kern_tc.c revision 1.23 1 /* $NetBSD: kern_tc.c,v 1.23 2007/11/15 22:28:05 ad Exp $ */
2
3 /*-
4 * ----------------------------------------------------------------------------
5 * "THE BEER-WARE LICENSE" (Revision 42):
6 * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 * can do whatever you want with this stuff. If we meet some day, and you think
8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 * ---------------------------------------------------------------------------
10 */
11
12 #include <sys/cdefs.h>
13 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.23 2007/11/15 22:28:05 ad Exp $");
15
16 #include "opt_ntp.h"
17
18 #include <sys/param.h>
19 #ifdef __HAVE_TIMECOUNTER /* XXX */
20 #include <sys/kernel.h>
21 #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
22 #include <sys/sysctl.h>
23 #include <sys/syslog.h>
24 #include <sys/systm.h>
25 #include <sys/timepps.h>
26 #include <sys/timetc.h>
27 #include <sys/timex.h>
28 #include <sys/evcnt.h>
29 #include <sys/kauth.h>
30
31 /*
32 * A large step happens on boot. This constant detects such steps.
33 * It is relatively small so that ntp_update_second gets called enough
34 * in the typical 'missed a couple of seconds' case, but doesn't loop
35 * forever when the time step is large.
36 */
37 #define LARGE_STEP 200
38
39 /*
40 * Implement a dummy timecounter which we can use until we get a real one
41 * in the air. This allows the console and other early stuff to use
42 * time services.
43 */
44
45 static u_int
46 dummy_get_timecount(struct timecounter *tc)
47 {
48 static u_int now;
49
50 return (++now);
51 }
52
53 static struct timecounter dummy_timecounter = {
54 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
55 };
56
57 struct timehands {
58 /* These fields must be initialized by the driver. */
59 struct timecounter *th_counter;
60 int64_t th_adjustment;
61 u_int64_t th_scale;
62 u_int th_offset_count;
63 struct bintime th_offset;
64 struct timeval th_microtime;
65 struct timespec th_nanotime;
66 /* Fields not to be copied in tc_windup start with th_generation. */
67 volatile u_int th_generation;
68 struct timehands *th_next;
69 };
70
71 static struct timehands th0;
72 static struct timehands th9 = { .th_next = &th0, };
73 static struct timehands th8 = { .th_next = &th9, };
74 static struct timehands th7 = { .th_next = &th8, };
75 static struct timehands th6 = { .th_next = &th7, };
76 static struct timehands th5 = { .th_next = &th6, };
77 static struct timehands th4 = { .th_next = &th5, };
78 static struct timehands th3 = { .th_next = &th4, };
79 static struct timehands th2 = { .th_next = &th3, };
80 static struct timehands th1 = { .th_next = &th2, };
81 static struct timehands th0 = {
82 .th_counter = &dummy_timecounter,
83 .th_scale = (uint64_t)-1 / 1000000,
84 .th_offset = { .sec = 1, .frac = 0 },
85 .th_generation = 1,
86 .th_next = &th1,
87 };
88
89 static struct timehands *volatile timehands = &th0;
90 struct timecounter *timecounter = &dummy_timecounter;
91 static struct timecounter *timecounters = &dummy_timecounter;
92
93 time_t time_second = 1;
94 time_t time_uptime = 1;
95
96 static struct bintime timebasebin;
97
98 static int timestepwarnings;
99
100 #ifdef __FreeBSD__
101 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
102 ×tepwarnings, 0, "");
103 #endif /* __FreeBSD__ */
104
105 /*
106 * sysctl helper routine for kern.timercounter.current
107 */
108 static int
109 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
110 {
111 struct sysctlnode node;
112 int error;
113 char newname[MAX_TCNAMELEN];
114 struct timecounter *newtc, *tc;
115
116 tc = timecounter;
117
118 strlcpy(newname, tc->tc_name, sizeof(newname));
119
120 node = *rnode;
121 node.sysctl_data = newname;
122 node.sysctl_size = sizeof(newname);
123
124 error = sysctl_lookup(SYSCTLFN_CALL(&node));
125
126 if (error ||
127 newp == NULL ||
128 strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
