kern_tc.c revision 1.28 1 /* $NetBSD: kern_tc.c,v 1.28 2007/12/15 18:20:11 yamt Exp $ */
2
3 /*-
4 * ----------------------------------------------------------------------------
5 * "THE BEER-WARE LICENSE" (Revision 42):
6 * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 * can do whatever you want with this stuff. If we meet some day, and you think
8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 * ---------------------------------------------------------------------------
10 */
11
12 #include <sys/cdefs.h>
13 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.28 2007/12/15 18:20:11 yamt Exp $");
15
16 #include "opt_ntp.h"
17
18 #include <sys/param.h>
19 #ifdef __HAVE_TIMECOUNTER /* XXX */
20 #include <sys/kernel.h>
21 #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
22 #include <sys/sysctl.h>
23 #include <sys/syslog.h>
24 #include <sys/systm.h>
25 #include <sys/timepps.h>
26 #include <sys/timetc.h>
27 #include <sys/timex.h>
28 #include <sys/evcnt.h>
29 #include <sys/kauth.h>
30 #include <sys/mutex.h>
31 #include <sys/atomic.h>
32
33 /*
34 * A large step happens on boot. This constant detects such steps.
35 * It is relatively small so that ntp_update_second gets called enough
36 * in the typical 'missed a couple of seconds' case, but doesn't loop
37 * forever when the time step is large.
38 */
39 #define LARGE_STEP 200
40
41 /*
42 * Implement a dummy timecounter which we can use until we get a real one
43 * in the air. This allows the console and other early stuff to use
44 * time services.
45 */
46
47 static u_int
48 dummy_get_timecount(struct timecounter *tc)
49 {
50 static u_int now;
51
52 return (++now);
53 }
54
55 static struct timecounter dummy_timecounter = {
56 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
57 };
58
59 struct timehands {
60 /* These fields must be initialized by the driver. */
61 struct timecounter *th_counter;
62 int64_t th_adjustment;
63 u_int64_t th_scale;
64 u_int th_offset_count;
65 struct bintime th_offset;
66 struct timeval th_microtime;
67 struct timespec th_nanotime;
68 /* Fields not to be copied in tc_windup start with th_generation. */
69 volatile u_int th_generation;
70 struct timehands *th_next;
71 };
72
73 static struct timehands th0;
74 static struct timehands th9 = { .th_next = &th0, };
75 static struct timehands th8 = { .th_next = &th9, };
76 static struct timehands th7 = { .th_next = &th8, };
77 static struct timehands th6 = { .th_next = &th7, };
78 static struct timehands th5 = { .th_next = &th6, };
79 static struct timehands th4 = { .th_next = &th5, };
80 static struct timehands th3 = { .th_next = &th4, };
81 static struct timehands th2 = { .th_next = &th3, };
82 static struct timehands th1 = { .th_next = &th2, };
83 static struct timehands th0 = {
84 .th_counter = &dummy_timecounter,
85 .th_scale = (uint64_t)-1 / 1000000,
86 .th_offset = { .sec = 1, .frac = 0 },
87 .th_generation = 1,
88 .th_next = &th1,
89 };
90
91 static struct timehands *volatile timehands = &th0;
92 struct timecounter *timecounter = &dummy_timecounter;
93 static struct timecounter *timecounters = &dummy_timecounter;
94
95 time_t time_second = 1;
96 time_t time_uptime = 1;
97
98 static struct bintime timebasebin;
99
100 static int timestepwarnings;
101
102 extern kmutex_t time_lock;
103
104 #ifdef __FreeBSD__
105 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
106 ×tepwarnings, 0, "");
107 #endif /* __FreeBSD__ */
108
109 /*
110 * sysctl helper routine for kern.timercounter.hardware
111 */
112 static int
113 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
114 {
115 struct sysctlnode node;
116 int error;
117 char newname[MAX_TCNAMELEN];
118 struct timecounter *newtc, *tc;
119
120 tc = timecounter;
121
122 strlcpy(newname, tc->tc_name, sizeof(newname));
123
124 node = *rnode;
125 node.sysctl_data = newname;
126 node.sysctl_size = sizeof(newname);
127
128 error = sysctl_lookup(SYSCTLFN_CALL(&node));
129
130 if (error ||
131 newp == NULL ||
