Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.33
      1 /* $NetBSD: kern_tc.c,v 1.33 2008/04/21 12:56:31 ad Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the NetBSD
     18  *	Foundation, Inc. and its contributors.
     19  * 4. Neither the name of The NetBSD Foundation nor the names of its
     20  *    contributors may be used to endorse or promote products derived
     21  *    from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*-
     37  * ----------------------------------------------------------------------------
     38  * "THE BEER-WARE LICENSE" (Revision 42):
     39  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
     40  * can do whatever you want with this stuff. If we meet some day, and you think
     41  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
     42  * ---------------------------------------------------------------------------
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     47 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.33 2008/04/21 12:56:31 ad Exp $");
     48 
     49 #include "opt_ntp.h"
     50 
     51 #include <sys/param.h>
     52 #include <sys/kernel.h>
     53 #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     54 #include <sys/sysctl.h>
     55 #include <sys/syslog.h>
     56 #include <sys/systm.h>
     57 #include <sys/timepps.h>
     58 #include <sys/timetc.h>
     59 #include <sys/timex.h>
     60 #include <sys/evcnt.h>
     61 #include <sys/kauth.h>
     62 #include <sys/mutex.h>
     63 #include <sys/atomic.h>
     64 
     65 /*
     66  * A large step happens on boot.  This constant detects such steps.
     67  * It is relatively small so that ntp_update_second gets called enough
     68  * in the typical 'missed a couple of seconds' case, but doesn't loop
     69  * forever when the time step is large.
     70  */
     71 #define LARGE_STEP	200
     72 
     73 /*
     74  * Implement a dummy timecounter which we can use until we get a real one
     75  * in the air.  This allows the console and other early stuff to use
     76  * time services.
     77  */
     78 
     79 static u_int
     80 dummy_get_timecount(struct timecounter *tc)
     81 {
     82 	static u_int now;
     83 
     84 	return (++now);
     85 }
     86 
     87 static struct timecounter dummy_timecounter = {
     88 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
     89 };
     90 
     91 struct timehands {
     92 	/* These fields must be initialized by the driver. */
     93 	struct timecounter	*th_counter;
     94 	int64_t			th_adjustment;
     95 	u_int64_t		th_scale;
     96 	u_int	 		th_offset_count;
     97 	struct bintime		th_offset;
     98 	struct timeval		th_microtime;
     99 	struct timespec		th_nanotime;
    100 	/* Fields not to be copied in tc_windup start with th_generation. */
    101 	volatile u_int		th_generation;
    102 	struct timehands	*th_next;
    103 };
    104 
    105 static struct timehands th0;
    106 static struct timehands th9 = { .th_next = &th0, };
    107 static struct timehands th8 = { .th_next = &th9, };
    108 static struct timehands th7 = { .th_next = &th8, };
    109 static struct timehands th6 = { .th_next = &th7, };
    110 static struct timehands th5 = { .th_next = &th6, };
    111 static struct timehands th4 = { .th_next = &th5, };
    112 static struct timehands th3 = { .th_next = &th4, };
    113 static struct timehands th2 = { .th_next = &th3, };
    114 static struct timehands th1 = { .th_next = &th2, };
    115 static struct timehands th0 = {
    116 	.th_counter = &dummy_timecounter,
    117 	.th_scale = (uint64_t)-1 / 1000000,
    118 	.th_offset = { .sec = 1, .frac = 0 },
    119 	.th_generation = 1,
    120 	.th_next = &th1,
    121 };
    122 
    123 static struct timehands *volatile timehands = &th0;
    124 struct timecounter *timecounter = &dummy_timecounter;
    125 static struct timecounter *timecounters = &dummy_timecounter;
    126 
    127 time_t time_second = 1;
    128 time_t time_uptime = 1;
    129 
    130 static struct bintime timebasebin;
    131 
    132 static int timestepwarnings;
    133 
    134 extern kmutex_t time_lock;
    135 kmutex_t timecounter_lock;
    136 
    137 #ifdef __FreeBSD__
    138 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    139     &timestepwarnings, 0, "");
    140 #endif /* __FreeBSD__ */
    141 
    142 /*
    143  * sysctl helper routine for kern.timercounter.hardware
    144  */
    145 static int
    146 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    147 {
    148 	struct sysctlnode node;
    149 	int error;
    150 	char newname[MAX_TCNAMELEN];
    151 	struct timecounter *newtc, *tc;
    152 
    153 	tc = timecounter;
    154 
