kern_tc.c revision 1.19.14.3 1 /* $NetBSD: kern_tc.c,v 1.19.14.3 2007/11/21 21:56:00 joerg Exp $ */
2
3 /*-
4 * ----------------------------------------------------------------------------
5 * "THE BEER-WARE LICENSE" (Revision 42):
6 * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 * can do whatever you want with this stuff. If we meet some day, and you think
8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 * ---------------------------------------------------------------------------
10 */
11
12 #include <sys/cdefs.h>
13 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.19.14.3 2007/11/21 21:56:00 joerg Exp $");
15
16 #include "opt_ntp.h"
17
18 #include <sys/param.h>
19 #ifdef __HAVE_TIMECOUNTER /* XXX */
20 #include <sys/kernel.h>
21 #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
22 #include <sys/sysctl.h>
23 #include <sys/syslog.h>
24 #include <sys/systm.h>
25 #include <sys/timepps.h>
26 #include <sys/timetc.h>
27 #include <sys/timex.h>
28 #include <sys/evcnt.h>
29 #include <sys/kauth.h>
30 #include <sys/mutex.h>
31
32 /*
33 * A large step happens on boot. This constant detects such steps.
34 * It is relatively small so that ntp_update_second gets called enough
35 * in the typical 'missed a couple of seconds' case, but doesn't loop
36 * forever when the time step is large.
37 */
38 #define LARGE_STEP 200
39
40 /*
41 * Implement a dummy timecounter which we can use until we get a real one
42 * in the air. This allows the console and other early stuff to use
43 * time services.
44 */
45
46 static u_int
47 dummy_get_timecount(struct timecounter *tc)
48 {
49 static u_int now;
50
51 return (++now);
52 }
53
54 static struct timecounter dummy_timecounter = {
55 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
56 };
57
58 struct timehands {
59 /* These fields must be initialized by the driver. */
60 struct timecounter *th_counter;
61 int64_t th_adjustment;
62 u_int64_t th_scale;
63 u_int th_offset_count;
64 struct bintime th_offset;
65 struct timeval th_microtime;
66 struct timespec th_nanotime;
67 /* Fields not to be copied in tc_windup start with th_generation. */
68 volatile u_int th_generation;
69 struct timehands *th_next;
70 };
71
72 static struct timehands th0;
73 static struct timehands th9 = { .th_next = &th0, };
74 static struct timehands th8 = { .th_next = &th9, };
75 static struct timehands th7 = { .th_next = &th8, };
76 static struct timehands th6 = { .th_next = &th7, };
77 static struct timehands th5 = { .th_next = &th6, };
78 static struct timehands th4 = { .th_next = &th5, };
79 static struct timehands th3 = { .th_next = &th4, };
80 static struct timehands th2 = { .th_next = &th3, };
81 static struct timehands th1 = { .th_next = &th2, };
82 static struct timehands th0 = {
83 .th_counter = &dummy_timecounter,
84 .th_scale = (uint64_t)-1 / 1000000,
85 .th_offset = { .sec = 1, .frac = 0 },
86 .th_generation = 1,
87 .th_next = &th1,
88 };
89
90 static struct timehands *volatile timehands = &th0;
91 struct timecounter *timecounter = &dummy_timecounter;
92 static struct timecounter *timecounters = &dummy_timecounter;
93
94 time_t time_second = 1;
95 time_t time_uptime = 1;
96
97 static struct bintime timebasebin;
98
99 static int timestepwarnings;
100
101 extern kmutex_t time_lock;
102
103 #ifdef __FreeBSD__
104 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
105 ×tepwarnings, 0, "");
106 #endif /* __FreeBSD__ */
107
108 /*
109 * sysctl helper routine for kern.timercounter.current
110 */
111 static int
112 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
113 {
114 struct sysctlnode node;
115 int error;
116 char newname[MAX_TCNAMELEN];
117 struct timecounter *newtc, *tc;
118
119 tc = timecounter;
120
121 strlcpy(newname, tc->tc_name, sizeof(newname));
122
123 node = *rnode;
124 node.sysctl_data = newname;
125 node.sysctl_size = sizeof(newname);
126
127 error = sysctl_lookup(SYSCTLFN_CALL(&node));
128
129 if (error ||