132 strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
133 return error;
134
135 if (l != NULL && (error = kauth_authorize_system(l->l_cred,
136 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
137 NULL, NULL)) != 0)
138 return (error);
139
140 if (!cold)
141 mutex_enter(&time_lock);
142 error = EINVAL;
143 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
144 if (strcmp(newname, newtc->tc_name) != 0)
145 continue;
146 /* Warm up new timecounter. */
147 (void)newtc->tc_get_timecount(newtc);
148 (void)newtc->tc_get_timecount(newtc);
149 timecounter = newtc;
150 error = 0;
151 break;
152 }
153 if (!cold)
154 mutex_exit(&time_lock);
155 return error;
156 }
157
158 static int
159 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
160 {
161 char buf[MAX_TCNAMELEN+48];
162 char *where = oldp;
163 const char *spc;
164 struct timecounter *tc;
165 size_t needed, left, slen;
166 int error;
167
168 if (newp != NULL)
169 return (EPERM);
170 if (namelen != 0)
171 return (EINVAL);
172
173 spc = "";
174 error = 0;
175 needed = 0;
176 left = *oldlenp;
177
178 mutex_enter(&time_lock);
179 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
180 if (where == NULL) {
181 needed += sizeof(buf); /* be conservative */
182 } else {
183 slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
184 " Hz)", spc, tc->tc_name, tc->tc_quality,
185 tc->tc_frequency);
186 if (left < slen + 1)
187 break;
188 /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
189 /* XXX copyout with held lock. */
190 error = copyout(buf, where, slen + 1);
191 spc = " ";
192 where += slen;
193 needed += slen;
194 left -= slen;
195 }
196 }
197 mutex_exit(&time_lock);
198
199 *oldlenp = needed;
200 return (error);
201 }
202
203 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
204 {
205 const struct sysctlnode *node;
206
207 sysctl_createv(clog, 0, NULL, &node,
208 CTLFLAG_PERMANENT,
209 CTLTYPE_NODE, "timecounter",
210 SYSCTL_DESCR("time counter information"),
211 NULL, 0, NULL, 0,
212 CTL_KERN, CTL_CREATE, CTL_EOL);
213
214 if (node != NULL) {
215 sysctl_createv(clog, 0, NULL, NULL,
216 CTLFLAG_PERMANENT,
217 CTLTYPE_STRING, "choice",
218 SYSCTL_DESCR("available counters"),
219 sysctl_kern_timecounter_choice, 0, NULL, 0,
220 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
221
222 sysctl_createv(clog, 0, NULL, NULL,
223 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
224 CTLTYPE_STRING, "hardware",
225 SYSCTL_DESCR("currently active time counter"),
226 sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
227 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
228
229 sysctl_createv(clog, 0, NULL, NULL,
230 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
231 CTLTYPE_INT, "timestepwarnings",
232 SYSCTL_DESCR("log time steps"),
233 NULL, 0, ×tepwarnings, 0,
234 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
235 }
236 }
237
238 #define TC_STATS(name) \
239 static struct evcnt n##name = \
240 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
241 EVCNT_ATTACH_STATIC(n##name)
242
243 TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
244 TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
245 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
246 TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
247 TC_STATS(setclock);
248
249 #undef TC_STATS
250
251 static void tc_windup(void);
252
253 /*
254 * Return the difference between the timehands' counter value now and what
255 * was when we copied it to the timehands' offset_count.
256 */
257 static __inline u_int
258 tc_delta(struct timehands *th)
259 {
260 struct timecounter *tc;
261
262 tc = th->th_counter;
263 return ((tc->tc_get_timecount(tc) -
264 th->th_offset_count) & tc->tc_counter_mask);
265 }
266
267 /*
268 * Functions for reading the time. We have to loop until we are sure that
269 * the timehands that we operated on was not updated under our feet. See
270 * the comment in <sys/timevar.h> for a description of these 12 functions.
