kern_tc.c revision 1.26 1 /* $NetBSD: kern_tc.c,v 1.26 2007/11/23 16:03:48 elad Exp $ */
2
3 /*-
4 * ----------------------------------------------------------------------------
5 * "THE BEER-WARE LICENSE" (Revision 42):
6 * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 * can do whatever you want with this stuff. If we meet some day, and you think
8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 * ---------------------------------------------------------------------------
10 */
11
12 #include <sys/cdefs.h>
13 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.26 2007/11/23 16:03:48 elad Exp $");
15
16 #include "opt_ntp.h"
17
18 #include <sys/param.h>
19 #ifdef __HAVE_TIMECOUNTER /* XXX */
20 #include <sys/kernel.h>
21 #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
22 #include <sys/sysctl.h>
23 #include <sys/syslog.h>
24 #include <sys/systm.h>
25 #include <sys/timepps.h>
26 #include <sys/timetc.h>
27 #include <sys/timex.h>
28 #include <sys/evcnt.h>
29 #include <sys/kauth.h>
30 #include <sys/mutex.h>
31
32 /*
33 * A large step happens on boot. This constant detects such steps.
34 * It is relatively small so that ntp_update_second gets called enough
35 * in the typical 'missed a couple of seconds' case, but doesn't loop
36 * forever when the time step is large.
37 */
38 #define LARGE_STEP 200
39
40 /*
41 * Implement a dummy timecounter which we can use until we get a real one
42 * in the air. This allows the console and other early stuff to use
43 * time services.
44 */
45
46 static u_int
47 dummy_get_timecount(struct timecounter *tc)
48 {
49 static u_int now;
50
51 return (++now);
52 }
53
54 static struct timecounter dummy_timecounter = {
55 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
56 };
57
58 struct timehands {
59 /* These fields must be initialized by the driver. */
60 struct timecounter *th_counter;
61 int64_t th_adjustment;
62 u_int64_t th_scale;
63 u_int th_offset_count;
64 struct bintime th_offset;
65 struct timeval th_microtime;
66 struct timespec th_nanotime;
67 /* Fields not to be copied in tc_windup start with th_generation. */
68 volatile u_int th_generation;
69 struct timehands *th_next;
70 };
71
72 static struct timehands th0;
73 static struct timehands th9 = { .th_next = &th0, };
74 static struct timehands th8 = { .th_next = &th9, };
75 static struct timehands th7 = { .th_next = &th8, };
76 static struct timehands th6 = { .th_next = &th7, };
77 static struct timehands th5 = { .th_next = &th6, };
78 static struct timehands th4 = { .th_next = &th5, };
79 static struct timehands th3 = { .th_next = &th4, };
80 static struct timehands th2 = { .th_next = &th3, };
81 static struct timehands th1 = { .th_next = &th2, };
82 static struct timehands th0 = {
83 .th_counter = &dummy_timecounter,
84 .th_scale = (uint64_t)-1 / 1000000,
85 .th_offset = { .sec = 1, .frac = 0 },
86 .th_generation = 1,
87 .th_next = &th1,
88 };
89
90 static struct timehands *volatile timehands = &th0;
91 struct timecounter *timecounter = &dummy_timecounter;
92 static struct timecounter *timecounters = &dummy_timecounter;
93
94 time_t time_second = 1;
95 time_t time_uptime = 1;
96
97 static struct bintime timebasebin;
98
99 static int timestepwarnings;
100
101 extern kmutex_t time_lock;
102
103 #ifdef __FreeBSD__
104 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
105 ×tepwarnings, 0, "");
106 #endif /* __FreeBSD__ */
107
108 /*
109 * sysctl helper routine for kern.timercounter.current
110 */
111 static int
112 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
113 {
114 struct sysctlnode node;
115 int error;
116 char newname[MAX_TCNAMELEN];
117 struct timecounter *newtc, *tc;
118
119 tc = timecounter;
120
121 strlcpy(newname, tc->tc_name, sizeof(newname));
122
123 node = *rnode;
124 node.sysctl_data = newname;
125 node.sysctl_size = sizeof(newname);
126
127 error = sysctl_lookup(SYSCTLFN_CALL(&node));
128
129 if (error ||
130 newp == NULL ||