129 return error;
130
131 if (l != NULL && (error = kauth_authorize_generic(l->l_cred,
132 KAUTH_GENERIC_ISSUSER, NULL)) != 0)
133 return (error);
134
135 if (!cold)
136 mutex_enter(&time_lock);
137 error = EINVAL;
138 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
139 if (strcmp(newname, newtc->tc_name) != 0)
140 continue;
141 /* Warm up new timecounter. */
142 (void)newtc->tc_get_timecount(newtc);
143 (void)newtc->tc_get_timecount(newtc);
144 timecounter = newtc;
145 error = 0;
146 break;
147 }
148 if (!cold)
149 mutex_exit(&time_lock);
150 return error;
151 }
152
153 static int
154 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
155 {
156 char buf[MAX_TCNAMELEN+48];
157 char *where = oldp;
158 const char *spc;
159 struct timecounter *tc;
160 size_t needed, left, slen;
161 int error;
162
163 if (newp != NULL)
164 return (EPERM);
165 if (namelen != 0)
166 return (EINVAL);
167
168 spc = "";
169 error = 0;
170 needed = 0;
171 left = *oldlenp;
172
173 mutex_enter(&time_lock);
174 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
175 if (where == NULL) {
176 needed += sizeof(buf); /* be conservative */
177 } else {
178 slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
179 " Hz)", spc, tc->tc_name, tc->tc_quality,
180 tc->tc_frequency);
181 if (left < slen + 1)
182 break;
183 /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
184 /* XXX copyout with held lock. */
185 error = copyout(buf, where, slen + 1);
186 spc = " ";
187 where += slen;
188 needed += slen;
189 left -= slen;
190 }
191 }
192 mutex_exit(&time_lock);
193
194 *oldlenp = needed;
195 return (error);
196 }
197
198 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
199 {
200 const struct sysctlnode *node;
201
202 sysctl_createv(clog, 0, NULL, &node,
203 CTLFLAG_PERMANENT,
204 CTLTYPE_NODE, "timecounter",
205 SYSCTL_DESCR("time counter information"),
206 NULL, 0, NULL, 0,
207 CTL_KERN, CTL_CREATE, CTL_EOL);
208
209 if (node != NULL) {
210 sysctl_createv(clog, 0, NULL, NULL,
211 CTLFLAG_PERMANENT,
212 CTLTYPE_STRING, "choice",
213 SYSCTL_DESCR("available counters"),
214 sysctl_kern_timecounter_choice, 0, NULL, 0,
215 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
216
217 sysctl_createv(clog, 0, NULL, NULL,
218 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
219 CTLTYPE_STRING, "hardware",
220 SYSCTL_DESCR("currently active time counter"),
221 sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
222 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
223
224 sysctl_createv(clog, 0, NULL, NULL,
225 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
226 CTLTYPE_INT, "timestepwarnings",
227 SYSCTL_DESCR("log time steps"),
228 NULL, 0, ×tepwarnings, 0,
229 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
230 }
231 }
232
233 #define TC_STATS(name) \
234 static struct evcnt n##name = \
235 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
236 EVCNT_ATTACH_STATIC(n##name)
237
238 TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
239 TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
240 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
241 TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
242 TC_STATS(setclock);
243
244 #undef TC_STATS
245
246 static void tc_windup(void);
247
248 /*
249 * Return the difference between the timehands' counter value now and what
250 * was when we copied it to the timehands' offset_count.
251 */
252 static __inline u_int
253 tc_delta(struct timehands *th)
254 {
255 struct timecounter *tc;
256
257 tc = th->th_counter;
258 return ((tc->tc_get_timecount(tc) -
259 th->th_offset_count) & tc->tc_counter_mask);
260 }
261
262 /*
263 * Functions for reading the time. We have to loop until we are sure that
264 * the timehands that we operated on was not updated under our feet. See
265 * the comment in <sys/timevar.h> for a description of these 12 functions.
