kern_tc.c revision 1.29 1 /* $NetBSD: kern_tc.c,v 1.29 2008/01/03 04:42:13 dyoung Exp $ */
2
3 /*-
4 * ----------------------------------------------------------------------------
5 * "THE BEER-WARE LICENSE" (Revision 42):
6 * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 * can do whatever you want with this stuff. If we meet some day, and you think
8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 * ---------------------------------------------------------------------------
10 */
11
12 #include <sys/cdefs.h>
13 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.29 2008/01/03 04:42:13 dyoung Exp $");
15
16 #include "opt_ntp.h"
17
18 #include <sys/param.h>
19 #ifdef __HAVE_TIMECOUNTER /* XXX */
20 #include <sys/kernel.h>
21 #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
22 #include <sys/sysctl.h>
23 #include <sys/syslog.h>
24 #include <sys/systm.h>
25 #include <sys/timepps.h>
26 #include <sys/timetc.h>
27 #include <sys/timex.h>
28 #include <sys/evcnt.h>
29 #include <sys/kauth.h>
30 #include <sys/mutex.h>
31 #include <sys/atomic.h>
32
33 /*
34 * A large step happens on boot. This constant detects such steps.
35 * It is relatively small so that ntp_update_second gets called enough
36 * in the typical 'missed a couple of seconds' case, but doesn't loop
37 * forever when the time step is large.
38 */
39 #define LARGE_STEP 200
40
41 /*
42 * Implement a dummy timecounter which we can use until we get a real one
43 * in the air. This allows the console and other early stuff to use
44 * time services.
45 */
46
47 static u_int
48 dummy_get_timecount(struct timecounter *tc)
49 {
50 static u_int now;
51
52 return (++now);
53 }
54
55 static struct timecounter dummy_timecounter = {
56 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
57 };
58
59 struct timehands {
60 /* These fields must be initialized by the driver. */
61 struct timecounter *th_counter;
62 int64_t th_adjustment;
63 u_int64_t th_scale;
64 u_int th_offset_count;
65 struct bintime th_offset;
66 struct timeval th_microtime;
67 struct timespec th_nanotime;
68 /* Fields not to be copied in tc_windup start with th_generation. */
69 volatile u_int th_generation;
70 struct timehands *th_next;
71 };
72
73 static struct timehands th0;
74 static struct timehands th9 = { .th_next = &th0, };
75 static struct timehands th8 = { .th_next = &th9, };
76 static struct timehands th7 = { .th_next = &th8, };
77 static struct timehands th6 = { .th_next = &th7, };
78 static struct timehands th5 = { .th_next = &th6, };
79 static struct timehands th4 = { .th_next = &th5, };
80 static struct timehands th3 = { .th_next = &th4, };
81 static struct timehands th2 = { .th_next = &th3, };
82 static struct timehands th1 = { .th_next = &th2, };
83 static struct timehands th0 = {
84 .th_counter = &dummy_timecounter,
85 .th_scale = (uint64_t)-1 / 1000000,
86 .th_offset = { .sec = 1, .frac = 0 },
87 .th_generation = 1,
88 .th_next = &th1,
89 };
90
91 static struct timehands *volatile timehands = &th0;
92 struct timecounter *timecounter = &dummy_timecounter;
93 static struct timecounter *timecounters = &dummy_timecounter;
94
95 time_t time_second = 1;
96 time_t time_uptime = 1;
97
98 static struct bintime timebasebin;
99
100 static int timestepwarnings;
101
102 extern kmutex_t time_lock;
103
104 #ifdef __FreeBSD__
105 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
106 ×tepwarnings, 0, "");
107 #endif /* __FreeBSD__ */
108
109 /*
110 * sysctl helper routine for kern.timercounter.hardware
111 */
112 static int
113 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
114 {
115 struct sysctlnode node;
116 int error;
117 char newname[MAX_TCNAMELEN];
118 struct timecounter *newtc, *tc;
119
120 tc = timecounter;
121
122 strlcpy(newname, tc->tc_name, sizeof(newname));
123
124 node = *rnode;
125 node.sysctl_data = newname;
126 node.sysctl_size = sizeof(newname);
127
128 error = sysctl_lookup(SYSCTLFN_CALL(&node));
129
130 if (error ||
131 newp == NULL ||
