Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.3.4.8
      1 /* $NetBSD: kern_tc.c,v 1.3.4.8 2008/01/21 09:46:14 yamt Exp $ */
      2 
      3 /*-
      4  * ----------------------------------------------------------------------------
      5  * "THE BEER-WARE LICENSE" (Revision 42):
      6  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
      7  * can do whatever you want with this stuff. If we meet some day, and you think
      8  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
      9  * ---------------------------------------------------------------------------
     10  */
     11 
     12 #include <sys/cdefs.h>
     13 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     14 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.3.4.8 2008/01/21 09:46:14 yamt Exp $");
     15 
     16 #include "opt_ntp.h"
     17 
     18 #include <sys/param.h>
     19 #include <sys/kernel.h>
     20 #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     21 #include <sys/sysctl.h>
     22 #include <sys/syslog.h>
     23 #include <sys/systm.h>
     24 #include <sys/timepps.h>
     25 #include <sys/timetc.h>
     26 #include <sys/timex.h>
     27 #include <sys/evcnt.h>
     28 #include <sys/kauth.h>
     29 #include <sys/mutex.h>
     30 #include <sys/atomic.h>
     31 
     32 /*
     33  * A large step happens on boot.  This constant detects such steps.
     34  * It is relatively small so that ntp_update_second gets called enough
     35  * in the typical 'missed a couple of seconds' case, but doesn't loop
     36  * forever when the time step is large.
     37  */
     38 #define LARGE_STEP	200
     39 
     40 /*
     41  * Implement a dummy timecounter which we can use until we get a real one
     42  * in the air.  This allows the console and other early stuff to use
     43  * time services.
     44  */
     45 
     46 static u_int
     47 dummy_get_timecount(struct timecounter *tc)
     48 {
     49 	static u_int now;
     50 
     51 	return (++now);
     52 }
     53 
     54 static struct timecounter dummy_timecounter = {
     55 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
     56 };
     57 
     58 struct timehands {
     59 	/* These fields must be initialized by the driver. */
     60 	struct timecounter	*th_counter;
     61 	int64_t			th_adjustment;
     62 	u_int64_t		th_scale;
     63 	u_int	 		th_offset_count;
     64 	struct bintime		th_offset;
     65 	struct timeval		th_microtime;
     66 	struct timespec		th_nanotime;
     67 	/* Fields not to be copied in tc_windup start with th_generation. */
     68 	volatile u_int		th_generation;
     69 	struct timehands	*th_next;
     70 };
     71 
     72 static struct timehands th0;
     73 static struct timehands th9 = { .th_next = &th0, };
     74 static struct timehands th8 = { .th_next = &th9, };
     75 static struct timehands th7 = { .th_next = &th8, };
     76 static struct timehands th6 = { .th_next = &th7, };
     77 static struct timehands th5 = { .th_next = &th6, };
     78 static struct timehands th4 = { .th_next = &th5, };
     79 static struct timehands th3 = { .th_next = &th4, };
     80 static struct timehands th2 = { .th_next = &th3, };
     81 static struct timehands th1 = { .th_next = &th2, };
     82 static struct timehands th0 = {
     83 	.th_counter = &dummy_timecounter,
     84 	.th_scale = (uint64_t)-1 / 1000000,
     85 	.th_offset = { .sec = 1, .frac = 0 },
     86 	.th_generation = 1,
     87 	.th_next = &th1,
     88 };
     89 
     90 static struct timehands *volatile timehands = &th0;
     91 struct timecounter *timecounter = &dummy_timecounter;
     92 static struct timecounter *timecounters = &dummy_timecounter;
     93 
     94 time_t time_second = 1;
     95 time_t time_uptime = 1;
     96 
     97 static struct bintime timebasebin;
     98 
     99 static int timestepwarnings;
    100 
    101 extern kmutex_t time_lock;
    102 static kmutex_t tc_windup_lock;
    103 
    104 #ifdef __FreeBSD__
    105 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    106     &timestepwarnings, 0, "");
    107 #endif /* __FreeBSD__ */
    108 
    109 /*
    110  * sysctl helper routine for kern.timercounter.hardware
    111  */
    112 static int
    113 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    114 {
    115 	struct sysctlnode node;
    116 	int error;
    117 	char newname[MAX_TCNAMELEN];
    118 	struct timecounter *newtc, *tc;
    119 
    120 	tc = timecounter;
    121 
    122 	strlcpy(newname, tc->tc_name, sizeof(newname));
