Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.46.6.1
      1 /* $NetBSD: kern_tc.c,v 1.46.6.1 2017/08/28 17:53:07 skrll Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * ----------------------------------------------------------------------------
     34  * "THE BEER-WARE LICENSE" (Revision 42):
     35  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
     36  * can do whatever you want with this stuff. If we meet some day, and you think
     37  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
     38  * ---------------------------------------------------------------------------
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     43 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.46.6.1 2017/08/28 17:53:07 skrll Exp $");
     44 
     45 #ifdef _KERNEL_OPT
     46 #include "opt_ntp.h"
     47 #endif
     48 
     49 #include <sys/param.h>
     50 #include <sys/kernel.h>
     51 #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     52 #include <sys/sysctl.h>
     53 #include <sys/syslog.h>
     54 #include <sys/systm.h>
     55 #include <sys/timepps.h>
     56 #include <sys/timetc.h>
     57 #include <sys/timex.h>
     58 #include <sys/evcnt.h>
     59 #include <sys/kauth.h>
     60 #include <sys/mutex.h>
     61 #include <sys/atomic.h>
     62 #include <sys/xcall.h>
     63 
     64 /*
     65  * A large step happens on boot.  This constant detects such steps.
     66  * It is relatively small so that ntp_update_second gets called enough
     67  * in the typical 'missed a couple of seconds' case, but doesn't loop
     68  * forever when the time step is large.
     69  */
     70 #define LARGE_STEP	200
     71 
     72 /*
     73  * Implement a dummy timecounter which we can use until we get a real one
     74  * in the air.  This allows the console and other early stuff to use
     75  * time services.
     76  */
     77 
     78 static u_int
     79 dummy_get_timecount(struct timecounter *tc)
     80 {
     81 	static u_int now;
     82 
     83 	return (++now);
     84 }
     85 
     86 static struct timecounter dummy_timecounter = {
     87 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
     88 };
     89 
     90 struct timehands {
     91 	/* These fields must be initialized by the driver. */
     92 	struct timecounter	*th_counter;     /* active timecounter */
     93 	int64_t			th_adjustment;   /* frequency adjustment */
     94 						 /* (NTP/adjtime) */
     95 	u_int64_t		th_scale;        /* scale factor (counter */
     96 						 /* tick->time) */
     97 	u_int64_t 		th_offset_count; /* offset at last time */
     98 						 /* update (tc_windup()) */
     99 	struct bintime		th_offset;       /* bin (up)time at windup */
    100 	struct timeval		th_microtime;    /* cached microtime */
    101 	struct timespec		th_nanotime;     /* cached nanotime */
    102 	/* Fields not to be copied in tc_windup start with th_generation. */
    103 	volatile u_int		th_generation;   /* current genration */
    104 	struct timehands	*th_next;        /* next timehand */
    105 };
    106 
    107 static struct timehands th0;
    108 static struct timehands th9 = { .th_next = &th0, };
    109 static struct timehands th8 = { .th_next = &th9, };
    110 static struct timehands th7 = { .th_next = &th8, };
    111 static struct timehands th6 = { .th_next = &th7, };
    112 static struct timehands th5 = { .th_next = &th6, };
    113 static struct timehands th4 = { .th_next = &th5, };
    114 static struct timehands th3 = { .th_next = &th4, };
    115 static struct timehands th2 = { .th_next = &th3, };
    116 static struct timehands th1 = { .th_next = &th2, };
    117 static struct timehands th0 = {
    118 	.th_counter = &dummy_timecounter,
    119 	.th_scale = (uint64_t)-1 / 1000000,
    120 	.th_offset = { .sec = 1, .frac = 0 },
    121 	.th_generation = 1,
    122 	.th_next = &th1,
    123 };
    124 
    125 static struct timehands *volatile timehands = &th0;
    126 struct timecounter *timecounter = &dummy_timecounter;
    127 static struct timecounter *timecounters = &dummy_timecounter;
    128 
    129 volatile time_t time_second = 1;
    130 volatile time_t time_uptime = 1;
    131 
    132 static struct bintime timebasebin;
    133 
    134 static int timestepwarnings;
    135 
    136 kmutex_t timecounter_lock;
    137 static u_int timecounter_mods;
    138 static volatile int timecounter_removals = 1;
    139 static u_int timecounter_bad;
    140 
    141 #ifdef __FreeBSD__
    142 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    143     &timestepwarnings, 0, "");
    144 #endif /* __FreeBSD__ */
    145 
    146 /*
    147  * sysctl helper routine for kern.timercounter.hardware
    148  */
    149 static int
    150 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    151 {
    152 	struct sysctlnode node;
    153 	int error;
    154 	char newname[MAX_TCNAMELEN];
    155 	struct timecounter *newtc, *tc;
    156 
    157 	tc = timecounter;
    158 
    159 	strlcpy(newname, tc->tc_name, sizeof(newname));
    160 
    161 	node = *rnode;
    162 	node.sysctl_data = newname;
    163 	node.sysctl_size = sizeof(newname);
    164 
    165 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    166 
    167 	if (error ||
    168 	    newp == NULL ||
    169 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    170 		return error;
    171 
    172 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
    173 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
    174 	    NULL, NULL)) != 0)
    175 		return (error);
    176 
    177 	if (!cold)
    178 		mutex_spin_enter(&timecounter_lock);
    179 	error = EINVAL;
    180 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    181 		if (strcmp(newname, newtc->tc_name) != 0)
    182 			continue;
    183 		/* Warm up new timecounter. */
    184 		(void)newtc->tc_get_timecount(newtc);