132 strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
133 return error;
134
135 if (l != NULL && (error = kauth_authorize_system(l->l_cred,
136 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
137 NULL, NULL)) != 0)
138 return (error);
139
140 if (!cold)
141 mutex_enter(&time_lock);
142 error = EINVAL;
143 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
144 if (strcmp(newname, newtc->tc_name) != 0)
145 continue;
146 /* Warm up new timecounter. */
147 (void)newtc->tc_get_timecount(newtc);
148 (void)newtc->tc_get_timecount(newtc);
149 timecounter = newtc;
150 error = 0;
151 break;
152 }
153 if (!cold)
154 mutex_exit(&time_lock);
155 return error;
156 }
157
158 static int
159 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
160 {
161 char buf[MAX_TCNAMELEN+48];
162 char *where = oldp;
163 const char *spc;
164 struct timecounter *tc;
165 size_t needed, left, slen;
166 int error;
167
168 if (newp != NULL)
169 return (EPERM);
170 if (namelen != 0)
171 return (EINVAL);
172
173 spc = "";
174 error = 0;
175 needed = 0;
176 left = *oldlenp;
177
178 mutex_enter(&time_lock);
179 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
180 if (where == NULL) {
181 needed += sizeof(buf); /* be conservative */
182 } else {
183 slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
184 " Hz)", spc, tc->tc_name, tc->tc_quality,
185 tc->tc_frequency);
186 if (left < slen + 1)
187 break;
188 /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
189 /* XXX copyout with held lock. */
190 error = copyout(buf, where, slen + 1);
191 spc = " ";
192 where += slen;
193 needed += slen;
194 left -= slen;
195 }
196 }
197 mutex_exit(&time_lock);
198
199 *oldlenp = needed;
200 return (error);
201 }
202
203 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
204 {
205 const struct sysctlnode *node;
206
207 sysctl_createv(clog, 0, NULL, &node,
208 CTLFLAG_PERMANENT,
209 CTLTYPE_NODE, "timecounter",
210 SYSCTL_DESCR("time counter information"),
211 NULL, 0, NULL, 0,
212 CTL_KERN, CTL_CREATE, CTL_EOL);
213
214 if (node != NULL) {
215 sysctl_createv(clog, 0, NULL, NULL,
216 CTLFLAG_PERMANENT,
217 CTLTYPE_STRING, "choice",
218 SYSCTL_DESCR("available counters"),
219 sysctl_kern_timecounter_choice, 0, NULL, 0,
220 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
221
222 sysctl_createv(clog, 0, NULL, NULL,
223 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
224 CTLTYPE_STRING, "hardware",
225 SYSCTL_DESCR("currently active time counter"),
226 sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
227 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
228
229 sysctl_createv(clog, 0, NULL, NULL,
230 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
231 CTLTYPE_INT, "timestepwarnings",
232 SYSCTL_DESCR("log time steps"),
233 NULL, 0, ×tepwarnings, 0,
234 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
235 }
236 }
237
238 #define TC_STATS(name) \
239 static struct evcnt n##name = \
240 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
241 EVCNT_ATTACH_STATIC(n##name)
242
243 TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
244 TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
245 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
246 TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
247 TC_STATS(setclock);
248
249 #undef TC_STATS
250
251 static void tc_windup(void);
252
253 /*
254 * Return the difference between the timehands' counter value now and what
255 * was when we copied it to the timehands' offset_count.
256 */
257 static __inline u_int
258 tc_delta(struct timehands *th)
259 {
260 struct timecounter *tc;
261
262 tc = th->th_counter;
263 return ((tc->tc_get_timecount(tc) -
264 th->th_offset_count) & tc->tc_counter_mask);
265 }
266
267 /*
268 * Functions for reading the time. We have to loop until we are sure that
269 * the timehands that we operated on was not updated under our feet. See
270 * the comment in <sys/timevar.h> for a description of these 12 functions.