131 strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
132 return error;
133
134 if (l != NULL && (error = kauth_authorize_system(l->l_cred,
135 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
136 NULL, NULL)) != 0)
137 return (error);
138
139 if (!cold)
140 mutex_enter(&time_lock);
141 error = EINVAL;
142 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
143 if (strcmp(newname, newtc->tc_name) != 0)
144 continue;
145 /* Warm up new timecounter. */
146 (void)newtc->tc_get_timecount(newtc);
147 (void)newtc->tc_get_timecount(newtc);
148 timecounter = newtc;
149 error = 0;
150 break;
151 }
152 if (!cold)
153 mutex_exit(&time_lock);
154 return error;
155 }
156
157 static int
158 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
159 {
160 char buf[MAX_TCNAMELEN+48];
161 char *where = oldp;
162 const char *spc;
163 struct timecounter *tc;
164 size_t needed, left, slen;
165 int error;
166
167 if (newp != NULL)
168 return (EPERM);
169 if (namelen != 0)
170 return (EINVAL);
171
172 spc = "";
173 error = 0;
174 needed = 0;
175 left = *oldlenp;
176
177 mutex_enter(&time_lock);
178 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
179 if (where == NULL) {
180 needed += sizeof(buf); /* be conservative */
181 } else {
182 slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
183 " Hz)", spc, tc->tc_name, tc->tc_quality,
184 tc->tc_frequency);
185 if (left < slen + 1)
186 break;
187 /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
188 /* XXX copyout with held lock. */
189 error = copyout(buf, where, slen + 1);
190 spc = " ";
191 where += slen;
192 needed += slen;
193 left -= slen;
194 }
195 }
196 mutex_exit(&time_lock);
197
198 *oldlenp = needed;
199 return (error);
200 }
201
202 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
203 {
204 const struct sysctlnode *node;
205
206 sysctl_createv(clog, 0, NULL, &node,
207 CTLFLAG_PERMANENT,
208 CTLTYPE_NODE, "timecounter",
209 SYSCTL_DESCR("time counter information"),
210 NULL, 0, NULL, 0,
211 CTL_KERN, CTL_CREATE, CTL_EOL);
212
213 if (node != NULL) {
214 sysctl_createv(clog, 0, NULL, NULL,
215 CTLFLAG_PERMANENT,
216 CTLTYPE_STRING, "choice",
217 SYSCTL_DESCR("available counters"),
218 sysctl_kern_timecounter_choice, 0, NULL, 0,
219 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
220
221 sysctl_createv(clog, 0, NULL, NULL,
222 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
223 CTLTYPE_STRING, "hardware",
224 SYSCTL_DESCR("currently active time counter"),
225 sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
226 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
227
228 sysctl_createv(clog, 0, NULL, NULL,
229 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
230 CTLTYPE_INT, "timestepwarnings",
231 SYSCTL_DESCR("log time steps"),
232 NULL, 0, ×tepwarnings, 0,
233 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
234 }
235 }
236
237 #define TC_STATS(name) \
238 static struct evcnt n##name = \
239 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
240 EVCNT_ATTACH_STATIC(n##name)
241
242 TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
243 TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
244 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
245 TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
246 TC_STATS(setclock);
247
248 #undef TC_STATS
249
250 static void tc_windup(void);
251
252 /*
253 * Return the difference between the timehands' counter value now and what
254 * was when we copied it to the timehands' offset_count.
255 */
256 static __inline u_int
257 tc_delta(struct timehands *th)
258 {
259 struct timecounter *tc;
260
261 tc = th->th_counter;
262 return ((tc->tc_get_timecount(tc) -
263 th->th_offset_count) & tc->tc_counter_mask);
264 }
265
266 /*
267 * Functions for reading the time. We have to loop until we are sure that
268 * the timehands that we operated on was not updated under our feet. See
269 * the comment in <sys/timevar.h> for a description of these 12 functions.
