kern_tc.c revision 1.20.2.2 1 /* $NetBSD: kern_tc.c,v 1.20.2.2 2008/01/09 01:56:11 matt Exp $ */
2
3 /*-
4 * ----------------------------------------------------------------------------
5 * "THE BEER-WARE LICENSE" (Revision 42):
6 * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 * can do whatever you want with this stuff. If we meet some day, and you think
8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 * ---------------------------------------------------------------------------
10 */
11
12 #include <sys/cdefs.h>
13 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.20.2.2 2008/01/09 01:56:11 matt Exp $");
15
16 #include "opt_ntp.h"
17
18 #include <sys/param.h>
19 #ifdef __HAVE_TIMECOUNTER /* XXX */
20 #include <sys/kernel.h>
21 #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
22 #include <sys/sysctl.h>
23 #include <sys/syslog.h>
24 #include <sys/systm.h>
25 #include <sys/timepps.h>
26 #include <sys/timetc.h>
27 #include <sys/timex.h>
28 #include <sys/evcnt.h>
29 #include <sys/kauth.h>
30 #include <sys/mutex.h>
31 #include <sys/atomic.h>
32
33 /*
34 * A large step happens on boot. This constant detects such steps.
35 * It is relatively small so that ntp_update_second gets called enough
36 * in the typical 'missed a couple of seconds' case, but doesn't loop
37 * forever when the time step is large.
38 */
39 #define LARGE_STEP 200
40
41 /*
42 * Implement a dummy timecounter which we can use until we get a real one
43 * in the air. This allows the console and other early stuff to use
44 * time services.
45 */
46
47 static u_int
48 dummy_get_timecount(struct timecounter *tc)
49 {
50 static u_int now;
51
52 return (++now);
53 }
54
55 static struct timecounter dummy_timecounter = {
56 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
57 };
58
59 struct timehands {
60 /* These fields must be initialized by the driver. */
61 struct timecounter *th_counter;
62 int64_t th_adjustment;
63 u_int64_t th_scale;
64 u_int th_offset_count;
65 struct bintime th_offset;
66 struct timeval th_microtime;
67 struct timespec th_nanotime;
68 /* Fields not to be copied in tc_windup start with th_generation. */
69 volatile u_int th_generation;
70 struct timehands *th_next;
71 };
72
73 static struct timehands th0;
74 static struct timehands th9 = { .th_next = &th0, };
75 static struct timehands th8 = { .th_next = &th9, };
76 static struct timehands th7 = { .th_next = &th8, };
77 static struct timehands th6 = { .th_next = &th7, };
78 static struct timehands th5 = { .th_next = &th6, };
79 static struct timehands th4 = { .th_next = &th5, };
80 static struct timehands th3 = { .th_next = &th4, };
81 static struct timehands th2 = { .th_next = &th3, };
82 static struct timehands th1 = { .th_next = &th2, };
83 static struct timehands th0 = {
84 .th_counter = &dummy_timecounter,
85 .th_scale = (uint64_t)-1 / 1000000,
86 .th_offset = { .sec = 1, .frac = 0 },
87 .th_generation = 1,
88 .th_next = &th1,
89 };
90
91 static struct timehands *volatile timehands = &th0;
92 struct timecounter *timecounter = &dummy_timecounter;
93 static struct timecounter *timecounters = &dummy_timecounter;
94
95 time_t time_second = 1;
96 time_t time_uptime = 1;
97
98 static struct bintime timebasebin;
99
100 static int timestepwarnings;
101
102 extern kmutex_t time_lock;
103 static kmutex_t tc_windup_lock;
104
105 #ifdef __FreeBSD__
106 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
107 ×tepwarnings, 0, "");
108 #endif /* __FreeBSD__ */
109
110 /*
111 * sysctl helper routine for kern.timercounter.hardware
112 */
113 static int
114 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
115 {
116 struct sysctlnode node;
117 int error;
118 char newname[MAX_TCNAMELEN];
119 struct timecounter *newtc, *tc;
120
121 tc = timecounter;
122
123 strlcpy(newname, tc->tc_name, sizeof(newname));
124
125 node = *rnode;
126 node.sysctl_data = newname;
127 node.sysctl_size = sizeof(newname);
128
129 error = sysctl_lookup(SYSCTLFN_CALL(&node));
130
131 if (error ||