271 */
272
273 void
274 binuptime(struct bintime *bt)
275 {
276 struct timehands *th;
277 u_int gen;
278
279 nbinuptime.ev_count++;
280 do {
281 th = timehands;
282 gen = th->th_generation;
283 *bt = th->th_offset;
284 bintime_addx(bt, th->th_scale * tc_delta(th));
285 } while (gen == 0 || gen != th->th_generation);
286 }
287
288 void
289 nanouptime(struct timespec *tsp)
290 {
291 struct bintime bt;
292
293 nnanouptime.ev_count++;
294 binuptime(&bt);
295 bintime2timespec(&bt, tsp);
296 }
297
298 void
299 microuptime(struct timeval *tvp)
300 {
301 struct bintime bt;
302
303 nmicrouptime.ev_count++;
304 binuptime(&bt);
305 bintime2timeval(&bt, tvp);
306 }
307
308 void
309 bintime(struct bintime *bt)
310 {
311
312 nbintime.ev_count++;
313 binuptime(bt);
314 bintime_add(bt, &timebasebin);
315 }
316
317 void
318 nanotime(struct timespec *tsp)
319 {
320 struct bintime bt;
321
322 nnanotime.ev_count++;
323 bintime(&bt);
324 bintime2timespec(&bt, tsp);
325 }
326
327 void
328 microtime(struct timeval *tvp)
329 {
330 struct bintime bt;
331
332 nmicrotime.ev_count++;
333 bintime(&bt);
334 bintime2timeval(&bt, tvp);
335 }
336
337 void
338 getbinuptime(struct bintime *bt)
339 {
340 struct timehands *th;
341 u_int gen;
342
343 ngetbinuptime.ev_count++;
344 do {
345 th = timehands;
346 gen = th->th_generation;
347 *bt = th->th_offset;
348 } while (gen == 0 || gen != th->th_generation);
349 }
350
351 void
352 getnanouptime(struct timespec *tsp)
353 {
354 struct timehands *th;
355 u_int gen;
356
357 ngetnanouptime.ev_count++;
358 do {
359 th = timehands;
360 gen = th->th_generation;
361 bintime2timespec(&th->th_offset, tsp);
362 } while (gen == 0 || gen != th->th_generation);
363 }
364
365 void
366 getmicrouptime(struct timeval *tvp)
367 {
368 struct timehands *th;
369 u_int gen;
370
371 ngetmicrouptime.ev_count++;
372 do {
373 th = timehands;
374 gen = th->th_generation;
375 bintime2timeval(&th->th_offset, tvp);
376 } while (gen == 0 || gen != th->th_generation);
377 }
378
379 void
380 getbintime(struct bintime *bt)
381 {
382 struct timehands *th;
383 u_int gen;
384
385 ngetbintime.ev_count++;
386 do {
387 th = timehands;
388 gen = th->th_generation;
389 *bt = th->th_offset;
390 } while (gen == 0 || gen != th->th_generation);
391 bintime_add(bt, &timebasebin);
392 }
393
394 void
395 getnanotime(struct timespec *tsp)
396 {
397 struct timehands *th;
398 u_int gen;
399
400 ngetnanotime.ev_count++;
401 do {
402 th = timehands;
403 gen = th->th_generation;
404 *tsp = th->th_nanotime;
405 } while (gen == 0 || gen != th->th_generation);
406 }
407
408 void
409 getmicrotime(struct timeval *tvp)
410 {
411 struct timehands *th;
412 u_int gen;
413
414 ngetmicrotime.ev_count++;
415 do {
416 th = timehands;
417 gen = th->th_generation;
418 *tvp = th->th_microtime;
419 } while (gen == 0 || gen != th->th_generation);
420 }
421
422 /*
423 * Initialize a new timecounter and possibly use it.
