kern_tc.c revision 1.10 1 /* $NetBSD: kern_tc.c,v 1.10 2006/09/03 06:40:39 christos Exp $ */
2
3 /*-
4 * ----------------------------------------------------------------------------
5 * "THE BEER-WARE LICENSE" (Revision 42):
6 * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 * can do whatever you want with this stuff. If we meet some day, and you think
8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 * ---------------------------------------------------------------------------
10 */
11
12 #include <sys/cdefs.h>
13 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.10 2006/09/03 06:40:39 christos Exp $");
15
16 #include "opt_ntp.h"
17
18 #include <sys/param.h>
19 #ifdef __HAVE_TIMECOUNTER /* XXX */
20 #include <sys/kernel.h>
21 #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
22 #include <sys/sysctl.h>
23 #include <sys/syslog.h>
24 #include <sys/systm.h>
25 #include <sys/timepps.h>
26 #include <sys/timetc.h>
27 #include <sys/timex.h>
28 #include <sys/evcnt.h>
29 #include <sys/kauth.h>
30
31 /*
32 * A large step happens on boot. This constant detects such steps.
33 * It is relatively small so that ntp_update_second gets called enough
34 * in the typical 'missed a couple of seconds' case, but doesn't loop
35 * forever when the time step is large.
36 */
37 #define LARGE_STEP 200
38
39 /*
40 * Implement a dummy timecounter which we can use until we get a real one
41 * in the air. This allows the console and other early stuff to use
42 * time services.
43 */
44
45 static u_int
46 dummy_get_timecount(struct timecounter *tc)
47 {
48 static u_int now;
49
50 return (++now);
51 }
52
53 static struct timecounter dummy_timecounter = {
54 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
55 };
56
57 struct timehands {
58 /* These fields must be initialized by the driver. */
59 struct timecounter *th_counter;
60 int64_t th_adjustment;
61 u_int64_t th_scale;
62 u_int th_offset_count;
63 struct bintime th_offset;
64 struct timeval th_microtime;
65 struct timespec th_nanotime;
66 /* Fields not to be copied in tc_windup start with th_generation. */
67 volatile u_int th_generation;
68 struct timehands *th_next;
69 };
70
71 static struct timehands th0;
72 static struct timehands th9 = { .th_next = &th0, };
73 static struct timehands th8 = { .th_next = &th9, };
74 static struct timehands th7 = { .th_next = &th8, };
75 static struct timehands th6 = { .th_next = &th7, };
76 static struct timehands th5 = { .th_next = &th6, };
77 static struct timehands th4 = { .th_next = &th5, };
78 static struct timehands th3 = { .th_next = &th4, };
79 static struct timehands th2 = { .th_next = &th3, };
80 static struct timehands th1 = { .th_next = &th2, };
81 static struct timehands th0 = {
82 .th_counter = &dummy_timecounter,
83 .th_scale = (uint64_t)-1 / 1000000,
84 .th_offset = { .sec = 1, .frac = 0 },
85 .th_generation = 1,
86 .th_next = &th1,
87 };
88
89 static struct timehands *volatile timehands = &th0;
90 struct timecounter *timecounter = &dummy_timecounter;
91 static struct timecounter *timecounters = &dummy_timecounter;
92
93 time_t time_second = 1;
94 time_t time_uptime = 1;
95
96 static struct bintime timebasebin;
97
98 static int timestepwarnings;
99
100 #ifdef __FreeBSD__
101 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
102 ×tepwarnings, 0, "");
103 #endif /* __FreeBSD__ */
104
105 /*
106 * sysctl helper routine for kern.timercounter.current
107 */
108 static int
109 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
110 {
111 struct sysctlnode node;
112 int error;
113 char newname[MAX_TCNAMELEN];
114 struct timecounter *newtc, *tc;
115
116 tc = timecounter;
117
118 strlcpy(newname, tc->tc_name, sizeof(newname));
119
120 node = *rnode;
121 node.sysctl_data = newname;
122 node.sysctl_size = sizeof(newname);
123
124 error = sysctl_lookup(SYSCTLFN_CALL(&node));
125
126 if (error ||
127 newp == NULL ||