132 newp == NULL ||
133 strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
134 return error;
135
136 if (l != NULL && (error = kauth_authorize_system(l->l_cred,
137 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
138 NULL, NULL)) != 0)
139 return (error);
140
141 if (!cold)
142 mutex_enter(&time_lock);
143 error = EINVAL;
144 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
145 if (strcmp(newname, newtc->tc_name) != 0)
146 continue;
147 /* Warm up new timecounter. */
148 (void)newtc->tc_get_timecount(newtc);
149 (void)newtc->tc_get_timecount(newtc);
150 timecounter = newtc;
151 error = 0;
152 break;
153 }
154 if (!cold)
155 mutex_exit(&time_lock);
156 return error;
157 }
158
159 static int
160 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
161 {
162 char buf[MAX_TCNAMELEN+48];
163 char *where = oldp;
164 const char *spc;
165 struct timecounter *tc;
166 size_t needed, left, slen;
167 int error;
168
169 if (newp != NULL)
170 return (EPERM);
171 if (namelen != 0)
172 return (EINVAL);
173
174 spc = "";
175 error = 0;
176 needed = 0;
177 left = *oldlenp;
178
179 mutex_enter(&time_lock);
180 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
181 if (where == NULL) {
182 needed += sizeof(buf); /* be conservative */
183 } else {
184 slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
185 " Hz)", spc, tc->tc_name, tc->tc_quality,
186 tc->tc_frequency);
187 if (left < slen + 1)
188 break;
189 /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
190 /* XXX copyout with held lock. */
191 error = copyout(buf, where, slen + 1);
192 spc = " ";
193 where += slen;
194 needed += slen;
195 left -= slen;
196 }
197 }
198 mutex_exit(&time_lock);
199
200 *oldlenp = needed;
201 return (error);
202 }
203
204 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
205 {
206 const struct sysctlnode *node;
207
208 sysctl_createv(clog, 0, NULL, &node,
209 CTLFLAG_PERMANENT,
210 CTLTYPE_NODE, "timecounter",
211 SYSCTL_DESCR("time counter information"),
212 NULL, 0, NULL, 0,
213 CTL_KERN, CTL_CREATE, CTL_EOL);
214
215 if (node != NULL) {
216 sysctl_createv(clog, 0, NULL, NULL,
217 CTLFLAG_PERMANENT,
218 CTLTYPE_STRING, "choice",
219 SYSCTL_DESCR("available counters"),
220 sysctl_kern_timecounter_choice, 0, NULL, 0,
221 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
222
223 sysctl_createv(clog, 0, NULL, NULL,
224 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
225 CTLTYPE_STRING, "hardware",
226 SYSCTL_DESCR("currently active time counter"),
227 sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
228 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
229
230 sysctl_createv(clog, 0, NULL, NULL,
231 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
232 CTLTYPE_INT, "timestepwarnings",
233 SYSCTL_DESCR("log time steps"),
234 NULL, 0, ×tepwarnings, 0,
235 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
236 }
237 }
238
239 #define TC_STATS(name) \
240 static struct evcnt n##name = \
241 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
242 EVCNT_ATTACH_STATIC(n##name)
243
244 TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
245 TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
246 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
247 TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
248 TC_STATS(setclock);
249
250 #undef TC_STATS
251
252 static void tc_windup(void);
253
254 /*
255 * Return the difference between the timehands' counter value now and what
256 * was when we copied it to the timehands' offset_count.
257 */
258 static __inline u_int
259 tc_delta(struct timehands *th)
260 {
261 struct timecounter *tc;
262
263 tc = th->th_counter;
264 return ((tc->tc_get_timecount(tc) -
265 th->th_offset_count) & tc->tc_counter_mask);
266 }
267
268 /*
269 * Functions for reading the time. We have to loop until we are sure that
270 * the timehands that we operated on was not updated under our feet. See
271 * the comment in <sys/timevar.h> for a description of these 12 functions.