130 newp == NULL ||
131 strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
132 return error;
133
134 if (l != NULL && (error = kauth_authorize_generic(l->l_cred,
135 KAUTH_GENERIC_ISSUSER, NULL)) != 0)
136 return (error);
137
138 if (!cold)
139 mutex_enter(&time_lock);
140 error = EINVAL;
141 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
142 if (strcmp(newname, newtc->tc_name) != 0)
143 continue;
144 /* Warm up new timecounter. */
145 (void)newtc->tc_get_timecount(newtc);
146 (void)newtc->tc_get_timecount(newtc);
147 timecounter = newtc;
148 error = 0;
149 break;
150 }
151 if (!cold)
152 mutex_exit(&time_lock);
153 return error;
154 }
155
156 static int
157 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
158 {
159 char buf[MAX_TCNAMELEN+48];
160 char *where = oldp;
161 const char *spc;
162 struct timecounter *tc;
163 size_t needed, left, slen;
164 int error;
165
166 if (newp != NULL)
167 return (EPERM);
168 if (namelen != 0)
169 return (EINVAL);
170
171 spc = "";
172 error = 0;
173 needed = 0;
174 left = *oldlenp;
175
176 mutex_enter(&time_lock);
177 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
178 if (where == NULL) {
179 needed += sizeof(buf); /* be conservative */
180 } else {
181 slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
182 " Hz)", spc, tc->tc_name, tc->tc_quality,
183 tc->tc_frequency);
184 if (left < slen + 1)
185 break;
186 /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
187 /* XXX copyout with held lock. */
188 error = copyout(buf, where, slen + 1);
189 spc = " ";
190 where += slen;
191 needed += slen;
192 left -= slen;
193 }
194 }
195 mutex_exit(&time_lock);
196
197 *oldlenp = needed;
198 return (error);
199 }
200
201 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
202 {
203 const struct sysctlnode *node;
204
205 sysctl_createv(clog, 0, NULL, &node,
206 CTLFLAG_PERMANENT,
207 CTLTYPE_NODE, "timecounter",
208 SYSCTL_DESCR("time counter information"),
209 NULL, 0, NULL, 0,
210 CTL_KERN, CTL_CREATE, CTL_EOL);
211
212 if (node != NULL) {
213 sysctl_createv(clog, 0, NULL, NULL,
214 CTLFLAG_PERMANENT,
215 CTLTYPE_STRING, "choice",
216 SYSCTL_DESCR("available counters"),
217 sysctl_kern_timecounter_choice, 0, NULL, 0,
218 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
219
220 sysctl_createv(clog, 0, NULL, NULL,
221 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
222 CTLTYPE_STRING, "hardware",
223 SYSCTL_DESCR("currently active time counter"),
224 sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
225 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
226
227 sysctl_createv(clog, 0, NULL, NULL,
228 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
229 CTLTYPE_INT, "timestepwarnings",
230 SYSCTL_DESCR("log time steps"),
231 NULL, 0, ×tepwarnings, 0,
232 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
233 }
234 }
235
236 #define TC_STATS(name) \
237 static struct evcnt n##name = \
238 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
239 EVCNT_ATTACH_STATIC(n##name)
240
241 TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
242 TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
243 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
244 TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
245 TC_STATS(setclock);
246
247 #undef TC_STATS
248
249 static void tc_windup(void);
250
251 /*
252 * Return the difference between the timehands' counter value now and what
253 * was when we copied it to the timehands' offset_count.
254 */
255 static __inline u_int
256 tc_delta(struct timehands *th)
257 {
258 struct timecounter *tc;
259
260 tc = th->th_counter;
261 return ((tc->tc_get_timecount(tc) -
262 th->th_offset_count) & tc->tc_counter_mask);
263 }
264
265 /*
266 * Functions for reading the time. We have to loop until we are sure that
267 * the timehands that we operated on was not updated under our feet. See
268 * the comment in <sys/timevar.h> for a description of these 12 functions.
