kern_tc.c revision 1.49.4.3 1 /* $NetBSD: kern_tc.c,v 1.49.4.3 2020/04/13 08:05:04 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * ----------------------------------------------------------------------------
34 * "THE BEER-WARE LICENSE" (Revision 42):
35 * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
36 * can do whatever you want with this stuff. If we meet some day, and you think
37 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
38 * ---------------------------------------------------------------------------
39 */
40
41 #include <sys/cdefs.h>
42 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
43 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.49.4.3 2020/04/13 08:05:04 martin Exp $");
44
45 #ifdef _KERNEL_OPT
46 #include "opt_ntp.h"
47 #endif
48
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51 #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/systm.h>
55 #include <sys/timepps.h>
56 #include <sys/timetc.h>
57 #include <sys/timex.h>
58 #include <sys/evcnt.h>
59 #include <sys/kauth.h>
60 #include <sys/mutex.h>
61 #include <sys/atomic.h>
62 #include <sys/xcall.h>
63
64 /*
65 * A large step happens on boot. This constant detects such steps.
66 * It is relatively small so that ntp_update_second gets called enough
67 * in the typical 'missed a couple of seconds' case, but doesn't loop
68 * forever when the time step is large.
69 */
70 #define LARGE_STEP 200
71
72 /*
73 * Implement a dummy timecounter which we can use until we get a real one
74 * in the air. This allows the console and other early stuff to use
75 * time services.
76 */
77
78 static u_int
79 dummy_get_timecount(struct timecounter *tc)
80 {
81 static u_int now;
82
83 return (++now);
84 }
85
86 static struct timecounter dummy_timecounter = {
87 .tc_get_timecount = dummy_get_timecount,
88 .tc_counter_mask = ~0u,
89 .tc_frequency = 1000000,
90 .tc_name = "dummy",
91 .tc_quality = -1000000,
92 .tc_priv = NULL,
93 };
94
95 struct timehands {
96 /* These fields must be initialized by the driver. */
97 struct timecounter *th_counter; /* active timecounter */
98 int64_t th_adjustment; /* frequency adjustment */
99 /* (NTP/adjtime) */
100 u_int64_t th_scale; /* scale factor (counter */
101 /* tick->time) */
102 u_int64_t th_offset_count; /* offset at last time */
103 /* update (tc_windup()) */
104 struct bintime th_offset; /* bin (up)time at windup */
105 struct timeval th_microtime; /* cached microtime */
106 struct timespec th_nanotime; /* cached nanotime */
107 /* Fields not to be copied in tc_windup start with th_generation. */
108 volatile u_int th_generation; /* current genration */
109 struct timehands *th_next; /* next timehand */
110 };
111
112 static struct timehands th0;
113 static struct timehands th9 = { .th_next = &th0, };
114 static struct timehands th8 = { .th_next = &th9, };
115 static struct timehands th7 = { .th_next = &th8, };
116 static struct timehands th6 = { .th_next = &th7, };
117 static struct timehands th5 = { .th_next = &th6, };
118 static struct timehands th4 = { .th_next = &th5, };
119 static struct timehands th3 = { .th_next = &th4, };
120 static struct timehands th2 = { .th_next = &th3, };
121 static struct timehands th1 = { .th_next = &th2, };
122 static struct timehands th0 = {
123 .th_counter = &dummy_timecounter,
124 .th_scale = (uint64_t)-1 / 1000000,
125 .th_offset = { .sec = 1, .frac = 0 },
126 .th_generation = 1,
127 .th_next = &th1,
128 };
129
130 static struct timehands *volatile timehands = &th0;
131 struct timecounter *timecounter = &dummy_timecounter;
132 static struct timecounter *timecounters = &dummy_timecounter;
133
134 volatile time_t time_second __cacheline_aligned = 1;
135 volatile time_t time_uptime __cacheline_aligned = 1;
136
137 static struct bintime timebasebin;
138
139 static int timestepwarnings;
140
141 kmutex_t timecounter_lock;
142 static u_int timecounter_mods;
143 static volatile int timecounter_removals = 1;
144 static u_int timecounter_bad;
145
146 #ifdef __FreeBSD__
147 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
148 ×tepwarnings, 0, "");
149 #endif /* __FreeBSD__ */
150
151 /*
152 * sysctl helper routine for kern.timercounter.hardware
153 */
154 static int
155 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
156 {
157 struct sysctlnode node;
158 int error;
159 char newname[MAX_TCNAMELEN];
160 struct timecounter *newtc, *tc;
161
162 tc = timecounter;
163
164 strlcpy(newname, tc->tc_name, sizeof(newname));
165
166 node = *rnode;
167 node.sysctl_data = newname;
168 node.sysctl_size = sizeof(newname);
169
170 error = sysctl_lookup(SYSCTLFN_CALL(&node));
171
172 if (error ||
173 newp == NULL ||
174 strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
175 return error;
176
177 if (l != NULL && (error = kauth_authorize_system(l->l_cred,
178 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
179 NULL, NULL)) != 0)
180 return (error);
181
182 if (!cold)
183 mutex_spin_enter(&timecounter_lock);
184 error = EINVAL;
185 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
186 if (strcmp(newname, newtc->tc_name) != 0)