272 */
273
274 void
275 binuptime(struct bintime *bt)
276 {
277 struct timehands *th;
278 u_int gen;
279
280 nbinuptime.ev_count++;
281 do {
282 th = timehands;
283 gen = th->th_generation;
284 *bt = th->th_offset;
285 bintime_addx(bt, th->th_scale * tc_delta(th));
286 } while (gen == 0 || gen != th->th_generation);
287 }
288
289 void
290 nanouptime(struct timespec *tsp)
291 {
292 struct bintime bt;
293
294 nnanouptime.ev_count++;
295 binuptime(&bt);
296 bintime2timespec(&bt, tsp);
297 }
298
299 void
300 microuptime(struct timeval *tvp)
301 {
302 struct bintime bt;
303
304 nmicrouptime.ev_count++;
305 binuptime(&bt);
306 bintime2timeval(&bt, tvp);
307 }
308
309 void
310 bintime(struct bintime *bt)
311 {
312
313 nbintime.ev_count++;
314 binuptime(bt);
315 bintime_add(bt, &timebasebin);
316 }
317
318 void
319 nanotime(struct timespec *tsp)
320 {
321 struct bintime bt;
322
323 nnanotime.ev_count++;
324 bintime(&bt);
325 bintime2timespec(&bt, tsp);
326 }
327
328 void
329 microtime(struct timeval *tvp)
330 {
331 struct bintime bt;
332
333 nmicrotime.ev_count++;
334 bintime(&bt);
335 bintime2timeval(&bt, tvp);
336 }
337
338 void
339 getbinuptime(struct bintime *bt)
340 {
341 struct timehands *th;
342 u_int gen;
343
344 ngetbinuptime.ev_count++;
345 do {
346 th = timehands;
347 gen = th->th_generation;
348 *bt = th->th_offset;
349 } while (gen == 0 || gen != th->th_generation);
350 }
351
352 void
353 getnanouptime(struct timespec *tsp)
354 {
355 struct timehands *th;
356 u_int gen;
357
358 ngetnanouptime.ev_count++;
359 do {
360 th = timehands;
361 gen = th->th_generation;
362 bintime2timespec(&th->th_offset, tsp);
363 } while (gen == 0 || gen != th->th_generation);
364 }
365
366 void
367 getmicrouptime(struct timeval *tvp)
368 {
369 struct timehands *th;
370 u_int gen;
371
372 ngetmicrouptime.ev_count++;
373 do {
374 th = timehands;
375 gen = th->th_generation;
376 bintime2timeval(&th->th_offset, tvp);
377 } while (gen == 0 || gen != th->th_generation);
378 }
379
380 void
381 getbintime(struct bintime *bt)
382 {
383 struct timehands *th;
384 u_int gen;
385
386 ngetbintime.ev_count++;
387 do {
388 th = timehands;
389 gen = th->th_generation;
390 *bt = th->th_offset;
391 } while (gen == 0 || gen != th->th_generation);
392 bintime_add(bt, &timebasebin);
393 }
394
395 void
396 getnanotime(struct timespec *tsp)
397 {
398 struct timehands *th;
399 u_int gen;
400
401 ngetnanotime.ev_count++;
402 do {
403 th = timehands;
404 gen = th->th_generation;
405 *tsp = th->th_nanotime;
406 } while (gen == 0 || gen != th->th_generation);
407 }
408
409 void
410 getmicrotime(struct timeval *tvp)
411 {
412 struct timehands *th;
413 u_int gen;
414
415 ngetmicrotime.ev_count++;
416 do {
417 th = timehands;
418 gen = th->th_generation;
419 *tvp = th->th_microtime;
420 } while (gen == 0 || gen != th->th_generation);
421 }
422
423 /*
424 * Initialize a new timecounter and possibly use it.