271 */
272
273 void
274 binuptime(struct bintime *bt)
275 {
276 struct timehands *th;
277 u_int gen;
278
279 nbinuptime.ev_count++;
280 do {
281 th = timehands;
282 gen = th->th_generation;
283 *bt = th->th_offset;
284 bintime_addx(bt, th->th_scale * tc_delta(th));
285 } while (gen == 0 || gen != th->th_generation);
286 }
287
288 void
289 nanouptime(struct timespec *tsp)
290 {
291 struct bintime bt;
292
293 nnanouptime.ev_count++;
294 binuptime(&bt);
295 bintime2timespec(&bt, tsp);
296 }
297
298 void
299 microuptime(struct timeval *tvp)
300 {
301 struct bintime bt;
302
303 nmicrouptime.ev_count++;
304 binuptime(&bt);
305 bintime2timeval(&bt, tvp);
306 }
307
308 void
309 bintime(struct bintime *bt)
310 {
311
312 nbintime.ev_count++;
313 binuptime(bt);
314 bintime_add(bt, &timebasebin);
315 }
316
317 void
318 nanotime(struct timespec *tsp)
319 {
320 struct bintime bt;
321
322 nnanotime.ev_count++;
323 bintime(&bt);
324 bintime2timespec(&bt, tsp);
325 }
326
327 void
328 microtime(struct timeval *tvp)
329 {
330 struct bintime bt;
331
332 nmicrotime.ev_count++;
333 bintime(&bt);
334 bintime2timeval(&bt, tvp);
335 }
336
337 void
338 getbinuptime(struct bintime *bt)
339 {
340 struct timehands *th;
341 u_int gen;
342
343 ngetbinuptime.ev_count++;
344 do {
345 th = timehands;
346 gen = th->th_generation;
347 *bt = th->th_offset;
348 } while (gen == 0 || gen != th->th_generation);
349 }
350
351 void
352 getnanouptime(struct timespec *tsp)
353 {
354 struct timehands *th;
355 u_int gen;
356
357 ngetnanouptime.ev_count++;
358 do {
359 th = timehands;
360 gen = th->th_generation;
361 bintime2timespec(&th->th_offset, tsp);
362 } while (gen == 0 || gen != th->th_generation);
363 }
364
365 void
366 getmicrouptime(struct timeval *tvp)
367 {
368 struct timehands *th;
369 u_int gen;
370
371 ngetmicrouptime.ev_count++;
372 do {
373 th = timehands;
374 gen = th->th_generation;
375 bintime2timeval(&th->th_offset, tvp);
376 } while (gen == 0 || gen != th->th_generation);
377 }
378
379 void
380 getbintime(struct bintime *bt)
381 {
382 struct timehands *th;
383 u_int gen;
384
385 ngetbintime.ev_count++;
386 do {
387 th = timehands;
388 gen = th->th_generation;
389 *bt = th->th_offset;
390 } while (gen == 0 || gen != th->th_generation);
391 bintime_add(bt, &timebasebin);
392 }
393
394 void
395 getnanotime(struct timespec *tsp)
396 {
397 struct timehands *th;
398 u_int gen;
399
400 ngetnanotime.ev_count++;
401 do {
402 th = timehands;
403 gen = th->th_generation;
404 *tsp = th->th_nanotime;
405 } while (gen == 0 || gen != th->th_generation);
406 }
407
408 void
409 getmicrotime(struct timeval *tvp)
410 {
411 struct timehands *th;
412 u_int gen;
413
414 ngetmicrotime.ev_count++;
415 do {
416 th = timehands;
417 gen = th->th_generation;
418 *tvp = th->th_microtime;
419 } while (gen == 0 || gen != th->th_generation);
420 }
421
422 /*
423 * Initialize a new timecounter and possibly use it.
424 */
425 void
426 tc_init(struct timecounter *tc)
427 {
428 u_int u;
429 int s;
430
431 u = tc->tc_frequency / tc->tc_counter_mask;
432 /* XXX: We need some margin here, 10% is a guess */
433 u *= 11;
434 u /= 10;
435 if (u > hz && tc->tc_quality >= 0) {
436 tc->tc_quality = -2000;
437 aprint_verbose(
438 "timecounter: Timecounter \"%s\" frequency %ju Hz",
439 tc->tc_name, (uintmax_t)tc->tc_frequency);
440 aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
441 } else if (tc->tc_quality >= 0 || bootverbose) {
442 aprint_verbose(
443 "timecounter: Timecounter \"%s\" frequency %ju Hz "
444 "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
445 tc->tc_quality);
446 }
447
448 mutex_enter(&time_lock);
449 s = splsched();
450 tc->tc_next = timecounters;
451 timecounters = tc;
452 /*
453 * Never automatically use a timecounter with negative quality.
454 * Even though we run on the dummy counter, switching here may be
455 * worse since this timecounter may not be monotonous.