424 */
425 void
426 tc_init(struct timecounter *tc)
427 {
428 u_int u;
429 int s;
430
431 u = tc->tc_frequency / tc->tc_counter_mask;
432 /* XXX: We need some margin here, 10% is a guess */
433 u *= 11;
434 u /= 10;
435 if (u > hz && tc->tc_quality >= 0) {
436 tc->tc_quality = -2000;
437 aprint_verbose(
438 "timecounter: Timecounter \"%s\" frequency %ju Hz",
439 tc->tc_name, (uintmax_t)tc->tc_frequency);
440 aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
441 } else if (tc->tc_quality >= 0 || bootverbose) {
442 aprint_verbose(
443 "timecounter: Timecounter \"%s\" frequency %ju Hz "
444 "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
445 tc->tc_quality);
446 }
447
448 mutex_enter(&time_lock);
449 s = splsched();
450 tc->tc_next = timecounters;
451 timecounters = tc;
452 /*
453 * Never automatically use a timecounter with negative quality.
454 * Even though we run on the dummy counter, switching here may be
455 * worse since this timecounter may not be monotonous.
456 */
457 if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
458 (tc->tc_quality == timecounter->tc_quality &&
459 tc->tc_frequency > timecounter->tc_frequency))) {
460 (void)tc->tc_get_timecount(tc);
461 (void)tc->tc_get_timecount(tc);
462 timecounter = tc;
463 tc_windup();
464 }
465 splx(s);
466 mutex_exit(&time_lock);
467 }
468
469 /*
470 * Stop using a timecounter and remove it from the timecounters list.
471 */
472 int
473 tc_detach(struct timecounter *target)
474 {
475 struct timecounter *best, *tc;
476 struct timecounter **tcp = NULL;
477 int rc = 0, s;
478
479 mutex_enter(&time_lock);
480 for (tcp = &timecounters, tc = timecounters;
481 tc != NULL;
482 tcp = &tc->tc_next, tc = tc->tc_next) {
483 if (tc == target)
484 break;
485 }
486 if (tc == NULL) {
487 rc = ESRCH;
488 goto out;
489 }
490 *tcp = tc->tc_next;
491
492 if (timecounter != target)
493 goto out;
494
495 for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
496 if (tc->tc_quality > best->tc_quality)
497 best = tc;
498 else if (tc->tc_quality < best->tc_quality)
499 continue;
500 else if (tc->tc_frequency > best->tc_frequency)
501 best = tc;
502 }
503 s = splsched();
504 (void)best->tc_get_timecount(best);
505 (void)best->tc_get_timecount(best);
506 timecounter = best;
507 tc_windup();
508 splx(s);
509 out:
510 mutex_exit(&time_lock);
511 return rc;
512 }
513
514 /* Report the frequency of the current timecounter. */
515 u_int64_t
516 tc_getfrequency(void)
517 {
518
519 return (timehands->th_counter->tc_frequency);
520 }
521
522 /*
523 * Step our concept of UTC. This is done by modifying our estimate of
524 * when we booted.
525 * XXX: not locked.
526 */
527 void
528 tc_setclock(struct timespec *ts)
529 {
530 struct timespec ts2;
531 struct bintime bt, bt2;
532
533 nsetclock.ev_count++;
534 binuptime(&bt2);
535 timespec2bintime(ts, &bt);
536 bintime_sub(&bt, &bt2);
537 bintime_add(&bt2, &timebasebin);
538 timebasebin = bt;
539
540 /* XXX fiddle all the little crinkly bits around the fiords... */
541 tc_windup();
542 if (timestepwarnings) {
543 bintime2timespec(&bt2, &ts2);
544 log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
545 (intmax_t)ts2.tv_sec, ts2.tv_nsec,
546 (intmax_t)ts->tv_sec, ts->tv_nsec);
547 }
548 }
549
550 /*
551 * Initialize the next struct timehands in the ring and make
552 * it the active timehands. Along the way we might switch to a different
553 * timecounter and/or do seconds processing in NTP. Slightly magic.