128 strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
129 return error;
130
131 if (l != NULL && (error = kauth_authorize_generic(l->l_cred,
132 KAUTH_GENERIC_ISSUSER, &l->l_acflag)) != 0)
133 return (error);
134
135 /* XXX locking */
136
137 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
138 if (strcmp(newname, newtc->tc_name) != 0)
139 continue;
140
141 /* Warm up new timecounter. */
142 (void)newtc->tc_get_timecount(newtc);
143 (void)newtc->tc_get_timecount(newtc);
144
145 timecounter = newtc;
146
147 /* XXX unlock */
148
149 return (0);
150 }
151
152 /* XXX unlock */
153
154 return (EINVAL);
155 }
156
157 static int
158 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
159 {
160 char buf[MAX_TCNAMELEN+48];
161 char *where = oldp;
162 const char *spc;
163 struct timecounter *tc;
164 size_t needed, left, slen;
165 int error;
166
167 if (newp != NULL)
168 return (EPERM);
169 if (namelen != 0)
170 return (EINVAL);
171
172 spc = "";
173 error = 0;
174 needed = 0;
175 left = *oldlenp;
176
177 /* XXX locking */
178
179 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
180 if (where == NULL) {
181 needed += sizeof(buf); /* be conservative */
182 } else {
183 slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
184 " Hz)", spc, tc->tc_name, tc->tc_quality,
185 tc->tc_frequency);
186 if (left < slen + 1)
187 break;
188 /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
189 error = copyout(buf, where, slen + 1);
190 spc = " ";
191 where += slen;
192 needed += slen;
193 left -= slen;
194 }
195 }
196
197 /* XXX unlock */
198
199 *oldlenp = needed;
200 return (error);
201 }
202
203 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
204 {
205 const struct sysctlnode *node;
206
207 sysctl_createv(clog, 0, NULL, &node,
208 CTLFLAG_PERMANENT,
209 CTLTYPE_NODE, "timecounter",
210 SYSCTL_DESCR("time counter information"),
211 NULL, 0, NULL, 0,
212 CTL_KERN, CTL_CREATE, CTL_EOL);
213
214 if (node != NULL) {
215 sysctl_createv(clog, 0, NULL, NULL,
216 CTLFLAG_PERMANENT,
217 CTLTYPE_STRING, "choice",
218 SYSCTL_DESCR("available counters"),
219 sysctl_kern_timecounter_choice, 0, NULL, 0,
220 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
221
222 sysctl_createv(clog, 0, NULL, NULL,
223 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
224 CTLTYPE_STRING, "hardware",
225 SYSCTL_DESCR("currently active time counter"),
226 sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
227 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
228
229 sysctl_createv(clog, 0, NULL, NULL,
230 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
231 CTLTYPE_INT, "timestepwarnings",
232 SYSCTL_DESCR("log time steps"),
233 NULL, 0, ×tepwarnings, 0,
234 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
235 }
236 }
237
238 #define TC_STATS(name) \
239 static struct evcnt n##name = \
240 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
241 EVCNT_ATTACH_STATIC(n##name)
242
243 TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
244 TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
245 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
246 TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
247 TC_STATS(setclock);
248
249 #undef TC_STATS
250
251 static void tc_windup(void);
252
253 /*
254 * Return the difference between the timehands' counter value now and what
255 * was when we copied it to the timehands' offset_count.
256 */
257 static __inline u_int
258 tc_delta(struct timehands *th)
259 {
260 struct timecounter *tc;
261
262 tc = th->th_counter;
263 return ((tc->tc_get_timecount(tc) -
264 th->th_offset_count) & tc->tc_counter_mask);
265 }
266
267 /*
268 * Functions for reading the time. We have to loop until we are sure that
269 * the timehands that we operated on was not updated under our feet. See
270 * the comment in <sys/time.h> for a description of these 12 functions.