    123 
    124 	node = *rnode;
    125 	node.sysctl_data = newname;
    126 	node.sysctl_size = sizeof(newname);
    127 
    128 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    129 
    130 	if (error ||
    131 	    newp == NULL ||
    132 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    133 		return error;
    134 
    135 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
    136 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
    137 	    NULL, NULL)) != 0)
    138 		return (error);
    139 
    140 	if (!cold)
    141 		mutex_enter(&time_lock);
    142 	error = EINVAL;
    143 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    144 		if (strcmp(newname, newtc->tc_name) != 0)
    145 			continue;
    146 		/* Warm up new timecounter. */
    147 		(void)newtc->tc_get_timecount(newtc);
    148 		(void)newtc->tc_get_timecount(newtc);
    149 		timecounter = newtc;
    150 		error = 0;
    151 		break;
    152 	}
    153 	if (!cold)
    154 		mutex_exit(&time_lock);
    155 	return error;
    156 }
    157 
    158 static int
    159 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    160 {
    161 	char buf[MAX_TCNAMELEN+48];
    162 	char *where = oldp;
    163 	const char *spc;
    164 	struct timecounter *tc;
    165 	size_t needed, left, slen;
    166 	int error;
    167 
    168 	if (newp != NULL)
    169 		return (EPERM);
    170 	if (namelen != 0)
    171 		return (EINVAL);
    172 
    173 	spc = "";
    174 	error = 0;
    175 	needed = 0;
    176 	left = *oldlenp;
    177 
    178 	mutex_enter(&time_lock);
    179 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    180 		if (where == NULL) {
    181 			needed += sizeof(buf);  /* be conservative */
    182 		} else {
    183 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    184 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    185 					tc->tc_frequency);
    186 			if (left < slen + 1)
    187 				break;
    188 			/* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
    189 			/* XXX copyout with held lock. */
    190 			error = copyout(buf, where, slen + 1);
    191 			spc = " ";
    192 			where += slen;
    193 			needed += slen;
    194 			left -= slen;
    195 		}
    196 	}
    197 	mutex_exit(&time_lock);
    198 
    199 	*oldlenp = needed;
    200 	return (error);
    201 }
    202 
    203 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    204 {
    205 	const struct sysctlnode *node;
    206 
    207 	sysctl_createv(clog, 0, NULL, &node,
    208 		       CTLFLAG_PERMANENT,
    209 		       CTLTYPE_NODE, "timecounter",
    210 		       SYSCTL_DESCR("time counter information"),
    211 		       NULL, 0, NULL, 0,
    212 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    213 
    214 	if (node != NULL) {
    215 		sysctl_createv(clog, 0, NULL, NULL,
    216 			       CTLFLAG_PERMANENT,
    217 			       CTLTYPE_STRING, "choice",
    218 			       SYSCTL_DESCR("available counters"),
    219 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    220 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    221 
    222 		sysctl_createv(clog, 0, NULL, NULL,
    223 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    224 			       CTLTYPE_STRING, "hardware",
    225 			       SYSCTL_DESCR("currently active time counter"),
    226 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    227 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    228 
    229 		sysctl_createv(clog, 0, NULL, NULL,
    230 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    231 			       CTLTYPE_INT, "timestepwarnings",
    232 			       SYSCTL_DESCR("log time steps"),
    233 			       NULL, 0, &timestepwarnings, 0,
    234 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    235 	}
    236 }
    237 
    238 #define	TC_STATS(name)							\
    239 static struct evcnt n##name =						\
    240     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    241 EVCNT_ATTACH_STATIC(n##name)
    242 
    243 TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    244 TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    245 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    246 TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    247 TC_STATS(setclock);
    248 
    249 #undef TC_STATS
    250 
    251 static void tc_windup(void);
    252 
    253 /*
    254  * Return the difference between the timehands' counter value now and what
    255  * was when we copied it to the timehands' offset_count.