    185 		(void)newtc->tc_get_timecount(newtc);
    186 		timecounter = newtc;
    187 		error = 0;
    188 		break;
    189 	}
    190 	if (!cold)
    191 		mutex_spin_exit(&timecounter_lock);
    192 	return error;
    193 }
    194 
    195 static int
    196 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    197 {
    198 	char buf[MAX_TCNAMELEN+48];
    199 	char *where;
    200 	const char *spc;
    201 	struct timecounter *tc;
    202 	size_t needed, left, slen;
    203 	int error, mods;
    204 
    205 	if (newp != NULL)
    206 		return (EPERM);
    207 	if (namelen != 0)
    208 		return (EINVAL);
    209 
    210 	mutex_spin_enter(&timecounter_lock);
    211  retry:
    212 	spc = "";
    213 	error = 0;
    214 	needed = 0;
    215 	left = *oldlenp;
    216 	where = oldp;
    217 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    218 		if (where == NULL) {
    219 			needed += sizeof(buf);  /* be conservative */
    220 		} else {
    221 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    222 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    223 					tc->tc_frequency);
    224 			if (left < slen + 1)
    225 				break;
    226 		 	mods = timecounter_mods;
    227 			mutex_spin_exit(&timecounter_lock);
    228 			error = copyout(buf, where, slen + 1);
    229 			mutex_spin_enter(&timecounter_lock);
    230 			if (mods != timecounter_mods) {
    231 				goto retry;
    232 			}
    233 			spc = " ";
    234 			where += slen;
    235 			needed += slen;
    236 			left -= slen;
    237 		}
    238 	}
    239 	mutex_spin_exit(&timecounter_lock);
    240 
    241 	*oldlenp = needed;
    242 	return (error);
    243 }
    244 
    245 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    246 {
    247 	const struct sysctlnode *node;
    248 
    249 	sysctl_createv(clog, 0, NULL, &node,
    250 		       CTLFLAG_PERMANENT,
    251 		       CTLTYPE_NODE, "timecounter",
    252 		       SYSCTL_DESCR("time counter information"),
    253 		       NULL, 0, NULL, 0,
    254 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    255 
    256 	if (node != NULL) {
    257 		sysctl_createv(clog, 0, NULL, NULL,
    258 			       CTLFLAG_PERMANENT,
    259 			       CTLTYPE_STRING, "choice",
    260 			       SYSCTL_DESCR("available counters"),
    261 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    262 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    263 
    264 		sysctl_createv(clog, 0, NULL, NULL,
    265 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    266 			       CTLTYPE_STRING, "hardware",
    267 			       SYSCTL_DESCR("currently active time counter"),
    268 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    269 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    270 
    271 		sysctl_createv(clog, 0, NULL, NULL,
    272 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    273 			       CTLTYPE_INT, "timestepwarnings",
    274 			       SYSCTL_DESCR("log time steps"),
    275 			       NULL, 0, &timestepwarnings, 0,
    276 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    277 	}
    278 }
    279 
    280 #ifdef TC_COUNTERS
    281 #define	TC_STATS(name)							\
    282 static struct evcnt n##name =						\
    283     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    284 EVCNT_ATTACH_STATIC(n##name)
    285 TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    286 TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    287 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    288 TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    289 TC_STATS(setclock);
    290 #define	TC_COUNT(var)	var.ev_count++
    291 #undef TC_STATS
    292 #else
    293 #define	TC_COUNT(var)	/* nothing */
    294 #endif	/* TC_COUNTERS */
    295 
    296 static void tc_windup(void);
    297 
    298 /*
    299  * Return the difference between the timehands' counter value now and what
    300  * was when we copied it to the timehands' offset_count.
    301  */
    302 static inline u_int
    303 tc_delta(struct timehands *th)
    304 {
    305 	struct timecounter *tc;
    306 
    307 	tc = th->th_counter;
    308 	return ((tc->tc_get_timecount(tc) -
    309 		 th->th_offset_count) & tc->tc_counter_mask);
    310 }
    311 
    312 /*
    313  * Functions for reading the time.  We have to loop until we are sure that
    314  * the timehands that we operated on was not updated under our feet.  See
    315  * the comment in <sys/timevar.h> for a description of these 12 functions.
    316  */
    317 
    318 void
    319 binuptime(struct bintime *bt)
    320 {
    321 	struct timehands *th;
    322 	lwp_t *l;
    323 	u_int lgen, gen;
    324 
    325 	TC_COUNT(nbinuptime);
    326 
    327 	/*
    328 	 * Provide exclusion against tc_detach().
    329 	 *
    330 	 * We record the number of timecounter removals before accessing
    331 	 * timecounter state.  Note that the LWP can be using multiple
    332 	 * "generations" at once, due to interrupts (interrupted while in
    333 	 * this function).  Hardware interrupts will borrow the interrupted
    334 	 * LWP's l_tcgen value for this purpose, and can themselves be
    335 	 * interrupted by higher priority interrupts.  In this case we need
    336 	 * to ensure that the oldest generation in use is recorded.
    337 	 *
    338 	 * splsched() is too expensive to use, so we take care to structure
    339 	 * this code in such a way that it is not required.  Likewise, we
    340 	 * do not disable preemption.
    341 	 *
    342 	 * Memory barriers are also too expensive to use for such a
    343 	 * performance critical function.  The good news is that we do not
    344 	 * need memory barriers for this type of exclusion, as the thread
    345 	 * updating timecounter_removals will issue a broadcast cross call
    346 	 * before inspecting our l_tcgen value (this elides memory ordering
    347 	 * issues).