269 */
270
271 void
272 binuptime(struct bintime *bt)
273 {
274 struct timehands *th;
275 u_int gen;
276
277 nbinuptime.ev_count++;
278 do {
279 th = timehands;
280 gen = th->th_generation;
281 *bt = th->th_offset;
282 bintime_addx(bt, th->th_scale * tc_delta(th));
283 } while (gen == 0 || gen != th->th_generation);
284 }
285
286 void
287 nanouptime(struct timespec *tsp)
288 {
289 struct bintime bt;
290
291 nnanouptime.ev_count++;
292 binuptime(&bt);
293 bintime2timespec(&bt, tsp);
294 }
295
296 void
297 microuptime(struct timeval *tvp)
298 {
299 struct bintime bt;
300
301 nmicrouptime.ev_count++;
302 binuptime(&bt);
303 bintime2timeval(&bt, tvp);
304 }
305
306 void
307 bintime(struct bintime *bt)
308 {
309
310 nbintime.ev_count++;
311 binuptime(bt);
312 bintime_add(bt, &timebasebin);
313 }
314
315 void
316 nanotime(struct timespec *tsp)
317 {
318 struct bintime bt;
319
320 nnanotime.ev_count++;
321 bintime(&bt);
322 bintime2timespec(&bt, tsp);
323 }
324
325 void
326 microtime(struct timeval *tvp)
327 {
328 struct bintime bt;
329
330 nmicrotime.ev_count++;
331 bintime(&bt);
332 bintime2timeval(&bt, tvp);
333 }
334
335 void
336 getbinuptime(struct bintime *bt)
337 {
338 struct timehands *th;
339 u_int gen;
340
341 ngetbinuptime.ev_count++;
342 do {
343 th = timehands;
344 gen = th->th_generation;
345 *bt = th->th_offset;
346 } while (gen == 0 || gen != th->th_generation);
347 }
348
349 void
350 getnanouptime(struct timespec *tsp)
351 {
352 struct timehands *th;
353 u_int gen;
354
355 ngetnanouptime.ev_count++;
356 do {
357 th = timehands;
358 gen = th->th_generation;
359 bintime2timespec(&th->th_offset, tsp);
360 } while (gen == 0 || gen != th->th_generation);
361 }
362
363 void
364 getmicrouptime(struct timeval *tvp)
365 {
366 struct timehands *th;
367 u_int gen;
368
369 ngetmicrouptime.ev_count++;
370 do {
371 th = timehands;
372 gen = th->th_generation;
373 bintime2timeval(&th->th_offset, tvp);
374 } while (gen == 0 || gen != th->th_generation);
375 }
376
377 void
378 getbintime(struct bintime *bt)
379 {
380 struct timehands *th;
381 u_int gen;
382
383 ngetbintime.ev_count++;
384 do {
385 th = timehands;
386 gen = th->th_generation;
387 *bt = th->th_offset;
388 } while (gen == 0 || gen != th->th_generation);
389 bintime_add(bt, &timebasebin);
390 }
391
392 void
393 getnanotime(struct timespec *tsp)
394 {
395 struct timehands *th;
396 u_int gen;
397
398 ngetnanotime.ev_count++;
399 do {
400 th = timehands;
401 gen = th->th_generation;
402 *tsp = th->th_nanotime;
403 } while (gen == 0 || gen != th->th_generation);
404 }
405
406 void
407 getmicrotime(struct timeval *tvp)
408 {
409 struct timehands *th;
410 u_int gen;
411
412 ngetmicrotime.ev_count++;
413 do {
414 th = timehands;
415 gen = th->th_generation;
416 *tvp = th->th_microtime;
417 } while (gen == 0 || gen != th->th_generation);
418 }
419
420 /*
421 * Initialize a new timecounter and possibly use it.
422 */
423 void
424 tc_init(struct timecounter *tc)
425 {
426 u_int u;
427 int s;
428
429 u = tc->tc_frequency / tc->tc_counter_mask;
430 /* XXX: We need some margin here, 10% is a guess */
431 u *= 11;
432 u /= 10;
433 if (u > hz && tc->tc_quality >= 0) {
434 tc->tc_quality = -2000;
435 aprint_verbose(
436 "timecounter: Timecounter \"%s\" frequency %ju Hz",
437 tc->tc_name, (uintmax_t)tc->tc_frequency);
438 aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
439 } else if (tc->tc_quality >= 0 || bootverbose) {
440 aprint_verbose(
441 "timecounter: Timecounter \"%s\" frequency %ju Hz "
442 "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
443 tc->tc_quality);
444 }
445
446 mutex_enter(&time_lock);
447 s = splsched();
448 tc->tc_next = timecounters;
449 timecounters = tc;
450 /*
451 * Never automatically use a timecounter with negative quality.
452 * Even though we run on the dummy counter, switching here may be
453 * worse since this timecounter may not be monotonous.
