kern_tc.c revision 1.33 1 /* $NetBSD: kern_tc.c,v 1.33 2008/04/21 12:56:31 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*-
37 * ----------------------------------------------------------------------------
38 * "THE BEER-WARE LICENSE" (Revision 42):
39 * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
40 * can do whatever you want with this stuff. If we meet some day, and you think
41 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
42 * ---------------------------------------------------------------------------
43 */
44
45 #include <sys/cdefs.h>
46 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
47 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.33 2008/04/21 12:56:31 ad Exp $");
48
49 #include "opt_ntp.h"
50
51 #include <sys/param.h>
52 #include <sys/kernel.h>
53 #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
54 #include <sys/sysctl.h>
55 #include <sys/syslog.h>
56 #include <sys/systm.h>
57 #include <sys/timepps.h>
58 #include <sys/timetc.h>
59 #include <sys/timex.h>
60 #include <sys/evcnt.h>
61 #include <sys/kauth.h>
62 #include <sys/mutex.h>
63 #include <sys/atomic.h>
64
65 /*
66 * A large step happens on boot. This constant detects such steps.
67 * It is relatively small so that ntp_update_second gets called enough
68 * in the typical 'missed a couple of seconds' case, but doesn't loop
69 * forever when the time step is large.
70 */
71 #define LARGE_STEP 200
72
73 /*
74 * Implement a dummy timecounter which we can use until we get a real one
75 * in the air. This allows the console and other early stuff to use
76 * time services.
77 */
78
79 static u_int
80 dummy_get_timecount(struct timecounter *tc)
81 {
82 static u_int now;
83
84 return (++now);
85 }
86
87 static struct timecounter dummy_timecounter = {
88 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
89 };
90
91 struct timehands {
92 /* These fields must be initialized by the driver. */
93 struct timecounter *th_counter;
94 int64_t th_adjustment;
95 u_int64_t th_scale;
96 u_int th_offset_count;
97 struct bintime th_offset;
98 struct timeval th_microtime;
99 struct timespec th_nanotime;
100 /* Fields not to be copied in tc_windup start with th_generation. */
101 volatile u_int th_generation;
102 struct timehands *th_next;
103 };
104
105 static struct timehands th0;
106 static struct timehands th9 = { .th_next = &th0, };
107 static struct timehands th8 = { .th_next = &th9, };
108 static struct timehands th7 = { .th_next = &th8, };
109 static struct timehands th6 = { .th_next = &th7, };
110 static struct timehands th5 = { .th_next = &th6, };
111 static struct timehands th4 = { .th_next = &th5, };
112 static struct timehands th3 = { .th_next = &th4, };
113 static struct timehands th2 = { .th_next = &th3, };
114 static struct timehands th1 = { .th_next = &th2, };
115 static struct timehands th0 = {
116 .th_counter = &dummy_timecounter,
117 .th_scale = (uint64_t)-1 / 1000000,
118 .th_offset = { .sec = 1, .frac = 0 },
119 .th_generation = 1,
120 .th_next = &th1,
121 };
122
123 static struct timehands *volatile timehands = &th0;
124 struct timecounter *timecounter = &dummy_timecounter;
125 static struct timecounter *timecounters = &dummy_timecounter;
126
127 time_t time_second = 1;
128 time_t time_uptime = 1;
129
130 static struct bintime timebasebin;
131
132 static int timestepwarnings;
133
134 extern kmutex_t time_lock;
135 kmutex_t timecounter_lock;
136
137 #ifdef __FreeBSD__
138 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
139 ×tepwarnings, 0, "");
140 #endif /* __FreeBSD__ */
141
142 /*
143 * sysctl helper routine for kern.timercounter.hardware
144 */
145 static int
146 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
147 {
148 struct sysctlnode node;
149 int error;
150 char newname[MAX_TCNAMELEN];
151 struct timecounter *newtc, *tc;
152
153 tc = timecounter;
154
155 strlcpy(newname, tc->tc_name, sizeof(newname));
156
157 node = *rnode;
158 node.sysctl_data = newname;
159 node.sysctl_size = sizeof(newname);
160
161 error = sysctl_lookup(SYSCTLFN_CALL(&node));
162
163 if (error ||
164 newp == NULL ||