    348 	 */
    349 	l = curlwp;
    350 	lgen = l->l_tcgen;
    351 	if (__predict_true(lgen == 0)) {
    352 		l->l_tcgen = timecounter_removals;
    353 	}
    354 	__insn_barrier();
    355 
    356 	do {
    357 		th = timehands;
    358 		gen = th->th_generation;
    359 		*bt = th->th_offset;
    360 		bintime_addx(bt, th->th_scale * tc_delta(th));
    361 	} while (gen == 0 || gen != th->th_generation);
    362 
    363 	__insn_barrier();
    364 	l->l_tcgen = lgen;
    365 }
    366 
    367 void
    368 nanouptime(struct timespec *tsp)
    369 {
    370 	struct bintime bt;
    371 
    372 	TC_COUNT(nnanouptime);
    373 	binuptime(&bt);
    374 	bintime2timespec(&bt, tsp);
    375 }
    376 
    377 void
    378 microuptime(struct timeval *tvp)
    379 {
    380 	struct bintime bt;
    381 
    382 	TC_COUNT(nmicrouptime);
    383 	binuptime(&bt);
    384 	bintime2timeval(&bt, tvp);
    385 }
    386 
    387 void
    388 bintime(struct bintime *bt)
    389 {
    390 
    391 	TC_COUNT(nbintime);
    392 	binuptime(bt);
    393 	bintime_add(bt, &timebasebin);
    394 }
    395 
    396 void
    397 nanotime(struct timespec *tsp)
    398 {
    399 	struct bintime bt;
    400 
    401 	TC_COUNT(nnanotime);
    402 	bintime(&bt);
    403 	bintime2timespec(&bt, tsp);
    404 }
    405 
    406 void
    407 microtime(struct timeval *tvp)
    408 {
    409 	struct bintime bt;
    410 
    411 	TC_COUNT(nmicrotime);
    412 	bintime(&bt);
    413 	bintime2timeval(&bt, tvp);
    414 }
    415 
    416 void
    417 getbinuptime(struct bintime *bt)
    418 {
    419 	struct timehands *th;
    420 	u_int gen;
    421 
    422 	TC_COUNT(ngetbinuptime);
    423 	do {
    424 		th = timehands;
    425 		gen = th->th_generation;
    426 		*bt = th->th_offset;
    427 	} while (gen == 0 || gen != th->th_generation);
    428 }
    429 
    430 void
    431 getnanouptime(struct timespec *tsp)
    432 {
    433 	struct timehands *th;
    434 	u_int gen;
    435 
    436 	TC_COUNT(ngetnanouptime);
    437 	do {
    438 		th = timehands;
    439 		gen = th->th_generation;
    440 		bintime2timespec(&th->th_offset, tsp);
    441 	} while (gen == 0 || gen != th->th_generation);
    442 }
    443 
    444 void
    445 getmicrouptime(struct timeval *tvp)
    446 {
    447 	struct timehands *th;
    448 	u_int gen;
    449 
    450 	TC_COUNT(ngetmicrouptime);
    451 	do {
    452 		th = timehands;
    453 		gen = th->th_generation;
    454 		bintime2timeval(&th->th_offset, tvp);
    455 	} while (gen == 0 || gen != th->th_generation);
    456 }
    457 
    458 void
    459 getbintime(struct bintime *bt)
    460 {
    461 	struct timehands *th;
    462 	u_int gen;
    463 
    464 	TC_COUNT(ngetbintime);
    465 	do {
    466 		th = timehands;
    467 		gen = th->th_generation;
    468 		*bt = th->th_offset;
    469 	} while (gen == 0 || gen != th->th_generation);
    470 	bintime_add(bt, &timebasebin);
    471 }
    472 
    473 static inline void
    474 dogetnanotime(struct timespec *tsp)
    475 {
    476 	struct timehands *th;
    477 	u_int gen;
    478 
    479 	TC_COUNT(ngetnanotime);
    480 	do {
    481 		th = timehands;
    482 		gen = th->th_generation;
    483 		*tsp = th->th_nanotime;
    484 	} while (gen == 0 || gen != th->th_generation);
    485 }
    486 
    487 void
    488 getnanotime(struct timespec *tsp)
    489 {
    490 
    491 	dogetnanotime(tsp);
    492 }
    493 
    494 void dtrace_getnanotime(struct timespec *tsp);
    495 
    496 void
    497 dtrace_getnanotime(struct timespec *tsp)
    498 {
    499 
    500 	dogetnanotime(tsp);
    501 }
    502 
    503 void
    504 getmicrotime(struct timeval *tvp)
    505 {
    506 	struct timehands *th;
    507 	u_int gen;
    508 
    509 	TC_COUNT(ngetmicrotime);
    510 	do {
    511 		th = timehands;
    512 		gen = th->th_generation;
    513 		*tvp = th->th_microtime;
    514 	} while (gen == 0 || gen != th->th_generation);
    515 }
    516 
    517 /*
    518  * Initialize a new timecounter and possibly use it.
    519  */
    520 void
    521 tc_init(struct timecounter *tc)
    522 {
    523 	u_int u;
    524 
    525 	u = tc->tc_frequency / tc->tc_counter_mask;
    526 	/* XXX: We need some margin here, 10% is a guess */
    527 	u *= 11;
    528 	u /= 10;
    529 	if (u > hz && tc->tc_quality >= 0) {
    530 		tc->tc_quality = -2000;
    531 		aprint_verbose(
    532 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
    533 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    534 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
    535 	} else if (tc->tc_quality >= 0 || bootverbose) {
    536 		aprint_verbose(
    537 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
    538 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
    539 		    tc->tc_quality);
    540 	}
    541 
    542 	mutex_spin_enter(&timecounter_lock);
    543 	tc->tc_next = timecounters;
    544 	timecounters = tc;
    545 	timecounter_mods++;
    546 	/*
    547 	 * Never automatically use a timecounter with negative quality.
    548 	 * Even though we run on the dummy counter, switching here may be
    549 	 * worse since this timecounter may not be monotonous.
    550 	 */
    551 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
    552 	    (tc->tc_quality == timecounter->tc_quality &&
    553 	    tc->tc_frequency > timecounter->tc_frequency))) {
    554 		(void)tc->tc_get_timecount(tc);
    555 		(void)tc->tc_get_timecount(tc);
    556 		timecounter = tc;
    557 		tc_windup();
    558 	}
    559 	mutex_spin_exit(&timecounter_lock);
    560 }
    561 
    562 /*
    563  * Pick a new timecounter due to the existing counter going bad.