266 */
267
268 void
269 binuptime(struct bintime *bt)
270 {
271 struct timehands *th;
272 u_int gen;
273
274 nbinuptime.ev_count++;
275 do {
276 th = timehands;
277 gen = th->th_generation;
278 mb_read();
279 *bt = th->th_offset;
280 bintime_addx(bt, th->th_scale * tc_delta(th));
281 mb_read();
282 } while (gen == 0 || gen != th->th_generation);
283 }
284
285 void
286 nanouptime(struct timespec *tsp)
287 {
288 struct bintime bt;
289
290 nnanouptime.ev_count++;
291 binuptime(&bt);
292 bintime2timespec(&bt, tsp);
293 }
294
295 void
296 microuptime(struct timeval *tvp)
297 {
298 struct bintime bt;
299
300 nmicrouptime.ev_count++;
301 binuptime(&bt);
302 bintime2timeval(&bt, tvp);
303 }
304
305 void
306 bintime(struct bintime *bt)
307 {
308
309 nbintime.ev_count++;
310 binuptime(bt);
311 bintime_add(bt, &timebasebin);
312 }
313
314 void
315 nanotime(struct timespec *tsp)
316 {
317 struct bintime bt;
318
319 nnanotime.ev_count++;
320 bintime(&bt);
321 bintime2timespec(&bt, tsp);
322 }
323
324 void
325 microtime(struct timeval *tvp)
326 {
327 struct bintime bt;
328
329 nmicrotime.ev_count++;
330 bintime(&bt);
331 bintime2timeval(&bt, tvp);
332 }
333
334 void
335 getbinuptime(struct bintime *bt)
336 {
337 struct timehands *th;
338 u_int gen;
339
340 ngetbinuptime.ev_count++;
341 do {
342 th = timehands;
343 gen = th->th_generation;
344 mb_read();
345 *bt = th->th_offset;
346 mb_read();
347 } while (gen == 0 || gen != th->th_generation);
348 }
349
350 void
351 getnanouptime(struct timespec *tsp)
352 {
353 struct timehands *th;
354 u_int gen;
355
356 ngetnanouptime.ev_count++;
357 do {
358 th = timehands;
359 gen = th->th_generation;
360 mb_read();
361 bintime2timespec(&th->th_offset, tsp);
362 mb_read();
363 } while (gen == 0 || gen != th->th_generation);
364 }
365
366 void
367 getmicrouptime(struct timeval *tvp)
368 {
369 struct timehands *th;
370 u_int gen;
371
372 ngetmicrouptime.ev_count++;
373 do {
374 th = timehands;
375 gen = th->th_generation;
376 mb_read();
377 bintime2timeval(&th->th_offset, tvp);
378 mb_read();
379 } while (gen == 0 || gen != th->th_generation);
380 }
381
382 void
383 getbintime(struct bintime *bt)
384 {
385 struct timehands *th;
386 u_int gen;
387
388 ngetbintime.ev_count++;
389 do {
390 th = timehands;
391 gen = th->th_generation;
392 mb_read();
393 *bt = th->th_offset;
394 mb_read();
395 } while (gen == 0 || gen != th->th_generation);
396 bintime_add(bt, &timebasebin);
397 }
398
399 void
400 getnanotime(struct timespec *tsp)
401 {
402 struct timehands *th;
403 u_int gen;
404
405 ngetnanotime.ev_count++;
406 do {
407 th = timehands;
408 gen = th->th_generation;
409 mb_read();
410 *tsp = th->th_nanotime;
411 mb_read();
412 } while (gen == 0 || gen != th->th_generation);
413 }
414
415 void
416 getmicrotime(struct timeval *tvp)
417 {
418 struct timehands *th;
419 u_int gen;
420
421 ngetmicrotime.ev_count++;
422 do {
423 th = timehands;
424 gen = th->th_generation;
425 mb_read();
426 *tvp = th->th_microtime;
427 mb_read();
428 } while (gen == 0 || gen != th->th_generation);
429 }
430
431 /*
432 * Initialize a new timecounter and possibly use it.
433 */
434 void
435 tc_init(struct timecounter *tc)
436 {
437 u_int u;
438 int s;
439
440 u = tc->tc_frequency / tc->tc_counter_mask;
441 /* XXX: We need some margin here, 10% is a guess */
442 u *= 11;
443 u /= 10;
444 if (u > hz && tc->tc_quality >= 0) {
445 tc->tc_quality = -2000;
446 aprint_verbose(
447 "timecounter: Timecounter \"%s\" frequency %ju Hz",
448 tc->tc_name, (uintmax_t)tc->tc_frequency);
449 aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
450 } else if (tc->tc_quality >= 0 || bootverbose) {
451 aprint_verbose(
452 "timecounter: Timecounter \"%s\" frequency %ju Hz "
453 "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
454 tc->tc_quality);
455 }
456
457 mutex_enter(&time_lock);
458 s = splsched();
459 tc->tc_next = timecounters;
460 timecounters = tc;
461 /*
462 * Never automatically use a timecounter with negative quality.
463 * Even though we run on the dummy counter, switching here may be
464 * worse since this timecounter may not be monotonous.