425 */
426 void
427 tc_init(struct timecounter *tc)
428 {
429 u_int u;
430
431 u = tc->tc_frequency / tc->tc_counter_mask;
432 /* XXX: We need some margin here, 10% is a guess */
433 u *= 11;
434 u /= 10;
435 if (u > hz && tc->tc_quality >= 0) {
436 tc->tc_quality = -2000;
437 aprint_verbose(
438 "timecounter: Timecounter \"%s\" frequency %ju Hz",
439 tc->tc_name, (uintmax_t)tc->tc_frequency);
440 aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
441 } else if (tc->tc_quality >= 0 || bootverbose) {
442 aprint_verbose(
443 "timecounter: Timecounter \"%s\" frequency %ju Hz "
444 "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
445 tc->tc_quality);
446 }
447
448 mutex_enter(&time_lock);
449 mutex_spin_enter(&tc_windup_lock);
450 tc->tc_next = timecounters;
451 timecounters = tc;
452 /*
453 * Never automatically use a timecounter with negative quality.
454 * Even though we run on the dummy counter, switching here may be
455 * worse since this timecounter may not be monotonous.
456 */
457 if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
458 (tc->tc_quality == timecounter->tc_quality &&
459 tc->tc_frequency > timecounter->tc_frequency))) {
460 (void)tc->tc_get_timecount(tc);
461 (void)tc->tc_get_timecount(tc);
462 timecounter = tc;
463 tc_windup();
464 }
465 mutex_spin_exit(&tc_windup_lock);
466 mutex_exit(&time_lock);
467 }
468
469 /*
470 * Stop using a timecounter and remove it from the timecounters list.
471 */
472 int
473 tc_detach(struct timecounter *target)
474 {
475 struct timecounter *best, *tc;
476 struct timecounter **tcp = NULL;
477 int rc = 0;
478
479 mutex_enter(&time_lock);
480 for (tcp = &timecounters, tc = timecounters;
481 tc != NULL;
482 tcp = &tc->tc_next, tc = tc->tc_next) {
483 if (tc == target)
484 break;
485 }
486 if (tc == NULL) {
487 rc = ESRCH;
488 goto out;
489 }
490 *tcp = tc->tc_next;
491
492 if (timecounter != target)
493 goto out;
494
495 for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
496 if (tc->tc_quality > best->tc_quality)
497 best = tc;
498 else if (tc->tc_quality < best->tc_quality)
499 continue;
500 else if (tc->tc_frequency > best->tc_frequency)
501 best = tc;
502 }
503 mutex_spin_enter(&tc_windup_lock);
504 (void)best->tc_get_timecount(best);
505 (void)best->tc_get_timecount(best);
506 timecounter = best;
507 tc_windup();
508 mutex_spin_exit(&tc_windup_lock);
509 out:
510 mutex_exit(&time_lock);
511 return rc;
512 }
513
514 /* Report the frequency of the current timecounter. */
515 u_int64_t
516 tc_getfrequency(void)
517 {
518
519 return (timehands->th_counter->tc_frequency);
520 }
521
522 /*
523 * Step our concept of UTC. This is done by modifying our estimate of
524 * when we booted.
525 */
526 void
527 tc_setclock(struct timespec *ts)
528 {
529 struct timespec ts2;
530 struct bintime bt, bt2;
531
532 mutex_spin_enter(&tc_windup_lock);
533 nsetclock.ev_count++;
534 binuptime(&bt2);
535 timespec2bintime(ts, &bt);
536 bintime_sub(&bt, &bt2);
537 bintime_add(&bt2, &timebasebin);
538 timebasebin = bt;
539 tc_windup();
540 mutex_spin_exit(&tc_windup_lock);
541
542 if (timestepwarnings) {
543 bintime2timespec(&bt2, &ts2);
544 log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
545 (intmax_t)ts2.tv_sec, ts2.tv_nsec,
546 (intmax_t)ts->tv_sec, ts->tv_nsec);
547 }
548 }
549
550 /*
551 * Initialize the next struct timehands in the ring and make
552 * it the active timehands. Along the way we might switch to a different
553 * timecounter and/or do seconds processing in NTP. Slightly magic.