    564  */
    565 static void
    566 tc_pick(void)
    567 {
    568 	struct timecounter *best, *tc;
    569 
    570 	KASSERT(mutex_owned(&timecounter_lock));
    571 
    572 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
    573 		if (tc->tc_quality > best->tc_quality)
    574 			best = tc;
    575 		else if (tc->tc_quality < best->tc_quality)
    576 			continue;
    577 		else if (tc->tc_frequency > best->tc_frequency)
    578 			best = tc;
    579 	}
    580 	(void)best->tc_get_timecount(best);
    581 	(void)best->tc_get_timecount(best);
    582 	timecounter = best;
    583 }
    584 
    585 /*
    586  * A timecounter has gone bad, arrange to pick a new one at the next
    587  * clock tick.
    588  */
    589 void
    590 tc_gonebad(struct timecounter *tc)
    591 {
    592 
    593 	tc->tc_quality = -100;
    594 	membar_producer();
    595 	atomic_inc_uint(&timecounter_bad);
    596 }
    597 
    598 /*
    599  * Stop using a timecounter and remove it from the timecounters list.
    600  */
    601 int
    602 tc_detach(struct timecounter *target)
    603 {
    604 	struct timecounter *tc;
    605 	struct timecounter **tcp = NULL;
    606 	int removals;
    607 	uint64_t where;
    608 	lwp_t *l;
    609 
    610 	/* First, find the timecounter. */
    611 	mutex_spin_enter(&timecounter_lock);
    612 	for (tcp = &timecounters, tc = timecounters;
    613 	     tc != NULL;
    614 	     tcp = &tc->tc_next, tc = tc->tc_next) {
    615 		if (tc == target)
    616 			break;
    617 	}
    618 	if (tc == NULL) {
    619 		mutex_spin_exit(&timecounter_lock);
    620 		return ESRCH;
    621 	}
    622 
    623 	/* And now, remove it. */
    624 	*tcp = tc->tc_next;
    625 	if (timecounter == target) {
    626 		tc_pick();
    627 		tc_windup();
    628 	}
    629 	timecounter_mods++;
    630 	removals = timecounter_removals++;
    631 	mutex_spin_exit(&timecounter_lock);
    632 
    633 	/*
    634 	 * We now have to determine if any threads in the system are still
    635 	 * making use of this timecounter.
    636 	 *
    637 	 * We issue a broadcast cross call to elide memory ordering issues,
    638 	 * then scan all LWPs in the system looking at each's timecounter
    639 	 * generation number.  We need to see a value of zero (not actively
    640 	 * using a timecounter) or a value greater than our removal value.
    641 	 *
    642 	 * We may race with threads that read `timecounter_removals' and
    643 	 * and then get preempted before updating `l_tcgen'.  This is not
    644 	 * a problem, since it means that these threads have not yet started
    645 	 * accessing timecounter state.  All we do need is one clean
    646 	 * snapshot of the system where every thread appears not to be using
    647 	 * old timecounter state.
    648 	 */
    649 	for (;;) {
    650 		where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
    651 		xc_wait(where);
    652 
    653 		mutex_enter(proc_lock);
    654 		LIST_FOREACH(l, &alllwp, l_list) {
    655 			if (l->l_tcgen == 0 || l->l_tcgen > removals) {
    656 				/*
    657 				 * Not using timecounter or old timecounter
    658 				 * state at time of our xcall or later.
    659 				 */
    660 				continue;
    661 			}
    662 			break;
    663 		}
    664 		mutex_exit(proc_lock);
    665 
    666 		/*
    667 		 * If the timecounter is still in use, wait at least 10ms
    668 		 * before retrying.
    669 		 */
    670 		if (l == NULL) {
    671 			return 0;
    672 		}
    673 		(void)kpause("tcdetach", false, mstohz(10), NULL);
    674 	}
    675 }
    676 
    677 /* Report the frequency of the current timecounter. */
    678 u_int64_t
    679 tc_getfrequency(void)
    680 {
    681 
    682 	return (timehands->th_counter->tc_frequency);
    683 }
    684 
    685 /*
    686  * Step our concept of UTC.  This is done by modifying our estimate of
    687  * when we booted.
    688  */
    689 void
    690 tc_setclock(const struct timespec *ts)
    691 {
    692 	struct timespec ts2;
    693 	struct bintime bt, bt2;
    694 
    695 	mutex_spin_enter(&timecounter_lock);
    696 	TC_COUNT(nsetclock);
    697 	binuptime(&bt2);
    698 	timespec2bintime(ts, &bt);
    699 	bintime_sub(&bt, &bt2);
    700 	bintime_add(&bt2, &timebasebin);
    701 	timebasebin = bt;
    702 	tc_windup();
    703 	mutex_spin_exit(&timecounter_lock);
    704 
    705 	if (timestepwarnings) {
    706 		bintime2timespec(&bt2, &ts2);
    707 		log(LOG_INFO,
    708 		    "Time stepped from %lld.%09ld to %lld.%09ld\n",
    709 		    (long long)ts2.tv_sec, ts2.tv_nsec,
    710 		    (long long)ts->tv_sec, ts->tv_nsec);
    711 	}
    712 }
    713 
    714 /*
    715  * Initialize the next struct timehands in the ring and make
    716  * it the active timehands.  Along the way we might switch to a different
    717  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    718  */
    719 static void
    720 tc_windup(void)
    721 {
    722 	struct bintime bt;
    723 	struct timehands *th, *tho;
    724 	u_int64_t scale;
    725 	u_int delta, ncount, ogen;
    726 	int i, s_update;
    727 	time_t t;
    728 
    729 	KASSERT(mutex_owned(&timecounter_lock));
    730 
    731 	s_update = 0;
    732 
    733 	/*
    734 	 * Make the next timehands a copy of the current one, but do not
    735 	 * overwrite the generation or next pointer.  While we update
    736 	 * the contents, the generation must be zero.  Ensure global
    737 	 * visibility of the generation before proceeding.
