kern_tc.c revision 1.46.6.1 1 /* $NetBSD: kern_tc.c,v 1.46.6.1 2017/08/28 17:53:07 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * ----------------------------------------------------------------------------
34 * "THE BEER-WARE LICENSE" (Revision 42):
35 * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
36 * can do whatever you want with this stuff. If we meet some day, and you think
37 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
38 * ---------------------------------------------------------------------------
39 */
40
41 #include <sys/cdefs.h>
42 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
43 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.46.6.1 2017/08/28 17:53:07 skrll Exp $");
44
45 #ifdef _KERNEL_OPT
46 #include "opt_ntp.h"
47 #endif
48
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51 #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/systm.h>
55 #include <sys/timepps.h>
56 #include <sys/timetc.h>
57 #include <sys/timex.h>
58 #include <sys/evcnt.h>
59 #include <sys/kauth.h>
60 #include <sys/mutex.h>
61 #include <sys/atomic.h>
62 #include <sys/xcall.h>
63
64 /*
65 * A large step happens on boot. This constant detects such steps.
66 * It is relatively small so that ntp_update_second gets called enough
67 * in the typical 'missed a couple of seconds' case, but doesn't loop
68 * forever when the time step is large.
69 */
70 #define LARGE_STEP 200
71
72 /*
73 * Implement a dummy timecounter which we can use until we get a real one
74 * in the air. This allows the console and other early stuff to use
75 * time services.
76 */
77
78 static u_int
79 dummy_get_timecount(struct timecounter *tc)
80 {
81 static u_int now;
82
83 return (++now);
84 }
85
86 static struct timecounter dummy_timecounter = {
87 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
88 };
89
90 struct timehands {
91 /* These fields must be initialized by the driver. */
92 struct timecounter *th_counter; /* active timecounter */
93 int64_t th_adjustment; /* frequency adjustment */
94 /* (NTP/adjtime) */
95 u_int64_t th_scale; /* scale factor (counter */
96 /* tick->time) */
97 u_int64_t th_offset_count; /* offset at last time */
98 /* update (tc_windup()) */
99 struct bintime th_offset; /* bin (up)time at windup */
100 struct timeval th_microtime; /* cached microtime */
101 struct timespec th_nanotime; /* cached nanotime */
102 /* Fields not to be copied in tc_windup start with th_generation. */
103 volatile u_int th_generation; /* current genration */
104 struct timehands *th_next; /* next timehand */
105 };
106
107 static struct timehands th0;
108 static struct timehands th9 = { .th_next = &th0, };
109 static struct timehands th8 = { .th_next = &th9, };
110 static struct timehands th7 = { .th_next = &th8, };
111 static struct timehands th6 = { .th_next = &th7, };
112 static struct timehands th5 = { .th_next = &th6, };
113 static struct timehands th4 = { .th_next = &th5, };
114 static struct timehands th3 = { .th_next = &th4, };
115 static struct timehands th2 = { .th_next = &th3, };
116 static struct timehands th1 = { .th_next = &th2, };
117 static struct timehands th0 = {
118 .th_counter = &dummy_timecounter,
119 .th_scale = (uint64_t)-1 / 1000000,
120 .th_offset = { .sec = 1, .frac = 0 },
121 .th_generation = 1,
122 .th_next = &th1,
123 };
124
125 static struct timehands *volatile timehands = &th0;
126 struct timecounter *timecounter = &dummy_timecounter;
127 static struct timecounter *timecounters = &dummy_timecounter;
128
129 volatile time_t time_second = 1;
130 volatile time_t time_uptime = 1;
131
132 static struct bintime timebasebin;
133
134 static int timestepwarnings;
135
136 kmutex_t timecounter_lock;
137 static u_int timecounter_mods;
138 static volatile int timecounter_removals = 1;
139 static u_int timecounter_bad;
140
141 #ifdef __FreeBSD__
142 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
143 ×tepwarnings, 0, "");
144 #endif /* __FreeBSD__ */
145
146 /*
147 * sysctl helper routine for kern.timercounter.hardware
148 */
149 static int
150 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
151 {
152 struct sysctlnode node;
153 int error;
154 char newname[MAX_TCNAMELEN];
155 struct timecounter *newtc, *tc;
156
157 tc = timecounter;
158
159 strlcpy(newname, tc->tc_name, sizeof(newname));
160
161 node = *rnode;
162 node.sysctl_data = newname;
163 node.sysctl_size = sizeof(newname);
164
165 error = sysctl_lookup(SYSCTLFN_CALL(&node));
166
167 if (error ||
168 newp == NULL ||
169 strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
170 return error;
171
172 if (l != NULL && (error = kauth_authorize_system(l->l_cred,
173 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
174 NULL, NULL)) != 0)
175 return (error);
176
177 if (!cold)
178 mutex_spin_enter(&timecounter_lock);
179 error = EINVAL;
180 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
181 if (strcmp(newname, newtc->tc_name) != 0)
182 continue;
183 /* Warm up new timecounter. */