465 */
466 if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
467 tc->tc_frequency > timecounter->tc_frequency)) {
468 (void)tc->tc_get_timecount(tc);
469 (void)tc->tc_get_timecount(tc);
470 timecounter = tc;
471 tc_windup();
472 }
473 splx(s);
474 mutex_exit(&time_lock);
475 }
476
477 /* Report the frequency of the current timecounter. */
478 u_int64_t
479 tc_getfrequency(void)
480 {
481
482 return (timehands->th_counter->tc_frequency);
483 }
484
485 /*
486 * Step our concept of UTC. This is done by modifying our estimate of
487 * when we booted.
488 * XXX: not locked.
489 */
490 void
491 tc_setclock(struct timespec *ts)
492 {
493 struct timespec ts2;
494 struct bintime bt, bt2;
495
496 nsetclock.ev_count++;
497 binuptime(&bt2);
498 timespec2bintime(ts, &bt);
499 bintime_sub(&bt, &bt2);
500 bintime_add(&bt2, &timebasebin);
501 timebasebin = bt;
502
503 /* XXX fiddle all the little crinkly bits around the fiords... */
504 tc_windup();
505 if (timestepwarnings) {
506 bintime2timespec(&bt2, &ts2);
507 log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
508 (intmax_t)ts2.tv_sec, ts2.tv_nsec,
509 (intmax_t)ts->tv_sec, ts->tv_nsec);
510 }
511 }
512
513 /*
514 * Initialize the next struct timehands in the ring and make
515 * it the active timehands. Along the way we might switch to a different
516 * timecounter and/or do seconds processing in NTP. Slightly magic.
517 */
518 static void
519 tc_windup(void)
520 {
521 struct bintime bt;
522 struct timehands *th, *tho;
523 u_int64_t scale;
524 u_int delta, ncount, ogen;
525 int i, s_update;
526 time_t t;
527
528 s_update = 0;
529
530 /*
531 * Make the next timehands a copy of the current one, but do not
532 * overwrite the generation or next pointer. While we update
533 * the contents, the generation must be zero. Ensure global
534 * visibility of the generation before proceeding.
535 */
536 tho = timehands;
537 th = tho->th_next;
538 ogen = th->th_generation;
539 th->th_generation = 0;
540 mb_write();
541 bcopy(tho, th, offsetof(struct timehands, th_generation));
542
543 /*
544 * Capture a timecounter delta on the current timecounter and if
545 * changing timecounters, a counter value from the new timecounter.
546 * Update the offset fields accordingly.
547 */
548 delta = tc_delta(th);
549 if (th->th_counter != timecounter)
550 ncount = timecounter->tc_get_timecount(timecounter);
551 else
552 ncount = 0;
553 th->th_offset_count += delta;
554 th->th_offset_count &= th->th_counter->tc_counter_mask;
555 bintime_addx(&th->th_offset, th->th_scale * delta);
556
557 /*
558 * Hardware latching timecounters may not generate interrupts on
559 * PPS events, so instead we poll them. There is a finite risk that
560 * the hardware might capture a count which is later than the one we
561 * got above, and therefore possibly in the next NTP second which might
562 * have a different rate than the current NTP second. It doesn't
563 * matter in practice.
564 */
565 if (tho->th_counter->tc_poll_pps)
566 tho->th_counter->tc_poll_pps(tho->th_counter);
567
568 /*
569 * Deal with NTP second processing. The for loop normally
570 * iterates at most once, but in extreme situations it might
571 * keep NTP sane if timeouts are not run for several seconds.
572 * At boot, the time step can be large when the TOD hardware
573 * has been read, so on really large steps, we call
574 * ntp_update_second only twice. We need to call it twice in
575 * case we missed a leap second.
576 * If NTP is not compiled in ntp_update_second still calculates
577 * the adjustment resulting from adjtime() calls.
578 */
579 bt = th->th_offset;
580 bintime_add(&bt, &timebasebin);
581 i = bt.sec - tho->th_microtime.tv_sec;
582 if (i > LARGE_STEP)
583 i = 2;
584 for (; i > 0; i--) {
585 t = bt.sec;
586 ntp_update_second(&th->th_adjustment, &bt.sec);
587 s_update = 1;
588 if (bt.sec != t)
589 timebasebin.sec += bt.sec - t;
590 }
591
592 /* Update the UTC timestamps used by the get*() functions. */
593 /* XXX shouldn't do this here. Should force non-`get' versions. */
594 bintime2timeval(&bt, &th->th_microtime);
595 bintime2timespec(&bt, &th->th_nanotime);
596
597 /* Now is a good time to change timecounters. */
598 if (th->th_counter != timecounter) {
599 th->th_counter = timecounter;
600 th->th_offset_count = ncount;
601 s_update = 1;
602 }
603
604 /*-
605 * Recalculate the scaling factor. We want the number of 1/2^64
606 * fractions of a second per period of the hardware counter, taking
607 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
608 * processing provides us with.