    738 	 */
    739 	tho = timehands;
    740 	th = tho->th_next;
    741 	ogen = th->th_generation;
    742 	th->th_generation = 0;
    743 	membar_producer();
    744 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    745 
    746 	/*
    747 	 * Capture a timecounter delta on the current timecounter and if
    748 	 * changing timecounters, a counter value from the new timecounter.
    749 	 * Update the offset fields accordingly.
    750 	 */
    751 	delta = tc_delta(th);
    752 	if (th->th_counter != timecounter)
    753 		ncount = timecounter->tc_get_timecount(timecounter);
    754 	else
    755 		ncount = 0;
    756 	th->th_offset_count += delta;
    757 	bintime_addx(&th->th_offset, th->th_scale * delta);
    758 
    759 	/*
    760 	 * Hardware latching timecounters may not generate interrupts on
    761 	 * PPS events, so instead we poll them.  There is a finite risk that
    762 	 * the hardware might capture a count which is later than the one we
    763 	 * got above, and therefore possibly in the next NTP second which might
    764 	 * have a different rate than the current NTP second.  It doesn't
    765 	 * matter in practice.
    766 	 */
    767 	if (tho->th_counter->tc_poll_pps)
    768 		tho->th_counter->tc_poll_pps(tho->th_counter);
    769 
    770 	/*
    771 	 * Deal with NTP second processing.  The for loop normally
    772 	 * iterates at most once, but in extreme situations it might
    773 	 * keep NTP sane if timeouts are not run for several seconds.
    774 	 * At boot, the time step can be large when the TOD hardware
    775 	 * has been read, so on really large steps, we call
    776 	 * ntp_update_second only twice.  We need to call it twice in
    777 	 * case we missed a leap second.
    778 	 * If NTP is not compiled in ntp_update_second still calculates
    779 	 * the adjustment resulting from adjtime() calls.
    780 	 */
    781 	bt = th->th_offset;
    782 	bintime_add(&bt, &timebasebin);
    783 	i = bt.sec - tho->th_microtime.tv_sec;
    784 	if (i > LARGE_STEP)
    785 		i = 2;
    786 	for (; i > 0; i--) {
    787 		t = bt.sec;
    788 		ntp_update_second(&th->th_adjustment, &bt.sec);
    789 		s_update = 1;
    790 		if (bt.sec != t)
    791 			timebasebin.sec += bt.sec - t;
    792 	}
    793 
    794 	/* Update the UTC timestamps used by the get*() functions. */
    795 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    796 	bintime2timeval(&bt, &th->th_microtime);
    797 	bintime2timespec(&bt, &th->th_nanotime);
    798 	/* Now is a good time to change timecounters. */
    799 	if (th->th_counter != timecounter) {
    800 		th->th_counter = timecounter;
    801 		th->th_offset_count = ncount;
    802 		s_update = 1;
    803 	}
    804 
    805 	/*-
    806 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    807 	 * fractions of a second per period of the hardware counter, taking
    808 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    809 	 * processing provides us with.
    810 	 *
    811 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    812 	 * fraction and we want 64 bit binary fraction of second:
    813 	 *
    814 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    815 	 *
    816 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    817 	 * we can only multiply by about 850 without overflowing, but that
    818 	 * leaves suitably precise fractions for multiply before divide.
    819 	 *
    820 	 * Divide before multiply with a fraction of 2199/512 results in a
    821 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    822 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    823  	 *
    824 	 * We happily sacrifice the lowest of the 64 bits of our result
    825 	 * to the goddess of code clarity.
    826 	 *
    827 	 */
    828 	if (s_update) {
    829 		scale = (u_int64_t)1 << 63;
    830 		scale += (th->th_adjustment / 1024) * 2199;
    831 		scale /= th->th_counter->tc_frequency;
    832 		th->th_scale = scale * 2;
    833 	}
    834 	/*
    835 	 * Now that the struct timehands is again consistent, set the new
    836 	 * generation number, making sure to not make it zero.  Ensure
    837 	 * changes are globally visible before changing.
    838 	 */
    839 	if (++ogen == 0)
    840 		ogen = 1;
    841 	membar_producer();
    842 	th->th_generation = ogen;
    843 
    844 	/*
    845 	 * Go live with the new struct timehands.  Ensure changes are
    846 	 * globally visible before changing.
    847 	 */
    848 	time_second = th->th_microtime.tv_sec;
    849 	time_uptime = th->th_offset.sec;
    850 	membar_producer();
    851 	timehands = th;
    852 
    853 	/*
    854 	 * Force users of the old timehand to move on.  This is
    855 	 * necessary for MP systems; we need to ensure that the
    856 	 * consumers will move away from the old timehand before
    857 	 * we begin updating it again when we eventually wrap
    858 	 * around.
    859 	 */
    860 	if (++tho->th_generation == 0)
    861 		tho->th_generation = 1;
    862 }
    863 
    864 /*
    865  * RFC 2783 PPS-API implementation.