165 strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
166 return error;
167
168 if (l != NULL && (error = kauth_authorize_system(l->l_cred,
169 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
170 NULL, NULL)) != 0)
171 return (error);
172
173 if (!cold)
174 mutex_enter(&time_lock);
175 error = EINVAL;
176 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
177 if (strcmp(newname, newtc->tc_name) != 0)
178 continue;
179 /* Warm up new timecounter. */
180 (void)newtc->tc_get_timecount(newtc);
181 (void)newtc->tc_get_timecount(newtc);
182 timecounter = newtc;
183 error = 0;
184 break;
185 }
186 if (!cold)
187 mutex_exit(&time_lock);
188 return error;
189 }
190
191 static int
192 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
193 {
194 char buf[MAX_TCNAMELEN+48];
195 char *where = oldp;
196 const char *spc;
197 struct timecounter *tc;
198 size_t needed, left, slen;
199 int error;
200
201 if (newp != NULL)
202 return (EPERM);
203 if (namelen != 0)
204 return (EINVAL);
205
206 spc = "";
207 error = 0;
208 needed = 0;
209 left = *oldlenp;
210
211 mutex_enter(&time_lock);
212 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
213 if (where == NULL) {
214 needed += sizeof(buf); /* be conservative */
215 } else {
216 slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
217 " Hz)", spc, tc->tc_name, tc->tc_quality,
218 tc->tc_frequency);
219 if (left < slen + 1)
220 break;
221 /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
222 /* XXX copyout with held lock. */
223 error = copyout(buf, where, slen + 1);
224 spc = " ";
225 where += slen;
226 needed += slen;
227 left -= slen;
228 }
229 }
230 mutex_exit(&time_lock);
231
232 *oldlenp = needed;
233 return (error);
234 }
235
236 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
237 {
238 const struct sysctlnode *node;
239
240 sysctl_createv(clog, 0, NULL, &node,
241 CTLFLAG_PERMANENT,
242 CTLTYPE_NODE, "timecounter",
243 SYSCTL_DESCR("time counter information"),
244 NULL, 0, NULL, 0,
245 CTL_KERN, CTL_CREATE, CTL_EOL);
246
247 if (node != NULL) {
248 sysctl_createv(clog, 0, NULL, NULL,
249 CTLFLAG_PERMANENT,
250 CTLTYPE_STRING, "choice",
251 SYSCTL_DESCR("available counters"),
252 sysctl_kern_timecounter_choice, 0, NULL, 0,
253 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
254
255 sysctl_createv(clog, 0, NULL, NULL,
256 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
257 CTLTYPE_STRING, "hardware",
258 SYSCTL_DESCR("currently active time counter"),
259 sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
260 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
261
262 sysctl_createv(clog, 0, NULL, NULL,
263 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
264 CTLTYPE_INT, "timestepwarnings",
265 SYSCTL_DESCR("log time steps"),
266 NULL, 0, ×tepwarnings, 0,
267 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
268 }
269 }
270
271 #ifdef TC_COUNTERS
272 #define TC_STATS(name) \
273 static struct evcnt n##name = \
274 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
275 EVCNT_ATTACH_STATIC(n##name)
276 TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
277 TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
278 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
279 TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
280 TC_STATS(setclock);
281 #define TC_COUNT(var) var.ev_count++
282 #undef TC_STATS
283 #else
284 #define TC_COUNT(var) /* nothing */
285 #endif /* TC_COUNTERS */
286
287 static void tc_windup(void);
288
289 /*
290 * Return the difference between the timehands' counter value now and what
291 * was when we copied it to the timehands' offset_count.
292 */
293 static __inline u_int
294 tc_delta(struct timehands *th)
295 {
296 struct timecounter *tc;
297
298 tc = th->th_counter;
299 return ((tc->tc_get_timecount(tc) -
300 th->th_offset_count) & tc->tc_counter_mask);
301 }
302
303 /*
304 * Functions for reading the time. We have to loop until we are sure that
305 * the timehands that we operated on was not updated under our feet. See
306 * the comment in <sys/timevar.h> for a description of these 12 functions.