609 *
610 * The th_adjustment is nanoseconds per second with 32 bit binary
611 * fraction and we want 64 bit binary fraction of second:
612 *
613 * x = a * 2^32 / 10^9 = a * 4.294967296
614 *
615 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
616 * we can only multiply by about 850 without overflowing, but that
617 * leaves suitably precise fractions for multiply before divide.
618 *
619 * Divide before multiply with a fraction of 2199/512 results in a
620 * systematic undercompensation of 10PPM of th_adjustment. On a
621 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
622 *
623 * We happily sacrifice the lowest of the 64 bits of our result
624 * to the goddess of code clarity.
625 *
626 */
627 if (s_update) {
628 scale = (u_int64_t)1 << 63;
629 scale += (th->th_adjustment / 1024) * 2199;
630 scale /= th->th_counter->tc_frequency;
631 th->th_scale = scale * 2;
632 }
633 /*
634 * Now that the struct timehands is again consistent, set the new
635 * generation number, making sure to not make it zero. Ensure
636 * changes are globally visible before changing.
637 */
638 if (++ogen == 0)
639 ogen = 1;
640 mb_write();
641 th->th_generation = ogen;
642
643 /*
644 * Go live with the new struct timehands. Ensure changes are
645 * globally visible before changing.
646 */
647 time_second = th->th_microtime.tv_sec;
648 time_uptime = th->th_offset.sec;
649 mb_write();
650 timehands = th;
651 }
652
653 /*
654 * RFC 2783 PPS-API implementation.
655 */
656
657 int
658 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
659 {
660 pps_params_t *app;
661 pps_info_t *pipi;
662 #ifdef PPS_SYNC
663 int *epi;
664 #endif
665
666 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
667 switch (cmd) {
668 case PPS_IOC_CREATE:
669 return (0);
670 case PPS_IOC_DESTROY:
671 return (0);
672 case PPS_IOC_SETPARAMS:
673 app = (pps_params_t *)data;
674 if (app->mode & ~pps->ppscap)
675 return (EINVAL);
676 pps->ppsparam = *app;
677 return (0);
678 case PPS_IOC_GETPARAMS:
679 app = (pps_params_t *)data;
680 *app = pps->ppsparam;
681 app->api_version = PPS_API_VERS_1;
682 return (0);
683 case PPS_IOC_GETCAP:
684 *(int*)data = pps->ppscap;
685 return (0);
686 case PPS_IOC_FETCH:
687 pipi = (pps_info_t *)data;
688 pps->ppsinfo.current_mode = pps->ppsparam.mode;
689 *pipi = pps->ppsinfo;
690 return (0);
691 case PPS_IOC_KCBIND:
692 #ifdef PPS_SYNC
693 epi = (int *)data;
694 /* XXX Only root should be able to do this */
695 if (*epi & ~pps->ppscap)
696 return (EINVAL);
697 pps->kcmode = *epi;
698 return (0);
699 #else
700 return (EOPNOTSUPP);
701 #endif
702 default:
703 return (EPASSTHROUGH);
704 }
705 }
706
707 void
708 pps_init(struct pps_state *pps)
709 {
710 pps->ppscap |= PPS_TSFMT_TSPEC;
711 if (pps->ppscap & PPS_CAPTUREASSERT)
712 pps->ppscap |= PPS_OFFSETASSERT;
713 if (pps->ppscap & PPS_CAPTURECLEAR)
714 pps->ppscap |= PPS_OFFSETCLEAR;
715 }
716
717 void
718 pps_capture(struct pps_state *pps)
719 {
720 struct timehands *th;
721
722 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
723 th = timehands;
724 pps->capgen = th->th_generation;
725 pps->capth = th;
726 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
727 if (pps->capgen != th->th_generation)
728 pps->capgen = 0;
729 }
730
731 void
732 pps_event(struct pps_state *pps, int event)
733 {
734 struct bintime bt;
735 struct timespec ts, *tsp, *osp;
736 u_int tcount, *pcount;
737 int foff, fhard;
738 pps_seq_t *pseq;
739
740 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
741 /* If the timecounter was wound up underneath us, bail out. */
742 if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
743 return;
744
745 /* Things would be easier with arrays. */
746 if (event == PPS_CAPTUREASSERT) {
747 tsp = &pps->ppsinfo.assert_timestamp;
748 osp = &pps->ppsparam.assert_offset;
749 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
750 fhard = pps->kcmode & PPS_CAPTUREASSERT;
751 pcount = &pps->ppscount[0];
752 pseq = &pps->ppsinfo.assert_sequence;
753 } else {
754 tsp = &pps->ppsinfo.clear_timestamp;
755 osp = &pps->ppsparam.clear_offset;
756 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
757 fhard = pps->kcmode & PPS_CAPTURECLEAR;
758 pcount = &pps->ppscount[1];
759 pseq = &pps->ppsinfo.clear_sequence;
760 }
761
762 /*
763 * If the timecounter changed, we cannot compare the count values, so
764 * we have to drop the rest of the PPS-stuff until the next event.