    155 	strlcpy(newname, tc->tc_name, sizeof(newname));
    156 
    157 	node = *rnode;
    158 	node.sysctl_data = newname;
    159 	node.sysctl_size = sizeof(newname);
    160 
    161 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    162 
    163 	if (error ||
    164 	    newp == NULL ||
    165 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    166 		return error;
    167 
    168 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
    169 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
    170 	    NULL, NULL)) != 0)
    171 		return (error);
    172 
    173 	if (!cold)
    174 		mutex_enter(&time_lock);
    175 	error = EINVAL;
    176 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    177 		if (strcmp(newname, newtc->tc_name) != 0)
    178 			continue;
    179 		/* Warm up new timecounter. */
    180 		(void)newtc->tc_get_timecount(newtc);
    181 		(void)newtc->tc_get_timecount(newtc);
    182 		timecounter = newtc;
    183 		error = 0;
    184 		break;
    185 	}
    186 	if (!cold)
    187 		mutex_exit(&time_lock);
    188 	return error;
    189 }
    190 
    191 static int
    192 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    193 {
    194 	char buf[MAX_TCNAMELEN+48];
    195 	char *where = oldp;
    196 	const char *spc;
    197 	struct timecounter *tc;
    198 	size_t needed, left, slen;
    199 	int error;
    200 
    201 	if (newp != NULL)
    202 		return (EPERM);
    203 	if (namelen != 0)
    204 		return (EINVAL);
    205 
    206 	spc = "";
    207 	error = 0;
    208 	needed = 0;
    209 	left = *oldlenp;
    210 
    211 	mutex_enter(&time_lock);
    212 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    213 		if (where == NULL) {
    214 			needed += sizeof(buf);  /* be conservative */
    215 		} else {
    216 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    217 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    218 					tc->tc_frequency);
    219 			if (left < slen + 1)
    220 				break;
    221 			/* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
    222 			/* XXX copyout with held lock. */
    223 			error = copyout(buf, where, slen + 1);
    224 			spc = " ";
    225 			where += slen;
    226 			needed += slen;
    227 			left -= slen;
    228 		}
    229 	}
    230 	mutex_exit(&time_lock);
    231 
    232 	*oldlenp = needed;
    233 	return (error);
    234 }
    235 
    236 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    237 {
    238 	const struct sysctlnode *node;
    239 
    240 	sysctl_createv(clog, 0, NULL, &node,
    241 		       CTLFLAG_PERMANENT,
    242 		       CTLTYPE_NODE, "timecounter",
    243 		       SYSCTL_DESCR("time counter information"),
    244 		       NULL, 0, NULL, 0,
    245 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    246 
    247 	if (node != NULL) {
    248 		sysctl_createv(clog, 0, NULL, NULL,
    249 			       CTLFLAG_PERMANENT,
    250 			       CTLTYPE_STRING, "choice",
    251 			       SYSCTL_DESCR("available counters"),
    252 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    253 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    254 
    255 		sysctl_createv(clog, 0, NULL, NULL,
    256 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    257 			       CTLTYPE_STRING, "hardware",
    258 			       SYSCTL_DESCR("currently active time counter"),
    259 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    260 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    261 
    262 		sysctl_createv(clog, 0, NULL, NULL,
    263 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    264 			       CTLTYPE_INT, "timestepwarnings",
    265 			       SYSCTL_DESCR("log time steps"),
    266 			       NULL, 0, &timestepwarnings, 0,
    267 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    268 	}
    269 }
    270 
    271 #ifdef TC_COUNTERS
    272 #define	TC_STATS(name)							\
    273 static struct evcnt n##name =						\
    274     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    275 EVCNT_ATTACH_STATIC(n##name)
    276 TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    277 TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    278 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    279 TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    280 TC_STATS(setclock);
    281 #define	TC_COUNT(var)	var.ev_count++
    282 #undef TC_STATS
    283 #else
    284 #define	TC_COUNT(var)	/* nothing */
    285 #endif	/* TC_COUNTERS */
    286 
    287 static void tc_windup(void);
    288 
    289 /*
    290  * Return the difference between the timehands' counter value now and what
    291  * was when we copied it to the timehands' offset_count.