307 */
308
309 void
310 binuptime(struct bintime *bt)
311 {
312 struct timehands *th;
313 u_int gen;
314
315 TC_COUNT(nbinuptime);
316 do {
317 th = timehands;
318 gen = th->th_generation;
319 *bt = th->th_offset;
320 bintime_addx(bt, th->th_scale * tc_delta(th));
321 } while (gen == 0 || gen != th->th_generation);
322 }
323
324 void
325 nanouptime(struct timespec *tsp)
326 {
327 struct bintime bt;
328
329 TC_COUNT(nnanouptime);
330 binuptime(&bt);
331 bintime2timespec(&bt, tsp);
332 }
333
334 void
335 microuptime(struct timeval *tvp)
336 {
337 struct bintime bt;
338
339 TC_COUNT(nmicrouptime);
340 binuptime(&bt);
341 bintime2timeval(&bt, tvp);
342 }
343
344 void
345 bintime(struct bintime *bt)
346 {
347
348 TC_COUNT(nbintime);
349 binuptime(bt);
350 bintime_add(bt, &timebasebin);
351 }
352
353 void
354 nanotime(struct timespec *tsp)
355 {
356 struct bintime bt;
357
358 TC_COUNT(nnanotime);
359 bintime(&bt);
360 bintime2timespec(&bt, tsp);
361 }
362
363 void
364 microtime(struct timeval *tvp)
365 {
366 struct bintime bt;
367
368 TC_COUNT(nmicrotime);
369 bintime(&bt);
370 bintime2timeval(&bt, tvp);
371 }
372
373 void
374 getbinuptime(struct bintime *bt)
375 {
376 struct timehands *th;
377 u_int gen;
378
379 TC_COUNT(ngetbinuptime);
380 do {
381 th = timehands;
382 gen = th->th_generation;
383 *bt = th->th_offset;
384 } while (gen == 0 || gen != th->th_generation);
385 }
386
387 void
388 getnanouptime(struct timespec *tsp)
389 {
390 struct timehands *th;
391 u_int gen;
392
393 TC_COUNT(ngetnanouptime);
394 do {
395 th = timehands;
396 gen = th->th_generation;
397 bintime2timespec(&th->th_offset, tsp);
398 } while (gen == 0 || gen != th->th_generation);
399 }
400
401 void
402 getmicrouptime(struct timeval *tvp)
403 {
404 struct timehands *th;
405 u_int gen;
406
407 TC_COUNT(ngetmicrouptime);
408 do {
409 th = timehands;
410 gen = th->th_generation;
411 bintime2timeval(&th->th_offset, tvp);
412 } while (gen == 0 || gen != th->th_generation);
413 }
414
415 void
416 getbintime(struct bintime *bt)
417 {
418 struct timehands *th;
419 u_int gen;
420
421 TC_COUNT(ngetbintime);
422 do {
423 th = timehands;
424 gen = th->th_generation;
425 *bt = th->th_offset;
426 } while (gen == 0 || gen != th->th_generation);
427 bintime_add(bt, &timebasebin);
428 }
429
430 void
431 getnanotime(struct timespec *tsp)
432 {
433 struct timehands *th;
434 u_int gen;
435
436 TC_COUNT(ngetnanotime);
437 do {
438 th = timehands;
439 gen = th->th_generation;
440 *tsp = th->th_nanotime;
441 } while (gen == 0 || gen != th->th_generation);
442 }
443
444 void
445 getmicrotime(struct timeval *tvp)
446 {
447 struct timehands *th;
448 u_int gen;
449
450 TC_COUNT(ngetmicrotime);
451 do {
452 th = timehands;
453 gen = th->th_generation;
454 *tvp = th->th_microtime;
455 } while (gen == 0 || gen != th->th_generation);
456 }
457
458 /*
459 * Initialize a new timecounter and possibly use it.