554 */
555 static void
556 tc_windup(void)
557 {
558 struct bintime bt;
559 struct timehands *th, *tho;
560 u_int64_t scale;
561 u_int delta, ncount, ogen;
562 int i, s_update;
563 time_t t;
564
565 s_update = 0;
566
567 /*
568 * Make the next timehands a copy of the current one, but do not
569 * overwrite the generation or next pointer. While we update
570 * the contents, the generation must be zero. Ensure global
571 * visibility of the generation before proceeding.
572 */
573 tho = timehands;
574 th = tho->th_next;
575 ogen = th->th_generation;
576 th->th_generation = 0;
577 membar_producer();
578 bcopy(tho, th, offsetof(struct timehands, th_generation));
579
580 /*
581 * Capture a timecounter delta on the current timecounter and if
582 * changing timecounters, a counter value from the new timecounter.
583 * Update the offset fields accordingly.
584 */
585 delta = tc_delta(th);
586 if (th->th_counter != timecounter)
587 ncount = timecounter->tc_get_timecount(timecounter);
588 else
589 ncount = 0;
590 th->th_offset_count += delta;
591 th->th_offset_count &= th->th_counter->tc_counter_mask;
592 bintime_addx(&th->th_offset, th->th_scale * delta);
593
594 /*
595 * Hardware latching timecounters may not generate interrupts on
596 * PPS events, so instead we poll them. There is a finite risk that
597 * the hardware might capture a count which is later than the one we
598 * got above, and therefore possibly in the next NTP second which might
599 * have a different rate than the current NTP second. It doesn't
600 * matter in practice.
601 */
602 if (tho->th_counter->tc_poll_pps)
603 tho->th_counter->tc_poll_pps(tho->th_counter);
604
605 /*
606 * Deal with NTP second processing. The for loop normally
607 * iterates at most once, but in extreme situations it might
608 * keep NTP sane if timeouts are not run for several seconds.
609 * At boot, the time step can be large when the TOD hardware
610 * has been read, so on really large steps, we call
611 * ntp_update_second only twice. We need to call it twice in
612 * case we missed a leap second.
613 * If NTP is not compiled in ntp_update_second still calculates
614 * the adjustment resulting from adjtime() calls.
615 */
616 bt = th->th_offset;
617 bintime_add(&bt, &timebasebin);
618 i = bt.sec - tho->th_microtime.tv_sec;
619 if (i > LARGE_STEP)
620 i = 2;
621 for (; i > 0; i--) {
622 t = bt.sec;
623 ntp_update_second(&th->th_adjustment, &bt.sec);
624 s_update = 1;
625 if (bt.sec != t)
626 timebasebin.sec += bt.sec - t;
627 }
628
629 /* Update the UTC timestamps used by the get*() functions. */
630 /* XXX shouldn't do this here. Should force non-`get' versions. */
631 bintime2timeval(&bt, &th->th_microtime);
632 bintime2timespec(&bt, &th->th_nanotime);
633
634 /* Now is a good time to change timecounters. */
635 if (th->th_counter != timecounter) {
636 th->th_counter = timecounter;
637 th->th_offset_count = ncount;
638 s_update = 1;
639 }
640
641 /*-
642 * Recalculate the scaling factor. We want the number of 1/2^64
643 * fractions of a second per period of the hardware counter, taking
644 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
645 * processing provides us with.
646 *
647 * The th_adjustment is nanoseconds per second with 32 bit binary
648 * fraction and we want 64 bit binary fraction of second:
649 *
650 * x = a * 2^32 / 10^9 = a * 4.294967296
651 *
652 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
653 * we can only multiply by about 850 without overflowing, but that
654 * leaves suitably precise fractions for multiply before divide.
655 *
656 * Divide before multiply with a fraction of 2199/512 results in a
657 * systematic undercompensation of 10PPM of th_adjustment. On a
658 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
659 *
660 * We happily sacrifice the lowest of the 64 bits of our result
661 * to the goddess of code clarity.