187 continue;
188 /* Warm up new timecounter. */
189 (void)newtc->tc_get_timecount(newtc);
190 (void)newtc->tc_get_timecount(newtc);
191 timecounter = newtc;
192 error = 0;
193 break;
194 }
195 if (!cold)
196 mutex_spin_exit(&timecounter_lock);
197 return error;
198 }
199
200 static int
201 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
202 {
203 char buf[MAX_TCNAMELEN+48];
204 char *where;
205 const char *spc;
206 struct timecounter *tc;
207 size_t needed, left, slen;
208 int error, mods;
209
210 if (newp != NULL)
211 return (EPERM);
212 if (namelen != 0)
213 return (EINVAL);
214
215 mutex_spin_enter(&timecounter_lock);
216 retry:
217 spc = "";
218 error = 0;
219 needed = 0;
220 left = *oldlenp;
221 where = oldp;
222 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
223 if (where == NULL) {
224 needed += sizeof(buf); /* be conservative */
225 } else {
226 slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
227 " Hz)", spc, tc->tc_name, tc->tc_quality,
228 tc->tc_frequency);
229 if (left < slen + 1)
230 break;
231 mods = timecounter_mods;
232 mutex_spin_exit(&timecounter_lock);
233 error = copyout(buf, where, slen + 1);
234 mutex_spin_enter(&timecounter_lock);
235 if (mods != timecounter_mods) {
236 goto retry;
237 }
238 spc = " ";
239 where += slen;
240 needed += slen;
241 left -= slen;
242 }
243 }
244 mutex_spin_exit(&timecounter_lock);
245
246 *oldlenp = needed;
247 return (error);
248 }
249
250 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
251 {
252 const struct sysctlnode *node;
253
254 sysctl_createv(clog, 0, NULL, &node,
255 CTLFLAG_PERMANENT,
256 CTLTYPE_NODE, "timecounter",
257 SYSCTL_DESCR("time counter information"),
258 NULL, 0, NULL, 0,
259 CTL_KERN, CTL_CREATE, CTL_EOL);
260
261 if (node != NULL) {
262 sysctl_createv(clog, 0, NULL, NULL,
263 CTLFLAG_PERMANENT,
264 CTLTYPE_STRING, "choice",
265 SYSCTL_DESCR("available counters"),
266 sysctl_kern_timecounter_choice, 0, NULL, 0,
267 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
268
269 sysctl_createv(clog, 0, NULL, NULL,
270 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
271 CTLTYPE_STRING, "hardware",
272 SYSCTL_DESCR("currently active time counter"),
273 sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
274 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
275
276 sysctl_createv(clog, 0, NULL, NULL,
277 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
278 CTLTYPE_INT, "timestepwarnings",
279 SYSCTL_DESCR("log time steps"),
280 NULL, 0, ×tepwarnings, 0,
281 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
282 }
283 }
284
285 #ifdef TC_COUNTERS
286 #define TC_STATS(name) \
287 static struct evcnt n##name = \
288 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
289 EVCNT_ATTACH_STATIC(n##name)
290 TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
291 TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
292 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
293 TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
294 TC_STATS(setclock);
295 #define TC_COUNT(var) var.ev_count++
296 #undef TC_STATS
297 #else
298 #define TC_COUNT(var) /* nothing */
299 #endif /* TC_COUNTERS */
300
301 static void tc_windup(void);
302
303 /*
304 * Return the difference between the timehands' counter value now and what
305 * was when we copied it to the timehands' offset_count.
306 */
307 static inline u_int
308 tc_delta(struct timehands *th)
309 {
310 struct timecounter *tc;
311
312 tc = th->th_counter;
313 return ((tc->tc_get_timecount(tc) -
314 th->th_offset_count) & tc->tc_counter_mask);
315 }
316
317 /*
318 * Functions for reading the time. We have to loop until we are sure that
319 * the timehands that we operated on was not updated under our feet. See
320 * the comment in <sys/timevar.h> for a description of these 12 functions.
321 */
322
323 void
324 binuptime(struct bintime *bt)
325 {
326 struct timehands *th;
327 lwp_t *l;
328 u_int lgen, gen;
329
330 TC_COUNT(nbinuptime);
331
332 /*
333 * Provide exclusion against tc_detach().
334 *
335 * We record the number of timecounter removals before accessing
336 * timecounter state. Note that the LWP can be using multiple
337 * "generations" at once, due to interrupts (interrupted while in
338 * this function). Hardware interrupts will borrow the interrupted
339 * LWP's l_tcgen value for this purpose, and can themselves be
340 * interrupted by higher priority interrupts. In this case we need
341 * to ensure that the oldest generation in use is recorded.
342 *
343 * splsched() is too expensive to use, so we take care to structure
344 * this code in such a way that it is not required. Likewise, we
345 * do not disable preemption.
346 *
347 * Memory barriers are also too expensive to use for such a
348 * performance critical function. The good news is that we do not
349 * need memory barriers for this type of exclusion, as the thread
350 * updating timecounter_removals will issue a broadcast cross call
351 * before inspecting our l_tcgen value (this elides memory ordering
352 * issues).
