Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.39
      1 /* $NetBSD: kern_tc.c,v 1.39 2009/05/23 17:08:04 ad Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * ----------------------------------------------------------------------------
     34  * "THE BEER-WARE LICENSE" (Revision 42):
     35  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
     36  * can do whatever you want with this stuff. If we meet some day, and you think
     37  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
     38  * ---------------------------------------------------------------------------
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     43 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.39 2009/05/23 17:08:04 ad Exp $");
     44 
     45 #include "opt_ntp.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/kernel.h>
     49 #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     50 #include <sys/sysctl.h>
     51 #include <sys/syslog.h>
     52 #include <sys/systm.h>
     53 #include <sys/timepps.h>
     54 #include <sys/timetc.h>
     55 #include <sys/timex.h>
     56 #include <sys/evcnt.h>
     57 #include <sys/kauth.h>
     58 #include <sys/mutex.h>
     59 #include <sys/atomic.h>
     60 #include <sys/xcall.h>
     61 
     62 /*
     63  * A large step happens on boot.  This constant detects such steps.
     64  * It is relatively small so that ntp_update_second gets called enough
     65  * in the typical 'missed a couple of seconds' case, but doesn't loop
     66  * forever when the time step is large.
     67  */
     68 #define LARGE_STEP	200
     69 
     70 /*
     71  * Implement a dummy timecounter which we can use until we get a real one
     72  * in the air.  This allows the console and other early stuff to use
     73  * time services.
     74  */
     75 
     76 static u_int
     77 dummy_get_timecount(struct timecounter *tc)
     78 {
     79 	static u_int now;
     80 
     81 	return (++now);
     82 }
     83 
     84 static struct timecounter dummy_timecounter = {
     85 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
     86 };
     87 
     88 struct timehands {
     89 	/* These fields must be initialized by the driver. */
     90 	struct timecounter	*th_counter;
     91 	int64_t			th_adjustment;
     92 	u_int64_t		th_scale;
     93 	u_int	 		th_offset_count;
     94 	struct bintime		th_offset;
     95 	struct timeval		th_microtime;
     96 	struct timespec		th_nanotime;
     97 	/* Fields not to be copied in tc_windup start with th_generation. */
     98 	volatile u_int		th_generation;
     99 	struct timehands	*th_next;
    100 };
    101 
    102 static struct timehands th0;
    103 static struct timehands th9 = { .th_next = &th0, };
    104 static struct timehands th8 = { .th_next = &th9, };
    105 static struct timehands th7 = { .th_next = &th8, };
    106 static struct timehands th6 = { .th_next = &th7, };
    107 static struct timehands th5 = { .th_next = &th6, };
    108 static struct timehands th4 = { .th_next = &th5, };
    109 static struct timehands th3 = { .th_next = &th4, };
    110 static struct timehands th2 = { .th_next = &th3, };
    111 static struct timehands th1 = { .th_next = &th2, };
    112 static struct timehands th0 = {
    113 	.th_counter = &dummy_timecounter,
    114 	.th_scale = (uint64_t)-1 / 1000000,
    115 	.th_offset = { .sec = 1, .frac = 0 },
    116 	.th_generation = 1,
    117 	.th_next = &th1,
    118 };
    119 
    120 static struct timehands *volatile timehands = &th0;
    121 struct timecounter *timecounter = &dummy_timecounter;
    122 static struct timecounter *timecounters = &dummy_timecounter;
    123 
    124 time_t time_second = 1;
    125 time_t time_uptime = 1;
    126 
    127 static struct bintime timebasebin;
    128 
    129 static int timestepwarnings;
    130 
    131 kmutex_t timecounter_lock;
    132 static u_int timecounter_mods;
    133 static volatile int timecounter_removals = 1;
    134 static u_int timecounter_bad;
    135 
    136 #ifdef __FreeBSD__
    137 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    138     &timestepwarnings, 0, "");
    139 #endif /* __FreeBSD__ */
    140 
    141 /*
    142  * sysctl helper routine for kern.timercounter.hardware
    143  */
    144 static int
    145 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    146 {
    147 	struct sysctlnode node;
    148 	int error;
    149 	char newname[MAX_TCNAMELEN];
    150 	struct timecounter *newtc, *tc;
    151 
    152 	tc = timecounter;
    153 
    154 	strlcpy(newname, tc->tc_name, sizeof(newname));
    155 
    156 	node = *rnode;
    157 	node.sysctl_data = newname;
    158 	node.sysctl_size = sizeof(newname);
    159 
    160 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    161 
    162 	if (error ||
    163 	    newp == NULL ||
    164 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    165 		return error;
    166 
    167 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