271 */
272
273 void
274 binuptime(struct bintime *bt)
275 {
276 struct timehands *th;
277 u_int gen;
278
279 nbinuptime.ev_count++;
280 do {
281 th = timehands;
282 gen = th->th_generation;
283 *bt = th->th_offset;
284 bintime_addx(bt, th->th_scale * tc_delta(th));
285 } while (gen == 0 || gen != th->th_generation);
286 }
287
288 void
289 nanouptime(struct timespec *tsp)
290 {
291 struct bintime bt;
292
293 nnanouptime.ev_count++;
294 binuptime(&bt);
295 bintime2timespec(&bt, tsp);
296 }
297
298 void
299 microuptime(struct timeval *tvp)
300 {
301 struct bintime bt;
302
303 nmicrouptime.ev_count++;
304 binuptime(&bt);
305 bintime2timeval(&bt, tvp);
306 }
307
308 void
309 bintime(struct bintime *bt)
310 {
311
312 nbintime.ev_count++;
313 binuptime(bt);
314 bintime_add(bt, &timebasebin);
315 }
316
317 void
318 nanotime(struct timespec *tsp)
319 {
320 struct bintime bt;
321
322 nnanotime.ev_count++;
323 bintime(&bt);
324 bintime2timespec(&bt, tsp);
325 }
326
327 void
328 microtime(struct timeval *tvp)
329 {
330 struct bintime bt;
331
332 nmicrotime.ev_count++;
333 bintime(&bt);
334 bintime2timeval(&bt, tvp);
335 }
336
337 void
338 getbinuptime(struct bintime *bt)
339 {
340 struct timehands *th;
341 u_int gen;
342
343 ngetbinuptime.ev_count++;
344 do {
345 th = timehands;
346 gen = th->th_generation;
347 *bt = th->th_offset;
348 } while (gen == 0 || gen != th->th_generation);
349 }
350
351 void
352 getnanouptime(struct timespec *tsp)
353 {
354 struct timehands *th;
355 u_int gen;
356
357 ngetnanouptime.ev_count++;
358 do {
359 th = timehands;
360 gen = th->th_generation;
361 bintime2timespec(&th->th_offset, tsp);
362 } while (gen == 0 || gen != th->th_generation);
363 }
364
365 void
366 getmicrouptime(struct timeval *tvp)
367 {
368 struct timehands *th;
369 u_int gen;
370
371 ngetmicrouptime.ev_count++;
372 do {
373 th = timehands;
374 gen = th->th_generation;
375 bintime2timeval(&th->th_offset, tvp);
376 } while (gen == 0 || gen != th->th_generation);
377 }
378
379 void
380 getbintime(struct bintime *bt)
381 {
382 struct timehands *th;
383 u_int gen;
384
385 ngetbintime.ev_count++;
386 do {
387 th = timehands;
388 gen = th->th_generation;
389 *bt = th->th_offset;
390 } while (gen == 0 || gen != th->th_generation);
391 bintime_add(bt, &timebasebin);
392 }
393
394 void
395 getnanotime(struct timespec *tsp)
396 {
397 struct timehands *th;
398 u_int gen;
399
400 ngetnanotime.ev_count++;
401 do {
402 th = timehands;
403 gen = th->th_generation;
404 *tsp = th->th_nanotime;
405 } while (gen == 0 || gen != th->th_generation);
406 }
407
408 void
409 getmicrotime(struct timeval *tvp)
410 {
411 struct timehands *th;
412 u_int gen;
413
414 ngetmicrotime.ev_count++;
415 do {
416 th = timehands;
417 gen = th->th_generation;
418 *tvp = th->th_microtime;
419 } while (gen == 0 || gen != th->th_generation);
420 }
421
422 /*
423 * Initialize a new timecounter and possibly use it.
