */
826 if (event == PPS_CAPTUREASSERT) {
827 tsp = &pps->ppsinfo.assert_timestamp;
828 osp = &pps->ppsparam.assert_offset;
829 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
830 fhard = pps->kcmode & PPS_CAPTUREASSERT;
831 pcount = &pps->ppscount[0];
832 pseq = &pps->ppsinfo.assert_sequence;
833 } else {
834 tsp = &pps->ppsinfo.clear_timestamp;
835 osp = &pps->ppsparam.clear_offset;
836 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
837 fhard = pps->kcmode & PPS_CAPTURECLEAR;
838 pcount = &pps->ppscount[1];
839 pseq = &pps->ppsinfo.clear_sequence;
840 }
841
842 /*
843 * If the timecounter changed, we cannot compare the count values, so
844 * we have to drop the rest of the PPS-stuff until the next event.
845 */
846 if (pps->ppstc != pps->capth->th_counter) {
847 pps->ppstc = pps->capth->th_counter;
848 *pcount = pps->capcount;
849 pps->ppscount[2] = pps->capcount;
850 return;
851 }
852
853 /* Convert the count to a timespec. */
854 tcount = pps->capcount - pps->capth->th_offset_count;
855 tcount &= pps->capth->th_counter->tc_counter_mask;
856 bt = pps->capth->th_offset;
857 bintime_addx(&bt, pps->capth->th_scale * tcount);
858 bintime_add(&bt, &boottimebin);
859 bintime2timespec(&bt, &ts);
860
861 /* If the timecounter was wound up underneath us, bail out. */
862 if (pps->capgen != pps->capth->th_generation)
863 return;
864
865 *pcount = pps->capcount;
866 (*pseq)++;
867 *tsp = ts;
868
869 if (foff) {
870 timespecadd(tsp, osp, tsp);
871 if (tsp->tv_nsec < 0) {
872 tsp->tv_nsec += 1000000000;
873 tsp->tv_sec -= 1;
874 }
875 }
876 #ifdef PPS_SYNC
877 if (fhard) {
878 u_int64_t scale;
879
880 /*
881 * Feed the NTP PLL/FLL.
882 * The FLL wants to know how many (hardware) nanoseconds
883 * elapsed since the previous event.
884 */
885 tcount = pps->capcount - pps->ppscount[2];
886 pps->ppscount[2] = pps->capcount;
887 tcount &= pps->capth->th_counter->tc_counter_mask;
888 scale = (u_int64_t)1 << 63;
889 scale /= pps->capth->th_counter->tc_frequency;
890 scale *= 2;
891 bt.sec = 0;
892 bt.frac = 0;
893 bintime_addx(&bt, scale * tcount);
894 bintime2timespec(&bt, &ts);
895 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
896 }
897 #endif
898 }
899
900 /*
901 * Timecounters need to be updated every so often to prevent the hardware
902 * counter from overflowing. Updating also recalculates the cached values
903 * used by the get*() family of functions, so their precision depends on
904 * the update frequency.
905 */
906
907 static int tc_tick;
908 #ifdef __FreeBSD__
909 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
910 #endif /* __FreeBSD__ */
911
912 void
913 tc_ticktock(void)
914 {
915 static int count;
916
917 if (++count < tc_tick)
918 return;
919 count = 0;
920 tc_windup();
921 }
922
923 void
924 inittimecounter(void)
925 {
926 u_int p;
927
928 /*
929 * Set the initial timeout to
930 * max(1, <approx. number of hardclock ticks in a millisecond>).
931 * People should probably not use the sysctl to set the timeout
932 * to smaller than its inital value, since that value is the
933 * smallest reasonable one. If they want better timestamps they
934 * should use the non-"get"* functions.
935 */
936 if (hz > 1000)
937 tc_tick = (hz + 500) / 1000;
938 else
939 tc_tick = 1;
940 p = (tc_tick * 1000000) / hz;
941 printf("timecounter: Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
942
943 /* warm up new timecounter (again) and get rolling. */
944 (void)timecounter->tc_get_timecount(timecounter);
945 (void)timecounter->tc_get_timecount(timecounter);
946 }
947
948 #ifdef __FreeBSD__
949 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
950 #endif /* __FreeBSD__ */
951 #endif /* __HAVE_TIMECOUNTER */
952