    256  */
    257 static __inline u_int
    258 tc_delta(struct timehands *th)
    259 {
    260 	struct timecounter *tc;
    261 
    262 	tc = th->th_counter;
    263 	return ((tc->tc_get_timecount(tc) -
    264 		 th->th_offset_count) & tc->tc_counter_mask);
    265 }
    266 
    267 /*
    268  * Functions for reading the time.  We have to loop until we are sure that
    269  * the timehands that we operated on was not updated under our feet.  See
    270  * the comment in <sys/timevar.h> for a description of these 12 functions.
    271  */
    272 
    273 void
    274 binuptime(struct bintime *bt)
    275 {
    276 	struct timehands *th;
    277 	u_int gen;
    278 
    279 	nbinuptime.ev_count++;
    280 	do {
    281 		th = timehands;
    282 		gen = th->th_generation;
    283 		*bt = th->th_offset;
    284 		bintime_addx(bt, th->th_scale * tc_delta(th));
    285 	} while (gen == 0 || gen != th->th_generation);
    286 }
    287 
    288 void
    289 nanouptime(struct timespec *tsp)
    290 {
    291 	struct bintime bt;
    292 
    293 	nnanouptime.ev_count++;
    294 	binuptime(&bt);
    295 	bintime2timespec(&bt, tsp);
    296 }
    297 
    298 void
    299 microuptime(struct timeval *tvp)
    300 {
    301 	struct bintime bt;
    302 
    303 	nmicrouptime.ev_count++;
    304 	binuptime(&bt);
    305 	bintime2timeval(&bt, tvp);
    306 }
    307 
    308 void
    309 bintime(struct bintime *bt)
    310 {
    311 
    312 	nbintime.ev_count++;
    313 	binuptime(bt);
    314 	bintime_add(bt, &timebasebin);
    315 }
    316 
    317 void
    318 nanotime(struct timespec *tsp)
    319 {
    320 	struct bintime bt;
    321 
    322 	nnanotime.ev_count++;
    323 	bintime(&bt);
    324 	bintime2timespec(&bt, tsp);
    325 }
    326 
    327 void
    328 microtime(struct timeval *tvp)
    329 {
    330 	struct bintime bt;
    331 
    332 	nmicrotime.ev_count++;
    333 	bintime(&bt);
    334 	bintime2timeval(&bt, tvp);
    335 }
    336 
    337 void
    338 getbinuptime(struct bintime *bt)
    339 {
    340 	struct timehands *th;
    341 	u_int gen;
    342 
    343 	ngetbinuptime.ev_count++;
    344 	do {
    345 		th = timehands;
    346 		gen = th->th_generation;
    347 		*bt = th->th_offset;
    348 	} while (gen == 0 || gen != th->th_generation);
    349 }
    350 
    351 void
    352 getnanouptime(struct timespec *tsp)
    353 {
    354 	struct timehands *th;
    355 	u_int gen;
    356 
    357 	ngetnanouptime.ev_count++;
    358 	do {
    359 		th = timehands;
    360 		gen = th->th_generation;
    361 		bintime2timespec(&th->th_offset, tsp);
    362 	} while (gen == 0 || gen != th->th_generation);
    363 }
    364 
    365 void
    366 getmicrouptime(struct timeval *tvp)
    367 {
    368 	struct timehands *th;
    369 	u_int gen;
    370 
    371 	ngetmicrouptime.ev_count++;
    372 	do {
    373 		th = timehands;
    374 		gen = th->th_generation;