353 */
354 l = curlwp;
355 lgen = l->l_tcgen;
356 if (__predict_true(lgen == 0)) {
357 l->l_tcgen = timecounter_removals;
358 }
359 __insn_barrier();
360
361 do {
362 th = timehands;
363 gen = th->th_generation;
364 *bt = th->th_offset;
365 bintime_addx(bt, th->th_scale * tc_delta(th));
366 } while (gen == 0 || gen != th->th_generation);
367
368 __insn_barrier();
369 l->l_tcgen = lgen;
370 }
371
372 void
373 nanouptime(struct timespec *tsp)
374 {
375 struct bintime bt;
376
377 TC_COUNT(nnanouptime);
378 binuptime(&bt);
379 bintime2timespec(&bt, tsp);
380 }
381
382 void
383 microuptime(struct timeval *tvp)
384 {
385 struct bintime bt;
386
387 TC_COUNT(nmicrouptime);
388 binuptime(&bt);
389 bintime2timeval(&bt, tvp);
390 }
391
392 void
393 bintime(struct bintime *bt)
394 {
395
396 TC_COUNT(nbintime);
397 binuptime(bt);
398 bintime_add(bt, &timebasebin);
399 }
400
401 void
402 nanotime(struct timespec *tsp)
403 {
404 struct bintime bt;
405
406 TC_COUNT(nnanotime);
407 bintime(&bt);
408 bintime2timespec(&bt, tsp);
409 }
410
411 void
412 microtime(struct timeval *tvp)
413 {
414 struct bintime bt;
415
416 TC_COUNT(nmicrotime);
417 bintime(&bt);
418 bintime2timeval(&bt, tvp);
419 }
420
421 void
422 getbinuptime(struct bintime *bt)
423 {
424 struct timehands *th;
425 u_int gen;
426
427 TC_COUNT(ngetbinuptime);
428 do {
429 th = timehands;
430 gen = th->th_generation;
431 *bt = th->th_offset;
432 } while (gen == 0 || gen != th->th_generation);
433 }
434
435 void
436 getnanouptime(struct timespec *tsp)
437 {
438 struct timehands *th;
439 u_int gen;
440
441 TC_COUNT(ngetnanouptime);
442 do {
443 th = timehands;
444 gen = th->th_generation;
445 bintime2timespec(&th->th_offset, tsp);
446 } while (gen == 0 || gen != th->th_generation);
447 }
448
449 void
450 getmicrouptime(struct timeval *tvp)
451 {
452 struct timehands *th;
453 u_int gen;
454
455 TC_COUNT(ngetmicrouptime);
456 do {
457 th = timehands;
458 gen = th->th_generation;
459 bintime2timeval(&th->th_offset, tvp);
460 } while (gen == 0 || gen != th->th_generation);
461 }
462
463 void
464 getbintime(struct bintime *bt)
465 {
466 struct timehands *th;
467 u_int gen;
468
469 TC_COUNT(ngetbintime);
470 do {
471 th = timehands;
472 gen = th->th_generation;
473 *bt = th->th_offset;
474 } while (gen == 0 || gen != th->th_generation);
475 bintime_add(bt, &timebasebin);
476 }
477
478 static inline void
479 dogetnanotime(struct timespec *tsp)
480 {
481 struct timehands *th;
482 u_int gen;
483
484 TC_COUNT(ngetnanotime);
485 do {
486 th = timehands;
487 gen = th->th_generation;
488 *tsp = th->th_nanotime;
489 } while (gen == 0 || gen != th->th_generation);
490 }
491
492 void
493 getnanotime(struct timespec *tsp)
494 {
495
496 dogetnanotime(tsp);
497 }
498
499 void dtrace_getnanotime(struct timespec *tsp);
500
501 void
502 dtrace_getnanotime(struct timespec *tsp)
503 {
504
505 dogetnanotime(tsp);
506 }
507
508 void
509 getmicrotime(struct timeval *tvp)
510 {
511 struct timehands *th;
512 u_int gen;
513
514 TC_COUNT(ngetmicrotime);
515 do {
516 th = timehands;
517 gen = th->th_generation;
518 *tvp = th->th_microtime;
519 } while (gen == 0 || gen != th->th_generation);
520 }
521
522 void
523 getnanoboottime(struct timespec *tsp)
524 {
525 struct bintime bt;
526
527 getbinboottime(&bt);
528 bintime2timespec(&bt, tsp);
529 }
530
531 void
532 getmicroboottime(struct timeval *tvp)
533 {
534 struct bintime bt;
535
536 getbinboottime(&bt);
537 bintime2timeval(&bt, tvp);
538 }
539
540 void
541 getbinboottime(struct bintime *bt)
542 {
543
544 /*
545 * XXX Need lockless read synchronization around timebasebin
546 * (and not just here).
547 */
548 *bt = timebasebin;
549 }
550
551 /*
552 * Initialize a new timecounter and possibly use it.