554 */
555 static void
556 tc_windup(void)
557 {
558 struct bintime bt;
559 struct timehands *th, *tho;
560 u_int64_t scale;
561 u_int delta, ncount, ogen;
562 int i, s_update;
563 time_t t;
564
565 KASSERT(mutex_owned(&tc_windup_lock));
566
567 s_update = 0;
568
569 /*
570 * Make the next timehands a copy of the current one, but do not
571 * overwrite the generation or next pointer. While we update
572 * the contents, the generation must be zero. Ensure global
573 * visibility of the generation before proceeding.
574 */
575 tho = timehands;
576 th = tho->th_next;
577 ogen = th->th_generation;
578 th->th_generation = 0;
579 membar_producer();
580 bcopy(tho, th, offsetof(struct timehands, th_generation));
581
582 /*
583 * Capture a timecounter delta on the current timecounter and if
584 * changing timecounters, a counter value from the new timecounter.
585 * Update the offset fields accordingly.
586 */
587 delta = tc_delta(th);
588 if (th->th_counter != timecounter)
589 ncount = timecounter->tc_get_timecount(timecounter);
590 else
591 ncount = 0;
592 th->th_offset_count += delta;
593 th->th_offset_count &= th->th_counter->tc_counter_mask;
594 bintime_addx(&th->th_offset, th->th_scale * delta);
595
596 /*
597 * Hardware latching timecounters may not generate interrupts on
598 * PPS events, so instead we poll them. There is a finite risk that
599 * the hardware might capture a count which is later than the one we
600 * got above, and therefore possibly in the next NTP second which might
601 * have a different rate than the current NTP second. It doesn't
602 * matter in practice.
603 */
604 if (tho->th_counter->tc_poll_pps)
605 tho->th_counter->tc_poll_pps(tho->th_counter);
606
607 /*
608 * Deal with NTP second processing. The for loop normally
609 * iterates at most once, but in extreme situations it might
610 * keep NTP sane if timeouts are not run for several seconds.
611 * At boot, the time step can be large when the TOD hardware
612 * has been read, so on really large steps, we call
613 * ntp_update_second only twice. We need to call it twice in
614 * case we missed a leap second.
615 * If NTP is not compiled in ntp_update_second still calculates
616 * the adjustment resulting from adjtime() calls.
617 */
618 bt = th->th_offset;
619 bintime_add(&bt, &timebasebin);
620 i = bt.sec - tho->th_microtime.tv_sec;
621 if (i > LARGE_STEP)
622 i = 2;
623 for (; i > 0; i--) {
624 t = bt.sec;
625 ntp_update_second(&th->th_adjustment, &bt.sec);
626 s_update = 1;
627 if (bt.sec != t)
628 timebasebin.sec += bt.sec - t;
629 }
630
631 /* Update the UTC timestamps used by the get*() functions. */
632 /* XXX shouldn't do this here. Should force non-`get' versions. */
633 bintime2timeval(&bt, &th->th_microtime);
634 bintime2timespec(&bt, &th->th_nanotime);
635
636 /* Now is a good time to change timecounters. */
637 if (th->th_counter != timecounter) {
638 th->th_counter = timecounter;
639 th->th_offset_count = ncount;
640 s_update = 1;
641 }
642
643 /*-
644 * Recalculate the scaling factor. We want the number of 1/2^64
645 * fractions of a second per period of the hardware counter, taking
646 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
647 * processing provides us with.
648 *
649 * The th_adjustment is nanoseconds per second with 32 bit binary
650 * fraction and we want 64 bit binary fraction of second:
651 *
652 * x = a * 2^32 / 10^9 = a * 4.294967296
653 *
654 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
655 * we can only multiply by about 850 without overflowing, but that
656 * leaves suitably precise fractions for multiply before divide.
657 *
658 * Divide before multiply with a fraction of 2199/512 results in a
659 * systematic undercompensation of 10PPM of th_adjustment. On a
660 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
661 *
662 * We happily sacrifice the lowest of the 64 bits of our result
663 * to the goddess of code clarity.