184 (void)newtc->tc_get_timecount(newtc);
185 (void)newtc->tc_get_timecount(newtc);
186 timecounter = newtc;
187 error = 0;
188 break;
189 }
190 if (!cold)
191 mutex_spin_exit(&timecounter_lock);
192 return error;
193 }
194
195 static int
196 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
197 {
198 char buf[MAX_TCNAMELEN+48];
199 char *where;
200 const char *spc;
201 struct timecounter *tc;
202 size_t needed, left, slen;
203 int error, mods;
204
205 if (newp != NULL)
206 return (EPERM);
207 if (namelen != 0)
208 return (EINVAL);
209
210 mutex_spin_enter(&timecounter_lock);
211 retry:
212 spc = "";
213 error = 0;
214 needed = 0;
215 left = *oldlenp;
216 where = oldp;
217 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
218 if (where == NULL) {
219 needed += sizeof(buf); /* be conservative */
220 } else {
221 slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
222 " Hz)", spc, tc->tc_name, tc->tc_quality,
223 tc->tc_frequency);
224 if (left < slen + 1)
225 break;
226 mods = timecounter_mods;
227 mutex_spin_exit(&timecounter_lock);
228 error = copyout(buf, where, slen + 1);
229 mutex_spin_enter(&timecounter_lock);
230 if (mods != timecounter_mods) {
231 goto retry;
232 }
233 spc = " ";
234 where += slen;
235 needed += slen;
236 left -= slen;
237 }
238 }
239 mutex_spin_exit(&timecounter_lock);
240
241 *oldlenp = needed;
242 return (error);
243 }
244
245 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
246 {
247 const struct sysctlnode *node;
248
249 sysctl_createv(clog, 0, NULL, &node,
250 CTLFLAG_PERMANENT,
251 CTLTYPE_NODE, "timecounter",
252 SYSCTL_DESCR("time counter information"),
253 NULL, 0, NULL, 0,
254 CTL_KERN, CTL_CREATE, CTL_EOL);
255
256 if (node != NULL) {
257 sysctl_createv(clog, 0, NULL, NULL,
258 CTLFLAG_PERMANENT,
259 CTLTYPE_STRING, "choice",
260 SYSCTL_DESCR("available counters"),
261 sysctl_kern_timecounter_choice, 0, NULL, 0,
262 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
263
264 sysctl_createv(clog, 0, NULL, NULL,
265 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
266 CTLTYPE_STRING, "hardware",
267 SYSCTL_DESCR("currently active time counter"),
268 sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
269 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
270
271 sysctl_createv(clog, 0, NULL, NULL,
272 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
273 CTLTYPE_INT, "timestepwarnings",
274 SYSCTL_DESCR("log time steps"),
275 NULL, 0, ×tepwarnings, 0,
276 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
277 }
278 }
279
280 #ifdef TC_COUNTERS
281 #define TC_STATS(name) \
282 static struct evcnt n##name = \
283 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
284 EVCNT_ATTACH_STATIC(n##name)
285 TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
286 TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
287 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
288 TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
289 TC_STATS(setclock);
290 #define TC_COUNT(var) var.ev_count++
291 #undef TC_STATS
292 #else
293 #define TC_COUNT(var) /* nothing */
294 #endif /* TC_COUNTERS */
295
296 static void tc_windup(void);
297
298 /*
299 * Return the difference between the timehands' counter value now and what
300 * was when we copied it to the timehands' offset_count.
301 */
302 static inline u_int
303 tc_delta(struct timehands *th)
304 {
305 struct timecounter *tc;
306
307 tc = th->th_counter;
308 return ((tc->tc_get_timecount(tc) -
309 th->th_offset_count) & tc->tc_counter_mask);
310 }
311
312 /*
313 * Functions for reading the time. We have to loop until we are sure that
314 * the timehands that we operated on was not updated under our feet. See
315 * the comment in <sys/timevar.h> for a description of these 12 functions.
316 */
317
318 void
319 binuptime(struct bintime *bt)
320 {
321 struct timehands *th;
322 lwp_t *l;
323 u_int lgen, gen;
324
325 TC_COUNT(nbinuptime);
326
327 /*
328 * Provide exclusion against tc_detach().
329 *
330 * We record the number of timecounter removals before accessing
331 * timecounter state. Note that the LWP can be using multiple
332 * "generations" at once, due to interrupts (interrupted while in
333 * this function). Hardware interrupts will borrow the interrupted
334 * LWP's l_tcgen value for this purpose, and can themselves be
335 * interrupted by higher priority interrupts. In this case we need
336 * to ensure that the oldest generation in use is recorded.
337 *
338 * splsched() is too expensive to use, so we take care to structure
339 * this code in such a way that it is not required. Likewise, we
340 * do not disable preemption.
341 *
342 * Memory barriers are also too expensive to use for such a
343 * performance critical function. The good news is that we do not
344 * need memory barriers for this type of exclusion, as the thread
345 * updating timecounter_removals will issue a broadcast cross call
346 * before inspecting our l_tcgen value (this elides memory ordering
347 * issues).