553 */
554 void
555 tc_init(struct timecounter *tc)
556 {
557 u_int u;
558
559 u = tc->tc_frequency / tc->tc_counter_mask;
560 /* XXX: We need some margin here, 10% is a guess */
561 u *= 11;
562 u /= 10;
563 if (u > hz && tc->tc_quality >= 0) {
564 tc->tc_quality = -2000;
565 aprint_verbose(
566 "timecounter: Timecounter \"%s\" frequency %ju Hz",
567 tc->tc_name, (uintmax_t)tc->tc_frequency);
568 aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
569 } else if (tc->tc_quality >= 0 || bootverbose) {
570 aprint_verbose(
571 "timecounter: Timecounter \"%s\" frequency %ju Hz "
572 "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
573 tc->tc_quality);
574 }
575
576 mutex_spin_enter(&timecounter_lock);
577 tc->tc_next = timecounters;
578 timecounters = tc;
579 timecounter_mods++;
580 /*
581 * Never automatically use a timecounter with negative quality.
582 * Even though we run on the dummy counter, switching here may be
583 * worse since this timecounter may not be monotonous.
584 */
585 if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
586 (tc->tc_quality == timecounter->tc_quality &&
587 tc->tc_frequency > timecounter->tc_frequency))) {
588 (void)tc->tc_get_timecount(tc);
589 (void)tc->tc_get_timecount(tc);
590 timecounter = tc;
591 tc_windup();
592 }
593 mutex_spin_exit(&timecounter_lock);
594 }
595
596 /*
597 * Pick a new timecounter due to the existing counter going bad.
598 */
599 static void
600 tc_pick(void)
601 {
602 struct timecounter *best, *tc;
603
604 KASSERT(mutex_owned(&timecounter_lock));
605
606 for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
607 if (tc->tc_quality > best->tc_quality)
608 best = tc;
609 else if (tc->tc_quality < best->tc_quality)
610 continue;
611 else if (tc->tc_frequency > best->tc_frequency)
612 best = tc;
613 }
614 (void)best->tc_get_timecount(best);
615 (void)best->tc_get_timecount(best);
616 timecounter = best;
617 }
618
619 /*
620 * A timecounter has gone bad, arrange to pick a new one at the next
621 * clock tick.
622 */
623 void
624 tc_gonebad(struct timecounter *tc)
625 {
626
627 tc->tc_quality = -100;
628 membar_producer();
629 atomic_inc_uint(&timecounter_bad);
630 }
631
632 /*
633 * Stop using a timecounter and remove it from the timecounters list.
634 */
635 int
636 tc_detach(struct timecounter *target)
637 {
638 struct timecounter *tc;
639 struct timecounter **tcp = NULL;
640 int removals;
641 lwp_t *l;
642
643 /* First, find the timecounter. */
644 mutex_spin_enter(&timecounter_lock);
645 for (tcp = &timecounters, tc = timecounters;
646 tc != NULL;
647 tcp = &tc->tc_next, tc = tc->tc_next) {
648 if (tc == target)
649 break;
650 }
651 if (tc == NULL) {
652 mutex_spin_exit(&timecounter_lock);
653 return ESRCH;
654 }
655
656 /* And now, remove it. */
657 *tcp = tc->tc_next;
658 if (timecounter == target) {
659 tc_pick();
660 tc_windup();
661 }
662 timecounter_mods++;
663 removals = timecounter_removals++;
664 mutex_spin_exit(&timecounter_lock);
665
666 /*
667 * We now have to determine if any threads in the system are still
668 * making use of this timecounter.
669 *
670 * We issue a broadcast cross call to elide memory ordering issues,
671 * then scan all LWPs in the system looking at each's timecounter
672 * generation number. We need to see a value of zero (not actively
673 * using a timecounter) or a value greater than our removal value.
674 *
675 * We may race with threads that read `timecounter_removals' and
676 * and then get preempted before updating `l_tcgen'. This is not
677 * a problem, since it means that these threads have not yet started
678 * accessing timecounter state. All we do need is one clean
679 * snapshot of the system where every thread appears not to be using
680 * old timecounter state.
681 */
682 for (;;) {
683 xc_barrier(0);
684
685 mutex_enter(proc_lock);
686 LIST_FOREACH(l, &alllwp, l_list) {
687 if (l->l_tcgen == 0 || l->l_tcgen > removals) {
688 /*
689 * Not using timecounter or old timecounter
690 * state at time of our xcall or later.
691 */
692 continue;
693 }
694 break;
695 }
696 mutex_exit(proc_lock);
697
698 /*
699 * If the timecounter is still in use, wait at least 10ms
700 * before retrying.
701 */
702 if (l == NULL) {
703 return 0;
704 }
705 (void)kpause("tcdetach", false, mstohz(10), NULL);
706 }
707 }
708
709 /* Report the frequency of the current timecounter. */
710 u_int64_t
711 tc_getfrequency(void)
712 {
713
714 return (timehands->th_counter->tc_frequency);
715 }
716
717 /*
718 * Step our concept of UTC. This is done by modifying our estimate of
719 * when we booted.