    866  */
    867 
    868 int
    869 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
    870 {
    871 	pps_params_t *app;
    872 	pps_info_t *pipi;
    873 #ifdef PPS_SYNC
    874 	int *epi;
    875 #endif
    876 
    877 	KASSERT(mutex_owned(&timecounter_lock));
    878 
    879 	KASSERT(pps != NULL);
    880 
    881 	switch (cmd) {
    882 	case PPS_IOC_CREATE:
    883 		return (0);
    884 	case PPS_IOC_DESTROY:
    885 		return (0);
    886 	case PPS_IOC_SETPARAMS:
    887 		app = (pps_params_t *)data;
    888 		if (app->mode & ~pps->ppscap)
    889 			return (EINVAL);
    890 		pps->ppsparam = *app;
    891 		return (0);
    892 	case PPS_IOC_GETPARAMS:
    893 		app = (pps_params_t *)data;
    894 		*app = pps->ppsparam;
    895 		app->api_version = PPS_API_VERS_1;
    896 		return (0);
    897 	case PPS_IOC_GETCAP:
    898 		*(int*)data = pps->ppscap;
    899 		return (0);
    900 	case PPS_IOC_FETCH:
    901 		pipi = (pps_info_t *)data;
    902 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    903 		*pipi = pps->ppsinfo;
    904 		return (0);
    905 	case PPS_IOC_KCBIND:
    906 #ifdef PPS_SYNC
    907 		epi = (int *)data;
    908 		/* XXX Only root should be able to do this */
    909 		if (*epi & ~pps->ppscap)
    910 			return (EINVAL);
    911 		pps->kcmode = *epi;
    912 		return (0);
    913 #else
    914 		return (EOPNOTSUPP);
    915 #endif
    916 	default:
    917 		return (EPASSTHROUGH);
    918 	}
    919 }
    920 
    921 void
    922 pps_init(struct pps_state *pps)
    923 {
    924 
    925 	KASSERT(mutex_owned(&timecounter_lock));
    926 
    927 	pps->ppscap |= PPS_TSFMT_TSPEC;
    928 	if (pps->ppscap & PPS_CAPTUREASSERT)
    929 		pps->ppscap |= PPS_OFFSETASSERT;
    930 	if (pps->ppscap & PPS_CAPTURECLEAR)
    931 		pps->ppscap |= PPS_OFFSETCLEAR;
    932 }
    933 
    934 /*
    935  * capture a timetamp in the pps structure
    936  */
    937 void
    938 pps_capture(struct pps_state *pps)
    939 {
    940 	struct timehands *th;
    941 
    942 	KASSERT(mutex_owned(&timecounter_lock));
    943 	KASSERT(pps != NULL);
    944 
    945 	th = timehands;
    946 	pps->capgen = th->th_generation;
    947 	pps->capth = th;
    948 	pps->capcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
    949 	if (pps->capgen != th->th_generation)
    950 		pps->capgen = 0;
    951 }
    952 
    953 #ifdef PPS_DEBUG
    954 int ppsdebug = 0;
    955 #endif
    956 
    957 /*
    958  * process a pps_capture()ed event
    959  */
    960 void
    961 pps_event(struct pps_state *pps, int event)
    962 {
    963 	pps_ref_event(pps, event, NULL, PPS_REFEVNT_PPS|PPS_REFEVNT_CAPTURE);
    964 }
    965 
    966 /*
    967  * extended pps api /  kernel pll/fll entry point
    968  *
    969  * feed reference time stamps to PPS engine
    970  *
    971  * will simulate a PPS event and feed
    972  * the NTP PLL/FLL if requested.
    973  *
    974  * the ref time stamps should be roughly once
    975  * a second but do not need to be exactly in phase
    976  * with the UTC second but should be close to it.
    977  * this relaxation of requirements allows callout
    978  * driven timestamping mechanisms to feed to pps
    979  * capture/kernel pll logic.
    980  *
    981  * calling pattern is:
    982  *  pps_capture() (for PPS_REFEVNT_{CAPTURE|CAPCUR})
    983  *  read timestamp from reference source
    984  *  pps_ref_event()
    985  *
    986  * supported refmodes:
    987  *  PPS_REFEVNT_CAPTURE
    988  *    use system timestamp of pps_capture()
    989  *  PPS_REFEVNT_CURRENT
    990  *    use system timestamp of this call
    991  *  PPS_REFEVNT_CAPCUR
    992  *    use average of read capture and current system time stamp
    993  *  PPS_REFEVNT_PPS
    994  *    assume timestamp on second mark - ref_ts is ignored
    995  *
    996  */
    997 
    998 void
    999 pps_ref_event(struct pps_state *pps,
   1000 	      int event,
   1001 	      struct bintime *ref_ts,
   1002 	      int refmode
   1003 	)
   1004 {
   1005 	struct bintime bt;	/* current time */
   1006 	struct bintime btd;	/* time difference */
   1007 	struct bintime bt_ref;	/* reference time */
   1008 	struct timespec ts, *tsp, *osp;
   1009 	struct timehands *th;
   1010 	u_int64_t tcount, acount, dcount, *pcount;
   1011 	int foff, gen;
   1012 #ifdef PPS_SYNC
   1013 	int fhard;
   1014 #endif
   1015 	pps_seq_t *pseq;
   1016 
   1017 	KASSERT(mutex_owned(&timecounter_lock));
   1018 
   1019 	KASSERT(pps != NULL);
   1020 
   1021         /* pick up current time stamp if needed */
   1022 	if (refmode & (PPS_REFEVNT_CURRENT|PPS_REFEVNT_CAPCUR)) {
   1023 		/* pick up current time stamp */
   1024 		th = timehands;
   1025 		gen = th->th_generation;
   1026 		tcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
   1027 		if (gen != th->th_generation)
   1028 			gen = 0;
   1029 
   1030 		/* If the timecounter was wound up underneath us, bail out. */
   1031 		if (pps->capgen == 0 ||
   1032 		    pps->capgen != pps->capth->th_generation ||
   1033 		    gen == 0 ||
   1034 		    gen != pps->capgen) {
   1035 #ifdef PPS_DEBUG
   1036 			if (ppsdebug & 0x1) {
   1037 				log(LOG_DEBUG,
   1038 				    "pps_ref_event(pps=%p, event=%d, ...): DROP (wind-up)\n",
   1039 				    pps, event);
   1040 			}
   1041 #endif
   1042 			return;