270 */
271
272 void
273 binuptime(struct bintime *bt)
274 {
275 struct timehands *th;
276 u_int gen;
277
278 nbinuptime.ev_count++;
279 do {
280 th = timehands;
281 gen = th->th_generation;
282 *bt = th->th_offset;
283 bintime_addx(bt, th->th_scale * tc_delta(th));
284 } while (gen == 0 || gen != th->th_generation);
285 }
286
287 void
288 nanouptime(struct timespec *tsp)
289 {
290 struct bintime bt;
291
292 nnanouptime.ev_count++;
293 binuptime(&bt);
294 bintime2timespec(&bt, tsp);
295 }
296
297 void
298 microuptime(struct timeval *tvp)
299 {
300 struct bintime bt;
301
302 nmicrouptime.ev_count++;
303 binuptime(&bt);
304 bintime2timeval(&bt, tvp);
305 }
306
307 void
308 bintime(struct bintime *bt)
309 {
310
311 nbintime.ev_count++;
312 binuptime(bt);
313 bintime_add(bt, &timebasebin);
314 }
315
316 void
317 nanotime(struct timespec *tsp)
318 {
319 struct bintime bt;
320
321 nnanotime.ev_count++;
322 bintime(&bt);
323 bintime2timespec(&bt, tsp);
324 }
325
326 void
327 microtime(struct timeval *tvp)
328 {
329 struct bintime bt;
330
331 nmicrotime.ev_count++;
332 bintime(&bt);
333 bintime2timeval(&bt, tvp);
334 }
335
336 void
337 getbinuptime(struct bintime *bt)
338 {
339 struct timehands *th;
340 u_int gen;
341
342 ngetbinuptime.ev_count++;
343 do {
344 th = timehands;
345 gen = th->th_generation;
346 *bt = th->th_offset;
347 } while (gen == 0 || gen != th->th_generation);
348 }
349
350 void
351 getnanouptime(struct timespec *tsp)
352 {
353 struct timehands *th;
354 u_int gen;
355
356 ngetnanouptime.ev_count++;
357 do {
358 th = timehands;
359 gen = th->th_generation;
360 bintime2timespec(&th->th_offset, tsp);
361 } while (gen == 0 || gen != th->th_generation);
362 }
363
364 void
365 getmicrouptime(struct timeval *tvp)
366 {
367 struct timehands *th;
368 u_int gen;
369
370 ngetmicrouptime.ev_count++;
371 do {
372 th = timehands;
373 gen = th->th_generation;
374 bintime2timeval(&th->th_offset, tvp);
375 } while (gen == 0 || gen != th->th_generation);
376 }
377
378 void
379 getbintime(struct bintime *bt)
380 {
381 struct timehands *th;
382 u_int gen;
383
384 ngetbintime.ev_count++;
385 do {
386 th = timehands;
387 gen = th->th_generation;
388 *bt = th->th_offset;
389 } while (gen == 0 || gen != th->th_generation);
390 bintime_add(bt, &timebasebin);
391 }
392
393 void
394 getnanotime(struct timespec *tsp)
395 {
396 struct timehands *th;
397 u_int gen;
398
399 ngetnanotime.ev_count++;
400 do {
401 th = timehands;
402 gen = th->th_generation;
403 *tsp = th->th_nanotime;
404 } while (gen == 0 || gen != th->th_generation);
405 }
406
407 void
408 getmicrotime(struct timeval *tvp)
409 {
410 struct timehands *th;
411 u_int gen;
412
413 ngetmicrotime.ev_count++;
414 do {
415 th = timehands;
416 gen = th->th_generation;
417 *tvp = th->th_microtime;
418 } while (gen == 0 || gen != th->th_generation);
419 }
420
421 /*
422 * Initialize a new timecounter and possibly use it.
423 */
424 void
425 tc_init(struct timecounter *tc)
426 {
427 u_int u;
428 int s;
429
430 u = tc->tc_frequency / tc->tc_counter_mask;
431 /* XXX: We need some margin here, 10% is a guess */
432 u *= 11;
433 u /= 10;
434 if (u > hz && tc->tc_quality >= 0) {
435 tc->tc_quality = -2000;
436 aprint_verbose(
437 "timecounter: Timecounter \"%s\" frequency %ju Hz",
438 tc->tc_name, (uintmax_t)tc->tc_frequency);
439 aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
440 } else if (tc->tc_quality >= 0 || bootverbose) {
441 aprint_verbose(
442 "timecounter: Timecounter \"%s\" frequency %ju Hz "
443 "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
444 tc->tc_quality);
445 }
446
447 mutex_enter(&time_lock);
448 s = splsched();
449 tc->tc_next = timecounters;
450 timecounters = tc;
451 /*
452 * Never automatically use a timecounter with negative quality.
453 * Even though we run on the dummy counter, switching here may be
454 * worse since this timecounter may not be monotonous.