454 */
455 if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
456 (tc->tc_quality == timecounter->tc_quality &&
457 tc->tc_frequency > timecounter->tc_frequency))) {
458 (void)tc->tc_get_timecount(tc);
459 (void)tc->tc_get_timecount(tc);
460 timecounter = tc;
461 tc_windup();
462 }
463 splx(s);
464 mutex_exit(&time_lock);
465 }
466
467 /* Report the frequency of the current timecounter. */
468 u_int64_t
469 tc_getfrequency(void)
470 {
471
472 return (timehands->th_counter->tc_frequency);
473 }
474
475 /*
476 * Step our concept of UTC. This is done by modifying our estimate of
477 * when we booted.
478 * XXX: not locked.
479 */
480 void
481 tc_setclock(struct timespec *ts)
482 {
483 struct timespec ts2;
484 struct bintime bt, bt2;
485
486 nsetclock.ev_count++;
487 binuptime(&bt2);
488 timespec2bintime(ts, &bt);
489 bintime_sub(&bt, &bt2);
490 bintime_add(&bt2, &timebasebin);
491 timebasebin = bt;
492
493 /* XXX fiddle all the little crinkly bits around the fiords... */
494 tc_windup();
495 if (timestepwarnings) {
496 bintime2timespec(&bt2, &ts2);
497 log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
498 (intmax_t)ts2.tv_sec, ts2.tv_nsec,
499 (intmax_t)ts->tv_sec, ts->tv_nsec);
500 }
501 }
502
503 /*
504 * Initialize the next struct timehands in the ring and make
505 * it the active timehands. Along the way we might switch to a different
506 * timecounter and/or do seconds processing in NTP. Slightly magic.
507 */
508 static void
509 tc_windup(void)
510 {
511 struct bintime bt;
512 struct timehands *th, *tho;
513 u_int64_t scale;
514 u_int delta, ncount, ogen;
515 int i, s_update;
516 time_t t;
517
518 s_update = 0;
519
520 /*
521 * Make the next timehands a copy of the current one, but do not
522 * overwrite the generation or next pointer. While we update
523 * the contents, the generation must be zero. Ensure global
524 * visibility of the generation before proceeding.
525 */
526 tho = timehands;
527 th = tho->th_next;
528 ogen = th->th_generation;
529 th->th_generation = 0;
530 mb_write();
531 bcopy(tho, th, offsetof(struct timehands, th_generation));
532
533 /*
534 * Capture a timecounter delta on the current timecounter and if
535 * changing timecounters, a counter value from the new timecounter.
536 * Update the offset fields accordingly.
537 */
538 delta = tc_delta(th);
539 if (th->th_counter != timecounter)
540 ncount = timecounter->tc_get_timecount(timecounter);
541 else
542 ncount = 0;
543 th->th_offset_count += delta;
544 th->th_offset_count &= th->th_counter->tc_counter_mask;
545 bintime_addx(&th->th_offset, th->th_scale * delta);
546
547 /*
548 * Hardware latching timecounters may not generate interrupts on
549 * PPS events, so instead we poll them. There is a finite risk that
550 * the hardware might capture a count which is later than the one we
551 * got above, and therefore possibly in the next NTP second which might
552 * have a different rate than the current NTP second. It doesn't
553 * matter in practice.
554 */
555 if (tho->th_counter->tc_poll_pps)
556 tho->th_counter->tc_poll_pps(tho->th_counter);
557
558 /*
559 * Deal with NTP second processing. The for loop normally
560 * iterates at most once, but in extreme situations it might
561 * keep NTP sane if timeouts are not run for several seconds.
562 * At boot, the time step can be large when the TOD hardware
563 * has been read, so on really large steps, we call
564 * ntp_update_second only twice. We need to call it twice in
565 * case we missed a leap second.
566 * If NTP is not compiled in ntp_update_second still calculates
567 * the adjustment resulting from adjtime() calls.
568 */
569 bt = th->th_offset;
570 bintime_add(&bt, &timebasebin);
571 i = bt.sec - tho->th_microtime.tv_sec;
572 if (i > LARGE_STEP)
573 i = 2;
574 for (; i > 0; i--) {
575 t = bt.sec;
576 ntp_update_second(&th->th_adjustment, &bt.sec);
577 s_update = 1;
578 if (bt.sec != t)
579 timebasebin.sec += bt.sec - t;
580 }
581
582 /* Update the UTC timestamps used by the get*() functions. */
583 /* XXX shouldn't do this here. Should force non-`get' versions. */
584 bintime2timeval(&bt, &th->th_microtime);
585 bintime2timespec(&bt, &th->th_nanotime);
586
587 /* Now is a good time to change timecounters. */
588 if (th->th_counter != timecounter) {
589 th->th_counter = timecounter;
590 th->th_offset_count = ncount;
591 s_update = 1;
592 }
593
594 /*-
595 * Recalculate the scaling factor. We want the number of 1/2^64
596 * fractions of a second per period of the hardware counter, taking
597 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
598 * processing provides us with.