   1043 		}
   1044 	} else {
   1045 		tcount = 0;	/* keep GCC happy */
   1046 	}
   1047 
   1048 #ifdef PPS_DEBUG
   1049 	if (ppsdebug & 0x1) {
   1050 		struct timespec tmsp;
   1051 
   1052 		if (ref_ts == NULL) {
   1053 			tmsp.tv_sec = 0;
   1054 			tmsp.tv_nsec = 0;
   1055 		} else {
   1056 			bintime2timespec(ref_ts, &tmsp);
   1057 		}
   1058 
   1059 		log(LOG_DEBUG,
   1060 		    "pps_ref_event(pps=%p, event=%d, ref_ts=%"PRIi64
   1061 		    ".%09"PRIi32", refmode=0x%1x)\n",
   1062 		    pps, event, tmsp.tv_sec, (int32_t)tmsp.tv_nsec, refmode);
   1063 	}
   1064 #endif
   1065 
   1066 	/* setup correct event references */
   1067 	if (event == PPS_CAPTUREASSERT) {
   1068 		tsp = &pps->ppsinfo.assert_timestamp;
   1069 		osp = &pps->ppsparam.assert_offset;
   1070 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
   1071 #ifdef PPS_SYNC
   1072 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
   1073 #endif
   1074 		pcount = &pps->ppscount[0];
   1075 		pseq = &pps->ppsinfo.assert_sequence;
   1076 	} else {
   1077 		tsp = &pps->ppsinfo.clear_timestamp;
   1078 		osp = &pps->ppsparam.clear_offset;
   1079 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
   1080 #ifdef PPS_SYNC
   1081 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
   1082 #endif
   1083 		pcount = &pps->ppscount[1];
   1084 		pseq = &pps->ppsinfo.clear_sequence;
   1085 	}
   1086 
   1087 	/* determine system time stamp according to refmode */
   1088 	dcount = 0;		/* keep GCC happy */
   1089 	switch (refmode & PPS_REFEVNT_RMASK) {
   1090 	case PPS_REFEVNT_CAPTURE:
   1091 		acount = pps->capcount;	/* use capture timestamp */
   1092 		break;
   1093 
   1094 	case PPS_REFEVNT_CURRENT:
   1095 		acount = tcount; /* use current timestamp */
   1096 		break;
   1097 
   1098 	case PPS_REFEVNT_CAPCUR:
   1099 		/*
   1100 		 * calculate counter value between pps_capture() and
   1101 		 * pps_ref_event()
   1102 		 */
   1103 		dcount = tcount - pps->capcount;
   1104 		acount = (dcount / 2) + pps->capcount;
   1105 		break;
   1106 
   1107 	default:		/* ignore call error silently */
   1108 		return;
   1109 	}
   1110 
   1111 	/*
   1112 	 * If the timecounter changed, we cannot compare the count values, so
   1113 	 * we have to drop the rest of the PPS-stuff until the next event.
   1114 	 */
   1115 	if (pps->ppstc != pps->capth->th_counter) {
   1116 		pps->ppstc = pps->capth->th_counter;
   1117 		pps->capcount = acount;
   1118 		*pcount = acount;
   1119 		pps->ppscount[2] = acount;
   1120 #ifdef PPS_DEBUG
   1121 		if (ppsdebug & 0x1) {
   1122 			log(LOG_DEBUG,
   1123 			    "pps_ref_event(pps=%p, event=%d, ...): DROP (time-counter change)\n",
   1124 			    pps, event);
   1125 		}
   1126 #endif
   1127 		return;
   1128 	}
   1129 
   1130 	pps->capcount = acount;
   1131 
   1132 	/* Convert the count to a bintime. */
   1133 	bt = pps->capth->th_offset;
   1134 	bintime_addx(&bt, pps->capth->th_scale * (acount - pps->capth->th_offset_count));
   1135 	bintime_add(&bt, &timebasebin);
   1136 
   1137 	if ((refmode & PPS_REFEVNT_PPS) == 0) {
   1138 		/* determine difference to reference time stamp */
   1139 		bt_ref = *ref_ts;
   1140 
   1141 		btd = bt;
   1142 		bintime_sub(&btd, &bt_ref);
   1143 
   1144 		/*
   1145 		 * simulate a PPS timestamp by dropping the fraction
   1146 		 * and applying the offset
   1147 		 */
   1148 		if (bt.frac >= (uint64_t)1<<63)	/* skip to nearest second */
   1149 			bt.sec++;
   1150 		bt.frac = 0;
   1151 		bintime_add(&bt, &btd);
   1152 	} else {
   1153 		/*
   1154 		 * create ref_ts from current time -
   1155 		 * we are supposed to be called on
   1156 		 * the second mark
   1157 		 */
   1158 		bt_ref = bt;
   1159 		if (bt_ref.frac >= (uint64_t)1<<63)	/* skip to nearest second */
   1160 			bt_ref.sec++;
   1161 		bt_ref.frac = 0;
   1162 	}
   1163 
   1164 	/* convert bintime to timestamp */
   1165 	bintime2timespec(&bt, &ts);
   1166 
   1167 	/* If the timecounter was wound up underneath us, bail out. */
   1168 	if (pps->capgen != pps->capth->th_generation)
   1169 		return;
   1170 
   1171 	/* store time stamp */
   1172 	*pcount = pps->capcount;
   1173 	(*pseq)++;
   1174 	*tsp = ts;
   1175 
   1176 	/* add offset correction */
   1177 	if (foff) {
   1178 		timespecadd(tsp, osp, tsp);
   1179 		if (tsp->tv_nsec < 0) {
   1180 			tsp->tv_nsec += 1000000000;
   1181 			tsp->tv_sec -= 1;
   1182 		}
   1183 	}
   1184 
   1185 #ifdef PPS_DEBUG
   1186 	if (ppsdebug & 0x2) {
   1187 		struct timespec ts2;
   1188 		struct timespec ts3;
   1189 
   1190 		bintime2timespec(&bt_ref, &ts2);
   1191 
   1192 		bt.sec = 0;
   1193 		bt.frac = 0;
   1194 
   1195 		if (refmode & PPS_REFEVNT_CAPCUR) {
   1196 			    bintime_addx(&bt, pps->capth->th_scale * dcount);
   1197 		}
   1198 		bintime2timespec(&bt, &ts3);
   1199 
   1200 		log(LOG_DEBUG, "ref_ts=%"PRIi64".%09"PRIi32
   1201 		    ", ts=%"PRIi64".%09"PRIi32", read latency=%"PRIi64" ns\n",
   1202 		    ts2.tv_sec, (int32_t)ts2.tv_nsec,
   1203 		    tsp->tv_sec, (int32_t)tsp->tv_nsec,
   1204 		    timespec2ns(&ts3));
   1205 	}
   1206 #endif
   1207 
   1208 #ifdef PPS_SYNC
   1209 	if (fhard) {
   1210 		uint64_t scale;
   1211 		uint64_t div;
   1212 
   1213 		/*
   1214 		 * Feed the NTP PLL/FLL.