455 */
456 if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
457 (tc->tc_quality == timecounter->tc_quality &&
458 tc->tc_frequency > timecounter->tc_frequency))) {
459 (void)tc->tc_get_timecount(tc);
460 (void)tc->tc_get_timecount(tc);
461 timecounter = tc;
462 tc_windup();
463 }
464 splx(s);
465 mutex_exit(&time_lock);
466 }
467
468 /* Report the frequency of the current timecounter. */
469 u_int64_t
470 tc_getfrequency(void)
471 {
472
473 return (timehands->th_counter->tc_frequency);
474 }
475
476 /*
477 * Step our concept of UTC. This is done by modifying our estimate of
478 * when we booted.
479 * XXX: not locked.
480 */
481 void
482 tc_setclock(struct timespec *ts)
483 {
484 struct timespec ts2;
485 struct bintime bt, bt2;
486
487 nsetclock.ev_count++;
488 binuptime(&bt2);
489 timespec2bintime(ts, &bt);
490 bintime_sub(&bt, &bt2);
491 bintime_add(&bt2, &timebasebin);
492 timebasebin = bt;
493
494 /* XXX fiddle all the little crinkly bits around the fiords... */
495 tc_windup();
496 if (timestepwarnings) {
497 bintime2timespec(&bt2, &ts2);
498 log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
499 (intmax_t)ts2.tv_sec, ts2.tv_nsec,
500 (intmax_t)ts->tv_sec, ts->tv_nsec);
501 }
502 }
503
504 /*
505 * Initialize the next struct timehands in the ring and make
506 * it the active timehands. Along the way we might switch to a different
507 * timecounter and/or do seconds processing in NTP. Slightly magic.
508 */
509 static void
510 tc_windup(void)
511 {
512 struct bintime bt;
513 struct timehands *th, *tho;
514 u_int64_t scale;
515 u_int delta, ncount, ogen;
516 int i, s_update;
517 time_t t;
518
519 s_update = 0;
520
521 /*
522 * Make the next timehands a copy of the current one, but do not
523 * overwrite the generation or next pointer. While we update
524 * the contents, the generation must be zero. Ensure global
525 * visibility of the generation before proceeding.
526 */
527 tho = timehands;
528 th = tho->th_next;
529 ogen = th->th_generation;
530 th->th_generation = 0;
531 mb_write();
532 bcopy(tho, th, offsetof(struct timehands, th_generation));
533
534 /*
535 * Capture a timecounter delta on the current timecounter and if
536 * changing timecounters, a counter value from the new timecounter.
537 * Update the offset fields accordingly.
538 */
539 delta = tc_delta(th);
540 if (th->th_counter != timecounter)
541 ncount = timecounter->tc_get_timecount(timecounter);
542 else
543 ncount = 0;
544 th->th_offset_count += delta;
545 th->th_offset_count &= th->th_counter->tc_counter_mask;
546 bintime_addx(&th->th_offset, th->th_scale * delta);
547
548 /*
549 * Hardware latching timecounters may not generate interrupts on
550 * PPS events, so instead we poll them. There is a finite risk that
551 * the hardware might capture a count which is later than the one we
552 * got above, and therefore possibly in the next NTP second which might
553 * have a different rate than the current NTP second. It doesn't
554 * matter in practice.
555 */
556 if (tho->th_counter->tc_poll_pps)
557 tho->th_counter->tc_poll_pps(tho->th_counter);
558
559 /*
560 * Deal with NTP second processing. The for loop normally
561 * iterates at most once, but in extreme situations it might
562 * keep NTP sane if timeouts are not run for several seconds.
563 * At boot, the time step can be large when the TOD hardware
564 * has been read, so on really large steps, we call
565 * ntp_update_second only twice. We need to call it twice in
566 * case we missed a leap second.
567 * If NTP is not compiled in ntp_update_second still calculates
568 * the adjustment resulting from adjtime() calls.
569 */
570 bt = th->th_offset;
571 bintime_add(&bt, &timebasebin);
572 i = bt.sec - tho->th_microtime.tv_sec;
573 if (i > LARGE_STEP)
574 i = 2;
575 for (; i > 0; i--) {
576 t = bt.sec;
577 ntp_update_second(&th->th_adjustment, &bt.sec);
578 s_update = 1;
579 if (bt.sec != t)
580 timebasebin.sec += bt.sec - t;
581 }
582
583 /* Update the UTC timestamps used by the get*() functions. */
584 /* XXX shouldn't do this here. Should force non-`get' versions. */
585 bintime2timeval(&bt, &th->th_microtime);
586 bintime2timespec(&bt, &th->th_nanotime);
587
588 /* Now is a good time to change timecounters. */
589 if (th->th_counter != timecounter) {
590 th->th_counter = timecounter;
591 th->th_offset_count = ncount;
592 s_update = 1;
593 }
594
595 /*-
596 * Recalculate the scaling factor. We want the number of 1/2^64
597 * fractions of a second per period of the hardware counter, taking
598 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
599 * processing provides us with.