    292  */
    293 static __inline u_int
    294 tc_delta(struct timehands *th)
    295 {
    296 	struct timecounter *tc;
    297 
    298 	tc = th->th_counter;
    299 	return ((tc->tc_get_timecount(tc) -
    300 		 th->th_offset_count) & tc->tc_counter_mask);
    301 }
    302 
    303 /*
    304  * Functions for reading the time.  We have to loop until we are sure that
    305  * the timehands that we operated on was not updated under our feet.  See
    306  * the comment in <sys/timevar.h> for a description of these 12 functions.
    307  */
    308 
    309 void
    310 binuptime(struct bintime *bt)
    311 {
    312 	struct timehands *th;
    313 	u_int gen;
    314 
    315 	TC_COUNT(nbinuptime);
    316 	do {
    317 		th = timehands;
    318 		gen = th->th_generation;
    319 		*bt = th->th_offset;
    320 		bintime_addx(bt, th->th_scale * tc_delta(th));
    321 	} while (gen == 0 || gen != th->th_generation);
    322 }
    323 
    324 void
    325 nanouptime(struct timespec *tsp)
    326 {
    327 	struct bintime bt;
    328 
    329 	TC_COUNT(nnanouptime);
    330 	binuptime(&bt);
    331 	bintime2timespec(&bt, tsp);
    332 }
    333 
    334 void
    335 microuptime(struct timeval *tvp)
    336 {
    337 	struct bintime bt;
    338 
    339 	TC_COUNT(nmicrouptime);
    340 	binuptime(&bt);
    341 	bintime2timeval(&bt, tvp);
    342 }
    343 
    344 void
    345 bintime(struct bintime *bt)
    346 {
    347 
    348 	TC_COUNT(nbintime);
    349 	binuptime(bt);
    350 	bintime_add(bt, &timebasebin);
    351 }
    352 
    353 void
    354 nanotime(struct timespec *tsp)
    355 {
    356 	struct bintime bt;
    357 
    358 	TC_COUNT(nnanotime);
    359 	bintime(&bt);
    360 	bintime2timespec(&bt, tsp);
    361 }
    362 
    363 void
    364 microtime(struct timeval *tvp)
    365 {
    366 	struct bintime bt;
    367 
    368 	TC_COUNT(nmicrotime);
    369 	bintime(&bt);
    370 	bintime2timeval(&bt, tvp);
    371 }
    372 
    373 void
    374 getbinuptime(struct bintime *bt)
    375 {
    376 	struct timehands *th;
    377 	u_int gen;
    378 
    379 	TC_COUNT(ngetbinuptime);
    380 	do {
    381 		th = timehands;
    382 		gen = th->th_generation;
    383 		*bt = th->th_offset;
    384 	} while (gen == 0 || gen != th->th_generation);
    385 }
    386 
    387 void
    388 getnanouptime(struct timespec *tsp)
    389 {
    390 	struct timehands *th;
    391 	u_int gen;
    392 
    393 	TC_COUNT(ngetnanouptime);
    394 	do {
    395 		th = timehands;
    396 		gen = th->th_generation;
    397 		bintime2timespec(&th->th_offset, tsp);
    398 	} while (gen == 0 || gen != th->th_generation);
    399 }
    400 
    401 void
    402 getmicrouptime(struct timeval *tvp)
    403 {
    404 	struct timehands *th;
    405 	u_int gen;
    406 
    407 	TC_COUNT(ngetmicrouptime);
    408 	do {
    409 		th = timehands;
    410 		gen = th->th_generation;