348 */
349 l = curlwp;
350 lgen = l->l_tcgen;
351 if (__predict_true(lgen == 0)) {
352 l->l_tcgen = timecounter_removals;
353 }
354 __insn_barrier();
355
356 do {
357 th = timehands;
358 gen = th->th_generation;
359 *bt = th->th_offset;
360 bintime_addx(bt, th->th_scale * tc_delta(th));
361 } while (gen == 0 || gen != th->th_generation);
362
363 __insn_barrier();
364 l->l_tcgen = lgen;
365 }
366
367 void
368 nanouptime(struct timespec *tsp)
369 {
370 struct bintime bt;
371
372 TC_COUNT(nnanouptime);
373 binuptime(&bt);
374 bintime2timespec(&bt, tsp);
375 }
376
377 void
378 microuptime(struct timeval *tvp)
379 {
380 struct bintime bt;
381
382 TC_COUNT(nmicrouptime);
383 binuptime(&bt);
384 bintime2timeval(&bt, tvp);
385 }
386
387 void
388 bintime(struct bintime *bt)
389 {
390
391 TC_COUNT(nbintime);
392 binuptime(bt);
393 bintime_add(bt, &timebasebin);
394 }
395
396 void
397 nanotime(struct timespec *tsp)
398 {
399 struct bintime bt;
400
401 TC_COUNT(nnanotime);
402 bintime(&bt);
403 bintime2timespec(&bt, tsp);
404 }
405
406 void
407 microtime(struct timeval *tvp)
408 {
409 struct bintime bt;
410
411 TC_COUNT(nmicrotime);
412 bintime(&bt);
413 bintime2timeval(&bt, tvp);
414 }
415
416 void
417 getbinuptime(struct bintime *bt)
418 {
419 struct timehands *th;
420 u_int gen;
421
422 TC_COUNT(ngetbinuptime);
423 do {
424 th = timehands;
425 gen = th->th_generation;
426 *bt = th->th_offset;
427 } while (gen == 0 || gen != th->th_generation);
428 }
429
430 void
431 getnanouptime(struct timespec *tsp)
432 {
433 struct timehands *th;
434 u_int gen;
435
436 TC_COUNT(ngetnanouptime);
437 do {
438 th = timehands;
439 gen = th->th_generation;
440 bintime2timespec(&th->th_offset, tsp);
441 } while (gen == 0 || gen != th->th_generation);
442 }
443
444 void
445 getmicrouptime(struct timeval *tvp)
446 {
447 struct timehands *th;
448 u_int gen;
449
450 TC_COUNT(ngetmicrouptime);
451 do {
452 th = timehands;
453 gen = th->th_generation;
454 bintime2timeval(&th->th_offset, tvp);
455 } while (gen == 0 || gen != th->th_generation);
456 }
457
458 void
459 getbintime(struct bintime *bt)
460 {
461 struct timehands *th;
462 u_int gen;
463
464 TC_COUNT(ngetbintime);
465 do {
466 th = timehands;
467 gen = th->th_generation;
468 *bt = th->th_offset;
469 } while (gen == 0 || gen != th->th_generation);
470 bintime_add(bt, &timebasebin);
471 }
472
473 static inline void
474 dogetnanotime(struct timespec *tsp)
475 {
476 struct timehands *th;
477 u_int gen;
478
479 TC_COUNT(ngetnanotime);
480 do {
481 th = timehands;
482 gen = th->th_generation;
483 *tsp = th->th_nanotime;
484 } while (gen == 0 || gen != th->th_generation);
485 }
486
487 void
488 getnanotime(struct timespec *tsp)
489 {
490
491 dogetnanotime(tsp);
492 }
493
494 void dtrace_getnanotime(struct timespec *tsp);
495
496 void
497 dtrace_getnanotime(struct timespec *tsp)
498 {
499
500 dogetnanotime(tsp);
501 }
502
503 void
504 getmicrotime(struct timeval *tvp)
505 {
506 struct timehands *th;
507 u_int gen;
508
509 TC_COUNT(ngetmicrotime);
510 do {
511 th = timehands;
512 gen = th->th_generation;
513 *tvp = th->th_microtime;
514 } while (gen == 0 || gen != th->th_generation);
515 }
516
517 /*
518 * Initialize a new timecounter and possibly use it.
519 */
520 void
521 tc_init(struct timecounter *tc)
522 {
523 u_int u;
524
525 u = tc->tc_frequency / tc->tc_counter_mask;
526 /* XXX: We need some margin here, 10% is a guess */
527 u *= 11;
528 u /= 10;
529 if (u > hz && tc->tc_quality >= 0) {
530 tc->tc_quality = -2000;
531 aprint_verbose(
532 "timecounter: Timecounter \"%s\" frequency %ju Hz",
533 tc->tc_name, (uintmax_t)tc->tc_frequency);
534 aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
535 } else if (tc->tc_quality >= 0 || bootverbose) {
536 aprint_verbose(
537 "timecounter: Timecounter \"%s\" frequency %ju Hz "
538 "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
539 tc->tc_quality);
540 }
541
542 mutex_spin_enter(&timecounter_lock);
543 tc->tc_next = timecounters;
544 timecounters = tc;
545 timecounter_mods++;
546 /*
547 * Never automatically use a timecounter with negative quality.
548 * Even though we run on the dummy counter, switching here may be
549 * worse since this timecounter may not be monotonous.
550 */
551 if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
552 (tc->tc_quality == timecounter->tc_quality &&
553 tc->tc_frequency > timecounter->tc_frequency))) {
554 (void)tc->tc_get_timecount(tc);
555 (void)tc->tc_get_timecount(tc);
556 timecounter = tc;
557 tc_windup();
558 }
559 mutex_spin_exit(&timecounter_lock);
560 }
561
562 /*
563 * Pick a new timecounter due to the existing counter going bad.