664 *
665 */
666 if (s_update) {
667 scale = (u_int64_t)1 << 63;
668 scale += (th->th_adjustment / 1024) * 2199;
669 scale /= th->th_counter->tc_frequency;
670 th->th_scale = scale * 2;
671 }
672 /*
673 * Now that the struct timehands is again consistent, set the new
674 * generation number, making sure to not make it zero. Ensure
675 * changes are globally visible before changing.
676 */
677 if (++ogen == 0)
678 ogen = 1;
679 membar_producer();
680 th->th_generation = ogen;
681
682 /*
683 * Go live with the new struct timehands. Ensure changes are
684 * globally visible before changing.
685 */
686 time_second = th->th_microtime.tv_sec;
687 time_uptime = th->th_offset.sec;
688 membar_producer();
689 timehands = th;
690
691 /*
692 * Force users of the old timehand to move on. This is
693 * necessary for MP systems; we need to ensure that the
694 * consumers will move away from the old timehand before
695 * we begin updating it again when we eventually wrap
696 * around.
697 */
698 if (++tho->th_generation == 0)
699 tho->th_generation = 1;
700 }
701
702 /*
703 * RFC 2783 PPS-API implementation.
704 */
705
706 int
707 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
708 {
709 pps_params_t *app;
710 pps_info_t *pipi;
711 #ifdef PPS_SYNC
712 int *epi;
713 #endif
714
715 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
716 switch (cmd) {
717 case PPS_IOC_CREATE:
718 return (0);
719 case PPS_IOC_DESTROY:
720 return (0);
721 case PPS_IOC_SETPARAMS:
722 app = (pps_params_t *)data;
723 if (app->mode & ~pps->ppscap)
724 return (EINVAL);
725 pps->ppsparam = *app;
726 return (0);
727 case PPS_IOC_GETPARAMS:
728 app = (pps_params_t *)data;
729 *app = pps->ppsparam;
730 app->api_version = PPS_API_VERS_1;
731 return (0);
732 case PPS_IOC_GETCAP:
733 *(int*)data = pps->ppscap;
734 return (0);
735 case PPS_IOC_FETCH:
736 pipi = (pps_info_t *)data;
737 pps->ppsinfo.current_mode = pps->ppsparam.mode;
738 *pipi = pps->ppsinfo;
739 return (0);
740 case PPS_IOC_KCBIND:
741 #ifdef PPS_SYNC
742 epi = (int *)data;
743 /* XXX Only root should be able to do this */
744 if (*epi & ~pps->ppscap)
745 return (EINVAL);
746 pps->kcmode = *epi;
747 return (0);
748 #else
749 return (EOPNOTSUPP);
750 #endif
751 default:
752 return (EPASSTHROUGH);
753 }
754 }
755
756 void
757 pps_init(struct pps_state *pps)
758 {
759 pps->ppscap |= PPS_TSFMT_TSPEC;
760 if (pps->ppscap & PPS_CAPTUREASSERT)
761 pps->ppscap |= PPS_OFFSETASSERT;
762 if (pps->ppscap & PPS_CAPTURECLEAR)
763 pps->ppscap |= PPS_OFFSETCLEAR;
764 }
765
766 void
767 pps_capture(struct pps_state *pps)
768 {
769 struct timehands *th;
770
771 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
772 th = timehands;
773 pps->capgen = th->th_generation;
774 pps->capth = th;
775 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
776 if (pps->capgen != th->th_generation)
777 pps->capgen = 0;
778 }
779
780 void
781 pps_event(struct pps_state *pps, int event)
782 {
783 struct bintime bt;
784 struct timespec ts, *tsp, *osp;
785 u_int tcount, *pcount;
786 int foff, fhard;
787 pps_seq_t *pseq;
788
789 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
790 /* If the timecounter was wound up underneath us, bail out. */
791 if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
792 return;
793
794 /* Things would be easier with arrays. */
795 if (event == PPS_CAPTUREASSERT) {
796 tsp = &pps->ppsinfo.assert_timestamp;
797 osp = &pps->ppsparam.assert_offset;
798 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
799 fhard = pps->kcmode & PPS_CAPTUREASSERT;
800 pcount = &pps->ppscount[0];
801 pseq = &pps->ppsinfo.assert_sequence;
802 } else {
803 tsp = &pps->ppsinfo.clear_timestamp;
804 osp = &pps->ppsparam.clear_offset;
805 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
806 fhard = pps->kcmode & PPS_CAPTURECLEAR;
807 pcount = &pps->ppscount[1];
808 pseq = &pps->ppsinfo.clear_sequence;
809 }
810
811 /*
812 * If the timecounter changed, we cannot compare the count values, so
813 * we have to drop the rest of the PPS-stuff until the next event.