    411 		bintime2timeval(&th->th_offset, tvp);
    412 	} while (gen == 0 || gen != th->th_generation);
    413 }
    414 
    415 void
    416 getbintime(struct bintime *bt)
    417 {
    418 	struct timehands *th;
    419 	u_int gen;
    420 
    421 	TC_COUNT(ngetbintime);
    422 	do {
    423 		th = timehands;
    424 		gen = th->th_generation;
    425 		*bt = th->th_offset;
    426 	} while (gen == 0 || gen != th->th_generation);
    427 	bintime_add(bt, &timebasebin);
    428 }
    429 
    430 void
    431 getnanotime(struct timespec *tsp)
    432 {
    433 	struct timehands *th;
    434 	u_int gen;
    435 
    436 	TC_COUNT(ngetnanotime);
    437 	do {
    438 		th = timehands;
    439 		gen = th->th_generation;
    440 		*tsp = th->th_nanotime;
    441 	} while (gen == 0 || gen != th->th_generation);
    442 }
    443 
    444 void
    445 getmicrotime(struct timeval *tvp)
    446 {
    447 	struct timehands *th;
    448 	u_int gen;
    449 
    450 	TC_COUNT(ngetmicrotime);
    451 	do {
    452 		th = timehands;
    453 		gen = th->th_generation;
    454 		*tvp = th->th_microtime;
    455 	} while (gen == 0 || gen != th->th_generation);
    456 }
    457 
    458 /*
    459  * Initialize a new timecounter and possibly use it.
    460  */
    461 void
    462 tc_init(struct timecounter *tc)
    463 {
    464 	u_int u;
    465 
    466 	u = tc->tc_frequency / tc->tc_counter_mask;
    467 	/* XXX: We need some margin here, 10% is a guess */
    468 	u *= 11;
    469 	u /= 10;
    470 	if (u > hz && tc->tc_quality >= 0) {
    471 		tc->tc_quality = -2000;
    472 		aprint_verbose(
    473 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
    474 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    475 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
    476 	} else if (tc->tc_quality >= 0 || bootverbose) {
    477 		aprint_verbose(
    478 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
    479 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
    480 		    tc->tc_quality);
    481 	}
    482 
    483 	mutex_enter(&time_lock);
    484 	mutex_spin_enter(&timecounter_lock);
    485 	tc->tc_next = timecounters;
    486 	timecounters = tc;
    487 	/*
    488 	 * Never automatically use a timecounter with negative quality.
    489 	 * Even though we run on the dummy counter, switching here may be
    490 	 * worse since this timecounter may not be monotonous.
    491 	 */
    492 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
    493 	    (tc->tc_quality == timecounter->tc_quality &&
    494 	    tc->tc_frequency > timecounter->tc_frequency))) {
    495 		(void)tc->tc_get_timecount(tc);
    496 		(void)tc->tc_get_timecount(tc);
    497 		timecounter = tc;
    498 		tc_windup();
    499 	}
    500 	mutex_spin_exit(&timecounter_lock);
    501 	mutex_exit(&time_lock);
    502 }
    503 
    504 /*
    505  * Stop using a timecounter and remove it from the timecounters list.