600 *
601 * The th_adjustment is nanoseconds per second with 32 bit binary
602 * fraction and we want 64 bit binary fraction of second:
603 *
604 * x = a * 2^32 / 10^9 = a * 4.294967296
605 *
606 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
607 * we can only multiply by about 850 without overflowing, but that
608 * leaves suitably precise fractions for multiply before divide.
609 *
610 * Divide before multiply with a fraction of 2199/512 results in a
611 * systematic undercompensation of 10PPM of th_adjustment. On a
612 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
613 *
614 * We happily sacrifice the lowest of the 64 bits of our result
615 * to the goddess of code clarity.
616 *
617 */
618 if (s_update) {
619 scale = (u_int64_t)1 << 63;
620 scale += (th->th_adjustment / 1024) * 2199;
621 scale /= th->th_counter->tc_frequency;
622 th->th_scale = scale * 2;
623 }
624 /*
625 * Now that the struct timehands is again consistent, set the new
626 * generation number, making sure to not make it zero. Ensure
627 * changes are globally visible before changing.
628 */
629 if (++ogen == 0)
630 ogen = 1;
631 mb_write();
632 th->th_generation = ogen;
633
634 /*
635 * Go live with the new struct timehands. Ensure changes are
636 * globally visible before changing.
637 */
638 time_second = th->th_microtime.tv_sec;
639 time_uptime = th->th_offset.sec;
640 mb_write();
641 timehands = th;
642
643 /*
644 * Force users of the old timehand to move on. This is
645 * necessary for MP systems; we need to ensure that the
646 * consumers will move away from the old timehand before
647 * we begin updating it again when we eventually wrap
648 * around.
649 */
650 if (++tho->th_generation == 0)
651 tho->th_generation = 1;
652 }
653
654 /*
655 * RFC 2783 PPS-API implementation.
656 */
657
658 int
659 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
660 {
661 pps_params_t *app;
662 pps_info_t *pipi;
663 #ifdef PPS_SYNC
664 int *epi;
665 #endif
666
667 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
668 switch (cmd) {
669 case PPS_IOC_CREATE:
670 return (0);
671 case PPS_IOC_DESTROY:
672 return (0);
673 case PPS_IOC_SETPARAMS:
674 app = (pps_params_t *)data;
675 if (app->mode & ~pps->ppscap)
676 return (EINVAL);
677 pps->ppsparam = *app;
678 return (0);
679 case PPS_IOC_GETPARAMS:
680 app = (pps_params_t *)data;
681 *app = pps->ppsparam;
682 app->api_version = PPS_API_VERS_1;
683 return (0);
684 case PPS_IOC_GETCAP:
685 *(int*)data = pps->ppscap;
686 return (0);
687 case PPS_IOC_FETCH:
688 pipi = (pps_info_t *)data;
689 pps->ppsinfo.current_mode = pps->ppsparam.mode;
690 *pipi = pps->ppsinfo;
691 return (0);
692 case PPS_IOC_KCBIND:
693 #ifdef PPS_SYNC
694 epi = (int *)data;
695 /* XXX Only root should be able to do this */
696 if (*epi & ~pps->ppscap)
697 return (EINVAL);
698 pps->kcmode = *epi;
699 return (0);
700 #else
701 return (EOPNOTSUPP);
702 #endif
703 default:
704 return (EPASSTHROUGH);
705 }
706 }
707
708 void
709 pps_init(struct pps_state *pps)
710 {
711 pps->ppscap |= PPS_TSFMT_TSPEC;
712 if (pps->ppscap & PPS_CAPTUREASSERT)
713 pps->ppscap |= PPS_OFFSETASSERT;
714 if (pps->ppscap & PPS_CAPTURECLEAR)
715 pps->ppscap |= PPS_OFFSETCLEAR;
716 }
717
718 void
719 pps_capture(struct pps_state *pps)
720 {
721 struct timehands *th;
722
723 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
724 th = timehands;
725 pps->capgen = th->th_generation;
726 pps->capth = th;
727 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
728 if (pps->capgen != th->th_generation)
729 pps->capgen = 0;
730 }
731
732 void
733 pps_event(struct pps_state *pps, int event)
734 {
735 struct bintime bt;
736 struct timespec ts, *tsp, *osp;
737 u_int tcount, *pcount;
738 int foff, fhard;
739 pps_seq_t *pseq;
740
741 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
742 /* If the timecounter was wound up underneath us, bail out. */
743 if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
744 return;
745
746 /* Things would be easier with arrays. */
747 if (event == PPS_CAPTUREASSERT) {
748 tsp = &pps->ppsinfo.assert_timestamp;
749 osp = &pps->ppsparam.assert_offset;
750 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
751 fhard = pps->kcmode & PPS_CAPTUREASSERT;
752 pcount = &pps->ppscount[0];
753 pseq = &pps->ppsinfo.assert_sequence;
754 } else {
755 tsp = &pps->ppsinfo.clear_timestamp;
756 osp = &pps->ppsparam.clear_offset;
757 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
758 fhard = pps->kcmode & PPS_CAPTURECLEAR;
759 pcount = &pps->ppscount[1];
760 pseq = &pps->ppsinfo.clear_sequence;
761 }
762
763 /*
764 * If the timecounter changed, we cannot compare the count values, so
765 * we have to drop the rest of the PPS-stuff until the next event.