   1215 		 * The FLL wants to know how many (hardware) nanoseconds
   1216 		 * elapsed since the previous event (mod 1 second) thus
   1217 		 * we are actually looking at the frequency difference scaled
   1218 		 * in nsec.
   1219 		 * As the counter time stamps are not truly at 1Hz
   1220 		 * we need to scale the count by the elapsed
   1221 		 * reference time.
   1222 		 * valid sampling interval: [0.5..2[ sec
   1223 		 */
   1224 
   1225 		/* calculate elapsed raw count */
   1226 		tcount = pps->capcount - pps->ppscount[2];
   1227 		pps->ppscount[2] = pps->capcount;
   1228 		tcount &= pps->capth->th_counter->tc_counter_mask;
   1229 
   1230 		/* calculate elapsed ref time */
   1231 		btd = bt_ref;
   1232 		bintime_sub(&btd, &pps->ref_time);
   1233 		pps->ref_time = bt_ref;
   1234 
   1235 		/* check that we stay below 2 sec */
   1236 		if (btd.sec < 0 || btd.sec > 1)
   1237 			return;
   1238 
   1239 		/* we want at least 0.5 sec between samples */
   1240 		if (btd.sec == 0 && btd.frac < (uint64_t)1<<63)
   1241 			return;
   1242 
   1243 		/*
   1244 		 * calculate cycles per period by multiplying
   1245 		 * the frequency with the elapsed period
   1246 		 * we pick a fraction of 30 bits
   1247 		 * ~1ns resolution for elapsed time
   1248 		 */
   1249 		div   = (uint64_t)btd.sec << 30;
   1250 		div  |= (btd.frac >> 34) & (((uint64_t)1 << 30) - 1);
   1251 		div  *= pps->capth->th_counter->tc_frequency;
   1252 		div >>= 30;
   1253 
   1254 		if (div == 0)	/* safeguard */
   1255 			return;
   1256 
   1257 		scale = (uint64_t)1 << 63;
   1258 		scale /= div;
   1259 		scale *= 2;
   1260 
   1261 		bt.sec = 0;
   1262 		bt.frac = 0;
   1263 		bintime_addx(&bt, scale * tcount);
   1264 		bintime2timespec(&bt, &ts);
   1265 
   1266 #ifdef PPS_DEBUG
   1267 		if (ppsdebug & 0x4) {
   1268 			struct timespec ts2;
   1269 			int64_t df;
   1270 
   1271 			bintime2timespec(&bt_ref, &ts2);
   1272 			df = timespec2ns(&ts);
   1273 			if (df > 500000000)
   1274 				df -= 1000000000;
   1275 			log(LOG_DEBUG, "hardpps: ref_ts=%"PRIi64
   1276 			    ".%09"PRIi32", ts=%"PRIi64".%09"PRIi32
   1277 			    ", freqdiff=%"PRIi64" ns/s\n",
   1278 			    ts2.tv_sec, (int32_t)ts2.tv_nsec,
   1279 			    tsp->tv_sec, (int32_t)tsp->tv_nsec,
   1280 			    df);
   1281 		}
   1282 #endif
   1283 
   1284 		hardpps(tsp, timespec2ns(&ts));
   1285 	}
   1286 #endif
   1287 }
   1288 
   1289 /*
   1290  * Timecounters need to be updated every so often to prevent the hardware
   1291  * counter from overflowing.  Updating also recalculates the cached values
   1292  * used by the get*() family of functions, so their precision depends on
   1293  * the update frequency.
   1294  */
   1295 
   1296 static int tc_tick;
   1297 
   1298 void
   1299 tc_ticktock(void)
   1300 {
   1301 	static int count;
   1302 
   1303 	if (++count < tc_tick)
   1304 		return;
   1305 	count = 0;
   1306 	mutex_spin_enter(&timecounter_lock);
   1307 	if (timecounter_bad != 0) {
   1308 		/* An existing timecounter has gone bad, pick a new one. */
   1309 		(void)atomic_swap_uint(&timecounter_bad, 0);
   1310 		if (timecounter->tc_quality < 0) {
   1311 			tc_pick();
   1312 		}
   1313 	}
   1314 	tc_windup();
   1315 	mutex_spin_exit(&timecounter_lock);
   1316 }
   1317 
   1318 void
   1319 inittimecounter(void)
   1320 {
   1321 	u_int p;
   1322 
   1323 	mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
   1324 
   1325 	/*
   1326 	 * Set the initial timeout to
   1327 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
   1328 	 * People should probably not use the sysctl to set the timeout
   1329 	 * to smaller than its inital value, since that value is the
   1330 	 * smallest reasonable one.  If they want better timestamps they
   1331 	 * should use the non-"get"* functions.
   1332 	 */
   1333 	if (hz > 1000)
   1334 		tc_tick = (hz + 500) / 1000;
   1335 	else
   1336 		tc_tick = 1;
   1337 	p = (tc_tick * 1000000) / hz;
   1338 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
   1339 	    p / 1000, p % 1000);
   1340 
   1341 	/* warm up new timecounter (again) and get rolling. */
   1342 	(void)timecounter->tc_get_timecount(timecounter);
   1343 	(void)timecounter->tc_get_timecount(timecounter);
   1344 }
   1345