    506  */
    507 int
    508 tc_detach(struct timecounter *target)
    509 {
    510 	struct timecounter *best, *tc;
    511 	struct timecounter **tcp = NULL;
    512 	int rc = 0;
    513 
    514 	mutex_enter(&time_lock);
    515 	for (tcp = &timecounters, tc = timecounters;
    516 	     tc != NULL;
    517 	     tcp = &tc->tc_next, tc = tc->tc_next) {
    518 		if (tc == target)
    519 			break;
    520 	}
    521 	if (tc == NULL) {
    522 		rc = ESRCH;
    523 		goto out;
    524 	}
    525 	*tcp = tc->tc_next;
    526 
    527 	if (timecounter != target)
    528 		goto out;
    529 
    530 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
    531 		if (tc->tc_quality > best->tc_quality)
    532 			best = tc;
    533 		else if (tc->tc_quality < best->tc_quality)
    534 			continue;
    535 		else if (tc->tc_frequency > best->tc_frequency)
    536 			best = tc;
    537 	}
    538 	mutex_spin_enter(&timecounter_lock);
    539 	(void)best->tc_get_timecount(best);
    540 	(void)best->tc_get_timecount(best);
    541 	timecounter = best;
    542 	tc_windup();
    543 	mutex_spin_exit(&timecounter_lock);
    544 out:
    545 	mutex_exit(&time_lock);
    546 	return rc;
    547 }
    548 
    549 /* Report the frequency of the current timecounter. */
    550 u_int64_t
    551 tc_getfrequency(void)
    552 {
    553 
    554 	return (timehands->th_counter->tc_frequency);
    555 }
    556 
    557 /*
    558  * Step our concept of UTC.  This is done by modifying our estimate of
    559  * when we booted.
    560  */
    561 void
    562 tc_setclock(struct timespec *ts)
    563 {
    564 	struct timespec ts2;
    565 	struct bintime bt, bt2;
    566 
    567 	mutex_spin_enter(&timecounter_lock);
    568 	TC_COUNT(nsetclock);
    569 	binuptime(&bt2);
    570 	timespec2bintime(ts, &bt);
    571 	bintime_sub(&bt, &bt2);
    572 	bintime_add(&bt2, &timebasebin);
    573 	timebasebin = bt;
    574 	tc_windup();
    575 	mutex_spin_exit(&timecounter_lock);
    576 
    577 	if (timestepwarnings) {
    578 		bintime2timespec(&bt2, &ts2);
    579 		log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
    580 		    (intmax_t)ts2.tv_sec, ts2.tv_nsec,
    581 		    (intmax_t)ts->tv_sec, ts->tv_nsec);
    582 	}
    583 }
    584 
    585 /*
    586  * Initialize the next struct timehands in the ring and make
    587  * it the active timehands.  Along the way we might switch to a different
    588  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    589  */
    590 static void
    591 tc_windup(void)
    592 {
    593 	struct bintime bt;
    594 	struct timehands *th, *tho;
    595 	u_int64_t scale;
    596 	u_int delta, ncount, ogen;
    597 	int i, s_update;
    598 	time_t t;
    599 
    600 	KASSERT(mutex_owned(&timecounter_lock));
    601 
    602 	s_update = 0;
    603 
    604 	/*
    605 	 * Make the next timehands a copy of the current one, but do not
    606 	 * overwrite the generation or next pointer.  While we update
    607 	 * the contents, the generation must be zero.  Ensure global
    608 	 * visibility of the generation before proceeding.
    609 	 */
    610 	tho = timehands;
    611 	th = tho->th_next;
    612 	ogen = th->th_generation;
    613 	th->th_generation = 0;
    614 	membar_producer();
    615 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    616 
    617 	/*
    618 	 * Capture a timecounter delta on the current timecounter and if
    619 	 * changing timecounters, a counter value from the new timecounter.
    620 	 * Update the offset fields accordingly.
    621 	 */
    622 	delta = tc_delta(th);
    623 	if (th->th_counter != timecounter)
    624 		ncount = timecounter->tc_get_timecount(timecounter);
    625 	else
    626 		ncount = 0;
    627 	th->th_offset_count += delta;
    628 	th->th_offset_count &= th->th_counter->tc_counter_mask;
    629 	bintime_addx(&th->th_offset, th->th_scale * delta);
    630 
    631 	/*
    632 	 * Hardware latching timecounters may not generate interrupts on
    633 	 * PPS events, so instead we poll them.  There is a finite risk that
    634 	 * the hardware might capture a count which is later than the one we
    635 	 * got above, and therefore possibly in the next NTP second which might
    636 	 * have a different rate than the current NTP second.  It doesn't
    637 	 * matter in practice.