564 */
565 static void
566 tc_pick(void)
567 {
568 struct timecounter *best, *tc;
569
570 KASSERT(mutex_owned(&timecounter_lock));
571
572 for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
573 if (tc->tc_quality > best->tc_quality)
574 best = tc;
575 else if (tc->tc_quality < best->tc_quality)
576 continue;
577 else if (tc->tc_frequency > best->tc_frequency)
578 best = tc;
579 }
580 (void)best->tc_get_timecount(best);
581 (void)best->tc_get_timecount(best);
582 timecounter = best;
583 }
584
585 /*
586 * A timecounter has gone bad, arrange to pick a new one at the next
587 * clock tick.
588 */
589 void
590 tc_gonebad(struct timecounter *tc)
591 {
592
593 tc->tc_quality = -100;
594 membar_producer();
595 atomic_inc_uint(&timecounter_bad);
596 }
597
598 /*
599 * Stop using a timecounter and remove it from the timecounters list.
600 */
601 int
602 tc_detach(struct timecounter *target)
603 {
604 struct timecounter *tc;
605 struct timecounter **tcp = NULL;
606 int removals;
607 uint64_t where;
608 lwp_t *l;
609
610 /* First, find the timecounter. */
611 mutex_spin_enter(&timecounter_lock);
612 for (tcp = &timecounters, tc = timecounters;
613 tc != NULL;
614 tcp = &tc->tc_next, tc = tc->tc_next) {
615 if (tc == target)
616 break;
617 }
618 if (tc == NULL) {
619 mutex_spin_exit(&timecounter_lock);
620 return ESRCH;
621 }
622
623 /* And now, remove it. */
624 *tcp = tc->tc_next;
625 if (timecounter == target) {
626 tc_pick();
627 tc_windup();
628 }
629 timecounter_mods++;
630 removals = timecounter_removals++;
631 mutex_spin_exit(&timecounter_lock);
632
633 /*
634 * We now have to determine if any threads in the system are still
635 * making use of this timecounter.
636 *
637 * We issue a broadcast cross call to elide memory ordering issues,
638 * then scan all LWPs in the system looking at each's timecounter
639 * generation number. We need to see a value of zero (not actively
640 * using a timecounter) or a value greater than our removal value.
641 *
642 * We may race with threads that read `timecounter_removals' and
643 * and then get preempted before updating `l_tcgen'. This is not
644 * a problem, since it means that these threads have not yet started
645 * accessing timecounter state. All we do need is one clean
646 * snapshot of the system where every thread appears not to be using
647 * old timecounter state.
648 */
649 for (;;) {
650 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
651 xc_wait(where);
652
653 mutex_enter(proc_lock);
654 LIST_FOREACH(l, &alllwp, l_list) {
655 if (l->l_tcgen == 0 || l->l_tcgen > removals) {
656 /*
657 * Not using timecounter or old timecounter
658 * state at time of our xcall or later.
659 */
660 continue;
661 }
662 break;
663 }
664 mutex_exit(proc_lock);
665
666 /*
667 * If the timecounter is still in use, wait at least 10ms
668 * before retrying.
669 */
670 if (l == NULL) {
671 return 0;
672 }
673 (void)kpause("tcdetach", false, mstohz(10), NULL);
674 }
675 }
676
677 /* Report the frequency of the current timecounter. */
678 u_int64_t
679 tc_getfrequency(void)
680 {
681
682 return (timehands->th_counter->tc_frequency);
683 }
684
685 /*
686 * Step our concept of UTC. This is done by modifying our estimate of
687 * when we booted.
688 */
689 void
690 tc_setclock(const struct timespec *ts)
691 {
692 struct timespec ts2;
693 struct bintime bt, bt2;
694
695 mutex_spin_enter(&timecounter_lock);
696 TC_COUNT(nsetclock);
697 binuptime(&bt2);
698 timespec2bintime(ts, &bt);
699 bintime_sub(&bt, &bt2);
700 bintime_add(&bt2, &timebasebin);
701 timebasebin = bt;
702 tc_windup();
703 mutex_spin_exit(&timecounter_lock);
704
705 if (timestepwarnings) {
706 bintime2timespec(&bt2, &ts2);
707 log(LOG_INFO,
708 "Time stepped from %lld.%09ld to %lld.%09ld\n",
709 (long long)ts2.tv_sec, ts2.tv_nsec,
710 (long long)ts->tv_sec, ts->tv_nsec);
711 }
712 }
713
714 /*
715 * Initialize the next struct timehands in the ring and make
716 * it the active timehands. Along the way we might switch to a different
717 * timecounter and/or do seconds processing in NTP. Slightly magic.
718 */
719 static void
720 tc_windup(void)
721 {
722 struct bintime bt;
723 struct timehands *th, *tho;
724 u_int64_t scale;
725 u_int delta, ncount, ogen;
726 int i, s_update;
727 time_t t;
728
729 KASSERT(mutex_owned(&timecounter_lock));
730
731 s_update = 0;
732
733 /*
734 * Make the next timehands a copy of the current one, but do not
735 * overwrite the generation or next pointer. While we update
736 * the contents, the generation must be zero. Ensure global
737 * visibility of the generation before proceeding.