    168 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
    169 	    NULL, NULL)) != 0)
    170 		return (error);
    171 
    172 	if (!cold)
    173 		mutex_spin_enter(&timecounter_lock);
    174 	error = EINVAL;
    175 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    176 		if (strcmp(newname, newtc->tc_name) != 0)
    177 			continue;
    178 		/* Warm up new timecounter. */
    179 		(void)newtc->tc_get_timecount(newtc);
    180 		(void)newtc->tc_get_timecount(newtc);
    181 		timecounter = newtc;
    182 		error = 0;
    183 		break;
    184 	}
    185 	if (!cold)
    186 		mutex_spin_exit(&timecounter_lock);
    187 	return error;
    188 }
    189 
    190 static int
    191 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    192 {
    193 	char buf[MAX_TCNAMELEN+48];
    194 	char *where;
    195 	const char *spc;
    196 	struct timecounter *tc;
    197 	size_t needed, left, slen;
    198 	int error, mods;
    199 
    200 	if (newp != NULL)
    201 		return (EPERM);
    202 	if (namelen != 0)
    203 		return (EINVAL);
    204 
    205 	mutex_spin_enter(&timecounter_lock);
    206  retry:
    207 	spc = "";
    208 	error = 0;
    209 	needed = 0;
    210 	left = *oldlenp;
    211 	where = oldp;
    212 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    213 		if (where == NULL) {
    214 			needed += sizeof(buf);  /* be conservative */
    215 		} else {
    216 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    217 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    218 					tc->tc_frequency);
    219 			if (left < slen + 1)
    220 				break;
    221 		 	mods = timecounter_mods;
    222 			mutex_spin_exit(&timecounter_lock);
    223 			error = copyout(buf, where, slen + 1);
    224 			mutex_spin_enter(&timecounter_lock);
    225 			if (mods != timecounter_mods) {
    226 				goto retry;
    227 			}
    228 			spc = " ";
    229 			where += slen;
    230 			needed += slen;
    231 			left -= slen;
    232 		}
    233 	}
    234 	mutex_spin_exit(&timecounter_lock);
    235 
    236 	*oldlenp = needed;
    237 	return (error);
    238 }
    239 
    240 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    241 {
    242 	const struct sysctlnode *node;
    243 
    244 	sysctl_createv(clog, 0, NULL, &node,
    245 		       CTLFLAG_PERMANENT,
    246 		       CTLTYPE_NODE, "timecounter",
    247 		       SYSCTL_DESCR("time counter information"),
    248 		       NULL, 0, NULL, 0,
    249 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    250 
    251 	if (node != NULL) {
    252 		sysctl_createv(clog, 0, NULL, NULL,
    253 			       CTLFLAG_PERMANENT,
    254 			       CTLTYPE_STRING, "choice",
    255 			       SYSCTL_DESCR("available counters"),
    256 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    257 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    258 
    259 		sysctl_createv(clog, 0, NULL, NULL,
    260 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    261 			       CTLTYPE_STRING, "hardware",
    262 			       SYSCTL_DESCR("currently active time counter"),
    263 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    264 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    265 
    266 		sysctl_createv(clog, 0, NULL, NULL,
    267 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    268 			       CTLTYPE_INT, "timestepwarnings",
    269 			       SYSCTL_DESCR("log time steps"),
    270 			       NULL, 0, &timestepwarnings, 0,
    271 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    272 	}
    273 }
    274 
    275 #ifdef TC_COUNTERS
    276 #define	TC_STATS(name)							\
    277 static struct evcnt n##name =						\
    278     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    279 EVCNT_ATTACH_STATIC(n##name)
    280 TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    281 TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    282 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    283 TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    284 TC_STATS(setclock);
    285 #define	TC_COUNT(var)	var.ev_count++
    286 #undef TC_STATS
    287 #else
    288 #define	TC_COUNT(var)	/* nothing */
    289 #endif	/* TC_COUNTERS */
    290 
    291 static void tc_windup(void);
    292 
    293 /*
    294  * Return the difference between the timehands' counter value now and what
    295  * was when we copied it to the timehands' offset_count.
    296  */
    297 static __inline u_int
    298 tc_delta(struct timehands *th)
    299 {
    300 	struct timecounter *tc;
    301 
    302 	tc = th->th_counter;
    303 	return ((tc->tc_get_timecount(tc) -
    304 		 th->th_offset_count) & tc->tc_counter_mask);
    305 }
    306 
    307 /*
    308  * Functions for reading the time.  We have to loop until we are sure that
    309  * the timehands that we operated on was not updated under our feet.  See
    310  * the comment in <sys/timevar.h> for a description of these 12 functions.
