kern_tc.c revision 1.19.14.2 1 /* $NetBSD: kern_tc.c,v 1.19.14.2 2007/10/26 15:48:37 joerg Exp $ */
2
3 /*-
4 * ----------------------------------------------------------------------------
5 * "THE BEER-WARE LICENSE" (Revision 42):
6 * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 * can do whatever you want with this stuff. If we meet some day, and you think
8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 * ---------------------------------------------------------------------------
10 */
11
12 #include <sys/cdefs.h>
13 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.19.14.2 2007/10/26 15:48:37 joerg Exp $");
15
16 #include "opt_ntp.h"
17
18 #include <sys/param.h>
19 #ifdef __HAVE_TIMECOUNTER /* XXX */
20 #include <sys/kernel.h>
21 #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
22 #include <sys/sysctl.h>
23 #include <sys/syslog.h>
24 #include <sys/systm.h>
25 #include <sys/timepps.h>
26 #include <sys/timetc.h>
27 #include <sys/timex.h>
28 #include <sys/evcnt.h>
29 #include <sys/kauth.h>
30
31 /*
32 * A large step happens on boot. This constant detects such steps.
33 * It is relatively small so that ntp_update_second gets called enough
34 * in the typical 'missed a couple of seconds' case, but doesn't loop
35 * forever when the time step is large.
36 */
37 #define LARGE_STEP 200
38
39 /*
40 * Implement a dummy timecounter which we can use until we get a real one
41 * in the air. This allows the console and other early stuff to use
42 * time services.
43 */
44
45 static u_int
46 dummy_get_timecount(struct timecounter *tc)
47 {
48 static u_int now;
49
50 return (++now);
51 }
52
53 static struct timecounter dummy_timecounter = {
54 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
55 };
56
57 struct timehands {
58 /* These fields must be initialized by the driver. */
59 struct timecounter *th_counter;
60 int64_t th_adjustment;
61 u_int64_t th_scale;
62 u_int th_offset_count;
63 struct bintime th_offset;
64 struct timeval th_microtime;
65 struct timespec th_nanotime;
66 /* Fields not to be copied in tc_windup start with th_generation. */
67 volatile u_int th_generation;
68 struct timehands *th_next;
69 };
70
71 static struct timehands th0;
72 static struct timehands th9 = { .th_next = &th0, };
73 static struct timehands th8 = { .th_next = &th9, };
74 static struct timehands th7 = { .th_next = &th8, };
75 static struct timehands th6 = { .th_next = &th7, };
76 static struct timehands th5 = { .th_next = &th6, };
77 static struct timehands th4 = { .th_next = &th5, };
78 static struct timehands th3 = { .th_next = &th4, };
79 static struct timehands th2 = { .th_next = &th3, };
80 static struct timehands th1 = { .th_next = &th2, };
81 static struct timehands th0 = {
82 .th_counter = &dummy_timecounter,
83 .th_scale = (uint64_t)-1 / 1000000,
84 .th_offset = { .sec = 1, .frac = 0 },
85 .th_generation = 1,
86 .th_next = &th1,
87 };
88
89 static struct timehands *volatile timehands = &th0;
90 struct timecounter *timecounter = &dummy_timecounter;
91 static struct timecounter *timecounters = &dummy_timecounter;
92
93 time_t time_second = 1;
94 time_t time_uptime = 1;
95
96 static struct bintime timebasebin;
97
98 static int timestepwarnings;
99
100 #ifdef __FreeBSD__
101 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
102 ×tepwarnings, 0, "");
103 #endif /* __FreeBSD__ */
104
105 /*
106 * sysctl helper routine for kern.timercounter.current
107 */
108 static int
109 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
110 {
111 struct sysctlnode node;
112 int error;
113 char newname[MAX_TCNAMELEN];
114 struct timecounter *newtc, *tc;
115
116 tc = timecounter;
117
118 strlcpy(newname, tc->tc_name, sizeof(newname));
119
120 node = *rnode;
121 node.sysctl_data = newname;
122 node.sysctl_size = sizeof(newname);
123
124 error = sysctl_lookup(SYSCTLFN_CALL(&node));
125
126 if (error ||