    638 	 */
    639 	if (tho->th_counter->tc_poll_pps)
    640 		tho->th_counter->tc_poll_pps(tho->th_counter);
    641 
    642 	/*
    643 	 * Deal with NTP second processing.  The for loop normally
    644 	 * iterates at most once, but in extreme situations it might
    645 	 * keep NTP sane if timeouts are not run for several seconds.
    646 	 * At boot, the time step can be large when the TOD hardware
    647 	 * has been read, so on really large steps, we call
    648 	 * ntp_update_second only twice.  We need to call it twice in
    649 	 * case we missed a leap second.
    650 	 * If NTP is not compiled in ntp_update_second still calculates
    651 	 * the adjustment resulting from adjtime() calls.
    652 	 */
    653 	bt = th->th_offset;
    654 	bintime_add(&bt, &timebasebin);
    655 	i = bt.sec - tho->th_microtime.tv_sec;
    656 	if (i > LARGE_STEP)
    657 		i = 2;
    658 	for (; i > 0; i--) {
    659 		t = bt.sec;
    660 		ntp_update_second(&th->th_adjustment, &bt.sec);
    661 		s_update = 1;
    662 		if (bt.sec != t)
    663 			timebasebin.sec += bt.sec - t;
    664 	}
    665 
    666 	/* Update the UTC timestamps used by the get*() functions. */
    667 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    668 	bintime2timeval(&bt, &th->th_microtime);
    669 	bintime2timespec(&bt, &th->th_nanotime);
    670 
    671 	/* Now is a good time to change timecounters. */
    672 	if (th->th_counter != timecounter) {
    673 		th->th_counter = timecounter;
    674 		th->th_offset_count = ncount;
    675 		s_update = 1;
    676 	}
    677 
    678 	/*-
    679 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    680 	 * fractions of a second per period of the hardware counter, taking
    681 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    682 	 * processing provides us with.
    683 	 *
    684 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    685 	 * fraction and we want 64 bit binary fraction of second:
    686 	 *
    687 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    688 	 *
    689 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    690 	 * we can only multiply by about 850 without overflowing, but that
    691 	 * leaves suitably precise fractions for multiply before divide.
    692 	 *
    693 	 * Divide before multiply with a fraction of 2199/512 results in a
    694 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    695 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    696  	 *
    697 	 * We happily sacrifice the lowest of the 64 bits of our result
    698 	 * to the goddess of code clarity.
    699 	 *
    700 	 */
    701 	if (s_update) {
    702 		scale = (u_int64_t)1 << 63;
    703 		scale += (th->th_adjustment / 1024) * 2199;
    704 		scale /= th->th_counter->tc_frequency;
    705 		th->th_scale = scale * 2;
    706 	}
    707 	/*
    708 	 * Now that the struct timehands is again consistent, set the new
    709 	 * generation number, making sure to not make it zero.  Ensure
    710 	 * changes are globally visible before changing.
    711 	 */
    712 	if (++ogen == 0)
    713 		ogen = 1;
    714 	membar_producer();
    715 	th->th_generation = ogen;
    716 
    717 	/*
    718 	 * Go live with the new struct timehands.  Ensure changes are
    719 	 * globally visible before changing.
    720 	 */
    721 	time_second = th->th_microtime.tv_sec;
    722 	time_uptime = th->th_offset.sec;
    723 	membar_producer();
    724 	timehands = th;
    725 
    726 	/*
    727 	 * Force users of the old timehand to move on.  This is
    728 	 * necessary for MP systems; we need to ensure that the
    729 	 * consumers will move away from the old timehand before
    730 	 * we begin updating it again when we eventually wrap
    731 	 * around.
    732 	 */
    733 	if (++tho->th_generation == 0)
    734 		tho->th_generation = 1;
    735 }
    736 
    737 /*
    738  * RFC 2783 PPS-API implementation.