738 */
739 tho = timehands;
740 th = tho->th_next;
741 ogen = th->th_generation;
742 th->th_generation = 0;
743 membar_producer();
744 bcopy(tho, th, offsetof(struct timehands, th_generation));
745
746 /*
747 * Capture a timecounter delta on the current timecounter and if
748 * changing timecounters, a counter value from the new timecounter.
749 * Update the offset fields accordingly.
750 */
751 delta = tc_delta(th);
752 if (th->th_counter != timecounter)
753 ncount = timecounter->tc_get_timecount(timecounter);
754 else
755 ncount = 0;
756 th->th_offset_count += delta;
757 bintime_addx(&th->th_offset, th->th_scale * delta);
758
759 /*
760 * Hardware latching timecounters may not generate interrupts on
761 * PPS events, so instead we poll them. There is a finite risk that
762 * the hardware might capture a count which is later than the one we
763 * got above, and therefore possibly in the next NTP second which might
764 * have a different rate than the current NTP second. It doesn't
765 * matter in practice.
766 */
767 if (tho->th_counter->tc_poll_pps)
768 tho->th_counter->tc_poll_pps(tho->th_counter);
769
770 /*
771 * Deal with NTP second processing. The for loop normally
772 * iterates at most once, but in extreme situations it might
773 * keep NTP sane if timeouts are not run for several seconds.
774 * At boot, the time step can be large when the TOD hardware
775 * has been read, so on really large steps, we call
776 * ntp_update_second only twice. We need to call it twice in
777 * case we missed a leap second.
778 * If NTP is not compiled in ntp_update_second still calculates
779 * the adjustment resulting from adjtime() calls.
780 */
781 bt = th->th_offset;
782 bintime_add(&bt, &timebasebin);
783 i = bt.sec - tho->th_microtime.tv_sec;
784 if (i > LARGE_STEP)
785 i = 2;
786 for (; i > 0; i--) {
787 t = bt.sec;
788 ntp_update_second(&th->th_adjustment, &bt.sec);
789 s_update = 1;
790 if (bt.sec != t)
791 timebasebin.sec += bt.sec - t;
792 }
793
794 /* Update the UTC timestamps used by the get*() functions. */
795 /* XXX shouldn't do this here. Should force non-`get' versions. */
796 bintime2timeval(&bt, &th->th_microtime);
797 bintime2timespec(&bt, &th->th_nanotime);
798 /* Now is a good time to change timecounters. */
799 if (th->th_counter != timecounter) {
800 th->th_counter = timecounter;
801 th->th_offset_count = ncount;
802 s_update = 1;
803 }
804
805 /*-
806 * Recalculate the scaling factor. We want the number of 1/2^64
807 * fractions of a second per period of the hardware counter, taking
808 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
809 * processing provides us with.
810 *
811 * The th_adjustment is nanoseconds per second with 32 bit binary
812 * fraction and we want 64 bit binary fraction of second:
813 *
814 * x = a * 2^32 / 10^9 = a * 4.294967296
815 *
816 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
817 * we can only multiply by about 850 without overflowing, but that
818 * leaves suitably precise fractions for multiply before divide.
819 *
820 * Divide before multiply with a fraction of 2199/512 results in a
821 * systematic undercompensation of 10PPM of th_adjustment. On a
822 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
823 *
824 * We happily sacrifice the lowest of the 64 bits of our result
825 * to the goddess of code clarity.
826 *
827 */
828 if (s_update) {
829 scale = (u_int64_t)1 << 63;
830 scale += (th->th_adjustment / 1024) * 2199;
831 scale /= th->th_counter->tc_frequency;
832 th->th_scale = scale * 2;
833 }
834 /*
835 * Now that the struct timehands is again consistent, set the new
836 * generation number, making sure to not make it zero. Ensure
837 * changes are globally visible before changing.
838 */
839 if (++ogen == 0)
840 ogen = 1;
841 membar_producer();
842 th->th_generation = ogen;
843
844 /*
845 * Go live with the new struct timehands. Ensure changes are
846 * globally visible before changing.
847 */
848 time_second = th->th_microtime.tv_sec;
849 time_uptime = th->th_offset.sec;
850 membar_producer();
851 timehands = th;
852
853 /*
854 * Force users of the old timehand to move on. This is
855 * necessary for MP systems; we need to ensure that the
856 * consumers will move away from the old timehand before
857 * we begin updating it again when we eventually wrap
858 * around.
859 */
860 if (++tho->th_generation == 0)
861 tho->th_generation = 1;
862 }
863
864 /*
865 * RFC 2783 PPS-API implementation.