    375 		bintime2timeval(&th->th_offset, tvp);
    376 	} while (gen == 0 || gen != th->th_generation);
    377 }
    378 
    379 void
    380 getbintime(struct bintime *bt)
    381 {
    382 	struct timehands *th;
    383 	u_int gen;
    384 
    385 	ngetbintime.ev_count++;
    386 	do {
    387 		th = timehands;
    388 		gen = th->th_generation;
    389 		*bt = th->th_offset;
    390 	} while (gen == 0 || gen != th->th_generation);
    391 	bintime_add(bt, &timebasebin);
    392 }
    393 
    394 void
    395 getnanotime(struct timespec *tsp)
    396 {
    397 	struct timehands *th;
    398 	u_int gen;
    399 
    400 	ngetnanotime.ev_count++;
    401 	do {
    402 		th = timehands;
    403 		gen = th->th_generation;
    404 		*tsp = th->th_nanotime;
    405 	} while (gen == 0 || gen != th->th_generation);
    406 }
    407 
    408 void
    409 getmicrotime(struct timeval *tvp)
    410 {
    411 	struct timehands *th;
    412 	u_int gen;
    413 
    414 	ngetmicrotime.ev_count++;
    415 	do {
    416 		th = timehands;
    417 		gen = th->th_generation;
    418 		*tvp = th->th_microtime;
    419 	} while (gen == 0 || gen != th->th_generation);
    420 }
    421 
    422 /*
    423  * Initialize a new timecounter and possibly use it.
    424  */
    425 void
    426 tc_init(struct timecounter *tc)
    427 {
    428 	u_int u;
    429 
    430 	u = tc->tc_frequency / tc->tc_counter_mask;
    431 	/* XXX: We need some margin here, 10% is a guess */
    432 	u *= 11;
    433 	u /= 10;
    434 	if (u > hz && tc->tc_quality >= 0) {
    435 		tc->tc_quality = -2000;
    436 		aprint_verbose(
    437 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
    438 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    439 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
    440 	} else if (tc->tc_quality >= 0 || bootverbose) {
    441 		aprint_verbose(
    442 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
    443 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
    444 		    tc->tc_quality);
    445 	}
    446 
    447 	mutex_enter(&time_lock);
    448 	mutex_spin_enter(&tc_windup_lock);
    449 	tc->tc_next = timecounters;
    450 	timecounters = tc;
    451 	/*
    452 	 * Never automatically use a timecounter with negative quality.
    453 	 * Even though we run on the dummy counter, switching here may be
    454 	 * worse since this timecounter may not be monotonous.
    455 	 */
    456 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
    457 	    (tc->tc_quality == timecounter->tc_quality &&
    458 	    tc->tc_frequency > timecounter->tc_frequency))) {
    459 		(void)tc->tc_get_timecount(tc);
    460 		(void)tc->tc_get_timecount(tc);
    461 		timecounter = tc;
    462 		tc_windup();
    463 	}
    464 	mutex_spin_exit(&tc_windup_lock);
    465 	mutex_exit(&time_lock);
    466 }
    467 
    468 /*
    469  * Stop using a timecounter and remove it from the timecounters list.