    311  */
    312 
    313 void
    314 binuptime(struct bintime *bt)
    315 {
    316 	struct timehands *th;
    317 	lwp_t *l;
    318 	u_int lgen, gen;
    319 
    320 	TC_COUNT(nbinuptime);
    321 
    322 	/*
    323 	 * Provide exclusion against tc_detach().
    324 	 *
    325 	 * We record the number of timecounter removals before accessing
    326 	 * timecounter state.  Note that the LWP can be using multiple
    327 	 * "generations" at once, due to interrupts (interrupted while in
    328 	 * this function).  Hardware interrupts will borrow the interrupted
    329 	 * LWP's l_tcgen value for this purpose, and can themselves be
    330 	 * interrupted by higher priority interrupts.  In this case we need
    331 	 * to ensure that the oldest generation in use is recorded.
    332 	 *
    333 	 * splsched() is too expensive to use, so we take care to structure
    334 	 * this code in such a way that it is not required.  Likewise, we
    335 	 * do not disable preemption.
    336 	 *
    337 	 * Memory barriers are also too expensive to use for such a
    338 	 * performance critical function.  The good news is that we do not
    339 	 * need memory barriers for this type of exclusion, as the thread
    340 	 * updating timecounter_removals will issue a broadcast cross call
    341 	 * before inspecting our l_tcgen value (this elides memory ordering
    342 	 * issues).
    343 	 */
    344 	l = curlwp;
    345 	lgen = l->l_tcgen;
    346 	if (__predict_true(lgen == 0)) {
    347 		l->l_tcgen = timecounter_removals;
    348 	}
    349 	__insn_barrier();
    350 
    351 	do {
    352 		th = timehands;
    353 		gen = th->th_generation;
    354 		*bt = th->th_offset;
    355 		bintime_addx(bt, th->th_scale * tc_delta(th));
    356 	} while (gen == 0 || gen != th->th_generation);
    357 
    358 	__insn_barrier();
    359 	l->l_tcgen = lgen;
    360 }
    361 
    362 void
    363 nanouptime(struct timespec *tsp)
    364 {
    365 	struct bintime bt;
    366 
    367 	TC_COUNT(nnanouptime);
    368 	binuptime(&bt);
    369 	bintime2timespec(&bt, tsp);
    370 }
    371 
    372 void
    373 microuptime(struct timeval *tvp)
    374 {
    375 	struct bintime bt;
    376 
    377 	TC_COUNT(nmicrouptime);
    378 	binuptime(&bt);
    379 	bintime2timeval(&bt, tvp);
    380 }
    381 
    382 void
    383 bintime(struct bintime *bt)
    384 {
    385 
    386 	TC_COUNT(nbintime);
    387 	binuptime(bt);
    388 	bintime_add(bt, &timebasebin);
    389 }
    390 
    391 void
    392 nanotime(struct timespec *tsp)
    393 {
    394 	struct bintime bt;
    395 
    396 	TC_COUNT(nnanotime);
    397 	bintime(&bt);
    398 	bintime2timespec(&bt, tsp);
    399 }
    400 
    401 void
    402 microtime(struct timeval *tvp)
    403 {
    404 	struct bintime bt;
    405 
    406 	TC_COUNT(nmicrotime);
    407 	bintime(&bt);
    408 	bintime2timeval(&bt, tvp);
    409 }
    410 
    411 void
    412 getbinuptime(struct bintime *bt)
    413 {
    414 	struct timehands *th;
    415 	u_int gen;
    416 
    417 	TC_COUNT(ngetbinuptime);
    418 	do {
    419 		th = timehands;
    420 		gen = th->th_generation;
    421 		*bt = th->th_offset;
    422 	} while (gen == 0 || gen != th->th_generation);
    423 }
    424 
    425 void
    426 getnanouptime(struct timespec *tsp)
    427 {
    428 	struct timehands *th;
    429 	u_int gen;
    430 
    431 	TC_COUNT(ngetnanouptime);
    432 	do {
    433 		th = timehands;
    434 		gen = th->th_generation;
    435 		bintime2timespec(&th->th_offset, tsp);
    436 	} while (gen == 0 || gen != th->th_generation);
    437 }
    438 
    439 void
    440 getmicrouptime(struct timeval *tvp)
    441 {
    442 	struct timehands *th;
    443 	u_int gen;
    444 
    445 	TC_COUNT(ngetmicrouptime);
    446 	do {
    447 		th = timehands;
    448 		gen = th->th_generation;
    449 		bintime2timeval(&th->th_offset, tvp);