    739  */
    740 
    741 int
    742 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
    743 {
    744 	pps_params_t *app;
    745 	pps_info_t *pipi;
    746 #ifdef PPS_SYNC
    747 	int *epi;
    748 #endif
    749 
    750 	KASSERT(mutex_owned(&timecounter_lock));
    751 
    752 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
    753 	switch (cmd) {
    754 	case PPS_IOC_CREATE:
    755 		return (0);
    756 	case PPS_IOC_DESTROY:
    757 		return (0);
    758 	case PPS_IOC_SETPARAMS:
    759 		app = (pps_params_t *)data;
    760 		if (app->mode & ~pps->ppscap)
    761 			return (EINVAL);
    762 		pps->ppsparam = *app;
    763 		return (0);
    764 	case PPS_IOC_GETPARAMS:
    765 		app = (pps_params_t *)data;
    766 		*app = pps->ppsparam;
    767 		app->api_version = PPS_API_VERS_1;
    768 		return (0);
    769 	case PPS_IOC_GETCAP:
    770 		*(int*)data = pps->ppscap;
    771 		return (0);
    772 	case PPS_IOC_FETCH:
    773 		pipi = (pps_info_t *)data;
    774 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    775 		*pipi = pps->ppsinfo;
    776 		return (0);
    777 	case PPS_IOC_KCBIND:
    778 #ifdef PPS_SYNC
    779 		epi = (int *)data;
    780 		/* XXX Only root should be able to do this */
    781 		if (*epi & ~pps->ppscap)
    782 			return (EINVAL);
    783 		pps->kcmode = *epi;
    784 		return (0);
    785 #else
    786 		return (EOPNOTSUPP);
    787 #endif
    788 	default:
    789 		return (EPASSTHROUGH);
    790 	}
    791 }
    792 
    793 void
    794 pps_init(struct pps_state *pps)
    795 {
    796 
    797 	KASSERT(mutex_owned(&timecounter_lock));
    798 
    799 	pps->ppscap |= PPS_TSFMT_TSPEC;
    800 	if (pps->ppscap & PPS_CAPTUREASSERT)
    801 		pps->ppscap |= PPS_OFFSETASSERT;
    802 	if (pps->ppscap & PPS_CAPTURECLEAR)
    803 		pps->ppscap |= PPS_OFFSETCLEAR;
    804 }
    805 
    806 void
    807 pps_capture(struct pps_state *pps)
    808 {
    809 	struct timehands *th;
    810 
    811 	KASSERT(mutex_owned(&timecounter_lock));
    812 	KASSERT(pps != NULL);
    813 
    814 	th = timehands;
    815 	pps->capgen = th->th_generation;
    816 	pps->capth = th;
    817 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
    818 	if (pps->capgen != th->th_generation)
    819 		pps->capgen = 0;
    820 }
    821 
    822 void
    823 pps_event(struct pps_state *pps, int event)
    824 {
    825 	struct bintime bt;
    826 	struct timespec ts, *tsp, *osp;
    827 	u_int tcount, *pcount;
    828 	int foff, fhard;
    829 	pps_seq_t *pseq;
    830 
    831 	KASSERT(mutex_owned(&timecounter_lock));
    832 
    833 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
    834 	/* If the timecounter was wound up underneath us, bail out. */
    835 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
    836 		return;
    837 
    838 	/* Things would be easier with arrays. */
    839 	if (event == PPS_CAPTUREASSERT) {
    840 		tsp = &pps->ppsinfo.assert_timestamp;
    841 		osp = &pps->ppsparam.assert_offset;
    842 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
    843 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
    844 		pcount = &pps->ppscount[0];
    845 		pseq = &pps->ppsinfo.assert_sequence;
    846 	} else {
    847 		tsp = &pps->ppsinfo.clear_timestamp;
    848 		osp = &pps->ppsparam.clear_offset;
    849 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
    850 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
    851 		pcount = &pps->ppscount[1];
    852 		pseq = &pps->ppsinfo.clear_sequence;
    853 	}
    854 
    855 	/*
    856 	 * If the timecounter changed, we cannot compare the count values, so
    857 	 * we have to drop the rest of the PPS-stuff until the next event.