    470  */
    471 int
    472 tc_detach(struct timecounter *target)
    473 {
    474 	struct timecounter *best, *tc;
    475 	struct timecounter **tcp = NULL;
    476 	int rc = 0;
    477 
    478 	mutex_enter(&time_lock);
    479 	for (tcp = &timecounters, tc = timecounters;
    480 	     tc != NULL;
    481 	     tcp = &tc->tc_next, tc = tc->tc_next) {
    482 		if (tc == target)
    483 			break;
    484 	}
    485 	if (tc == NULL) {
    486 		rc = ESRCH;
    487 		goto out;
    488 	}
    489 	*tcp = tc->tc_next;
    490 
    491 	if (timecounter != target)
    492 		goto out;
    493 
    494 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
    495 		if (tc->tc_quality > best->tc_quality)
    496 			best = tc;
    497 		else if (tc->tc_quality < best->tc_quality)
    498 			continue;
    499 		else if (tc->tc_frequency > best->tc_frequency)
    500 			best = tc;
    501 	}
    502 	mutex_spin_enter(&tc_windup_lock);
    503 	(void)best->tc_get_timecount(best);
    504 	(void)best->tc_get_timecount(best);
    505 	timecounter = best;
    506 	tc_windup();
    507 	mutex_spin_exit(&tc_windup_lock);
    508 out:
    509 	mutex_exit(&time_lock);
    510 	return rc;
    511 }
    512 
    513 /* Report the frequency of the current timecounter. */
    514 u_int64_t
    515 tc_getfrequency(void)
    516 {
    517 
    518 	return (timehands->th_counter->tc_frequency);
    519 }
    520 
    521 /*
    522  * Step our concept of UTC.  This is done by modifying our estimate of
    523  * when we booted.
    524  */
    525 void
    526 tc_setclock(struct timespec *ts)
    527 {
    528 	struct timespec ts2;
    529 	struct bintime bt, bt2;
    530 
    531 	mutex_spin_enter(&tc_windup_lock);
    532 	nsetclock.ev_count++;
    533 	binuptime(&bt2);
    534 	timespec2bintime(ts, &bt);
    535 	bintime_sub(&bt, &bt2);
    536 	bintime_add(&bt2, &timebasebin);
    537 	timebasebin = bt;
    538 	tc_windup();
    539 	mutex_spin_exit(&tc_windup_lock);
    540 
    541 	if (timestepwarnings) {
    542 		bintime2timespec(&bt2, &ts2);
    543 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
    544 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
    545 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
    546 	}
    547 }
    548 
    549 /*
    550  * Initialize the next struct timehands in the ring and make
    551  * it the active timehands.  Along the way we might switch to a different
    552  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    553  */
    554 static void
    555 tc_windup(void)
    556 {
    557 	struct bintime bt;
    558 	struct timehands *th, *tho;
    559 	u_int64_t scale;
    560 	u_int delta, ncount, ogen;
    561 	int i, s_update;
    562 	time_t t;
    563 
    564 	KASSERT(mutex_owned(&tc_windup_lock));
    565 
    566 	s_update = 0;
    567 
    568 	/*
    569 	 * Make the next timehands a copy of the current one, but do not
    570 	 * overwrite the generation or next pointer.  While we update
    571 	 * the contents, the generation must be zero.  Ensure global
    572 	 * visibility of the generation before proceeding.
    573 	 */
    574 	tho = timehands;
    575 	th = tho->th_next;
    576 	ogen = th->th_generation;
    577 	th->th_generation = 0;
    578 	membar_producer();
    579 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    580 
    581 	/*
    582 	 * Capture a timecounter delta on the current timecounter and if
    583 	 * changing timecounters, a counter value from the new timecounter.
    584 	 * Update the offset fields accordingly.
    585 	 */
    586 	delta = tc_delta(th);
    587 	if (th->th_counter != timecounter)
    588 		ncount = timecounter->tc_get_timecount(timecounter);
    589 	else
    590 		ncount = 0;
    591 	th->th_offset_count += delta;
    592 	th->th_offset_count &= th->th_counter->tc_counter_mask;
    593 	bintime_addx(&th->th_offset, th->th_scale * delta);
    594 
    595 	/*
    596 	 * Hardware latching timecounters may not generate interrupts on
    597 	 * PPS events, so instead we poll them.  There is a finite risk that
    598 	 * the hardware might capture a count which is later than the one we
    599 	 * got above, and therefore possibly in the next NTP second which might
    600 	 * have a different rate than the current NTP second.  It doesn't
    601 	 * matter in practice.