    450 	} while (gen == 0 || gen != th->th_generation);
    451 }
    452 
    453 void
    454 getbintime(struct bintime *bt)
    455 {
    456 	struct timehands *th;
    457 	u_int gen;
    458 
    459 	TC_COUNT(ngetbintime);
    460 	do {
    461 		th = timehands;
    462 		gen = th->th_generation;
    463 		*bt = th->th_offset;
    464 	} while (gen == 0 || gen != th->th_generation);
    465 	bintime_add(bt, &timebasebin);
    466 }
    467 
    468 void
    469 getnanotime(struct timespec *tsp)
    470 {
    471 	struct timehands *th;
    472 	u_int gen;
    473 
    474 	TC_COUNT(ngetnanotime);
    475 	do {
    476 		th = timehands;
    477 		gen = th->th_generation;
    478 		*tsp = th->th_nanotime;
    479 	} while (gen == 0 || gen != th->th_generation);
    480 }
    481 
    482 void
    483 getmicrotime(struct timeval *tvp)
    484 {
    485 	struct timehands *th;
    486 	u_int gen;
    487 
    488 	TC_COUNT(ngetmicrotime);
    489 	do {
    490 		th = timehands;
    491 		gen = th->th_generation;
    492 		*tvp = th->th_microtime;
    493 	} while (gen == 0 || gen != th->th_generation);
    494 }
    495 
    496 /*
    497  * Initialize a new timecounter and possibly use it.
    498  */
    499 void
    500 tc_init(struct timecounter *tc)
    501 {
    502 	u_int u;
    503 
    504 	u = tc->tc_frequency / tc->tc_counter_mask;
    505 	/* XXX: We need some margin here, 10% is a guess */
    506 	u *= 11;
    507 	u /= 10;
    508 	if (u > hz && tc->tc_quality >= 0) {
    509 		tc->tc_quality = -2000;
    510 		aprint_verbose(
    511 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
    512 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    513 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
    514 	} else if (tc->tc_quality >= 0 || bootverbose) {
    515 		aprint_verbose(
    516 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
    517 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
    518 		    tc->tc_quality);
    519 	}
    520 
    521 	mutex_spin_enter(&timecounter_lock);
    522 	tc->tc_next = timecounters;
    523 	timecounters = tc;
    524 	timecounter_mods++;
    525 	/*
    526 	 * Never automatically use a timecounter with negative quality.
    527 	 * Even though we run on the dummy counter, switching here may be
    528 	 * worse since this timecounter may not be monotonous.
    529 	 */
    530 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
    531 	    (tc->tc_quality == timecounter->tc_quality &&
    532 	    tc->tc_frequency > timecounter->tc_frequency))) {
    533 		(void)tc->tc_get_timecount(tc);
    534 		(void)tc->tc_get_timecount(tc);
    535 		timecounter = tc;
    536 		tc_windup();
    537 	}
    538 	mutex_spin_exit(&timecounter_lock);
    539 }
    540 
    541 /*
    542  * Pick a new timecounter due to the existing counter going bad.
    543  */
    544 static void
    545 tc_pick(void)
    546 {
    547 	struct timecounter *best, *tc;
    548 
    549 	KASSERT(mutex_owned(&timecounter_lock));
    550 
    551 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
    552 		if (tc->tc_quality > best->tc_quality)
    553 			best = tc;
    554 		else if (tc->tc_quality < best->tc_quality)
    555 			continue;
    556 		else if (tc->tc_frequency > best->tc_frequency)
    557 			best = tc;
    558 	}
    559 	(void)best->tc_get_timecount(best);
    560 	(void)best->tc_get_timecount(best);
    561 	timecounter = best;
    562 }
    563 
    564 /*
    565  * A timecounter has gone bad, arrange to pick a new one at the next
    566  * clock tick.
    567  */
    568 void
    569 tc_gonebad(struct timecounter *tc)
    570 {
    571 
    572 	tc->tc_quality = -100;
    573 	membar_producer();
    574 	atomic_inc_uint(&timecounter_bad);
    575 }
    576 
    577 /*
    578  * Stop using a timecounter and remove it from the timecounters list.