127 newp == NULL ||
128 strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
129 return error;
130
131 if (l != NULL && (error = kauth_authorize_generic(l->l_cred,
132 KAUTH_GENERIC_ISSUSER, NULL)) != 0)
133 return (error);
134
135 /* XXX locking */
136
137 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
138 if (strcmp(newname, newtc->tc_name) != 0)
139 continue;
140
141 /* Warm up new timecounter. */
142 (void)newtc->tc_get_timecount(newtc);
143 (void)newtc->tc_get_timecount(newtc);
144
145 timecounter = newtc;
146
147 /* XXX unlock */
148
149 return (0);
150 }
151
152 /* XXX unlock */
153
154 return (EINVAL);
155 }
156
157 static int
158 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
159 {
160 char buf[MAX_TCNAMELEN+48];
161 char *where = oldp;
162 const char *spc;
163 struct timecounter *tc;
164 size_t needed, left, slen;
165 int error;
166
167 if (newp != NULL)
168 return (EPERM);
169 if (namelen != 0)
170 return (EINVAL);
171
172 spc = "";
173 error = 0;
174 needed = 0;
175 left = *oldlenp;
176
177 /* XXX locking */
178
179 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
180 if (where == NULL) {
181 needed += sizeof(buf); /* be conservative */
182 } else {
183 slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
184 " Hz)", spc, tc->tc_name, tc->tc_quality,
185 tc->tc_frequency);
186 if (left < slen + 1)
187 break;
188 /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
189 error = copyout(buf, where, slen + 1);
190 spc = " ";
191 where += slen;
192 needed += slen;
193 left -= slen;
194 }
195 }
196
197 /* XXX unlock */
198
199 *oldlenp = needed;
200 return (error);
201 }
202
203 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
204 {
205 const struct sysctlnode *node;
206
207 sysctl_createv(clog, 0, NULL, &node,
208 CTLFLAG_PERMANENT,
209 CTLTYPE_NODE, "timecounter",
210 SYSCTL_DESCR("time counter information"),
211 NULL, 0, NULL, 0,
212 CTL_KERN, CTL_CREATE, CTL_EOL);
213
214 if (node != NULL) {
215 sysctl_createv(clog, 0, NULL, NULL,
216 CTLFLAG_PERMANENT,
217 CTLTYPE_STRING, "choice",
218 SYSCTL_DESCR("available counters"),
219 sysctl_kern_timecounter_choice, 0, NULL, 0,
220 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
221
222 sysctl_createv(clog, 0, NULL, NULL,
223 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
224 CTLTYPE_STRING, "hardware",
225 SYSCTL_DESCR("currently active time counter"),
226 sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
227 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
228
229 sysctl_createv(clog, 0, NULL, NULL,
230 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
231 CTLTYPE_INT, "timestepwarnings",
232 SYSCTL_DESCR("log time steps"),
233 NULL, 0, ×tepwarnings, 0,
234 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
235 }
236 }
237
238 #define TC_STATS(name) \
239 static struct evcnt n##name = \
240 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
241 EVCNT_ATTACH_STATIC(n##name)
242
243 TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
244 TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
245 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
246 TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
247 TC_STATS(setclock);
248
249 #undef TC_STATS
250
251 static void tc_windup(void);
252
253 /*
254 * Return the difference between the timehands' counter value now and what
255 * was when we copied it to the timehands' offset_count.
256 */
257 static __inline u_int
258 tc_delta(struct timehands *th)
259 {
260 struct timecounter *tc;
261
262 tc = th->th_counter;
263 return ((tc->tc_get_timecount(tc) -
264 th->th_offset_count) & tc->tc_counter_mask);
265 }
266
267 /*
268 * Functions for reading the time. We have to loop until we are sure that
269 * the timehands that we operated on was not updated under our feet. See
270 * the comment in <sys/timevar.h> for a description of these 12 functions.