456 */
457 if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
458 (tc->tc_quality == timecounter->tc_quality &&
459 tc->tc_frequency > timecounter->tc_frequency))) {
460 (void)tc->tc_get_timecount(tc);
461 (void)tc->tc_get_timecount(tc);
462 timecounter = tc;
463 tc_windup();
464 }
465 splx(s);
466 mutex_exit(&time_lock);
467 }
468
469 /* Report the frequency of the current timecounter. */
470 u_int64_t
471 tc_getfrequency(void)
472 {
473
474 return (timehands->th_counter->tc_frequency);
475 }
476
477 /*
478 * Step our concept of UTC. This is done by modifying our estimate of
479 * when we booted.
480 * XXX: not locked.
481 */
482 void
483 tc_setclock(struct timespec *ts)
484 {
485 struct timespec ts2;
486 struct bintime bt, bt2;
487
488 nsetclock.ev_count++;
489 binuptime(&bt2);
490 timespec2bintime(ts, &bt);
491 bintime_sub(&bt, &bt2);
492 bintime_add(&bt2, &timebasebin);
493 timebasebin = bt;
494
495 /* XXX fiddle all the little crinkly bits around the fiords... */
496 tc_windup();
497 if (timestepwarnings) {
498 bintime2timespec(&bt2, &ts2);
499 log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
500 (intmax_t)ts2.tv_sec, ts2.tv_nsec,
501 (intmax_t)ts->tv_sec, ts->tv_nsec);
502 }
503 }
504
505 /*
506 * Initialize the next struct timehands in the ring and make
507 * it the active timehands. Along the way we might switch to a different
508 * timecounter and/or do seconds processing in NTP. Slightly magic.
509 */
510 static void
511 tc_windup(void)
512 {
513 struct bintime bt;
514 struct timehands *th, *tho;
515 u_int64_t scale;
516 u_int delta, ncount, ogen;
517 int i, s_update;
518 time_t t;
519
520 s_update = 0;
521
522 /*
523 * Make the next timehands a copy of the current one, but do not
524 * overwrite the generation or next pointer. While we update
525 * the contents, the generation must be zero. Ensure global
526 * visibility of the generation before proceeding.
527 */
528 tho = timehands;
529 th = tho->th_next;
530 ogen = th->th_generation;
531 th->th_generation = 0;
532 membar_producer();
533 bcopy(tho, th, offsetof(struct timehands, th_generation));
534
535 /*
536 * Capture a timecounter delta on the current timecounter and if
537 * changing timecounters, a counter value from the new timecounter.
538 * Update the offset fields accordingly.
539 */
540 delta = tc_delta(th);
541 if (th->th_counter != timecounter)
542 ncount = timecounter->tc_get_timecount(timecounter);
543 else
544 ncount = 0;
545 th->th_offset_count += delta;
546 th->th_offset_count &= th->th_counter->tc_counter_mask;
547 bintime_addx(&th->th_offset, th->th_scale * delta);
548
549 /*
550 * Hardware latching timecounters may not generate interrupts on
551 * PPS events, so instead we poll them. There is a finite risk that
552 * the hardware might capture a count which is later than the one we
553 * got above, and therefore possibly in the next NTP second which might
554 * have a different rate than the current NTP second. It doesn't
555 * matter in practice.
556 */
557 if (tho->th_counter->tc_poll_pps)
558 tho->th_counter->tc_poll_pps(tho->th_counter);
559
560 /*
561 * Deal with NTP second processing. The for loop normally
562 * iterates at most once, but in extreme situations it might
563 * keep NTP sane if timeouts are not run for several seconds.
564 * At boot, the time step can be large when the TOD hardware
565 * has been read, so on really large steps, we call
566 * ntp_update_second only twice. We need to call it twice in
567 * case we missed a leap second.
568 * If NTP is not compiled in ntp_update_second still calculates
569 * the adjustment resulting from adjtime() calls.
570 */
571 bt = th->th_offset;
572 bintime_add(&bt, &timebasebin);
573 i = bt.sec - tho->th_microtime.tv_sec;
574 if (i > LARGE_STEP)
575 i = 2;
576 for (; i > 0; i--) {
577 t = bt.sec;
578 ntp_update_second(&th->th_adjustment, &bt.sec);
579 s_update = 1;
580 if (bt.sec != t)
581 timebasebin.sec += bt.sec - t;
582 }
583
584 /* Update the UTC timestamps used by the get*() functions. */
585 /* XXX shouldn't do this here. Should force non-`get' versions. */
586 bintime2timeval(&bt, &th->th_microtime);
587 bintime2timespec(&bt, &th->th_nanotime);
588
589 /* Now is a good time to change timecounters. */
590 if (th->th_counter != timecounter) {
591 th->th_counter = timecounter;
592 th->th_offset_count = ncount;
593 s_update = 1;
594 }
595
596 /*-
597 * Recalculate the scaling factor. We want the number of 1/2^64
598 * fractions of a second per period of the hardware counter, taking
599 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
600 * processing provides us with.