    579  */
    580 int
    581 tc_detach(struct timecounter *target)
    582 {
    583 	struct timecounter *tc;
    584 	struct timecounter **tcp = NULL;
    585 	int removals;
    586 	uint64_t where;
    587 	lwp_t *l;
    588 
    589 	/* First, find the timecounter. */
    590 	mutex_spin_enter(&timecounter_lock);
    591 	for (tcp = &timecounters, tc = timecounters;
    592 	     tc != NULL;
    593 	     tcp = &tc->tc_next, tc = tc->tc_next) {
    594 		if (tc == target)
    595 			break;
    596 	}
    597 	if (tc == NULL) {
    598 		mutex_spin_exit(&timecounter_lock);
    599 		return ESRCH;
    600 	}
    601 
    602 	/* And now, remove it. */
    603 	*tcp = tc->tc_next;
    604 	if (timecounter == target) {
    605 		tc_pick();
    606 		tc_windup();
    607 	}
    608 	timecounter_mods++;
    609 	removals = timecounter_removals++;
    610 	mutex_spin_exit(&timecounter_lock);
    611 
    612 	/*
    613 	 * We now have to determine if any threads in the system are still
    614 	 * making use of this timecounter.
    615 	 *
    616 	 * We issue a broadcast cross call to elide memory ordering issues,
    617 	 * then scan all LWPs in the system looking at each's timecounter
    618 	 * generation number.  We need to see a value of zero (not actively
    619 	 * using a timecounter) or a value greater than our removal value.
    620 	 *
    621 	 * We may race with threads that read `timecounter_removals' and
    622 	 * and then get preempted before updating `l_tcgen'.  This is not
    623 	 * a problem, since it means that these threads have not yet started
    624 	 * accessing timecounter state.  All we do need is one clean
    625 	 * snapshot of the system where every thread appears not to be using
    626 	 * old timecounter state.
    627 	 */
    628 	for (;;) {
    629 		where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    630 		xc_wait(where);
    631 
    632 		mutex_enter(proc_lock);
    633 		LIST_FOREACH(l, &alllwp, l_list) {
    634 			if (l->l_tcgen == 0 || l->l_tcgen > removals) {
    635 				/*
    636 				 * Not using timecounter or old timecounter
    637 				 * state at time of our xcall or later.
    638 				 */
    639 				continue;
    640 			}
    641 			break;
    642 		}
    643 		mutex_exit(proc_lock);
    644 
    645 		/*
    646 		 * If the timecounter is still in use, wait at least 10ms
    647 		 * before retrying.
    648 		 */
    649 		if (l == NULL) {
    650 			return 0;
    651 		}
    652 		(void)kpause("tcdetach", false, mstohz(10), NULL);
    653 	}
    654 }
    655 
    656 /* Report the frequency of the current timecounter. */
    657 u_int64_t
    658 tc_getfrequency(void)
    659 {
    660 
    661 	return (timehands->th_counter->tc_frequency);
    662 }
    663 
    664 /*
    665  * Step our concept of UTC.  This is done by modifying our estimate of
    666  * when we booted.
    667  */
    668 void
    669 tc_setclock(const struct timespec *ts)
    670 {
    671 	struct timespec ts2;
    672 	struct bintime bt, bt2;
    673 
    674 	mutex_spin_enter(&timecounter_lock);
    675 	TC_COUNT(nsetclock);
    676 	binuptime(&bt2);
    677 	timespec2bintime(ts, &bt);
    678 	bintime_sub(&bt, &bt2);
    679 	bintime_add(&bt2, &timebasebin);
    680 	timebasebin = bt;
    681 	tc_windup();
    682 	mutex_spin_exit(&timecounter_lock);
    683 
    684 	if (timestepwarnings) {
    685 		bintime2timespec(&bt2, &ts2);
    686 		log(LOG_INFO, "Time stepped from %lld.%09ld to %lld.%09ld\n",
    687 		    (long long)ts2.tv_sec, ts2.tv_nsec,
    688 		    (long long)ts->tv_sec, ts->tv_nsec);
    689 	}
    690 }
    691 
    692 /*
    693  * Initialize the next struct timehands in the ring and make
    694  * it the active timehands.  Along the way we might switch to a different
    695  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    696  */
    697 static void
    698 tc_windup(void)
    699 {
    700 	struct bintime bt;
    701 	struct timehands *th, *tho;
    702 	u_int64_t scale;
    703 	u_int delta, ncount, ogen;
    704 	int i, s_update;
    705 	time_t t;
    706 
    707 	KASSERT(mutex_owned(&timecounter_lock));
    708 
    709 	s_update = 0;
    710 
    711 	/*
    712 	 * Make the next timehands a copy of the current one, but do not
    713 	 * overwrite the generation or next pointer.  While we update
    714 	 * the contents, the generation must be zero.  Ensure global
    715 	 * visibility of the generation before proceeding.