271 */
272
273 void
274 binuptime(struct bintime *bt)
275 {
276 struct timehands *th;
277 u_int gen;
278
279 nbinuptime.ev_count++;
280 do {
281 th = timehands;
282 gen = th->th_generation;
283 mb_read();
284 *bt = th->th_offset;
285 bintime_addx(bt, th->th_scale * tc_delta(th));
286 mb_read();
287 } while (gen == 0 || gen != th->th_generation);
288 }
289
290 void
291 nanouptime(struct timespec *tsp)
292 {
293 struct bintime bt;
294
295 nnanouptime.ev_count++;
296 binuptime(&bt);
297 bintime2timespec(&bt, tsp);
298 }
299
300 void
301 microuptime(struct timeval *tvp)
302 {
303 struct bintime bt;
304
305 nmicrouptime.ev_count++;
306 binuptime(&bt);
307 bintime2timeval(&bt, tvp);
308 }
309
310 void
311 bintime(struct bintime *bt)
312 {
313
314 nbintime.ev_count++;
315 binuptime(bt);
316 bintime_add(bt, &timebasebin);
317 }
318
319 void
320 nanotime(struct timespec *tsp)
321 {
322 struct bintime bt;
323
324 nnanotime.ev_count++;
325 bintime(&bt);
326 bintime2timespec(&bt, tsp);
327 }
328
329 void
330 microtime(struct timeval *tvp)
331 {
332 struct bintime bt;
333
334 nmicrotime.ev_count++;
335 bintime(&bt);
336 bintime2timeval(&bt, tvp);
337 }
338
339 void
340 getbinuptime(struct bintime *bt)
341 {
342 struct timehands *th;
343 u_int gen;
344
345 ngetbinuptime.ev_count++;
346 do {
347 th = timehands;
348 gen = th->th_generation;
349 mb_read();
350 *bt = th->th_offset;
351 mb_read();
352 } while (gen == 0 || gen != th->th_generation);
353 }
354
355 void
356 getnanouptime(struct timespec *tsp)
357 {
358 struct timehands *th;
359 u_int gen;
360
361 ngetnanouptime.ev_count++;
362 do {
363 th = timehands;
364 gen = th->th_generation;
365 mb_read();
366 bintime2timespec(&th->th_offset, tsp);
367 mb_read();
368 } while (gen == 0 || gen != th->th_generation);
369 }
370
371 void
372 getmicrouptime(struct timeval *tvp)
373 {
374 struct timehands *th;
375 u_int gen;
376
377 ngetmicrouptime.ev_count++;
378 do {
379 th = timehands;
380 gen = th->th_generation;
381 mb_read();
382 bintime2timeval(&th->th_offset, tvp);
383 mb_read();
384 } while (gen == 0 || gen != th->th_generation);
385 }
386
387 void
388 getbintime(struct bintime *bt)
389 {
390 struct timehands *th;
391 u_int gen;
392
393 ngetbintime.ev_count++;
394 do {
395 th = timehands;
396 gen = th->th_generation;
397 mb_read();
398 *bt = th->th_offset;
399 mb_read();
400 } while (gen == 0 || gen != th->th_generation);
401 bintime_add(bt, &timebasebin);
402 }
403
404 void
405 getnanotime(struct timespec *tsp)
406 {
407 struct timehands *th;
408 u_int gen;
409
410 ngetnanotime.ev_count++;
411 do {
412 th = timehands;
413 gen = th->th_generation;
414 mb_read();
415 *tsp = th->th_nanotime;
416 mb_read();
417 } while (gen == 0 || gen != th->th_generation);
418 }
419
420 void
421 getmicrotime(struct timeval *tvp)
422 {
423 struct timehands *th;
424 u_int gen;
425
426 ngetmicrotime.ev_count++;
427 do {
428 th = timehands;
429 gen = th->th_generation;
430 mb_read();
431 *tvp = th->th_microtime;
432 mb_read();
433 } while (gen == 0 || gen != th->th_generation);
434 }
435
436 /*
437 * Initialize a new timecounter and possibly use it.