720 */
721 void
722 tc_setclock(const struct timespec *ts)
723 {
724 struct timespec ts2;
725 struct bintime bt, bt2;
726
727 mutex_spin_enter(&timecounter_lock);
728 TC_COUNT(nsetclock);
729 binuptime(&bt2);
730 timespec2bintime(ts, &bt);
731 bintime_sub(&bt, &bt2);
732 bintime_add(&bt2, &timebasebin);
733 timebasebin = bt;
734 tc_windup();
735 mutex_spin_exit(&timecounter_lock);
736
737 if (timestepwarnings) {
738 bintime2timespec(&bt2, &ts2);
739 log(LOG_INFO,
740 "Time stepped from %lld.%09ld to %lld.%09ld\n",
741 (long long)ts2.tv_sec, ts2.tv_nsec,
742 (long long)ts->tv_sec, ts->tv_nsec);
743 }
744 }
745
746 /*
747 * Initialize the next struct timehands in the ring and make
748 * it the active timehands. Along the way we might switch to a different
749 * timecounter and/or do seconds processing in NTP. Slightly magic.
750 */
751 static void
752 tc_windup(void)
753 {
754 struct bintime bt;
755 struct timehands *th, *tho;
756 u_int64_t scale;
757 u_int delta, ncount, ogen;
758 int i, s_update;
759 time_t t;
760
761 KASSERT(mutex_owned(&timecounter_lock));
762
763 s_update = 0;
764
765 /*
766 * Make the next timehands a copy of the current one, but do not
767 * overwrite the generation or next pointer. While we update
768 * the contents, the generation must be zero. Ensure global
769 * visibility of the generation before proceeding.
770 */
771 tho = timehands;
772 th = tho->th_next;
773 ogen = th->th_generation;
774 th->th_generation = 0;
775 membar_producer();
776 bcopy(tho, th, offsetof(struct timehands, th_generation));
777
778 /*
779 * Capture a timecounter delta on the current timecounter and if
780 * changing timecounters, a counter value from the new timecounter.
781 * Update the offset fields accordingly.
782 */
783 delta = tc_delta(th);
784 if (th->th_counter != timecounter)
785 ncount = timecounter->tc_get_timecount(timecounter);
786 else
787 ncount = 0;
788 th->th_offset_count += delta;
789 bintime_addx(&th->th_offset, th->th_scale * delta);
790
791 /*
792 * Hardware latching timecounters may not generate interrupts on
793 * PPS events, so instead we poll them. There is a finite risk that
794 * the hardware might capture a count which is later than the one we
795 * got above, and therefore possibly in the next NTP second which might
796 * have a different rate than the current NTP second. It doesn't
797 * matter in practice.
798 */
799 if (tho->th_counter->tc_poll_pps)
800 tho->th_counter->tc_poll_pps(tho->th_counter);
801
802 /*
803 * Deal with NTP second processing. The for loop normally
804 * iterates at most once, but in extreme situations it might
805 * keep NTP sane if timeouts are not run for several seconds.
806 * At boot, the time step can be large when the TOD hardware
807 * has been read, so on really large steps, we call
808 * ntp_update_second only twice. We need to call it twice in
809 * case we missed a leap second.
810 * If NTP is not compiled in ntp_update_second still calculates
811 * the adjustment resulting from adjtime() calls.
812 */
813 bt = th->th_offset;
814 bintime_add(&bt, &timebasebin);
815 i = bt.sec - tho->th_microtime.tv_sec;
816 if (i > LARGE_STEP)
817 i = 2;
818 for (; i > 0; i--) {
819 t = bt.sec;
820 ntp_update_second(&th->th_adjustment, &bt.sec);
821 s_update = 1;
822 if (bt.sec != t)
823 timebasebin.sec += bt.sec - t;
824 }
825
826 /* Update the UTC timestamps used by the get*() functions. */
827 /* XXX shouldn't do this here. Should force non-`get' versions. */
828 bintime2timeval(&bt, &th->th_microtime);
829 bintime2timespec(&bt, &th->th_nanotime);
830 /* Now is a good time to change timecounters. */
831 if (th->th_counter != timecounter) {
832 th->th_counter = timecounter;
833 th->th_offset_count = ncount;
834 s_update = 1;
835 }
836
837 /*-
838 * Recalculate the scaling factor. We want the number of 1/2^64
839 * fractions of a second per period of the hardware counter, taking
840 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
841 * processing provides us with.
842 *
843 * The th_adjustment is nanoseconds per second with 32 bit binary
844 * fraction and we want 64 bit binary fraction of second:
845 *
846 * x = a * 2^32 / 10^9 = a * 4.294967296
847 *
848 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
849 * we can only multiply by about 850 without overflowing, but that
850 * leaves suitably precise fractions for multiply before divide.
851 *
852 * Divide before multiply with a fraction of 2199/512 results in a
853 * systematic undercompensation of 10PPM of th_adjustment. On a
854 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
855 *
856 * We happily sacrifice the lowest of the 64 bits of our result
857 * to the goddess of code clarity.
858 *
859 */
860 if (s_update) {
861 scale = (u_int64_t)1 << 63;
862 scale += (th->th_adjustment / 1024) * 2199;
863 scale /= th->th_counter->tc_frequency;
864 th->th_scale = scale * 2;
865 }
866 /*
867 * Now that the struct timehands is again consistent, set the new
868 * generation number, making sure to not make it zero. Ensure
869 * changes are globally visible before changing.