866 */
867
868 int
869 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
870 {
871 pps_params_t *app;
872 pps_info_t *pipi;
873 #ifdef PPS_SYNC
874 int *epi;
875 #endif
876
877 KASSERT(mutex_owned(&timecounter_lock));
878
879 KASSERT(pps != NULL);
880
881 switch (cmd) {
882 case PPS_IOC_CREATE:
883 return (0);
884 case PPS_IOC_DESTROY:
885 return (0);
886 case PPS_IOC_SETPARAMS:
887 app = (pps_params_t *)data;
888 if (app->mode & ~pps->ppscap)
889 return (EINVAL);
890 pps->ppsparam = *app;
891 return (0);
892 case PPS_IOC_GETPARAMS:
893 app = (pps_params_t *)data;
894 *app = pps->ppsparam;
895 app->api_version = PPS_API_VERS_1;
896 return (0);
897 case PPS_IOC_GETCAP:
898 *(int*)data = pps->ppscap;
899 return (0);
900 case PPS_IOC_FETCH:
901 pipi = (pps_info_t *)data;
902 pps->ppsinfo.current_mode = pps->ppsparam.mode;
903 *pipi = pps->ppsinfo;
904 return (0);
905 case PPS_IOC_KCBIND:
906 #ifdef PPS_SYNC
907 epi = (int *)data;
908 /* XXX Only root should be able to do this */
909 if (*epi & ~pps->ppscap)
910 return (EINVAL);
911 pps->kcmode = *epi;
912 return (0);
913 #else
914 return (EOPNOTSUPP);
915 #endif
916 default:
917 return (EPASSTHROUGH);
918 }
919 }
920
921 void
922 pps_init(struct pps_state *pps)
923 {
924
925 KASSERT(mutex_owned(&timecounter_lock));
926
927 pps->ppscap |= PPS_TSFMT_TSPEC;
928 if (pps->ppscap & PPS_CAPTUREASSERT)
929 pps->ppscap |= PPS_OFFSETASSERT;
930 if (pps->ppscap & PPS_CAPTURECLEAR)
931 pps->ppscap |= PPS_OFFSETCLEAR;
932 }
933
934 /*
935 * capture a timetamp in the pps structure
936 */
937 void
938 pps_capture(struct pps_state *pps)
939 {
940 struct timehands *th;
941
942 KASSERT(mutex_owned(&timecounter_lock));
943 KASSERT(pps != NULL);
944
945 th = timehands;
946 pps->capgen = th->th_generation;
947 pps->capth = th;
948 pps->capcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
949 if (pps->capgen != th->th_generation)
950 pps->capgen = 0;
951 }
952
953 #ifdef PPS_DEBUG
954 int ppsdebug = 0;
955 #endif
956
957 /*
958 * process a pps_capture()ed event
959 */
960 void
961 pps_event(struct pps_state *pps, int event)
962 {
963 pps_ref_event(pps, event, NULL, PPS_REFEVNT_PPS|PPS_REFEVNT_CAPTURE);
964 }
965
966 /*
967 * extended pps api / kernel pll/fll entry point
968 *
969 * feed reference time stamps to PPS engine
970 *
971 * will simulate a PPS event and feed
972 * the NTP PLL/FLL if requested.
973 *
974 * the ref time stamps should be roughly once
975 * a second but do not need to be exactly in phase
976 * with the UTC second but should be close to it.
977 * this relaxation of requirements allows callout
978 * driven timestamping mechanisms to feed to pps
979 * capture/kernel pll logic.
980 *
981 * calling pattern is:
982 * pps_capture() (for PPS_REFEVNT_{CAPTURE|CAPCUR})
983 * read timestamp from reference source
984 * pps_ref_event()
985 *
986 * supported refmodes:
987 * PPS_REFEVNT_CAPTURE
988 * use system timestamp of pps_capture()
989 * PPS_REFEVNT_CURRENT
990 * use system timestamp of this call
991 * PPS_REFEVNT_CAPCUR
992 * use average of read capture and current system time stamp
993 * PPS_REFEVNT_PPS
994 * assume timestamp on second mark - ref_ts is ignored
995 *
996 */
997
998 void
999 pps_ref_event(struct pps_state *pps,
1000 int event,
1001 struct bintime *ref_ts,
1002 int refmode
1003 )
1004 {
1005 struct bintime bt; /* current time */
1006 struct bintime btd; /* time difference */
1007 struct bintime bt_ref; /* reference time */
1008 struct timespec ts, *tsp, *osp;
1009 struct timehands *th;
1010 u_int64_t tcount, acount, dcount, *pcount;
1011 int foff, gen;
1012 #ifdef PPS_SYNC
1013 int fhard;
1014 #endif
1015 pps_seq_t *pseq;
1016
1017 KASSERT(mutex_owned(&timecounter_lock));
1018
1019 KASSERT(pps != NULL);
1020
1021 /* pick up current time stamp if needed */
1022 if (refmode & (PPS_REFEVNT_CURRENT|PPS_REFEVNT_CAPCUR)) {
1023 /* pick up current time stamp */
1024 th = timehands;
1025 gen = th->th_generation;
1026 tcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
1027 if (gen != th->th_generation)
1028 gen = 0;
1029
1030 /* If the timecounter was wound up underneath us, bail out. */
1031 if (pps->capgen == 0 ||
1032 pps->capgen != pps->capth->th_generation ||
1033 gen == 0 ||
1034 gen != pps->capgen) {
1035 #ifdef PPS_DEBUG
1036 if (ppsdebug & 0x1) {
1037 log(LOG_DEBUG,
1038 "pps_ref_event(pps=%p, event=%d, ...): DROP (wind-up)\n",
1039 pps, event);
1040 }
1041 #endif
1042 return;
1043 }
1044 } else {
1045 tcount = 0; /* keep GCC happy */