438 */
439 void
440 tc_init(struct timecounter *tc)
441 {
442 u_int u;
443 int s;
444
445 u = tc->tc_frequency / tc->tc_counter_mask;
446 /* XXX: We need some margin here, 10% is a guess */
447 u *= 11;
448 u /= 10;
449 if (u > hz && tc->tc_quality >= 0) {
450 tc->tc_quality = -2000;
451 aprint_verbose(
452 "timecounter: Timecounter \"%s\" frequency %ju Hz",
453 tc->tc_name, (uintmax_t)tc->tc_frequency);
454 aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
455 } else if (tc->tc_quality >= 0 || bootverbose) {
456 aprint_verbose(
457 "timecounter: Timecounter \"%s\" frequency %ju Hz "
458 "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
459 tc->tc_quality);
460 }
461
462 s = splclock();
463
464 tc->tc_next = timecounters;
465 timecounters = tc;
466 /*
467 * Never automatically use a timecounter with negative quality.
468 * Even though we run on the dummy counter, switching here may be
469 * worse since this timecounter may not be monotonous.
470 */
471 if (tc->tc_quality < 0)
472 goto out;
473 if (tc->tc_quality < timecounter->tc_quality)
474 goto out;
475 if (tc->tc_quality == timecounter->tc_quality &&
476 tc->tc_frequency < timecounter->tc_frequency)
477 goto out;
478 (void)tc->tc_get_timecount(tc);
479 (void)tc->tc_get_timecount(tc);
480 timecounter = tc;
481 tc_windup();
482
483 out:
484 splx(s);
485 }
486
487 /* Report the frequency of the current timecounter. */
488 u_int64_t
489 tc_getfrequency(void)
490 {
491
492 return (timehands->th_counter->tc_frequency);
493 }
494
495 /*
496 * Step our concept of UTC. This is done by modifying our estimate of
497 * when we booted.
498 * XXX: not locked.
499 */
500 void
501 tc_setclock(struct timespec *ts)
502 {
503 struct timespec ts2;
504 struct bintime bt, bt2;
505
506 nsetclock.ev_count++;
507 binuptime(&bt2);
508 timespec2bintime(ts, &bt);
509 bintime_sub(&bt, &bt2);
510 bintime_add(&bt2, &timebasebin);
511 timebasebin = bt;
512
513 /* XXX fiddle all the little crinkly bits around the fiords... */
514 tc_windup();
515 if (timestepwarnings) {
516 bintime2timespec(&bt2, &ts2);
517 log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
518 (intmax_t)ts2.tv_sec, ts2.tv_nsec,
519 (intmax_t)ts->tv_sec, ts->tv_nsec);
520 }
521 }
522
523 /*
524 * Initialize the next struct timehands in the ring and make
525 * it the active timehands. Along the way we might switch to a different
526 * timecounter and/or do seconds processing in NTP. Slightly magic.
527 */
528 static void
529 tc_windup(void)
530 {
531 struct bintime bt;
532 struct timehands *th, *tho;
533 u_int64_t scale;
534 u_int delta, ncount, ogen;
535 int i, s_update;
536 time_t t;
537
538 s_update = 0;
539
540 /*
541 * Make the next timehands a copy of the current one, but do not
542 * overwrite the generation or next pointer. While we update
543 * the contents, the generation must be zero. Ensure global
544 * visibility of the generation before proceeding.
545 */
546 tho = timehands;
547 th = tho->th_next;
548 ogen = th->th_generation;
549 th->th_generation = 0;
550 mb_write();
551 bcopy(tho, th, offsetof(struct timehands, th_generation));
552
553 /*
554 * Capture a timecounter delta on the current timecounter and if
555 * changing timecounters, a counter value from the new timecounter.
556 * Update the offset fields accordingly.