765 */
766 if (pps->ppstc != pps->capth->th_counter) {
767 pps->ppstc = pps->capth->th_counter;
768 *pcount = pps->capcount;
769 pps->ppscount[2] = pps->capcount;
770 return;
771 }
772
773 /* Convert the count to a timespec. */
774 tcount = pps->capcount - pps->capth->th_offset_count;
775 tcount &= pps->capth->th_counter->tc_counter_mask;
776 bt = pps->capth->th_offset;
777 bintime_addx(&bt, pps->capth->th_scale * tcount);
778 bintime_add(&bt, &timebasebin);
779 bintime2timespec(&bt, &ts);
780
781 /* If the timecounter was wound up underneath us, bail out. */
782 if (pps->capgen != pps->capth->th_generation)
783 return;
784
785 *pcount = pps->capcount;
786 (*pseq)++;
787 *tsp = ts;
788
789 if (foff) {
790 timespecadd(tsp, osp, tsp);
791 if (tsp->tv_nsec < 0) {
792 tsp->tv_nsec += 1000000000;
793 tsp->tv_sec -= 1;
794 }
795 }
796 #ifdef PPS_SYNC
797 if (fhard) {
798 u_int64_t scale;
799
800 /*
801 * Feed the NTP PLL/FLL.
802 * The FLL wants to know how many (hardware) nanoseconds
803 * elapsed since the previous event.
804 */
805 tcount = pps->capcount - pps->ppscount[2];
806 pps->ppscount[2] = pps->capcount;
807 tcount &= pps->capth->th_counter->tc_counter_mask;
808 scale = (u_int64_t)1 << 63;
809 scale /= pps->capth->th_counter->tc_frequency;
810 scale *= 2;
811 bt.sec = 0;
812 bt.frac = 0;
813 bintime_addx(&bt, scale * tcount);
814 bintime2timespec(&bt, &ts);
815 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
816 }
817 #endif
818 }
819
820 /*
821 * Timecounters need to be updated every so often to prevent the hardware
822 * counter from overflowing. Updating also recalculates the cached values
823 * used by the get*() family of functions, so their precision depends on
824 * the update frequency.
825 */
826
827 static int tc_tick;
828
829 void
830 tc_ticktock(void)
831 {
832 static int count;
833
834 if (++count < tc_tick)
835 return;
836 count = 0;
837 tc_windup();
838 }
839
840 void
841 inittimecounter(void)
842 {
843 u_int p;
844
845 /*
846 * Set the initial timeout to
847 * max(1, <approx. number of hardclock ticks in a millisecond>).
848 * People should probably not use the sysctl to set the timeout
849 * to smaller than its inital value, since that value is the
850 * smallest reasonable one. If they want better timestamps they
851 * should use the non-"get"* functions.
852 */
853 if (hz > 1000)
854 tc_tick = (hz + 500) / 1000;
855 else
856 tc_tick = 1;
857 p = (tc_tick * 1000000) / hz;
858 aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
859 p / 1000, p % 1000);
860
861 /* warm up new timecounter (again) and get rolling. */
862 (void)timecounter->tc_get_timecount(timecounter);
863 (void)timecounter->tc_get_timecount(timecounter);
864 }
865
866 #endif /* __HAVE_TIMECOUNTER */
867