662 *
663 */
664 if (s_update) {
665 scale = (u_int64_t)1 << 63;
666 scale += (th->th_adjustment / 1024) * 2199;
667 scale /= th->th_counter->tc_frequency;
668 th->th_scale = scale * 2;
669 }
670 /*
671 * Now that the struct timehands is again consistent, set the new
672 * generation number, making sure to not make it zero. Ensure
673 * changes are globally visible before changing.
674 */
675 if (++ogen == 0)
676 ogen = 1;
677 membar_producer();
678 th->th_generation = ogen;
679
680 /*
681 * Go live with the new struct timehands. Ensure changes are
682 * globally visible before changing.
683 */
684 time_second = th->th_microtime.tv_sec;
685 time_uptime = th->th_offset.sec;
686 membar_producer();
687 timehands = th;
688
689 /*
690 * Force users of the old timehand to move on. This is
691 * necessary for MP systems; we need to ensure that the
692 * consumers will move away from the old timehand before
693 * we begin updating it again when we eventually wrap
694 * around.
695 */
696 if (++tho->th_generation == 0)
697 tho->th_generation = 1;
698 }
699
700 /*
701 * RFC 2783 PPS-API implementation.
702 */
703
704 int
705 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
706 {
707 pps_params_t *app;
708 pps_info_t *pipi;
709 #ifdef PPS_SYNC
710 int *epi;
711 #endif
712
713 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
714 switch (cmd) {
715 case PPS_IOC_CREATE:
716 return (0);
717 case PPS_IOC_DESTROY:
718 return (0);
719 case PPS_IOC_SETPARAMS:
720 app = (pps_params_t *)data;
721 if (app->mode & ~pps->ppscap)
722 return (EINVAL);
723 pps->ppsparam = *app;
724 return (0);
725 case PPS_IOC_GETPARAMS:
726 app = (pps_params_t *)data;
727 *app = pps->ppsparam;
728 app->api_version = PPS_API_VERS_1;
729 return (0);
730 case PPS_IOC_GETCAP:
731 *(int*)data = pps->ppscap;
732 return (0);
733 case PPS_IOC_FETCH:
734 pipi = (pps_info_t *)data;
735 pps->ppsinfo.current_mode = pps->ppsparam.mode;
736 *pipi = pps->ppsinfo;
737 return (0);
738 case PPS_IOC_KCBIND:
739 #ifdef PPS_SYNC
740 epi = (int *)data;
741 /* XXX Only root should be able to do this */
742 if (*epi & ~pps->ppscap)
743 return (EINVAL);
744 pps->kcmode = *epi;
745 return (0);
746 #else
747 return (EOPNOTSUPP);
748 #endif
749 default:
750 return (EPASSTHROUGH);
751 }
752 }
753
754 void
755 pps_init(struct pps_state *pps)
756 {
757 pps->ppscap |= PPS_TSFMT_TSPEC;
758 if (pps->ppscap & PPS_CAPTUREASSERT)
759 pps->ppscap |= PPS_OFFSETASSERT;
760 if (pps->ppscap & PPS_CAPTURECLEAR)
761 pps->ppscap |= PPS_OFFSETCLEAR;
762 }
763
764 void
765 pps_capture(struct pps_state *pps)
766 {
767 struct timehands *th;
768
769 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
770 th = timehands;
771 pps->capgen = th->th_generation;
772 pps->capth = th;
773 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
774 if (pps->capgen != th->th_generation)
775 pps->capgen = 0;
776 }
777
778 void
779 pps_event(struct pps_state *pps, int event)
780 {
781 struct bintime bt;
782 struct timespec ts, *tsp, *osp;
783 u_int tcount, *pcount;
784 int foff, fhard;
785 pps_seq_t *pseq;
786
787 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
788 /* If the timecounter was wound up underneath us, bail out. */
789 if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
790 return;
791
792 /* Things would be easier with arrays. */
793 if (event == PPS_CAPTUREASSERT) {
794 tsp = &pps->ppsinfo.assert_timestamp;
795 osp = &pps->ppsparam.assert_offset;
796 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
797 fhard = pps->kcmode & PPS_CAPTUREASSERT;
798 pcount = &pps->ppscount[0];
799 pseq = &pps->ppsinfo.assert_sequence;
800 } else {
801 tsp = &pps->ppsinfo.clear_timestamp;
802 osp = &pps->ppsparam.clear_offset;
803 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
804 fhard = pps->kcmode & PPS_CAPTURECLEAR;
805 pcount = &pps->ppscount[1];
806 pseq = &pps->ppsinfo.clear_sequence;
807 }
808
809 /*
810 * If the timecounter changed, we cannot compare the count values, so
811 * we have to drop the rest of the PPS-stuff until the next event.