870 */
871 if (++ogen == 0)
872 ogen = 1;
873 membar_producer();
874 th->th_generation = ogen;
875
876 /*
877 * Go live with the new struct timehands. Ensure changes are
878 * globally visible before changing.
879 */
880 time_second = th->th_microtime.tv_sec;
881 time_uptime = th->th_offset.sec;
882 membar_producer();
883 timehands = th;
884
885 /*
886 * Force users of the old timehand to move on. This is
887 * necessary for MP systems; we need to ensure that the
888 * consumers will move away from the old timehand before
889 * we begin updating it again when we eventually wrap
890 * around.
891 */
892 if (++tho->th_generation == 0)
893 tho->th_generation = 1;
894 }
895
896 /*
897 * RFC 2783 PPS-API implementation.
898 */
899
900 int
901 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
902 {
903 pps_params_t *app;
904 pps_info_t *pipi;
905 #ifdef PPS_SYNC
906 int *epi;
907 #endif
908
909 KASSERT(mutex_owned(&timecounter_lock));
910
911 KASSERT(pps != NULL);
912
913 switch (cmd) {
914 case PPS_IOC_CREATE:
915 return (0);
916 case PPS_IOC_DESTROY:
917 return (0);
918 case PPS_IOC_SETPARAMS:
919 app = (pps_params_t *)data;
920 if (app->mode & ~pps->ppscap)
921 return (EINVAL);
922 pps->ppsparam = *app;
923 return (0);
924 case PPS_IOC_GETPARAMS:
925 app = (pps_params_t *)data;
926 *app = pps->ppsparam;
927 app->api_version = PPS_API_VERS_1;
928 return (0);
929 case PPS_IOC_GETCAP:
930 *(int*)data = pps->ppscap;
931 return (0);
932 case PPS_IOC_FETCH:
933 pipi = (pps_info_t *)data;
934 pps->ppsinfo.current_mode = pps->ppsparam.mode;
935 *pipi = pps->ppsinfo;
936 return (0);
937 case PPS_IOC_KCBIND:
938 #ifdef PPS_SYNC
939 epi = (int *)data;
940 /* XXX Only root should be able to do this */
941 if (*epi & ~pps->ppscap)
942 return (EINVAL);
943 pps->kcmode = *epi;
944 return (0);
945 #else
946 return (EOPNOTSUPP);
947 #endif
948 default:
949 return (EPASSTHROUGH);
950 }
951 }
952
953 void
954 pps_init(struct pps_state *pps)
955 {
956
957 KASSERT(mutex_owned(&timecounter_lock));
958
959 pps->ppscap |= PPS_TSFMT_TSPEC;
960 if (pps->ppscap & PPS_CAPTUREASSERT)
961 pps->ppscap |= PPS_OFFSETASSERT;
962 if (pps->ppscap & PPS_CAPTURECLEAR)
963 pps->ppscap |= PPS_OFFSETCLEAR;
964 }
965
966 /*
967 * capture a timetamp in the pps structure
968 */
969 void
970 pps_capture(struct pps_state *pps)
971 {
972 struct timehands *th;
973
974 KASSERT(mutex_owned(&timecounter_lock));
975 KASSERT(pps != NULL);
976
977 th = timehands;
978 pps->capgen = th->th_generation;
979 pps->capth = th;
980 pps->capcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
981 if (pps->capgen != th->th_generation)
982 pps->capgen = 0;
983 }
984
985 #ifdef PPS_DEBUG
986 int ppsdebug = 0;
987 #endif
988
989 /*
990 * process a pps_capture()ed event
991 */
992 void
993 pps_event(struct pps_state *pps, int event)
994 {
995 pps_ref_event(pps, event, NULL, PPS_REFEVNT_PPS|PPS_REFEVNT_CAPTURE);
996 }
997
998 /*
999 * extended pps api / kernel pll/fll entry point
1000 *
1001 * feed reference time stamps to PPS engine
1002 *
1003 * will simulate a PPS event and feed
1004 * the NTP PLL/FLL if requested.
1005 *
1006 * the ref time stamps should be roughly once
1007 * a second but do not need to be exactly in phase
1008 * with the UTC second but should be close to it.
1009 * this relaxation of requirements allows callout
1010 * driven timestamping mechanisms to feed to pps
1011 * capture/kernel pll logic.