424 */
425 void
426 tc_init(struct timecounter *tc)
427 {
428 u_int u;
429
430 u = tc->tc_frequency / tc->tc_counter_mask;
431 /* XXX: We need some margin here, 10% is a guess */
432 u *= 11;
433 u /= 10;
434 if (u > hz && tc->tc_quality >= 0) {
435 tc->tc_quality = -2000;
436 if (bootverbose) {
437 printf("timecounter: Timecounter \"%s\" frequency %ju Hz",
438 tc->tc_name, (uintmax_t)tc->tc_frequency);
439 printf(" -- Insufficient hz, needs at least %u\n", u);
440 }
441 } else if (tc->tc_quality >= 0 || bootverbose) {
442 printf("timecounter: Timecounter \"%s\" frequency %ju Hz quality %d\n",
443 tc->tc_name, (uintmax_t)tc->tc_frequency,
444 tc->tc_quality);
445 }
446
447 /* XXX locking */
448 tc->tc_next = timecounters;
449 timecounters = tc;
450 /*
451 * Never automatically use a timecounter with negative quality.
452 * Even though we run on the dummy counter, switching here may be
453 * worse since this timecounter may not be monotonous.
454 */
455 if (tc->tc_quality < 0)
456 return;
457 if (tc->tc_quality < timecounter->tc_quality)
458 return;
459 if (tc->tc_quality == timecounter->tc_quality &&
460 tc->tc_frequency < timecounter->tc_frequency)
461 return;
462 (void)tc->tc_get_timecount(tc);
463 (void)tc->tc_get_timecount(tc);
464 timecounter = tc;
465 tc_windup();
466 }
467
468 /* Report the frequency of the current timecounter. */
469 u_int64_t
470 tc_getfrequency(void)
471 {
472
473 return (timehands->th_counter->tc_frequency);
474 }
475
476 /*
477 * Step our concept of UTC. This is done by modifying our estimate of
478 * when we booted.
479 * XXX: not locked.
480 */
481 void
482 tc_setclock(struct timespec *ts)
483 {
484 struct timespec ts2;
485 struct bintime bt, bt2;
486
487 nsetclock.ev_count++;
488 binuptime(&bt2);
489 timespec2bintime(ts, &bt);
490 bintime_sub(&bt, &bt2);
491 bintime_add(&bt2, &timebasebin);
492 timebasebin = bt;
493
494 /* XXX fiddle all the little crinkly bits around the fiords... */
495 tc_windup();
496 if (timestepwarnings) {
497 bintime2timespec(&bt2, &ts2);
498 log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
499 (intmax_t)ts2.tv_sec, ts2.tv_nsec,
500 (intmax_t)ts->tv_sec, ts->tv_nsec);
501 }
502 }
503
504 /*
505 * Initialize the next struct timehands in the ring and make
506 * it the active timehands. Along the way we might switch to a different
507 * timecounter and/or do seconds processing in NTP. Slightly magic.
508 */
509 static void
510 tc_windup(void)
511 {
512 struct bintime bt;
513 struct timehands *th, *tho;
514 u_int64_t scale;
515 u_int delta, ncount, ogen;
516 int i;
517 time_t t;
518
519 /*
520 * Make the next timehands a copy of the current one, but do not
521 * overwrite the generation or next pointer. While we update
522 * the contents, the generation must be zero.
523 */
524 tho = timehands;
525 th = tho->th_next;
526 ogen = th->th_generation;
527 th->th_generation = 0;
528 bcopy(tho, th, offsetof(struct timehands, th_generation));
529
530 /*
531 * Capture a timecounter delta on the current timecounter and if
532 * changing timecounters, a counter value from the new timecounter.
533 * Update the offset fields accordingly.
534 */
535 delta = tc_delta(th);
536 if (th->th_counter != timecounter)
537 ncount = timecounter->tc_get_timecount(timecounter);
538 else
539 ncount = 0;
540 th->th_offset_count += delta;
541 th->th_offset_count &= th->th_counter->tc_counter_mask;
542 bintime_addx(&th->th_offset, th->th_scale * delta);
543
544 /*
545 * Hardware latching timecounters may not generate interrupts on
546 * PPS events, so instead we poll them. There is a finite risk that
547 * the hardware might capture a count which is later than the one we
548 * got above, and therefore possibly in the next NTP second which might
549 * have a different rate than the current NTP second. It doesn't
550 * matter in practice.