601 *
602 * The th_adjustment is nanoseconds per second with 32 bit binary
603 * fraction and we want 64 bit binary fraction of second:
604 *
605 * x = a * 2^32 / 10^9 = a * 4.294967296
606 *
607 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
608 * we can only multiply by about 850 without overflowing, but that
609 * leaves suitably precise fractions for multiply before divide.
610 *
611 * Divide before multiply with a fraction of 2199/512 results in a
612 * systematic undercompensation of 10PPM of th_adjustment. On a
613 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
614 *
615 * We happily sacrifice the lowest of the 64 bits of our result
616 * to the goddess of code clarity.
617 *
618 */
619 if (s_update) {
620 scale = (u_int64_t)1 << 63;
621 scale += (th->th_adjustment / 1024) * 2199;
622 scale /= th->th_counter->tc_frequency;
623 th->th_scale = scale * 2;
624 }
625 /*
626 * Now that the struct timehands is again consistent, set the new
627 * generation number, making sure to not make it zero. Ensure
628 * changes are globally visible before changing.
629 */
630 if (++ogen == 0)
631 ogen = 1;
632 membar_producer();
633 th->th_generation = ogen;
634
635 /*
636 * Go live with the new struct timehands. Ensure changes are
637 * globally visible before changing.
638 */
639 time_second = th->th_microtime.tv_sec;
640 time_uptime = th->th_offset.sec;
641 membar_producer();
642 timehands = th;
643
644 /*
645 * Force users of the old timehand to move on. This is
646 * necessary for MP systems; we need to ensure that the
647 * consumers will move away from the old timehand before
648 * we begin updating it again when we eventually wrap
649 * around.
650 */
651 if (++tho->th_generation == 0)
652 tho->th_generation = 1;
653 }
654
655 /*
656 * RFC 2783 PPS-API implementation.
657 */
658
659 int
660 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
661 {
662 pps_params_t *app;
663 pps_info_t *pipi;
664 #ifdef PPS_SYNC
665 int *epi;
666 #endif
667
668 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
669 switch (cmd) {
670 case PPS_IOC_CREATE:
671 return (0);
672 case PPS_IOC_DESTROY:
673 return (0);
674 case PPS_IOC_SETPARAMS:
675 app = (pps_params_t *)data;
676 if (app->mode & ~pps->ppscap)
677 return (EINVAL);
678 pps->ppsparam = *app;
679 return (0);
680 case PPS_IOC_GETPARAMS:
681 app = (pps_params_t *)data;
682 *app = pps->ppsparam;
683 app->api_version = PPS_API_VERS_1;
684 return (0);
685 case PPS_IOC_GETCAP:
686 *(int*)data = pps->ppscap;
687 return (0);
688 case PPS_IOC_FETCH:
689 pipi = (pps_info_t *)data;
690 pps->ppsinfo.current_mode = pps->ppsparam.mode;
691 *pipi = pps->ppsinfo;
692 return (0);
693 case PPS_IOC_KCBIND:
694 #ifdef PPS_SYNC
695 epi = (int *)data;
696 /* XXX Only root should be able to do this */
697 if (*epi & ~pps->ppscap)
698 return (EINVAL);
699 pps->kcmode = *epi;
700 return (0);
701 #else
702 return (EOPNOTSUPP);
703 #endif
704 default:
705 return (EPASSTHROUGH);
706 }
707 }
708
709 void
710 pps_init(struct pps_state *pps)
711 {
712 pps->ppscap |= PPS_TSFMT_TSPEC;
713 if (pps->ppscap & PPS_CAPTUREASSERT)
714 pps->ppscap |= PPS_OFFSETASSERT;
715 if (pps->ppscap & PPS_CAPTURECLEAR)
716 pps->ppscap |= PPS_OFFSETCLEAR;
717 }
718
719 void
720 pps_capture(struct pps_state *pps)
721 {
722 struct timehands *th;
723
724 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
725 th = timehands;
726 pps->capgen = th->th_generation;
727 pps->capth = th;
728 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
729 if (pps->capgen != th->th_generation)
730 pps->capgen = 0;
731 }
732
733 void
734 pps_event(struct pps_state *pps, int event)
735 {
736 struct bintime bt;
737 struct timespec ts, *tsp, *osp;
738 u_int tcount, *pcount;
739 int foff, fhard;
740 pps_seq_t *pseq;
741
742 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
743 /* If the timecounter was wound up underneath us, bail out. */
744 if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
745 return;
746
747 /* Things would be easier with arrays. */
748 if (event == PPS_CAPTUREASSERT) {
749 tsp = &pps->ppsinfo.assert_timestamp;
750 osp = &pps->ppsparam.assert_offset;
751 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
752 fhard = pps->kcmode & PPS_CAPTUREASSERT;
753 pcount = &pps->ppscount[0];
754 pseq = &pps->ppsinfo.assert_sequence;
755 } else {
756 tsp = &pps->ppsinfo.clear_timestamp;
757 osp = &pps->ppsparam.clear_offset;
758 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
759 fhard = pps->kcmode & PPS_CAPTURECLEAR;
760 pcount = &pps->ppscount[1];
761 pseq = &pps->ppsinfo.clear_sequence;
762 }
763
764 /*
765 * If the timecounter changed, we cannot compare the count values, so
766 * we have to drop the rest of the PPS-stuff until the next event.