460 */
461 void
462 tc_init(struct timecounter *tc)
463 {
464 u_int u;
465
466 u = tc->tc_frequency / tc->tc_counter_mask;
467 /* XXX: We need some margin here, 10% is a guess */
468 u *= 11;
469 u /= 10;
470 if (u > hz && tc->tc_quality >= 0) {
471 tc->tc_quality = -2000;
472 aprint_verbose(
473 "timecounter: Timecounter \"%s\" frequency %ju Hz",
474 tc->tc_name, (uintmax_t)tc->tc_frequency);
475 aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
476 } else if (tc->tc_quality >= 0 || bootverbose) {
477 aprint_verbose(
478 "timecounter: Timecounter \"%s\" frequency %ju Hz "
479 "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
480 tc->tc_quality);
481 }
482
483 mutex_enter(&time_lock);
484 mutex_spin_enter(&timecounter_lock);
485 tc->tc_next = timecounters;
486 timecounters = tc;
487 /*
488 * Never automatically use a timecounter with negative quality.
489 * Even though we run on the dummy counter, switching here may be
490 * worse since this timecounter may not be monotonous.
491 */
492 if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
493 (tc->tc_quality == timecounter->tc_quality &&
494 tc->tc_frequency > timecounter->tc_frequency))) {
495 (void)tc->tc_get_timecount(tc);
496 (void)tc->tc_get_timecount(tc);
497 timecounter = tc;
498 tc_windup();
499 }
500 mutex_spin_exit(&timecounter_lock);
501 mutex_exit(&time_lock);
502 }
503
504 /*
505 * Stop using a timecounter and remove it from the timecounters list.
506 */
507 int
508 tc_detach(struct timecounter *target)
509 {
510 struct timecounter *best, *tc;
511 struct timecounter **tcp = NULL;
512 int rc = 0;
513
514 mutex_enter(&time_lock);
515 for (tcp = &timecounters, tc = timecounters;
516 tc != NULL;
517 tcp = &tc->tc_next, tc = tc->tc_next) {
518 if (tc == target)
519 break;
520 }
521 if (tc == NULL) {
522 rc = ESRCH;
523 goto out;
524 }
525 *tcp = tc->tc_next;
526
527 if (timecounter != target)
528 goto out;
529
530 for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
531 if (tc->tc_quality > best->tc_quality)
532 best = tc;
533 else if (tc->tc_quality < best->tc_quality)
534 continue;
535 else if (tc->tc_frequency > best->tc_frequency)
536 best = tc;
537 }
538 mutex_spin_enter(&timecounter_lock);
539 (void)best->tc_get_timecount(best);
540 (void)best->tc_get_timecount(best);
541 timecounter = best;
542 tc_windup();
543 mutex_spin_exit(&timecounter_lock);
544 out:
545 mutex_exit(&time_lock);
546 return rc;
547 }
548
549 /* Report the frequency of the current timecounter. */
550 u_int64_t
551 tc_getfrequency(void)
552 {
553
554 return (timehands->th_counter->tc_frequency);
555 }
556
557 /*
558 * Step our concept of UTC. This is done by modifying our estimate of
559 * when we booted.
560 */
561 void
562 tc_setclock(struct timespec *ts)
563 {
564 struct timespec ts2;
565 struct bintime bt, bt2;
566
567 mutex_spin_enter(&timecounter_lock);
568 TC_COUNT(nsetclock);
569 binuptime(&bt2);
570 timespec2bintime(ts, &bt);
571 bintime_sub(&bt, &bt2);
572 bintime_add(&bt2, &timebasebin);
573 timebasebin = bt;
574 tc_windup();
575 mutex_spin_exit(&timecounter_lock);
576
577 if (timestepwarnings) {
578 bintime2timespec(&bt2, &ts2);
579 log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
580 (intmax_t)ts2.tv_sec, ts2.tv_nsec,
581 (intmax_t)ts->tv_sec, ts->tv_nsec);
582 }
583 }
584
585 /*
586 * Initialize the next struct timehands in the ring and make
587 * it the active timehands. Along the way we might switch to a different
588 * timecounter and/or do seconds processing in NTP. Slightly magic.