551 */
552 if (tho->th_counter->tc_poll_pps)
553 tho->th_counter->tc_poll_pps(tho->th_counter);
554
555 /*
556 * Deal with NTP second processing. The for loop normally
557 * iterates at most once, but in extreme situations it might
558 * keep NTP sane if timeouts are not run for several seconds.
559 * At boot, the time step can be large when the TOD hardware
560 * has been read, so on really large steps, we call
561 * ntp_update_second only twice. We need to call it twice in
562 * case we missed a leap second.
563 * If NTP is not compiled in ntp_update_second still calculates
564 * the adjustment resulting from adjtime() calls.
565 */
566 bt = th->th_offset;
567 bintime_add(&bt, &timebasebin);
568 i = bt.sec - tho->th_microtime.tv_sec;
569 if (i > LARGE_STEP)
570 i = 2;
571 for (; i > 0; i--) {
572 t = bt.sec;
573 ntp_update_second(&th->th_adjustment, &bt.sec);
574 if (bt.sec != t)
575 timebasebin.sec += bt.sec - t;
576 }
577
578 /* Update the UTC timestamps used by the get*() functions. */
579 /* XXX shouldn't do this here. Should force non-`get' versions. */
580 bintime2timeval(&bt, &th->th_microtime);
581 bintime2timespec(&bt, &th->th_nanotime);
582
583 /* Now is a good time to change timecounters. */
584 if (th->th_counter != timecounter) {
585 th->th_counter = timecounter;
586 th->th_offset_count = ncount;
587
588 printf("timecounter: selected timecounter \"%s\" frequency %ju Hz quality %d\n",
589 timecounter->tc_name, (uintmax_t)timecounter->tc_frequency,
590 timecounter->tc_quality);
591 }
592
593 /*-
594 * Recalculate the scaling factor. We want the number of 1/2^64
595 * fractions of a second per period of the hardware counter, taking
596 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
597 * processing provides us with.
598 *
599 * The th_adjustment is nanoseconds per second with 32 bit binary
600 * fraction and we want 64 bit binary fraction of second:
601 *
602 * x = a * 2^32 / 10^9 = a * 4.294967296
603 *
604 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
605 * we can only multiply by about 850 without overflowing, but that
606 * leaves suitably precise fractions for multiply before divide.
607 *
608 * Divide before multiply with a fraction of 2199/512 results in a
609 * systematic undercompensation of 10PPM of th_adjustment. On a
610 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
611 *
612 * We happily sacrifice the lowest of the 64 bits of our result
613 * to the goddess of code clarity.
614 *
615 */
616 scale = (u_int64_t)1 << 63;
617 scale += (th->th_adjustment / 1024) * 2199;
618 scale /= th->th_counter->tc_frequency;
619 th->th_scale = scale * 2;
620
621 /*
622 * Now that the struct timehands is again consistent, set the new
623 * generation number, making sure to not make it zero.