767 */
768 if (pps->ppstc != pps->capth->th_counter) {
769 pps->ppstc = pps->capth->th_counter;
770 *pcount = pps->capcount;
771 pps->ppscount[2] = pps->capcount;
772 return;
773 }
774
775 /* Convert the count to a timespec. */
776 tcount = pps->capcount - pps->capth->th_offset_count;
777 tcount &= pps->capth->th_counter->tc_counter_mask;
778 bt = pps->capth->th_offset;
779 bintime_addx(&bt, pps->capth->th_scale * tcount);
780 bintime_add(&bt, &timebasebin);
781 bintime2timespec(&bt, &ts);
782
783 /* If the timecounter was wound up underneath us, bail out. */
784 if (pps->capgen != pps->capth->th_generation)
785 return;
786
787 *pcount = pps->capcount;
788 (*pseq)++;
789 *tsp = ts;
790
791 if (foff) {
792 timespecadd(tsp, osp, tsp);
793 if (tsp->tv_nsec < 0) {
794 tsp->tv_nsec += 1000000000;
795 tsp->tv_sec -= 1;
796 }
797 }
798 #ifdef PPS_SYNC
799 if (fhard) {
800 u_int64_t scale;
801
802 /*
803 * Feed the NTP PLL/FLL.
804 * The FLL wants to know how many (hardware) nanoseconds
805 * elapsed since the previous event.
806 */
807 tcount = pps->capcount - pps->ppscount[2];
808 pps->ppscount[2] = pps->capcount;
809 tcount &= pps->capth->th_counter->tc_counter_mask;
810 scale = (u_int64_t)1 << 63;
811 scale /= pps->capth->th_counter->tc_frequency;
812 scale *= 2;
813 bt.sec = 0;
814 bt.frac = 0;
815 bintime_addx(&bt, scale * tcount);
816 bintime2timespec(&bt, &ts);
817 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
818 }
819 #endif
820 }
821
822 /*
823 * Timecounters need to be updated every so often to prevent the hardware
824 * counter from overflowing. Updating also recalculates the cached values
825 * used by the get*() family of functions, so their precision depends on
826 * the update frequency.
827 */
828
829 static int tc_tick;
830
831 void
832 tc_ticktock(void)
833 {
834 static int count;
835
836 if (++count < tc_tick)
837 return;
838 count = 0;
839 tc_windup();
840 }
841
842 void
843 inittimecounter(void)
844 {
845 u_int p;
846
847 /*
848 * Set the initial timeout to
849 * max(1, <approx. number of hardclock ticks in a millisecond>).
850 * People should probably not use the sysctl to set the timeout
851 * to smaller than its inital value, since that value is the
852 * smallest reasonable one. If they want better timestamps they
853 * should use the non-"get"* functions.
854 */
855 if (hz > 1000)
856 tc_tick = (hz + 500) / 1000;
857 else
858 tc_tick = 1;
859 p = (tc_tick * 1000000) / hz;
860 aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
861 p / 1000, p % 1000);
862
863 /* warm up new timecounter (again) and get rolling. */
864 (void)timecounter->tc_get_timecount(timecounter);
865 (void)timecounter->tc_get_timecount(timecounter);
866 }
867
868 #endif /* __HAVE_TIMECOUNTER */
869