589 */
590 static void
591 tc_windup(void)
592 {
593 struct bintime bt;
594 struct timehands *th, *tho;
595 u_int64_t scale;
596 u_int delta, ncount, ogen;
597 int i, s_update;
598 time_t t;
599
600 KASSERT(mutex_owned(&timecounter_lock));
601
602 s_update = 0;
603
604 /*
605 * Make the next timehands a copy of the current one, but do not
606 * overwrite the generation or next pointer. While we update
607 * the contents, the generation must be zero. Ensure global
608 * visibility of the generation before proceeding.
609 */
610 tho = timehands;
611 th = tho->th_next;
612 ogen = th->th_generation;
613 th->th_generation = 0;
614 membar_producer();
615 bcopy(tho, th, offsetof(struct timehands, th_generation));
616
617 /*
618 * Capture a timecounter delta on the current timecounter and if
619 * changing timecounters, a counter value from the new timecounter.
620 * Update the offset fields accordingly.
621 */
622 delta = tc_delta(th);
623 if (th->th_counter != timecounter)
624 ncount = timecounter->tc_get_timecount(timecounter);
625 else
626 ncount = 0;
627 th->th_offset_count += delta;
628 th->th_offset_count &= th->th_counter->tc_counter_mask;
629 bintime_addx(&th->th_offset, th->th_scale * delta);
630
631 /*
632 * Hardware latching timecounters may not generate interrupts on
633 * PPS events, so instead we poll them. There is a finite risk that
634 * the hardware might capture a count which is later than the one we
635 * got above, and therefore possibly in the next NTP second which might
636 * have a different rate than the current NTP second. It doesn't
637 * matter in practice.
638 */
639 if (tho->th_counter->tc_poll_pps)
640 tho->th_counter->tc_poll_pps(tho->th_counter);
641
642 /*
643 * Deal with NTP second processing. The for loop normally
644 * iterates at most once, but in extreme situations it might
645 * keep NTP sane if timeouts are not run for several seconds.
646 * At boot, the time step can be large when the TOD hardware
647 * has been read, so on really large steps, we call
648 * ntp_update_second only twice. We need to call it twice in
649 * case we missed a leap second.
650 * If NTP is not compiled in ntp_update_second still calculates
651 * the adjustment resulting from adjtime() calls.
652 */
653 bt = th->th_offset;
654 bintime_add(&bt, &timebasebin);
655 i = bt.sec - tho->th_microtime.tv_sec;
656 if (i > LARGE_STEP)
657 i = 2;
658 for (; i > 0; i--) {
659 t = bt.sec;
660 ntp_update_second(&th->th_adjustment, &bt.sec);
661 s_update = 1;
662 if (bt.sec != t)
663 timebasebin.sec += bt.sec - t;
664 }
665
666 /* Update the UTC timestamps used by the get*() functions. */
667 /* XXX shouldn't do this here. Should force non-`get' versions. */
668 bintime2timeval(&bt, &th->th_microtime);
669 bintime2timespec(&bt, &th->th_nanotime);
670
671 /* Now is a good time to change timecounters. */
672 if (th->th_counter != timecounter) {
673 th->th_counter = timecounter;
674 th->th_offset_count = ncount;
675 s_update = 1;
676 }
677
678 /*-
679 * Recalculate the scaling factor. We want the number of 1/2^64
680 * fractions of a second per period of the hardware counter, taking
681 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
682 * processing provides us with.
683 *
684 * The th_adjustment is nanoseconds per second with 32 bit binary
685 * fraction and we want 64 bit binary fraction of second:
686 *
687 * x = a * 2^32 / 10^9 = a * 4.294967296
688 *
689 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
690 * we can only multiply by about 850 without overflowing, but that
691 * leaves suitably precise fractions for multiply before divide.
692 *
693 * Divide before multiply with a fraction of 2199/512 results in a
694 * systematic undercompensation of 10PPM of th_adjustment. On a
695 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
696 *
697 * We happily sacrifice the lowest of the 64 bits of our result
698 * to the goddess of code clarity.