1012 *
1013 * calling pattern is:
1014 * pps_capture() (for PPS_REFEVNT_{CAPTURE|CAPCUR})
1015 * read timestamp from reference source
1016 * pps_ref_event()
1017 *
1018 * supported refmodes:
1019 * PPS_REFEVNT_CAPTURE
1020 * use system timestamp of pps_capture()
1021 * PPS_REFEVNT_CURRENT
1022 * use system timestamp of this call
1023 * PPS_REFEVNT_CAPCUR
1024 * use average of read capture and current system time stamp
1025 * PPS_REFEVNT_PPS
1026 * assume timestamp on second mark - ref_ts is ignored
1027 *
1028 */
1029
1030 void
1031 pps_ref_event(struct pps_state *pps,
1032 int event,
1033 struct bintime *ref_ts,
1034 int refmode
1035 )
1036 {
1037 struct bintime bt; /* current time */
1038 struct bintime btd; /* time difference */
1039 struct bintime bt_ref; /* reference time */
1040 struct timespec ts, *tsp, *osp;
1041 struct timehands *th;
1042 u_int64_t tcount, acount, dcount, *pcount;
1043 int foff, gen;
1044 #ifdef PPS_SYNC
1045 int fhard;
1046 #endif
1047 pps_seq_t *pseq;
1048
1049 KASSERT(mutex_owned(&timecounter_lock));
1050
1051 KASSERT(pps != NULL);
1052
1053 /* pick up current time stamp if needed */
1054 if (refmode & (PPS_REFEVNT_CURRENT|PPS_REFEVNT_CAPCUR)) {
1055 /* pick up current time stamp */
1056 th = timehands;
1057 gen = th->th_generation;
1058 tcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
1059 if (gen != th->th_generation)
1060 gen = 0;
1061
1062 /* If the timecounter was wound up underneath us, bail out. */
1063 if (pps->capgen == 0 ||
1064 pps->capgen != pps->capth->th_generation ||
1065 gen == 0 ||
1066 gen != pps->capgen) {
1067 #ifdef PPS_DEBUG
1068 if (ppsdebug & 0x1) {
1069 log(LOG_DEBUG,
1070 "pps_ref_event(pps=%p, event=%d, ...): DROP (wind-up)\n",
1071 pps, event);
1072 }
1073 #endif
1074 return;
1075 }
1076 } else {
1077 tcount = 0; /* keep GCC happy */
1078 }
1079
1080 #ifdef PPS_DEBUG
1081 if (ppsdebug & 0x1) {
1082 struct timespec tmsp;
1083
1084 if (ref_ts == NULL) {
1085 tmsp.tv_sec = 0;
1086 tmsp.tv_nsec = 0;
1087 } else {
1088 bintime2timespec(ref_ts, &tmsp);
1089 }
1090
1091 log(LOG_DEBUG,
1092 "pps_ref_event(pps=%p, event=%d, ref_ts=%"PRIi64
1093 ".%09"PRIi32", refmode=0x%1x)\n",
1094 pps, event, tmsp.tv_sec, (int32_t)tmsp.tv_nsec, refmode);
1095 }
1096 #endif
1097
1098 /* setup correct event references */
1099 if (event == PPS_CAPTUREASSERT) {
1100 tsp = &pps->ppsinfo.assert_timestamp;
1101 osp = &pps->ppsparam.assert_offset;
1102 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1103 #ifdef PPS_SYNC
1104 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1105 #endif
1106 pcount = &pps->ppscount[0];
1107 pseq = &pps->ppsinfo.assert_sequence;
1108 } else {
1109 tsp = &pps->ppsinfo.clear_timestamp;
1110 osp = &pps->ppsparam.clear_offset;
1111 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1112 #ifdef PPS_SYNC
1113 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1114 #endif
1115 pcount = &pps->ppscount[1];
1116 pseq = &pps->ppsinfo.clear_sequence;
1117 }
1118
1119 /* determine system time stamp according to refmode */
1120 dcount = 0; /* keep GCC happy */
1121 switch (refmode & PPS_REFEVNT_RMASK) {
1122 case PPS_REFEVNT_CAPTURE:
1123 acount = pps->capcount; /* use capture timestamp */
1124 break;
1125
1126 case PPS_REFEVNT_CURRENT:
1127 acount = tcount; /* use current timestamp */
1128 break;
1129
1130 case PPS_REFEVNT_CAPCUR:
1131 /*
1132 * calculate counter value between pps_capture() and
1133 * pps_ref_event()
1134 */
1135 dcount = tcount - pps->capcount;
1136 acount = (dcount / 2) + pps->capcount;
1137 break;
1138
1139 default: /* ignore call error silently */
1140 return;
1141 }
1142
1143 /*
1144 * If the timecounter changed, we cannot compare the count values, so
1145 * we have to drop the rest of the PPS-stuff until the next event.