812 */
813 if (pps->ppstc != pps->capth->th_counter) {
814 pps->ppstc = pps->capth->th_counter;
815 *pcount = pps->capcount;
816 pps->ppscount[2] = pps->capcount;
817 return;
818 }
819
820 /* Convert the count to a timespec. */
821 tcount = pps->capcount - pps->capth->th_offset_count;
822 tcount &= pps->capth->th_counter->tc_counter_mask;
823 bt = pps->capth->th_offset;
824 bintime_addx(&bt, pps->capth->th_scale * tcount);
825 bintime_add(&bt, &timebasebin);
826 bintime2timespec(&bt, &ts);
827
828 /* If the timecounter was wound up underneath us, bail out. */
829 if (pps->capgen != pps->capth->th_generation)
830 return;
831
832 *pcount = pps->capcount;
833 (*pseq)++;
834 *tsp = ts;
835
836 if (foff) {
837 timespecadd(tsp, osp, tsp);
838 if (tsp->tv_nsec < 0) {
839 tsp->tv_nsec += 1000000000;
840 tsp->tv_sec -= 1;
841 }
842 }
843 #ifdef PPS_SYNC
844 if (fhard) {
845 u_int64_t scale;
846
847 /*
848 * Feed the NTP PLL/FLL.
849 * The FLL wants to know how many (hardware) nanoseconds
850 * elapsed since the previous event.
851 */
852 tcount = pps->capcount - pps->ppscount[2];
853 pps->ppscount[2] = pps->capcount;
854 tcount &= pps->capth->th_counter->tc_counter_mask;
855 scale = (u_int64_t)1 << 63;
856 scale /= pps->capth->th_counter->tc_frequency;
857 scale *= 2;
858 bt.sec = 0;
859 bt.frac = 0;
860 bintime_addx(&bt, scale * tcount);
861 bintime2timespec(&bt, &ts);
862 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
863 }
864 #endif
865 }
866
867 /*
868 * Timecounters need to be updated every so often to prevent the hardware
869 * counter from overflowing. Updating also recalculates the cached values
870 * used by the get*() family of functions, so their precision depends on
871 * the update frequency.
872 */
873
874 static int tc_tick;
875
876 void
877 tc_ticktock(void)
878 {
879 static int count;
880
881 if (++count < tc_tick)
882 return;
883 count = 0;
884 tc_windup();
885 }
886
887 void
888 inittimecounter(void)
889 {
890 u_int p;
891
892 /*
893 * Set the initial timeout to
894 * max(1, <approx. number of hardclock ticks in a millisecond>).
895 * People should probably not use the sysctl to set the timeout
896 * to smaller than its inital value, since that value is the
897 * smallest reasonable one. If they want better timestamps they
898 * should use the non-"get"* functions.
899 */
900 if (hz > 1000)
901 tc_tick = (hz + 500) / 1000;
902 else
903 tc_tick = 1;
904 p = (tc_tick * 1000000) / hz;
905 aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
906 p / 1000, p % 1000);
907
908 /* warm up new timecounter (again) and get rolling. */
909 (void)timecounter->tc_get_timecount(timecounter);
910 (void)timecounter->tc_get_timecount(timecounter);
911 }
912
913 #endif /* __HAVE_TIMECOUNTER */
914