    602 	 */
    603 	if (tho->th_counter->tc_poll_pps)
    604 		tho->th_counter->tc_poll_pps(tho->th_counter);
    605 
    606 	/*
    607 	 * Deal with NTP second processing.  The for loop normally
    608 	 * iterates at most once, but in extreme situations it might
    609 	 * keep NTP sane if timeouts are not run for several seconds.
    610 	 * At boot, the time step can be large when the TOD hardware
    611 	 * has been read, so on really large steps, we call
    612 	 * ntp_update_second only twice.  We need to call it twice in
    613 	 * case we missed a leap second.
    614 	 * If NTP is not compiled in ntp_update_second still calculates
    615 	 * the adjustment resulting from adjtime() calls.
    616 	 */
    617 	bt = th->th_offset;
    618 	bintime_add(&bt, &timebasebin);
    619 	i = bt.sec - tho->th_microtime.tv_sec;
    620 	if (i > LARGE_STEP)
    621 		i = 2;
    622 	for (; i > 0; i--) {
    623 		t = bt.sec;
    624 		ntp_update_second(&th->th_adjustment, &bt.sec);
    625 		s_update = 1;
    626 		if (bt.sec != t)
    627 			timebasebin.sec += bt.sec - t;
    628 	}
    629 
    630 	/* Update the UTC timestamps used by the get*() functions. */
    631 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    632 	bintime2timeval(&bt, &th->th_microtime);
    633 	bintime2timespec(&bt, &th->th_nanotime);
    634 
    635 	/* Now is a good time to change timecounters. */
    636 	if (th->th_counter != timecounter) {
    637 		th->th_counter = timecounter;
    638 		th->th_offset_count = ncount;
    639 		s_update = 1;
    640 	}
    641 
    642 	/*-
    643 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    644 	 * fractions of a second per period of the hardware counter, taking
    645 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    646 	 * processing provides us with.
    647 	 *
    648 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    649 	 * fraction and we want 64 bit binary fraction of second:
    650 	 *
    651 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    652 	 *
    653 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    654 	 * we can only multiply by about 850 without overflowing, but that
    655 	 * leaves suitably precise fractions for multiply before divide.
    656 	 *
    657 	 * Divide before multiply with a fraction of 2199/512 results in a
    658 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    659 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    660  	 *
    661 	 * We happily sacrifice the lowest of the 64 bits of our result
    662 	 * to the goddess of code clarity.
    663 	 *
    664 	 */
    665 	if (s_update) {
    666 		scale = (u_int64_t)1 << 63;
    667 		scale += (th->th_adjustment / 1024) * 2199;
    668 		scale /= th->th_counter->tc_frequency;
    669 		th->th_scale = scale * 2;
    670 	}
    671 	/*
    672 	 * Now that the struct timehands is again consistent, set the new
    673 	 * generation number, making sure to not make it zero.  Ensure
    674 	 * changes are globally visible before changing.
    675 	 */
    676 	if (++ogen == 0)
    677 		ogen = 1;
    678 	membar_producer();
    679 	th->th_generation = ogen;
    680 
    681 	/*
    682 	 * Go live with the new struct timehands.  Ensure changes are
    683 	 * globally visible before changing.
    684 	 */
    685 	time_second = th->th_microtime.tv_sec;
    686 	time_uptime = th->th_offset.sec;
    687 	membar_producer();
    688 	timehands = th;
    689 
    690 	/*
    691 	 * Force users of the old timehand to move on.  This is
    692 	 * necessary for MP systems; we need to ensure that the
    693 	 * consumers will move away from the old timehand before
    694 	 * we begin updating it again when we eventually wrap
    695 	 * around.
    696 	 */
    697 	if (++tho->th_generation == 0)
    698 		tho->th_generation = 1;
    699 }
    700 
    701 /*
    702  * RFC 2783 PPS-API implementation.