557 */
558 delta = tc_delta(th);
559 if (th->th_counter != timecounter)
560 ncount = timecounter->tc_get_timecount(timecounter);
561 else
562 ncount = 0;
563 th->th_offset_count += delta;
564 th->th_offset_count &= th->th_counter->tc_counter_mask;
565 bintime_addx(&th->th_offset, th->th_scale * delta);
566
567 /*
568 * Hardware latching timecounters may not generate interrupts on
569 * PPS events, so instead we poll them. There is a finite risk that
570 * the hardware might capture a count which is later than the one we
571 * got above, and therefore possibly in the next NTP second which might
572 * have a different rate than the current NTP second. It doesn't
573 * matter in practice.
574 */
575 if (tho->th_counter->tc_poll_pps)
576 tho->th_counter->tc_poll_pps(tho->th_counter);
577
578 /*
579 * Deal with NTP second processing. The for loop normally
580 * iterates at most once, but in extreme situations it might
581 * keep NTP sane if timeouts are not run for several seconds.
582 * At boot, the time step can be large when the TOD hardware
583 * has been read, so on really large steps, we call
584 * ntp_update_second only twice. We need to call it twice in
585 * case we missed a leap second.
586 * If NTP is not compiled in ntp_update_second still calculates
587 * the adjustment resulting from adjtime() calls.
588 */
589 bt = th->th_offset;
590 bintime_add(&bt, &timebasebin);
591 i = bt.sec - tho->th_microtime.tv_sec;
592 if (i > LARGE_STEP)
593 i = 2;
594 for (; i > 0; i--) {
595 t = bt.sec;
596 ntp_update_second(&th->th_adjustment, &bt.sec);
597 s_update = 1;
598 if (bt.sec != t)
599 timebasebin.sec += bt.sec - t;
600 }
601
602 /* Update the UTC timestamps used by the get*() functions. */
603 /* XXX shouldn't do this here. Should force non-`get' versions. */
604 bintime2timeval(&bt, &th->th_microtime);
605 bintime2timespec(&bt, &th->th_nanotime);
606
607 /* Now is a good time to change timecounters. */
608 if (th->th_counter != timecounter) {
609 th->th_counter = timecounter;
610 th->th_offset_count = ncount;
611 s_update = 1;
612 }
613
614 /*-
615 * Recalculate the scaling factor. We want the number of 1/2^64
616 * fractions of a second per period of the hardware counter, taking
617 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
618 * processing provides us with.
619 *
620 * The th_adjustment is nanoseconds per second with 32 bit binary
621 * fraction and we want 64 bit binary fraction of second:
622 *
623 * x = a * 2^32 / 10^9 = a * 4.294967296
624 *
625 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
626 * we can only multiply by about 850 without overflowing, but that
627 * leaves suitably precise fractions for multiply before divide.
628 *
629 * Divide before multiply with a fraction of 2199/512 results in a
630 * systematic undercompensation of 10PPM of th_adjustment. On a
631 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
632 *
633 * We happily sacrifice the lowest of the 64 bits of our result
634 * to the goddess of code clarity.
635 *
636 */
637 if (s_update) {
638 scale = (u_int64_t)1 << 63;
639 scale += (th->th_adjustment / 1024) * 2199;
640 scale /= th->th_counter->tc_frequency;
641 th->th_scale = scale * 2;
642 }
643 /*
644 * Now that the struct timehands is again consistent, set the new
645 * generation number, making sure to not make it zero. Ensure
646 * changes are globally visible before changing.
647 */
648 if (++ogen == 0)
649 ogen = 1;
650 mb_write();
651 th->th_generation = ogen;
652
653 /*
654 * Go live with the new struct timehands. Ensure changes are
655 * globally visible before changing.