599 *
600 * The th_adjustment is nanoseconds per second with 32 bit binary
601 * fraction and we want 64 bit binary fraction of second:
602 *
603 * x = a * 2^32 / 10^9 = a * 4.294967296
604 *
605 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
606 * we can only multiply by about 850 without overflowing, but that
607 * leaves suitably precise fractions for multiply before divide.
608 *
609 * Divide before multiply with a fraction of 2199/512 results in a
610 * systematic undercompensation of 10PPM of th_adjustment. On a
611 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
612 *
613 * We happily sacrifice the lowest of the 64 bits of our result
614 * to the goddess of code clarity.
615 *
616 */
617 if (s_update) {
618 scale = (u_int64_t)1 << 63;
619 scale += (th->th_adjustment / 1024) * 2199;
620 scale /= th->th_counter->tc_frequency;
621 th->th_scale = scale * 2;
622 }
623 /*
624 * Now that the struct timehands is again consistent, set the new
625 * generation number, making sure to not make it zero. Ensure
626 * changes are globally visible before changing.
627 */
628 if (++ogen == 0)
629 ogen = 1;
630 mb_write();
631 th->th_generation = ogen;
632
633 /*
634 * Go live with the new struct timehands. Ensure changes are
635 * globally visible before changing.
636 */
637 time_second = th->th_microtime.tv_sec;
638 time_uptime = th->th_offset.sec;
639 mb_write();
640 timehands = th;
641
642 /*
643 * Force users of the old timehand to move on. This is
644 * necessary for MP systems; we need to ensure that the
645 * consumers will move away from the old timehand before
646 * we begin updating it again when we eventually wrap
647 * around.
648 */
649 if (++tho->th_generation == 0)
650 tho->th_generation = 1;
651 }
652
653 /*
654 * RFC 2783 PPS-API implementation.
655 */
656
657 int
658 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
659 {
660 pps_params_t *app;
661 pps_info_t *pipi;
662 #ifdef PPS_SYNC
663 int *epi;
664 #endif
665
666 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
667 switch (cmd) {
668 case PPS_IOC_CREATE:
669 return (0);
670 case PPS_IOC_DESTROY:
671 return (0);
672 case PPS_IOC_SETPARAMS:
673 app = (pps_params_t *)data;
674 if (app->mode & ~pps->ppscap)
675 return (EINVAL);
676 pps->ppsparam = *app;
677 return (0);
678 case PPS_IOC_GETPARAMS:
679 app = (pps_params_t *)data;
680 *app = pps->ppsparam;
681 app->api_version = PPS_API_VERS_1;
682 return (0);
683 case PPS_IOC_GETCAP:
684 *(int*)data = pps->ppscap;
685 return (0);
686 case PPS_IOC_FETCH:
687 pipi = (pps_info_t *)data;
688 pps->ppsinfo.current_mode = pps->ppsparam.mode;
689 *pipi = pps->ppsinfo;
690 return (0);
691 case PPS_IOC_KCBIND:
692 #ifdef PPS_SYNC
693 epi = (int *)data;
694 /* XXX Only root should be able to do this */
695 if (*epi & ~pps->ppscap)
696 return (EINVAL);
697 pps->kcmode = *epi;
698 return (0);
699 #else
700 return (EOPNOTSUPP);
701 #endif
702 default:
703 return (EPASSTHROUGH);
704 }
705 }
706
707 void
708 pps_init(struct pps_state *pps)
709 {
710 pps->ppscap |= PPS_TSFMT_TSPEC;
711 if (pps->ppscap & PPS_CAPTUREASSERT)
712 pps->ppscap |= PPS_OFFSETASSERT;
713 if (pps->ppscap & PPS_CAPTURECLEAR)
714 pps->ppscap |= PPS_OFFSETCLEAR;
715 }
716
717 void
718 pps_capture(struct pps_state *pps)
719 {
720 struct timehands *th;
721
722 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
723 th = timehands;
724 pps->capgen = th->th_generation;
725 pps->capth = th;
726 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
727 if (pps->capgen != th->th_generation)
728 pps->capgen = 0;
729 }
730
731 void
732 pps_event(struct pps_state *pps, int event)
733 {
734 struct bintime bt;
735 struct timespec ts, *tsp, *osp;
736 u_int tcount, *pcount;
737 int foff, fhard;
738 pps_seq_t *pseq;
739
740 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
741 /* If the timecounter was wound up underneath us, bail out. */
742 if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
743 return;
744
745 /* Things would be easier with arrays. */
746 if (event == PPS_CAPTUREASSERT) {
747 tsp = &pps->ppsinfo.assert_timestamp;
748 osp = &pps->ppsparam.assert_offset;
749 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
750 fhard = pps->kcmode & PPS_CAPTUREASSERT;
751 pcount = &pps->ppscount[0];
752 pseq = &pps->ppsinfo.assert_sequence;
753 } else {
754 tsp = &pps->ppsinfo.clear_timestamp;
755 osp = &pps->ppsparam.clear_offset;
756 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
757 fhard = pps->kcmode & PPS_CAPTURECLEAR;
758 pcount = &pps->ppscount[1];
759 pseq = &pps->ppsinfo.clear_sequence;
760 }
761
762 /*
763 * If the timecounter changed, we cannot compare the count values, so
764 * we have to drop the rest of the PPS-stuff until the next event.