766 */
767 if (pps->ppstc != pps->capth->th_counter) {
768 pps->ppstc = pps->capth->th_counter;
769 *pcount = pps->capcount;
770 pps->ppscount[2] = pps->capcount;
771 return;
772 }
773
774 /* Convert the count to a timespec. */
775 tcount = pps->capcount - pps->capth->th_offset_count;
776 tcount &= pps->capth->th_counter->tc_counter_mask;
777 bt = pps->capth->th_offset;
778 bintime_addx(&bt, pps->capth->th_scale * tcount);
779 bintime_add(&bt, &timebasebin);
780 bintime2timespec(&bt, &ts);
781
782 /* If the timecounter was wound up underneath us, bail out. */
783 if (pps->capgen != pps->capth->th_generation)
784 return;
785
786 *pcount = pps->capcount;
787 (*pseq)++;
788 *tsp = ts;
789
790 if (foff) {
791 timespecadd(tsp, osp, tsp);
792 if (tsp->tv_nsec < 0) {
793 tsp->tv_nsec += 1000000000;
794 tsp->tv_sec -= 1;
795 }
796 }
797 #ifdef PPS_SYNC
798 if (fhard) {
799 u_int64_t scale;
800
801 /*
802 * Feed the NTP PLL/FLL.
803 * The FLL wants to know how many (hardware) nanoseconds
804 * elapsed since the previous event.
805 */
806 tcount = pps->capcount - pps->ppscount[2];
807 pps->ppscount[2] = pps->capcount;
808 tcount &= pps->capth->th_counter->tc_counter_mask;
809 scale = (u_int64_t)1 << 63;
810 scale /= pps->capth->th_counter->tc_frequency;
811 scale *= 2;
812 bt.sec = 0;
813 bt.frac = 0;
814 bintime_addx(&bt, scale * tcount);
815 bintime2timespec(&bt, &ts);
816 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
817 }
818 #endif
819 }
820
821 /*
822 * Timecounters need to be updated every so often to prevent the hardware
823 * counter from overflowing. Updating also recalculates the cached values
824 * used by the get*() family of functions, so their precision depends on
825 * the update frequency.
826 */
827
828 static int tc_tick;
829
830 void
831 tc_ticktock(void)
832 {
833 static int count;
834
835 if (++count < tc_tick)
836 return;
837 count = 0;
838 tc_windup();
839 }
840
841 void
842 inittimecounter(void)
843 {
844 u_int p;
845
846 /*
847 * Set the initial timeout to
848 * max(1, <approx. number of hardclock ticks in a millisecond>).
849 * People should probably not use the sysctl to set the timeout
850 * to smaller than its inital value, since that value is the
851 * smallest reasonable one. If they want better timestamps they
852 * should use the non-"get"* functions.
853 */
854 if (hz > 1000)
855 tc_tick = (hz + 500) / 1000;
856 else
857 tc_tick = 1;
858 p = (tc_tick * 1000000) / hz;
859 aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
860 p / 1000, p % 1000);
861
862 /* warm up new timecounter (again) and get rolling. */
863 (void)timecounter->tc_get_timecount(timecounter);
864 (void)timecounter->tc_get_timecount(timecounter);
865 }
866
867 #endif /* __HAVE_TIMECOUNTER */
868