656 */
657 time_second = th->th_microtime.tv_sec;
658 time_uptime = th->th_offset.sec;
659 mb_write();
660 timehands = th;
661 }
662
663 #ifdef __FreeBSD__
664 /* Report or change the active timecounter hardware. */
665 static int
666 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
667 {
668 char newname[32];
669 struct timecounter *newtc, *tc;
670 int error;
671
672 tc = timecounter;
673 strlcpy(newname, tc->tc_name, sizeof(newname));
674
675 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
676 if (error != 0 || req->newptr == NULL ||
677 strcmp(newname, tc->tc_name) == 0)
678 return (error);
679
680 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
681 if (strcmp(newname, newtc->tc_name) != 0)
682 continue;
683
684 /* Warm up new timecounter. */
685 (void)newtc->tc_get_timecount(newtc);
686 (void)newtc->tc_get_timecount(newtc);
687
688 timecounter = newtc;
689 return (0);
690 }
691 return (EINVAL);
692 }
693
694 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
695 0, 0, sysctl_kern_timecounter_hardware, "A", "");
696
697
698 /* Report or change the active timecounter hardware. */
699 static int
700 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
701 {
702 char buf[32], *spc;
703 struct timecounter *tc;
704 int error;
705
706 spc = "";
707 error = 0;
708 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
709 sprintf(buf, "%s%s(%d)",
710 spc, tc->tc_name, tc->tc_quality);
711 error = SYSCTL_OUT(req, buf, strlen(buf));
712 spc = " ";
713 }
714 return (error);
715 }
716
717 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
718 0, 0, sysctl_kern_timecounter_choice, "A", "");
719 #endif /* __FreeBSD__ */
720
721 /*
722 * RFC 2783 PPS-API implementation.
723 */
724
725 int
726 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
727 {
728 pps_params_t *app;
729 pps_info_t *pipi;
730 #ifdef PPS_SYNC
731 int *epi;
732 #endif
733
734 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
735 switch (cmd) {
736 case PPS_IOC_CREATE:
737 return (0);
738 case PPS_IOC_DESTROY:
739 return (0);
740 case PPS_IOC_SETPARAMS:
741 app = (pps_params_t *)data;
742 if (app->mode & ~pps->ppscap)
743 return (EINVAL);
744 pps->ppsparam = *app;
745 return (0);
746 case PPS_IOC_GETPARAMS:
747 app = (pps_params_t *)data;
748 *app = pps->ppsparam;
749 app->api_version = PPS_API_VERS_1;
750 return (0);
751 case PPS_IOC_GETCAP:
752 *(int*)data = pps->ppscap;
753 return (0);
754 case PPS_IOC_FETCH:
755 pipi = (pps_info_t *)data;
756 pps->ppsinfo.current_mode = pps->ppsparam.mode;
757 *pipi = pps->ppsinfo;
758 return (0);
759 case PPS_IOC_KCBIND:
760 #ifdef PPS_SYNC
761 epi = (int *)data;
762 /* XXX Only root should be able to do this */
763 if (*epi & ~pps->ppscap)
764 return (EINVAL);
765 pps->kcmode = *epi;
766 return (0);
767 #else
768 return (EOPNOTSUPP);
769 #endif
770 default:
771 return (EPASSTHROUGH);
772 }
773 }
774
775 void
776 pps_init(struct pps_state *pps)
777 {
778 pps->ppscap |= PPS_TSFMT_TSPEC;
779 if (pps->ppscap & PPS_CAPTUREASSERT)
780 pps->ppscap |= PPS_OFFSETASSERT;
781 if (pps->ppscap & PPS_CAPTURECLEAR)
782 pps->ppscap |= PPS_OFFSETCLEAR;
783 }
784
785 void
786 pps_capture(struct pps_state *pps)
787 {
788 struct timehands *th;
789
790 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
791 th = timehands;
792 pps->capgen = th->th_generation;
793 pps->capth = th;
794 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
795 if (pps->capgen != th->th_generation)
796 pps->capgen = 0;
797 }
798
799 void
800 pps_event(struct pps_state *pps, int event)
801 {
802 struct bintime bt;
803 struct timespec ts, *tsp, *osp;
804 u_int tcount, *pcount;
805 int foff, fhard;
806 pps_seq_t *pseq;
807
808 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
809 /* If the timecounter was wound up underneath us, bail out. */
810 if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
811 return;
812
813 /* Things would be easier with arrays. */
814 if (event == PPS_CAPTUREASSERT) {
815 tsp = &pps->ppsinfo.assert_timestamp;
816 osp = &pps->ppsparam.assert_offset;
817 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
818 fhard = pps->kcmode & PPS_CAPTUREASSERT;
819 pcount = &pps->ppscount[0];
820 pseq = &pps->ppsinfo.assert_sequence;
821 } else {
822 tsp = &pps->ppsinfo.clear_timestamp;
823 osp = &pps->ppsparam.clear_offset;
824 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
825 fhard = pps->kcmode & PPS_CAPTURECLEAR;
826 pcount = &pps->ppscount[1];
827 pseq = &pps->ppsinfo.clear_sequence;
828 }
829
830 /*
831 * If the timecounter changed, we cannot compare the count values, so
832 * we have to drop the rest of the PPS-stuff until the next event.