624 */
625 if (++ogen == 0)
626 ogen = 1;
627 th->th_generation = ogen;
628
629 /* Go live with the new struct timehands. */
630 time_second = th->th_microtime.tv_sec;
631 time_uptime = th->th_offset.sec;
632 timehands = th;
633 }
634
635 #ifdef __FreeBSD__
636 /* Report or change the active timecounter hardware. */
637 static int
638 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
639 {
640 char newname[32];
641 struct timecounter *newtc, *tc;
642 int error;
643
644 tc = timecounter;
645 strlcpy(newname, tc->tc_name, sizeof(newname));
646
647 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
648 if (error != 0 || req->newptr == NULL ||
649 strcmp(newname, tc->tc_name) == 0)
650 return (error);
651
652 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
653 if (strcmp(newname, newtc->tc_name) != 0)
654 continue;
655
656 /* Warm up new timecounter. */
657 (void)newtc->tc_get_timecount(newtc);
658 (void)newtc->tc_get_timecount(newtc);
659
660 timecounter = newtc;
661 return (0);
662 }
663 return (EINVAL);
664 }
665
666 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
667 0, 0, sysctl_kern_timecounter_hardware, "A", "");
668
669
670 /* Report or change the active timecounter hardware. */
671 static int
672 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
673 {
674 char buf[32], *spc;
675 struct timecounter *tc;
676 int error;
677
678 spc = "";
679 error = 0;
680 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
681 sprintf(buf, "%s%s(%d)",
682 spc, tc->tc_name, tc->tc_quality);
683 error = SYSCTL_OUT(req, buf, strlen(buf));
684 spc = " ";
685 }
686 return (error);
687 }
688
689 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
690 0, 0, sysctl_kern_timecounter_choice, "A", "");
691 #endif /* __FreeBSD__ */
692
693 /*
694 * RFC 2783 PPS-API implementation.
695 */
696
697 int
698 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
699 {
700 pps_params_t *app;
701 pps_info_t *pipi;
702 #ifdef PPS_SYNC
703 int *epi;
704 #endif
705
706 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
707 switch (cmd) {
708 case PPS_IOC_CREATE:
709 return (0);
710 case PPS_IOC_DESTROY:
711 return (0);
712 case PPS_IOC_SETPARAMS:
713 app = (pps_params_t *)data;
714 if (app->mode & ~pps->ppscap)
715 return (EINVAL);
716 pps->ppsparam = *app;
717 return (0);
718 case PPS_IOC_GETPARAMS:
719 app = (pps_params_t *)data;
720 *app = pps->ppsparam;
721 app->api_version = PPS_API_VERS_1;
722 return (0);
723 case PPS_IOC_GETCAP:
724 *(int*)data = pps->ppscap;
725 return (0);
726 case PPS_IOC_FETCH:
727 pipi = (pps_info_t *)data;
728 pps->ppsinfo.current_mode = pps->ppsparam.mode;
729 *pipi = pps->ppsinfo;
730 return (0);
731 case PPS_IOC_KCBIND:
732 #ifdef PPS_SYNC
733 epi = (int *)data;
734 /* XXX Only root should be able to do this */
735 if (*epi & ~pps->ppscap)
736 return (EINVAL);
737 pps->kcmode = *epi;
738 return (0);
739 #else
740 return (EOPNOTSUPP);
741 #endif
742 default:
743 return (EPASSTHROUGH);
744 }
745 }
746
747 void
748 pps_init(struct pps_state *pps)
749 {
750 pps->ppscap |= PPS_TSFMT_TSPEC;
751 if (pps->ppscap & PPS_CAPTUREASSERT)
752 pps->ppscap |= PPS_OFFSETASSERT;
753 if (pps->ppscap & PPS_CAPTURECLEAR)
754 pps->ppscap |= PPS_OFFSETCLEAR;
755 }
756
757 void
758 pps_capture(struct pps_state *pps)
759 {
760 struct timehands *th;
761
762 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
763 th = timehands;
764 pps->capgen = th->th_generation;
765 pps->capth = th;
766 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
767 if (pps->capgen != th->th_generation)
768 pps->capgen = 0;
769 }
770
771 void
772 pps_event(struct pps_state *pps, int event)
773 {
774 struct bintime bt;
775 struct timespec ts, *tsp, *osp;
776 u_int tcount, *pcount;
777 int foff, fhard;
778 pps_seq_t *pseq;
779
780 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
781 /* If the timecounter was wound up underneath us, bail out. */
782 if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
783 return;
784
785 /* Things would be easier with arrays. */
786 if (event == PPS_CAPTUREASSERT) {
787 tsp = &pps->ppsinfo.assert_timestamp;
788 osp = &pps->ppsparam.assert_offset;
789 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
790 fhard = pps->kcmode & PPS_CAPTUREASSERT;
791 pcount = &pps->ppscount[0];
792 pseq = &pps->ppsinfo.assert_sequence;
793 } else {
794 tsp = &pps->ppsinfo.clear_timestamp;
795 osp = &pps->ppsparam.clear_offset;
796 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
797 fhard = pps->kcmode & PPS_CAPTURECLEAR;
798 pcount = &pps->ppscount[1];
799 pseq = &pps->ppsinfo.clear_sequence;
800 }
801
802 /*
803 * If the timecounter changed, we cannot compare the count values, so
804 * we have to drop the rest of the PPS-stuff until the next event.