    858 	 */
    859 	if (pps->ppstc != pps->capth->th_counter) {
    860 		pps->ppstc = pps->capth->th_counter;
    861 		*pcount = pps->capcount;
    862 		pps->ppscount[2] = pps->capcount;
    863 		return;
    864 	}
    865 
    866 	/* Convert the count to a timespec. */
    867 	tcount = pps->capcount - pps->capth->th_offset_count;
    868 	tcount &= pps->capth->th_counter->tc_counter_mask;
    869 	bt = pps->capth->th_offset;
    870 	bintime_addx(&bt, pps->capth->th_scale * tcount);
    871 	bintime_add(&bt, &timebasebin);
    872 	bintime2timespec(&bt, &ts);
    873 
    874 	/* If the timecounter was wound up underneath us, bail out. */
    875 	if (pps->capgen != pps->capth->th_generation)
    876 		return;
    877 
    878 	*pcount = pps->capcount;
    879 	(*pseq)++;
    880 	*tsp = ts;
    881 
    882 	if (foff) {
    883 		timespecadd(tsp, osp, tsp);
    884 		if (tsp->tv_nsec < 0) {
    885 			tsp->tv_nsec += 1000000000;
    886 			tsp->tv_sec -= 1;
    887 		}
    888 	}
    889 #ifdef PPS_SYNC
    890 	if (fhard) {
    891 		u_int64_t scale;
    892 
    893 		/*
    894 		 * Feed the NTP PLL/FLL.
    895 		 * The FLL wants to know how many (hardware) nanoseconds
    896 		 * elapsed since the previous event.
    897 		 */
    898 		tcount = pps->capcount - pps->ppscount[2];
    899 		pps->ppscount[2] = pps->capcount;
    900 		tcount &= pps->capth->th_counter->tc_counter_mask;
    901 		scale = (u_int64_t)1 << 63;
    902 		scale /= pps->capth->th_counter->tc_frequency;
    903 		scale *= 2;
    904 		bt.sec = 0;
    905 		bt.frac = 0;
    906 		bintime_addx(&bt, scale * tcount);
    907 		bintime2timespec(&bt, &ts);
    908 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
    909 	}
    910 #endif
    911 }
    912 
    913 /*
    914  * Timecounters need to be updated every so often to prevent the hardware
    915  * counter from overflowing.  Updating also recalculates the cached values
    916  * used by the get*() family of functions, so their precision depends on
    917  * the update frequency.
    918  */
    919 
    920 static int tc_tick;
    921 
    922 void
    923 tc_ticktock(void)
    924 {
    925 	static int count;
    926 
    927 	if (++count < tc_tick)
    928 		return;
    929 	count = 0;
    930 	mutex_spin_enter(&timecounter_lock);
    931 	tc_windup();
    932 	mutex_spin_exit(&timecounter_lock);
    933 }
    934 
    935 void
    936 inittimecounter(void)
    937 {
    938 	u_int p;
    939 
    940 	mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_SCHED);
    941 
    942 	/*
    943 	 * Set the initial timeout to
    944 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
    945 	 * People should probably not use the sysctl to set the timeout
    946 	 * to smaller than its inital value, since that value is the
    947 	 * smallest reasonable one.  If they want better timestamps they
    948 	 * should use the non-"get"* functions.
    949 	 */
    950 	if (hz > 1000)
    951 		tc_tick = (hz + 500) / 1000;
    952 	else
    953 		tc_tick = 1;
    954 	p = (tc_tick * 1000000) / hz;
    955 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
    956 	    p / 1000, p % 1000);
    957 
    958 	/* warm up new timecounter (again) and get rolling. */
    959 	(void)timecounter->tc_get_timecount(timecounter);
    960 	(void)timecounter->tc_get_timecount(timecounter);
    961 }
    962