    716 	 */
    717 	tho = timehands;
    718 	th = tho->th_next;
    719 	ogen = th->th_generation;
    720 	th->th_generation = 0;
    721 	membar_producer();
    722 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    723 
    724 	/*
    725 	 * Capture a timecounter delta on the current timecounter and if
    726 	 * changing timecounters, a counter value from the new timecounter.
    727 	 * Update the offset fields accordingly.
    728 	 */
    729 	delta = tc_delta(th);
    730 	if (th->th_counter != timecounter)
    731 		ncount = timecounter->tc_get_timecount(timecounter);
    732 	else
    733 		ncount = 0;
    734 	th->th_offset_count += delta;
    735 	th->th_offset_count &= th->th_counter->tc_counter_mask;
    736 	bintime_addx(&th->th_offset, th->th_scale * delta);
    737 
    738 	/*
    739 	 * Hardware latching timecounters may not generate interrupts on
    740 	 * PPS events, so instead we poll them.  There is a finite risk that
    741 	 * the hardware might capture a count which is later than the one we
    742 	 * got above, and therefore possibly in the next NTP second which might
    743 	 * have a different rate than the current NTP second.  It doesn't
    744 	 * matter in practice.
    745 	 */
    746 	if (tho->th_counter->tc_poll_pps)
    747 		tho->th_counter->tc_poll_pps(tho->th_counter);
    748 
    749 	/*
    750 	 * Deal with NTP second processing.  The for loop normally
    751 	 * iterates at most once, but in extreme situations it might
    752 	 * keep NTP sane if timeouts are not run for several seconds.
    753 	 * At boot, the time step can be large when the TOD hardware
    754 	 * has been read, so on really large steps, we call
    755 	 * ntp_update_second only twice.  We need to call it twice in
    756 	 * case we missed a leap second.
    757 	 * If NTP is not compiled in ntp_update_second still calculates
    758 	 * the adjustment resulting from adjtime() calls.
    759 	 */
    760 	bt = th->th_offset;
    761 	bintime_add(&bt, &timebasebin);
    762 	i = bt.sec - tho->th_microtime.tv_sec;
    763 	if (i > LARGE_STEP)
    764 		i = 2;
    765 	for (; i > 0; i--) {
    766 		t = bt.sec;
    767 		ntp_update_second(&th->th_adjustment, &bt.sec);
    768 		s_update = 1;
    769 		if (bt.sec != t)
    770 			timebasebin.sec += bt.sec - t;
    771 	}
    772 
    773 	/* Update the UTC timestamps used by the get*() functions. */
    774 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    775 	bintime2timeval(&bt, &th->th_microtime);
    776 	bintime2timespec(&bt, &th->th_nanotime);
    777 	/* Now is a good time to change timecounters. */
    778 	if (th->th_counter != timecounter) {
    779 		th->th_counter = timecounter;
    780 		th->th_offset_count = ncount;
    781 		s_update = 1;
    782 	}
    783 
    784 	/*-
    785 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    786 	 * fractions of a second per period of the hardware counter, taking
    787 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    788 	 * processing provides us with.
    789 	 *
    790 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    791 	 * fraction and we want 64 bit binary fraction of second:
    792 	 *
    793 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    794 	 *
    795 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    796 	 * we can only multiply by about 850 without overflowing, but that
    797 	 * leaves suitably precise fractions for multiply before divide.
    798 	 *
    799 	 * Divide before multiply with a fraction of 2199/512 results in a
    800 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    801 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    802  	 *
    803 	 * We happily sacrifice the lowest of the 64 bits of our result
    804 	 * to the goddess of code clarity.
    805 	 *
    806 	 */
    807 	if (s_update) {
    808 		scale = (u_int64_t)1 << 63;
    809 		scale += (th->th_adjustment / 1024) * 2199;
    810 		scale /= th->th_counter->tc_frequency;
    811 		th->th_scale = scale * 2;
    812 	}
    813 	/*
    814 	 * Now that the struct timehands is again consistent, set the new
    815 	 * generation number, making sure to not make it zero.  Ensure
    816 	 * changes are globally visible before changing.
    817 	 */
    818 	if (++ogen == 0)
    819 		ogen = 1;
    820 	membar_producer();
    821 	th->th_generation = ogen;
    822 
    823 	/*
    824 	 * Go live with the new struct timehands.  Ensure changes are
    825 	 * globally visible before changing.