699 *
700 */
701 if (s_update) {
702 scale = (u_int64_t)1 << 63;
703 scale += (th->th_adjustment / 1024) * 2199;
704 scale /= th->th_counter->tc_frequency;
705 th->th_scale = scale * 2;
706 }
707 /*
708 * Now that the struct timehands is again consistent, set the new
709 * generation number, making sure to not make it zero. Ensure
710 * changes are globally visible before changing.
711 */
712 if (++ogen == 0)
713 ogen = 1;
714 membar_producer();
715 th->th_generation = ogen;
716
717 /*
718 * Go live with the new struct timehands. Ensure changes are
719 * globally visible before changing.
720 */
721 time_second = th->th_microtime.tv_sec;
722 time_uptime = th->th_offset.sec;
723 membar_producer();
724 timehands = th;
725
726 /*
727 * Force users of the old timehand to move on. This is
728 * necessary for MP systems; we need to ensure that the
729 * consumers will move away from the old timehand before
730 * we begin updating it again when we eventually wrap
731 * around.
732 */
733 if (++tho->th_generation == 0)
734 tho->th_generation = 1;
735 }
736
737 /*
738 * RFC 2783 PPS-API implementation.
739 */
740
741 int
742 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
743 {
744 pps_params_t *app;
745 pps_info_t *pipi;
746 #ifdef PPS_SYNC
747 int *epi;
748 #endif
749
750 KASSERT(mutex_owned(&timecounter_lock));
751
752 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
753 switch (cmd) {
754 case PPS_IOC_CREATE:
755 return (0);
756 case PPS_IOC_DESTROY:
757 return (0);
758 case PPS_IOC_SETPARAMS:
759 app = (pps_params_t *)data;
760 if (app->mode & ~pps->ppscap)
761 return (EINVAL);
762 pps->ppsparam = *app;
763 return (0);
764 case PPS_IOC_GETPARAMS:
765 app = (pps_params_t *)data;
766 *app = pps->ppsparam;
767 app->api_version = PPS_API_VERS_1;
768 return (0);
769 case PPS_IOC_GETCAP:
770 *(int*)data = pps->ppscap;
771 return (0);
772 case PPS_IOC_FETCH:
773 pipi = (pps_info_t *)data;
774 pps->ppsinfo.current_mode = pps->ppsparam.mode;
775 *pipi = pps->ppsinfo;
776 return (0);
777 case PPS_IOC_KCBIND:
778 #ifdef PPS_SYNC
779 epi = (int *)data;
780 /* XXX Only root should be able to do this */
781 if (*epi & ~pps->ppscap)
782 return (EINVAL);
783 pps->kcmode = *epi;
784 return (0);
785 #else
786 return (EOPNOTSUPP);
787 #endif
788 default:
789 return (EPASSTHROUGH);
790 }
791 }
792
793 void
794 pps_init(struct pps_state *pps)
795 {
796
797 KASSERT(mutex_owned(&timecounter_lock));
798
799 pps->ppscap |= PPS_TSFMT_TSPEC;
800 if (pps->ppscap & PPS_CAPTUREASSERT)
801 pps->ppscap |= PPS_OFFSETASSERT;
802 if (pps->ppscap & PPS_CAPTURECLEAR)
803 pps->ppscap |= PPS_OFFSETCLEAR;
804 }
805
806 void
807 pps_capture(struct pps_state *pps)
808 {
809 struct timehands *th;
810
811 KASSERT(mutex_owned(&timecounter_lock));
812 KASSERT(pps != NULL);
813
814 th = timehands;
815 pps->capgen = th->th_generation;
816 pps->capth = th;
817 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
818 if (pps->capgen != th->th_generation)
819 pps->capgen = 0;
820 }
821
822 void
823 pps_event(struct pps_state *pps, int event)
824 {
825 struct bintime bt;
826 struct timespec ts, *tsp, *osp;
827 u_int tcount, *pcount;
828 int foff, fhard;
829 pps_seq_t *pseq;
830
831 KASSERT(mutex_owned(&timecounter_lock));
832
833 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
834 /* If the timecounter was wound up underneath us, bail out. */
835 if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
836 return;
837
838 /* Things would be easier with arrays. */
839 if (event == PPS_CAPTUREASSERT) {
840 tsp = &pps->ppsinfo.assert_timestamp;
841 osp = &pps->ppsparam.assert_offset;
842 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
843 fhard = pps->kcmode & PPS_CAPTUREASSERT;
844 pcount = &pps->ppscount[0];
845 pseq = &pps->ppsinfo.assert_sequence;
846 } else {
847 tsp = &pps->ppsinfo.clear_timestamp;
848 osp = &pps->ppsparam.clear_offset;
849 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
850 fhard = pps->kcmode & PPS_CAPTURECLEAR;
851 pcount = &pps->ppscount[1];
852 pseq = &pps->ppsinfo.clear_sequence;
853 }
854
855 /*
856 * If the timecounter changed, we cannot compare the count values, so
857 * we have to drop the rest of the PPS-stuff until the next event.