833 */
834 if (pps->ppstc != pps->capth->th_counter) {
835 pps->ppstc = pps->capth->th_counter;
836 *pcount = pps->capcount;
837 pps->ppscount[2] = pps->capcount;
838 return;
839 }
840
841 /* Convert the count to a timespec. */
842 tcount = pps->capcount - pps->capth->th_offset_count;
843 tcount &= pps->capth->th_counter->tc_counter_mask;
844 bt = pps->capth->th_offset;
845 bintime_addx(&bt, pps->capth->th_scale * tcount);
846 bintime_add(&bt, &timebasebin);
847 bintime2timespec(&bt, &ts);
848
849 /* If the timecounter was wound up underneath us, bail out. */
850 if (pps->capgen != pps->capth->th_generation)
851 return;
852
853 *pcount = pps->capcount;
854 (*pseq)++;
855 *tsp = ts;
856
857 if (foff) {
858 timespecadd(tsp, osp, tsp);
859 if (tsp->tv_nsec < 0) {
860 tsp->tv_nsec += 1000000000;
861 tsp->tv_sec -= 1;
862 }
863 }
864 #ifdef PPS_SYNC
865 if (fhard) {
866 u_int64_t scale;
867
868 /*
869 * Feed the NTP PLL/FLL.
870 * The FLL wants to know how many (hardware) nanoseconds
871 * elapsed since the previous event.
872 */
873 tcount = pps->capcount - pps->ppscount[2];
874 pps->ppscount[2] = pps->capcount;
875 tcount &= pps->capth->th_counter->tc_counter_mask;
876 scale = (u_int64_t)1 << 63;
877 scale /= pps->capth->th_counter->tc_frequency;
878 scale *= 2;
879 bt.sec = 0;
880 bt.frac = 0;
881 bintime_addx(&bt, scale * tcount);
882 bintime2timespec(&bt, &ts);
883 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
884 }
885 #endif
886 }
887
888 /*
889 * Timecounters need to be updated every so often to prevent the hardware
890 * counter from overflowing. Updating also recalculates the cached values
891 * used by the get*() family of functions, so their precision depends on
892 * the update frequency.
893 */
894
895 static int tc_tick;
896 #ifdef __FreeBSD__
897 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
898 #endif /* __FreeBSD__ */
899
900 void
901 tc_ticktock(void)
902 {
903 static int count;
904
905 if (++count < tc_tick)
906 return;
907 count = 0;
908 tc_windup();
909 }
910
911 void
912 inittimecounter(void)
913 {
914 u_int p;
915
916 /*
917 * Set the initial timeout to
918 * max(1, <approx. number of hardclock ticks in a millisecond>).
919 * People should probably not use the sysctl to set the timeout
920 * to smaller than its inital value, since that value is the
921 * smallest reasonable one. If they want better timestamps they
922 * should use the non-"get"* functions.
923 */
924 if (hz > 1000)
925 tc_tick = (hz + 500) / 1000;
926 else
927 tc_tick = 1;
928 p = (tc_tick * 1000000) / hz;
929 aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
930 p / 1000, p % 1000);
931
932 /* warm up new timecounter (again) and get rolling. */
933 (void)timecounter->tc_get_timecount(timecounter);
934 (void)timecounter->tc_get_timecount(timecounter);
935 }
936
937 #ifdef __FreeBSD__
938 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
939 #endif /* __FreeBSD__ */
940 #endif /* __HAVE_TIMECOUNTER */
941