1046 }
1047
1048 #ifdef PPS_DEBUG
1049 if (ppsdebug & 0x1) {
1050 struct timespec tmsp;
1051
1052 if (ref_ts == NULL) {
1053 tmsp.tv_sec = 0;
1054 tmsp.tv_nsec = 0;
1055 } else {
1056 bintime2timespec(ref_ts, &tmsp);
1057 }
1058
1059 log(LOG_DEBUG,
1060 "pps_ref_event(pps=%p, event=%d, ref_ts=%"PRIi64
1061 ".%09"PRIi32", refmode=0x%1x)\n",
1062 pps, event, tmsp.tv_sec, (int32_t)tmsp.tv_nsec, refmode);
1063 }
1064 #endif
1065
1066 /* setup correct event references */
1067 if (event == PPS_CAPTUREASSERT) {
1068 tsp = &pps->ppsinfo.assert_timestamp;
1069 osp = &pps->ppsparam.assert_offset;
1070 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1071 #ifdef PPS_SYNC
1072 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1073 #endif
1074 pcount = &pps->ppscount[0];
1075 pseq = &pps->ppsinfo.assert_sequence;
1076 } else {
1077 tsp = &pps->ppsinfo.clear_timestamp;
1078 osp = &pps->ppsparam.clear_offset;
1079 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1080 #ifdef PPS_SYNC
1081 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1082 #endif
1083 pcount = &pps->ppscount[1];
1084 pseq = &pps->ppsinfo.clear_sequence;
1085 }
1086
1087 /* determine system time stamp according to refmode */
1088 dcount = 0; /* keep GCC happy */
1089 switch (refmode & PPS_REFEVNT_RMASK) {
1090 case PPS_REFEVNT_CAPTURE:
1091 acount = pps->capcount; /* use capture timestamp */
1092 break;
1093
1094 case PPS_REFEVNT_CURRENT:
1095 acount = tcount; /* use current timestamp */
1096 break;
1097
1098 case PPS_REFEVNT_CAPCUR:
1099 /*
1100 * calculate counter value between pps_capture() and
1101 * pps_ref_event()
1102 */
1103 dcount = tcount - pps->capcount;
1104 acount = (dcount / 2) + pps->capcount;
1105 break;
1106
1107 default: /* ignore call error silently */
1108 return;
1109 }
1110
1111 /*
1112 * If the timecounter changed, we cannot compare the count values, so
1113 * we have to drop the rest of the PPS-stuff until the next event.
1114 */
1115 if (pps->ppstc != pps->capth->th_counter) {
1116 pps->ppstc = pps->capth->th_counter;
1117 pps->capcount = acount;
1118 *pcount = acount;
1119 pps->ppscount[2] = acount;
1120 #ifdef PPS_DEBUG
1121 if (ppsdebug & 0x1) {
1122 log(LOG_DEBUG,
1123 "pps_ref_event(pps=%p, event=%d, ...): DROP (time-counter change)\n",
1124 pps, event);
1125 }
1126 #endif
1127 return;
1128 }
1129
1130 pps->capcount = acount;
1131
1132 /* Convert the count to a bintime. */
1133 bt = pps->capth->th_offset;
1134 bintime_addx(&bt, pps->capth->th_scale * (acount - pps->capth->th_offset_count));
1135 bintime_add(&bt, &timebasebin);
1136
1137 if ((refmode & PPS_REFEVNT_PPS) == 0) {
1138 /* determine difference to reference time stamp */
1139 bt_ref = *ref_ts;
1140
1141 btd = bt;
1142 bintime_sub(&btd, &bt_ref);
1143
1144 /*
1145 * simulate a PPS timestamp by dropping the fraction
1146 * and applying the offset
1147 */
1148 if (bt.frac >= (uint64_t)1<<63) /* skip to nearest second */
1149 bt.sec++;
1150 bt.frac = 0;
1151 bintime_add(&bt, &btd);
1152 } else {
1153 /*
1154 * create ref_ts from current time -
1155 * we are supposed to be called on
1156 * the second mark
1157 */
1158 bt_ref = bt;
1159 if (bt_ref.frac >= (uint64_t)1<<63) /* skip to nearest second */
1160 bt_ref.sec++;
1161 bt_ref.frac = 0;
1162 }
1163
1164 /* convert bintime to timestamp */
1165 bintime2timespec(&bt, &ts);
1166
1167 /* If the timecounter was wound up underneath us, bail out. */
1168 if (pps->capgen != pps->capth->th_generation)
1169 return;
1170
1171 /* store time stamp */
1172 *pcount = pps->capcount;
1173 (*pseq)++;
1174 *tsp = ts;
1175
1176 /* add offset correction */
1177 if (foff) {
1178 timespecadd(tsp, osp, tsp);
1179 if (tsp->tv_nsec < 0) {
1180 tsp->tv_nsec += 1000000000;
1181 tsp->tv_sec -= 1;
1182 }
1183 }
1184
1185 #ifdef PPS_DEBUG
1186 if (ppsdebug & 0x2) {
1187 struct timespec ts2;
1188 struct timespec ts3;
1189
1190 bintime2timespec(&bt_ref, &ts2);
1191
1192 bt.sec = 0;
1193 bt.frac = 0;
1194
1195 if (refmode & PPS_REFEVNT_CAPCUR) {
1196 bintime_addx(&bt, pps->capth->th_scale * dcount);
1197 }
1198 bintime2timespec(&bt, &ts3);
1199
1200 log(LOG_DEBUG, "ref_ts=%"PRIi64".%09"PRIi32
1201 ", ts=%"PRIi64".%09"PRIi32", read latency=%"PRIi64" ns\n",
1202 ts2.tv_sec, (int32_t)ts2.tv_nsec,
1203 tsp->tv_sec, (int32_t)tsp->tv_nsec,
1204 timespec2ns(&ts3));
1205 }
1206 #endif
1207
1208 #ifdef PPS_SYNC
1209 if (fhard) {
1210 uint64_t scale;
1211 uint64_t div;
1212
1213 /*
1214 * Feed the NTP PLL/FLL.