858 */
859 if (pps->ppstc != pps->capth->th_counter) {
860 pps->ppstc = pps->capth->th_counter;
861 *pcount = pps->capcount;
862 pps->ppscount[2] = pps->capcount;
863 return;
864 }
865
866 /* Convert the count to a timespec. */
867 tcount = pps->capcount - pps->capth->th_offset_count;
868 tcount &= pps->capth->th_counter->tc_counter_mask;
869 bt = pps->capth->th_offset;
870 bintime_addx(&bt, pps->capth->th_scale * tcount);
871 bintime_add(&bt, &timebasebin);
872 bintime2timespec(&bt, &ts);
873
874 /* If the timecounter was wound up underneath us, bail out. */
875 if (pps->capgen != pps->capth->th_generation)
876 return;
877
878 *pcount = pps->capcount;
879 (*pseq)++;
880 *tsp = ts;
881
882 if (foff) {
883 timespecadd(tsp, osp, tsp);
884 if (tsp->tv_nsec < 0) {
885 tsp->tv_nsec += 1000000000;
886 tsp->tv_sec -= 1;
887 }
888 }
889 #ifdef PPS_SYNC
890 if (fhard) {
891 u_int64_t scale;
892
893 /*
894 * Feed the NTP PLL/FLL.
895 * The FLL wants to know how many (hardware) nanoseconds
896 * elapsed since the previous event.
897 */
898 tcount = pps->capcount - pps->ppscount[2];
899 pps->ppscount[2] = pps->capcount;
900 tcount &= pps->capth->th_counter->tc_counter_mask;
901 scale = (u_int64_t)1 << 63;
902 scale /= pps->capth->th_counter->tc_frequency;
903 scale *= 2;
904 bt.sec = 0;
905 bt.frac = 0;
906 bintime_addx(&bt, scale * tcount);
907 bintime2timespec(&bt, &ts);
908 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
909 }
910 #endif
911 }
912
913 /*
914 * Timecounters need to be updated every so often to prevent the hardware
915 * counter from overflowing. Updating also recalculates the cached values
916 * used by the get*() family of functions, so their precision depends on
917 * the update frequency.
918 */
919
920 static int tc_tick;
921
922 void
923 tc_ticktock(void)
924 {
925 static int count;
926
927 if (++count < tc_tick)
928 return;
929 count = 0;
930 mutex_spin_enter(&timecounter_lock);
931 tc_windup();
932 mutex_spin_exit(&timecounter_lock);
933 }
934
935 void
936 inittimecounter(void)
937 {
938 u_int p;
939
940 mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_SCHED);
941
942 /*
943 * Set the initial timeout to
944 * max(1, <approx. number of hardclock ticks in a millisecond>).
945 * People should probably not use the sysctl to set the timeout
946 * to smaller than its inital value, since that value is the
947 * smallest reasonable one. If they want better timestamps they
948 * should use the non-"get"* functions.
949 */
950 if (hz > 1000)
951 tc_tick = (hz + 500) / 1000;
952 else
953 tc_tick = 1;
954 p = (tc_tick * 1000000) / hz;
955 aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
956 p / 1000, p % 1000);
957
958 /* warm up new timecounter (again) and get rolling. */
959 (void)timecounter->tc_get_timecount(timecounter);
960 (void)timecounter->tc_get_timecount(timecounter);
961 }
962