    703  */
    704 
    705 int
    706 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
    707 {
    708 	pps_params_t *app;
    709 	pps_info_t *pipi;
    710 #ifdef PPS_SYNC
    711 	int *epi;
    712 #endif
    713 
    714 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
    715 	switch (cmd) {
    716 	case PPS_IOC_CREATE:
    717 		return (0);
    718 	case PPS_IOC_DESTROY:
    719 		return (0);
    720 	case PPS_IOC_SETPARAMS:
    721 		app = (pps_params_t *)data;
    722 		if (app->mode & ~pps->ppscap)
    723 			return (EINVAL);
    724 		pps->ppsparam = *app;
    725 		return (0);
    726 	case PPS_IOC_GETPARAMS:
    727 		app = (pps_params_t *)data;
    728 		*app = pps->ppsparam;
    729 		app->api_version = PPS_API_VERS_1;
    730 		return (0);
    731 	case PPS_IOC_GETCAP:
    732 		*(int*)data = pps->ppscap;
    733 		return (0);
    734 	case PPS_IOC_FETCH:
    735 		pipi = (pps_info_t *)data;
    736 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    737 		*pipi = pps->ppsinfo;
    738 		return (0);
    739 	case PPS_IOC_KCBIND:
    740 #ifdef PPS_SYNC
    741 		epi = (int *)data;
    742 		/* XXX Only root should be able to do this */
    743 		if (*epi & ~pps->ppscap)
    744 			return (EINVAL);
    745 		pps->kcmode = *epi;
    746 		return (0);
    747 #else
    748 		return (EOPNOTSUPP);
    749 #endif
    750 	default:
    751 		return (EPASSTHROUGH);
    752 	}
    753 }
    754 
    755 void
    756 pps_init(struct pps_state *pps)
    757 {
    758 	pps->ppscap |= PPS_TSFMT_TSPEC;
    759 	if (pps->ppscap & PPS_CAPTUREASSERT)
    760 		pps->ppscap |= PPS_OFFSETASSERT;
    761 	if (pps->ppscap & PPS_CAPTURECLEAR)
    762 		pps->ppscap |= PPS_OFFSETCLEAR;
    763 }
    764 
    765 void
    766 pps_capture(struct pps_state *pps)
    767 {
    768 	struct timehands *th;
    769 
    770 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
    771 	th = timehands;
    772 	pps->capgen = th->th_generation;
    773 	pps->capth = th;
    774 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
    775 	if (pps->capgen != th->th_generation)
    776 		pps->capgen = 0;
    777 }
    778 
    779 void
    780 pps_event(struct pps_state *pps, int event)
    781 {
    782 	struct bintime bt;
    783 	struct timespec ts, *tsp, *osp;
    784 	u_int tcount, *pcount;
    785 	int foff, fhard;
    786 	pps_seq_t *pseq;
    787 
    788 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
    789 	/* If the timecounter was wound up underneath us, bail out. */
    790 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
    791 		return;
    792 
    793 	/* Things would be easier with arrays. */
    794 	if (event == PPS_CAPTUREASSERT) {
    795 		tsp = &pps->ppsinfo.assert_timestamp;
    796 		osp = &pps->ppsparam.assert_offset;
    797 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
    798 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
    799 		pcount = &pps->ppscount[0];
    800 		pseq = &pps->ppsinfo.assert_sequence;
    801 	} else {
    802 		tsp = &pps->ppsinfo.clear_timestamp;
    803 		osp = &pps->ppsparam.clear_offset;
    804 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
    805 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
    806 		pcount = &pps->ppscount[1];
    807 		pseq = &pps->ppsinfo.clear_sequence;
    808 	}
    809 
    810 	/*
    811 	 * If the timecounter changed, we cannot compare the count values, so
    812 	 * we have to drop the rest of the PPS-stuff until the next event.