1215 * The FLL wants to know how many (hardware) nanoseconds
1216 * elapsed since the previous event (mod 1 second) thus
1217 * we are actually looking at the frequency difference scaled
1218 * in nsec.
1219 * As the counter time stamps are not truly at 1Hz
1220 * we need to scale the count by the elapsed
1221 * reference time.
1222 * valid sampling interval: [0.5..2[ sec
1223 */
1224
1225 /* calculate elapsed raw count */
1226 tcount = pps->capcount - pps->ppscount[2];
1227 pps->ppscount[2] = pps->capcount;
1228 tcount &= pps->capth->th_counter->tc_counter_mask;
1229
1230 /* calculate elapsed ref time */
1231 btd = bt_ref;
1232 bintime_sub(&btd, &pps->ref_time);
1233 pps->ref_time = bt_ref;
1234
1235 /* check that we stay below 2 sec */
1236 if (btd.sec < 0 || btd.sec > 1)
1237 return;
1238
1239 /* we want at least 0.5 sec between samples */
1240 if (btd.sec == 0 && btd.frac < (uint64_t)1<<63)
1241 return;
1242
1243 /*
1244 * calculate cycles per period by multiplying
1245 * the frequency with the elapsed period
1246 * we pick a fraction of 30 bits
1247 * ~1ns resolution for elapsed time
1248 */
1249 div = (uint64_t)btd.sec << 30;
1250 div |= (btd.frac >> 34) & (((uint64_t)1 << 30) - 1);
1251 div *= pps->capth->th_counter->tc_frequency;
1252 div >>= 30;
1253
1254 if (div == 0) /* safeguard */
1255 return;
1256
1257 scale = (uint64_t)1 << 63;
1258 scale /= div;
1259 scale *= 2;
1260
1261 bt.sec = 0;
1262 bt.frac = 0;
1263 bintime_addx(&bt, scale * tcount);
1264 bintime2timespec(&bt, &ts);
1265
1266 #ifdef PPS_DEBUG
1267 if (ppsdebug & 0x4) {
1268 struct timespec ts2;
1269 int64_t df;
1270
1271 bintime2timespec(&bt_ref, &ts2);
1272 df = timespec2ns(&ts);
1273 if (df > 500000000)
1274 df -= 1000000000;
1275 log(LOG_DEBUG, "hardpps: ref_ts=%"PRIi64
1276 ".%09"PRIi32", ts=%"PRIi64".%09"PRIi32
1277 ", freqdiff=%"PRIi64" ns/s\n",
1278 ts2.tv_sec, (int32_t)ts2.tv_nsec,
1279 tsp->tv_sec, (int32_t)tsp->tv_nsec,
1280 df);
1281 }
1282 #endif
1283
1284 hardpps(tsp, timespec2ns(&ts));
1285 }
1286 #endif
1287 }
1288
1289 /*
1290 * Timecounters need to be updated every so often to prevent the hardware
1291 * counter from overflowing. Updating also recalculates the cached values
1292 * used by the get*() family of functions, so their precision depends on
1293 * the update frequency.
1294 */
1295
1296 static int tc_tick;
1297
1298 void
1299 tc_ticktock(void)
1300 {
1301 static int count;
1302
1303 if (++count < tc_tick)
1304 return;
1305 count = 0;
1306 mutex_spin_enter(&timecounter_lock);
1307 if (timecounter_bad != 0) {
1308 /* An existing timecounter has gone bad, pick a new one. */
1309 (void)atomic_swap_uint(&timecounter_bad, 0);
1310 if (timecounter->tc_quality < 0) {
1311 tc_pick();
1312 }
1313 }
1314 tc_windup();
1315 mutex_spin_exit(&timecounter_lock);
1316 }
1317
1318 void
1319 inittimecounter(void)
1320 {
1321 u_int p;
1322
1323 mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
1324
1325 /*
1326 * Set the initial timeout to
1327 * max(1, <approx. number of hardclock ticks in a millisecond>).
1328 * People should probably not use the sysctl to set the timeout
1329 * to smaller than its inital value, since that value is the
1330 * smallest reasonable one. If they want better timestamps they
1331 * should use the non-"get"* functions.
1332 */
1333 if (hz > 1000)
1334 tc_tick = (hz + 500) / 1000;
1335 else
1336 tc_tick = 1;
1337 p = (tc_tick * 1000000) / hz;
1338 aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
1339 p / 1000, p % 1000);
1340
1341 /* warm up new timecounter (again) and get rolling. */
1342 (void)timecounter->tc_get_timecount(timecounter);
1343 (void)timecounter->tc_get_timecount(timecounter);
1344 }
1345