765 */
766 if (pps->ppstc != pps->capth->th_counter) {
767 pps->ppstc = pps->capth->th_counter;
768 *pcount = pps->capcount;
769 pps->ppscount[2] = pps->capcount;
770 return;
771 }
772
773 /* Convert the count to a timespec. */
774 tcount = pps->capcount - pps->capth->th_offset_count;
775 tcount &= pps->capth->th_counter->tc_counter_mask;
776 bt = pps->capth->th_offset;
777 bintime_addx(&bt, pps->capth->th_scale * tcount);
778 bintime_add(&bt, &timebasebin);
779 bintime2timespec(&bt, &ts);
780
781 /* If the timecounter was wound up underneath us, bail out. */
782 if (pps->capgen != pps->capth->th_generation)
783 return;
784
785 *pcount = pps->capcount;
786 (*pseq)++;
787 *tsp = ts;
788
789 if (foff) {
790 timespecadd(tsp, osp, tsp);
791 if (tsp->tv_nsec < 0) {
792 tsp->tv_nsec += 1000000000;
793 tsp->tv_sec -= 1;
794 }
795 }
796 #ifdef PPS_SYNC
797 if (fhard) {
798 u_int64_t scale;
799
800 /*
801 * Feed the NTP PLL/FLL.
802 * The FLL wants to know how many (hardware) nanoseconds
803 * elapsed since the previous event.
804 */
805 tcount = pps->capcount - pps->ppscount[2];
806 pps->ppscount[2] = pps->capcount;
807 tcount &= pps->capth->th_counter->tc_counter_mask;
808 scale = (u_int64_t)1 << 63;
809 scale /= pps->capth->th_counter->tc_frequency;
810 scale *= 2;
811 bt.sec = 0;
812 bt.frac = 0;
813 bintime_addx(&bt, scale * tcount);
814 bintime2timespec(&bt, &ts);
815 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
816 }
817 #endif
818 }
819
820 /*
821 * Timecounters need to be updated every so often to prevent the hardware
822 * counter from overflowing. Updating also recalculates the cached values
823 * used by the get*() family of functions, so their precision depends on
824 * the update frequency.
825 */
826
827 static int tc_tick;
828
829 void
830 tc_ticktock(void)
831 {
832 static int count;
833
834 if (++count < tc_tick)
835 return;
836 count = 0;
837 tc_windup();
838 }
839
840 void
841 inittimecounter(void)
842 {
843 u_int p;
844
845 /*
846 * Set the initial timeout to
847 * max(1, <approx. number of hardclock ticks in a millisecond>).
848 * People should probably not use the sysctl to set the timeout
849 * to smaller than its inital value, since that value is the
850 * smallest reasonable one. If they want better timestamps they
851 * should use the non-"get"* functions.
852 */
853 if (hz > 1000)
854 tc_tick = (hz + 500) / 1000;
855 else
856 tc_tick = 1;
857 p = (tc_tick * 1000000) / hz;
858 aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
859 p / 1000, p % 1000);
860
861 /* warm up new timecounter (again) and get rolling. */
862 (void)timecounter->tc_get_timecount(timecounter);
863 (void)timecounter->tc_get_timecount(timecounter);
864 }
865
866 #endif /* __HAVE_TIMECOUNTER */
867