    826 	 */
    827 	time_second = th->th_microtime.tv_sec;
    828 	time_uptime = th->th_offset.sec;
    829 	membar_producer();
    830 	timehands = th;
    831 
    832 	/*
    833 	 * Force users of the old timehand to move on.  This is
    834 	 * necessary for MP systems; we need to ensure that the
    835 	 * consumers will move away from the old timehand before
    836 	 * we begin updating it again when we eventually wrap
    837 	 * around.
    838 	 */
    839 	if (++tho->th_generation == 0)
    840 		tho->th_generation = 1;
    841 }
    842 
    843 /*
    844  * RFC 2783 PPS-API implementation.
    845  */
    846 
    847 int
    848 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
    849 {
    850 	pps_params_t *app;
    851 	pps_info_t *pipi;
    852 #ifdef PPS_SYNC
    853 	int *epi;
    854 #endif
    855 
    856 	KASSERT(mutex_owned(&timecounter_lock));
    857 
    858 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
    859 	switch (cmd) {
    860 	case PPS_IOC_CREATE:
    861 		return (0);
    862 	case PPS_IOC_DESTROY:
    863 		return (0);
    864 	case PPS_IOC_SETPARAMS:
    865 		app = (pps_params_t *)data;
    866 		if (app->mode & ~pps->ppscap)
    867 			return (EINVAL);
    868 		pps->ppsparam = *app;
    869 		return (0);
    870 	case PPS_IOC_GETPARAMS:
    871 		app = (pps_params_t *)data;
    872 		*app = pps->ppsparam;
    873 		app->api_version = PPS_API_VERS_1;
    874 		return (0);
    875 	case PPS_IOC_GETCAP:
    876 		*(int*)data = pps->ppscap;
    877 		return (0);
    878 	case PPS_IOC_FETCH:
    879 		pipi = (pps_info_t *)data;
    880 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    881 		*pipi = pps->ppsinfo;
    882 		return (0);
    883 	case PPS_IOC_KCBIND:
    884 #ifdef PPS_SYNC
    885 		epi = (int *)data;
    886 		/* XXX Only root should be able to do this */
    887 		if (*epi & ~pps->ppscap)
    888 			return (EINVAL);
    889 		pps->kcmode = *epi;
    890 		return (0);
    891 #else
    892 		return (EOPNOTSUPP);
    893 #endif
    894 	default:
    895 		return (EPASSTHROUGH);
    896 	}
    897 }
    898 
    899 void
    900 pps_init(struct pps_state *pps)
    901 {
    902 
    903 	KASSERT(mutex_owned(&timecounter_lock));
    904 
    905 	pps->ppscap |= PPS_TSFMT_TSPEC;
    906 	if (pps->ppscap & PPS_CAPTUREASSERT)
    907 		pps->ppscap |= PPS_OFFSETASSERT;
    908 	if (pps->ppscap & PPS_CAPTURECLEAR)
    909 		pps->ppscap |= PPS_OFFSETCLEAR;
    910 }
    911 
    912 void
    913 pps_capture(struct pps_state *pps)
    914 {
    915 	struct timehands *th;
    916 
    917 	KASSERT(mutex_owned(&timecounter_lock));
    918 	KASSERT(pps != NULL);
    919 
    920 	th = timehands;
    921 	pps->capgen = th->th_generation;
    922 	pps->capth = th;
    923 	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
    924 	if (pps->capgen != th->th_generation)
    925 		pps->capgen = 0;
    926 }
    927 
    928 void
    929 pps_event(struct pps_state *pps, int event)
    930 {
    931 	struct bintime bt;
    932 	struct timespec ts, *tsp, *osp;
    933 	u_int tcount, *pcount;
    934 	int foff, fhard;
    935 	pps_seq_t *pseq;
    936 
    937 	KASSERT(mutex_owned(&timecounter_lock));
    938 
    939 	KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
    940 	/* If the timecounter was wound up underneath us, bail out. */
    941 	if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
    942 		return;
    943 
    944 	/* Things would be easier with arrays. */
    945 	if (event == PPS_CAPTUREASSERT) {
    946 		tsp = &pps->ppsinfo.assert_timestamp;
    947 		osp = &pps->ppsparam.assert_offset;
    948 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
    949 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
    950 		pcount = &pps->ppscount[0];
    951 		pseq = &pps->ppsinfo.assert_sequence;
    952 	} else {
    953 		tsp = &pps->ppsinfo.clear_timestamp;
    954 		osp = &pps->ppsparam.clear_offset;
    955 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
    956 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
    957 		pcount = &pps->ppscount[1];
    958 		pseq = &pps->ppsinfo.clear_sequence;
    959 	}
    960 
    961 	/*
    962 	 * If the timecounter changed, we cannot compare the count values, so
    963 	 * we have to drop the rest of the PPS-stuff until the next event.