814 */
815 if (pps->ppstc != pps->capth->th_counter) {
816 pps->ppstc = pps->capth->th_counter;
817 *pcount = pps->capcount;
818 pps->ppscount[2] = pps->capcount;
819 return;
820 }
821
822 /* Convert the count to a timespec. */
823 tcount = pps->capcount - pps->capth->th_offset_count;
824 tcount &= pps->capth->th_counter->tc_counter_mask;
825 bt = pps->capth->th_offset;
826 bintime_addx(&bt, pps->capth->th_scale * tcount);
827 bintime_add(&bt, &timebasebin);
828 bintime2timespec(&bt, &ts);
829
830 /* If the timecounter was wound up underneath us, bail out. */
831 if (pps->capgen != pps->capth->th_generation)
832 return;
833
834 *pcount = pps->capcount;
835 (*pseq)++;
836 *tsp = ts;
837
838 if (foff) {
839 timespecadd(tsp, osp, tsp);
840 if (tsp->tv_nsec < 0) {
841 tsp->tv_nsec += 1000000000;
842 tsp->tv_sec -= 1;
843 }
844 }
845 #ifdef PPS_SYNC
846 if (fhard) {
847 u_int64_t scale;
848
849 /*
850 * Feed the NTP PLL/FLL.
851 * The FLL wants to know how many (hardware) nanoseconds
852 * elapsed since the previous event.
853 */
854 tcount = pps->capcount - pps->ppscount[2];
855 pps->ppscount[2] = pps->capcount;
856 tcount &= pps->capth->th_counter->tc_counter_mask;
857 scale = (u_int64_t)1 << 63;
858 scale /= pps->capth->th_counter->tc_frequency;
859 scale *= 2;
860 bt.sec = 0;
861 bt.frac = 0;
862 bintime_addx(&bt, scale * tcount);
863 bintime2timespec(&bt, &ts);
864 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
865 }
866 #endif
867 }
868
869 /*
870 * Timecounters need to be updated every so often to prevent the hardware
871 * counter from overflowing. Updating also recalculates the cached values
872 * used by the get*() family of functions, so their precision depends on
873 * the update frequency.
874 */
875
876 static int tc_tick;
877
878 void
879 tc_ticktock(void)
880 {
881 static int count;
882
883 if (++count < tc_tick)
884 return;
885 count = 0;
886 mutex_spin_enter(&tc_windup_lock);
887 tc_windup();
888 mutex_spin_exit(&tc_windup_lock);
889 }
890
891 void
892 inittimecounter(void)
893 {
894 u_int p;
895
896 mutex_init(&tc_windup_lock, MUTEX_DEFAULT, IPL_SCHED);
897
898 /*
899 * Set the initial timeout to
900 * max(1, <approx. number of hardclock ticks in a millisecond>).
901 * People should probably not use the sysctl to set the timeout
902 * to smaller than its inital value, since that value is the
903 * smallest reasonable one. If they want better timestamps they
904 * should use the non-"get"* functions.
905 */
906 if (hz > 1000)
907 tc_tick = (hz + 500) / 1000;
908 else
909 tc_tick = 1;
910 p = (tc_tick * 1000000) / hz;
911 aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
912 p / 1000, p % 1000);
913
914 /* warm up new timecounter (again) and get rolling. */
915 (void)timecounter->tc_get_timecount(timecounter);
916 (void)timecounter->tc_get_timecount(timecounter);
917 }
918
919 #endif /* __HAVE_TIMECOUNTER */
920