    813 	 */
    814 	if (pps->ppstc != pps->capth->th_counter) {
    815 		pps->ppstc = pps->capth->th_counter;
    816 		*pcount = pps->capcount;
    817 		pps->ppscount[2] = pps->capcount;
    818 		return;
    819 	}
    820 
    821 	/* Convert the count to a timespec. */
    822 	tcount = pps->capcount - pps->capth->th_offset_count;
    823 	tcount &= pps->capth->th_counter->tc_counter_mask;
    824 	bt = pps->capth->th_offset;
    825 	bintime_addx(&bt, pps->capth->th_scale * tcount);
    826 	bintime_add(&bt, &timebasebin);
    827 	bintime2timespec(&bt, &ts);
    828 
    829 	/* If the timecounter was wound up underneath us, bail out. */
    830 	if (pps->capgen != pps->capth->th_generation)
    831 		return;
    832 
    833 	*pcount = pps->capcount;
    834 	(*pseq)++;
    835 	*tsp = ts;
    836 
    837 	if (foff) {
    838 		timespecadd(tsp, osp, tsp);
    839 		if (tsp->tv_nsec < 0) {
    840 			tsp->tv_nsec += 1000000000;
    841 			tsp->tv_sec -= 1;
    842 		}
    843 	}
    844 #ifdef PPS_SYNC
    845 	if (fhard) {
    846 		u_int64_t scale;
    847 
    848 		/*
    849 		 * Feed the NTP PLL/FLL.
    850 		 * The FLL wants to know how many (hardware) nanoseconds
    851 		 * elapsed since the previous event.
    852 		 */
    853 		tcount = pps->capcount - pps->ppscount[2];
    854 		pps->ppscount[2] = pps->capcount;
    855 		tcount &= pps->capth->th_counter->tc_counter_mask;
    856 		scale = (u_int64_t)1 << 63;
    857 		scale /= pps->capth->th_counter->tc_frequency;
    858 		scale *= 2;
    859 		bt.sec = 0;
    860 		bt.frac = 0;
    861 		bintime_addx(&bt, scale * tcount);
    862 		bintime2timespec(&bt, &ts);
    863 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
    864 	}
    865 #endif
    866 }
    867 
    868 /*
    869  * Timecounters need to be updated every so often to prevent the hardware
    870  * counter from overflowing.  Updating also recalculates the cached values
    871  * used by the get*() family of functions, so their precision depends on
    872  * the update frequency.
    873  */
    874 
    875 static int tc_tick;
    876 
    877 void
    878 tc_ticktock(void)
    879 {
    880 	static int count;
    881 
    882 	if (++count < tc_tick)
    883 		return;
    884 	count = 0;
    885 	mutex_spin_enter(&tc_windup_lock);
    886 	tc_windup();
    887 	mutex_spin_exit(&tc_windup_lock);
    888 }
    889 
    890 void
    891 inittimecounter(void)
    892 {
    893 	u_int p;
    894 
    895 	mutex_init(&tc_windup_lock, MUTEX_DEFAULT, IPL_SCHED);
    896 
    897 	/*
    898 	 * Set the initial timeout to
    899 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
    900 	 * People should probably not use the sysctl to set the timeout
    901 	 * to smaller than its inital value, since that value is the
    902 	 * smallest reasonable one.  If they want better timestamps they
    903 	 * should use the non-"get"* functions.
    904 	 */
    905 	if (hz > 1000)
    906 		tc_tick = (hz + 500) / 1000;
    907 	else
    908 		tc_tick = 1;
    909 	p = (tc_tick * 1000000) / hz;
    910 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
    911 	    p / 1000, p % 1000);
    912 
    913 	/* warm up new timecounter (again) and get rolling. */
    914 	(void)timecounter->tc_get_timecount(timecounter);
    915 	(void)timecounter->tc_get_timecount(timecounter);
    916 }
    917