    964 	 */
    965 	if (pps->ppstc != pps->capth->th_counter) {
    966 		pps->ppstc = pps->capth->th_counter;
    967 		*pcount = pps->capcount;
    968 		pps->ppscount[2] = pps->capcount;
    969 		return;
    970 	}
    971 
    972 	/* Convert the count to a timespec. */
    973 	tcount = pps->capcount - pps->capth->th_offset_count;
    974 	tcount &= pps->capth->th_counter->tc_counter_mask;
    975 	bt = pps->capth->th_offset;
    976 	bintime_addx(&bt, pps->capth->th_scale * tcount);
    977 	bintime_add(&bt, &timebasebin);
    978 	bintime2timespec(&bt, &ts);
    979 
    980 	/* If the timecounter was wound up underneath us, bail out. */
    981 	if (pps->capgen != pps->capth->th_generation)
    982 		return;
    983 
    984 	*pcount = pps->capcount;
    985 	(*pseq)++;
    986 	*tsp = ts;
    987 
    988 	if (foff) {
    989 		timespecadd(tsp, osp, tsp);
    990 		if (tsp->tv_nsec < 0) {
    991 			tsp->tv_nsec += 1000000000;
    992 			tsp->tv_sec -= 1;
    993 		}
    994 	}
    995 #ifdef PPS_SYNC
    996 	if (fhard) {
    997 		u_int64_t scale;
    998 
    999 		/*
   1000 		 * Feed the NTP PLL/FLL.
   1001 		 * The FLL wants to know how many (hardware) nanoseconds
   1002 		 * elapsed since the previous event.
   1003 		 */
   1004 		tcount = pps->capcount - pps->ppscount[2];
   1005 		pps->ppscount[2] = pps->capcount;
   1006 		tcount &= pps->capth->th_counter->tc_counter_mask;
   1007 		scale = (u_int64_t)1 << 63;
   1008 		scale /= pps->capth->th_counter->tc_frequency;
   1009 		scale *= 2;
   1010 		bt.sec = 0;
   1011 		bt.frac = 0;
   1012 		bintime_addx(&bt, scale * tcount);
   1013 		bintime2timespec(&bt, &ts);
   1014 		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
   1015 	}
   1016 #endif
   1017 }
   1018 
   1019 /*
   1020  * Timecounters need to be updated every so often to prevent the hardware
   1021  * counter from overflowing.  Updating also recalculates the cached values
   1022  * used by the get*() family of functions, so their precision depends on
   1023  * the update frequency.
   1024  */
   1025 
   1026 static int tc_tick;
   1027 
   1028 void
   1029 tc_ticktock(void)
   1030 {
   1031 	static int count;
   1032 
   1033 	if (++count < tc_tick)
   1034 		return;
   1035 	count = 0;
   1036 	mutex_spin_enter(&timecounter_lock);
   1037 	if (timecounter_bad != 0) {
   1038 		/* An existing timecounter has gone bad, pick a new one. */
   1039 		(void)atomic_swap_uint(&timecounter_bad, 0);
   1040 		if (timecounter->tc_quality < 0) {
   1041 			tc_pick();
   1042 		}
   1043 	}
   1044 	tc_windup();
   1045 	mutex_spin_exit(&timecounter_lock);
   1046 }
   1047 
   1048 void
   1049 inittimecounter(void)
   1050 {
   1051 	u_int p;
   1052 
   1053 	mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
   1054 
   1055 	/*
   1056 	 * Set the initial timeout to
   1057 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
   1058 	 * People should probably not use the sysctl to set the timeout
   1059 	 * to smaller than its inital value, since that value is the
   1060 	 * smallest reasonable one.  If they want better timestamps they
   1061 	 * should use the non-"get"* functions.
   1062 	 */
   1063 	if (hz > 1000)
   1064 		tc_tick = (hz + 500) / 1000;
   1065 	else
   1066 		tc_tick = 1;
   1067 	p = (tc_tick * 1000000) / hz;
   1068 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
   1069 	    p / 1000, p % 1000);
   1070 
   1071 	/* warm up new timecounter (again) and get rolling. */
   1072 	(void)timecounter->tc_get_timecount(timecounter);
   1073 	(void)timecounter->tc_get_timecount(timecounter);
   1074 }
   1075