805 */
806 if (pps->ppstc != pps->capth->th_counter) {
807 pps->ppstc = pps->capth->th_counter;
808 *pcount = pps->capcount;
809 pps->ppscount[2] = pps->capcount;
810 return;
811 }
812
813 /* Convert the count to a timespec. */
814 tcount = pps->capcount - pps->capth->th_offset_count;
815 tcount &= pps->capth->th_counter->tc_counter_mask;
816 bt = pps->capth->th_offset;
817 bintime_addx(&bt, pps->capth->th_scale * tcount);
818 bintime_add(&bt, &timebasebin);
819 bintime2timespec(&bt, &ts);
820
821 /* If the timecounter was wound up underneath us, bail out. */
822 if (pps->capgen != pps->capth->th_generation)
823 return;
824
825 *pcount = pps->capcount;
826 (*pseq)++;
827 *tsp = ts;
828
829 if (foff) {
830 timespecadd(tsp, osp, tsp);
831 if (tsp->tv_nsec < 0) {
832 tsp->tv_nsec += 1000000000;
833 tsp->tv_sec -= 1;
834 }
835 }
836 #ifdef PPS_SYNC
837 if (fhard) {
838 u_int64_t scale;
839
840 /*
841 * Feed the NTP PLL/FLL.
842 * The FLL wants to know how many (hardware) nanoseconds
843 * elapsed since the previous event.
844 */
845 tcount = pps->capcount - pps->ppscount[2];
846 pps->ppscount[2] = pps->capcount;
847 tcount &= pps->capth->th_counter->tc_counter_mask;
848 scale = (u_int64_t)1 << 63;
849 scale /= pps->capth->th_counter->tc_frequency;
850 scale *= 2;
851 bt.sec = 0;
852 bt.frac = 0;
853 bintime_addx(&bt, scale * tcount);
854 bintime2timespec(&bt, &ts);
855 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
856 }
857 #endif
858 }
859
860 /*
861 * Timecounters need to be updated every so often to prevent the hardware
862 * counter from overflowing. Updating also recalculates the cached values
863 * used by the get*() family of functions, so their precision depends on
864 * the update frequency.
865 */
866
867 static int tc_tick;
868 #ifdef __FreeBSD__
869 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
870 #endif /* __FreeBSD__ */
871
872 void
873 tc_ticktock(void)
874 {
875 static int count;
876
877 if (++count < tc_tick)
878 return;
879 count = 0;
880 tc_windup();
881 }
882
883 void
884 inittimecounter(void)
885 {
886 u_int p;
887
888 /*
889 * Set the initial timeout to
890 * max(1, <approx. number of hardclock ticks in a millisecond>).
891 * People should probably not use the sysctl to set the timeout
892 * to smaller than its inital value, since that value is the
893 * smallest reasonable one. If they want better timestamps they
894 * should use the non-"get"* functions.
895 */
896 if (hz > 1000)
897 tc_tick = (hz + 500) / 1000;
898 else
899 tc_tick = 1;
900 p = (tc_tick * 1000000) / hz;
901 printf("timecounter: Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
902
903 /* warm up new timecounter (again) and get rolling. */
904 (void)timecounter->tc_get_timecount(timecounter);
905 (void)timecounter->tc_get_timecount(timecounter);
906 }
907
908 #ifdef __FreeBSD__
909 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
910 #endif /* __FreeBSD__ */
911 #endif /* __HAVE_TIMECOUNTER */
912