1146 */
1147 if (pps->ppstc != pps->capth->th_counter) {
1148 pps->ppstc = pps->capth->th_counter;
1149 pps->capcount = acount;
1150 *pcount = acount;
1151 pps->ppscount[2] = acount;
1152 #ifdef PPS_DEBUG
1153 if (ppsdebug & 0x1) {
1154 log(LOG_DEBUG,
1155 "pps_ref_event(pps=%p, event=%d, ...): DROP (time-counter change)\n",
1156 pps, event);
1157 }
1158 #endif
1159 return;
1160 }
1161
1162 pps->capcount = acount;
1163
1164 /* Convert the count to a bintime. */
1165 bt = pps->capth->th_offset;
1166 bintime_addx(&bt, pps->capth->th_scale * (acount - pps->capth->th_offset_count));
1167 bintime_add(&bt, &timebasebin);
1168
1169 if ((refmode & PPS_REFEVNT_PPS) == 0) {
1170 /* determine difference to reference time stamp */
1171 bt_ref = *ref_ts;
1172
1173 btd = bt;
1174 bintime_sub(&btd, &bt_ref);
1175
1176 /*
1177 * simulate a PPS timestamp by dropping the fraction
1178 * and applying the offset
1179 */
1180 if (bt.frac >= (uint64_t)1<<63) /* skip to nearest second */
1181 bt.sec++;
1182 bt.frac = 0;
1183 bintime_add(&bt, &btd);
1184 } else {
1185 /*
1186 * create ref_ts from current time -
1187 * we are supposed to be called on
1188 * the second mark
1189 */
1190 bt_ref = bt;
1191 if (bt_ref.frac >= (uint64_t)1<<63) /* skip to nearest second */
1192 bt_ref.sec++;
1193 bt_ref.frac = 0;
1194 }
1195
1196 /* convert bintime to timestamp */
1197 bintime2timespec(&bt, &ts);
1198
1199 /* If the timecounter was wound up underneath us, bail out. */
1200 if (pps->capgen != pps->capth->th_generation)
1201 return;
1202
1203 /* store time stamp */
1204 *pcount = pps->capcount;
1205 (*pseq)++;
1206 *tsp = ts;
1207
1208 /* add offset correction */
1209 if (foff) {
1210 timespecadd(tsp, osp, tsp);
1211 if (tsp->tv_nsec < 0) {
1212 tsp->tv_nsec += 1000000000;
1213 tsp->tv_sec -= 1;
1214 }
1215 }
1216
1217 #ifdef PPS_DEBUG
1218 if (ppsdebug & 0x2) {
1219 struct timespec ts2;
1220 struct timespec ts3;
1221
1222 bintime2timespec(&bt_ref, &ts2);
1223
1224 bt.sec = 0;
1225 bt.frac = 0;
1226
1227 if (refmode & PPS_REFEVNT_CAPCUR) {
1228 bintime_addx(&bt, pps->capth->th_scale * dcount);
1229 }
1230 bintime2timespec(&bt, &ts3);
1231
1232 log(LOG_DEBUG, "ref_ts=%"PRIi64".%09"PRIi32
1233 ", ts=%"PRIi64".%09"PRIi32", read latency=%"PRIi64" ns\n",
1234 ts2.tv_sec, (int32_t)ts2.tv_nsec,
1235 tsp->tv_sec, (int32_t)tsp->tv_nsec,
1236 timespec2ns(&ts3));
1237 }
1238 #endif
1239
1240 #ifdef PPS_SYNC
1241 if (fhard) {
1242 uint64_t scale;
1243 uint64_t div;
1244
1245 /*
1246 * Feed the NTP PLL/FLL.
1247 * The FLL wants to know how many (hardware) nanoseconds
1248 * elapsed since the previous event (mod 1 second) thus
1249 * we are actually looking at the frequency difference scaled
1250 * in nsec.
1251 * As the counter time stamps are not truly at 1Hz
1252 * we need to scale the count by the elapsed
1253 * reference time.
1254 * valid sampling interval: [0.5..2[ sec
1255 */
1256
1257 /* calculate elapsed raw count */
1258 tcount = pps->capcount - pps->ppscount[2];
1259 pps->ppscount[2] = pps->capcount;
1260 tcount &= pps->capth->th_counter->tc_counter_mask;
1261
1262 /* calculate elapsed ref time */
1263 btd = bt_ref;
1264 bintime_sub(&btd, &pps->ref_time);
1265 pps->ref_time = bt_ref;
1266
1267 /* check that we stay below 2 sec */
1268 if (btd.sec < 0 || btd.sec > 1)
1269 return;
1270
1271 /* we want at least 0.5 sec between samples */
1272 if (btd.sec == 0 && btd.frac < (uint64_t)1<<63)
1273 return;
1274
1275 /*
1276 * calculate cycles per period by multiplying
1277 * the frequency with the elapsed period
1278 * we pick a fraction of 30 bits
1279 * ~1ns resolution for elapsed time
1280 */
1281 div = (uint64_t)btd.sec << 30;
1282 div |= (btd.frac >> 34) & (((uint64_t)1 << 30) - 1);
1283 div *= pps->capth->th_counter->tc_frequency;
1284 div >>= 30;
1285
1286 if (div == 0) /* safeguard */
1287 return;
1288
1289 scale = (uint64_t)1 << 63;
1290 scale /= div;
1291 scale *= 2;
1292
1293 bt.sec = 0;
1294 bt.frac = 0;
1295 bintime_addx(&bt, scale * tcount);
1296 bintime2timespec(&bt, &ts);
1297
1298 #ifdef PPS_DEBUG
1299 if (ppsdebug & 0x4) {
1300 struct timespec ts2;
1301 int64_t df;
1302
1303 bintime2timespec(&bt_ref, &ts2);
1304 df = timespec2ns(&ts);
1305 if (df > 500000000)
1306 df -= 1000000000;
1307 log(LOG_DEBUG, "hardpps: ref_ts=%"PRIi64
1308 ".%09"PRIi32", ts=%"PRIi64".%09"PRIi32
1309 ", freqdiff=%"PRIi64" ns/s\n",
1310 ts2.tv_sec, (int32_t)ts2.tv_nsec,
1311 tsp->tv_sec, (int32_t)tsp->tv_nsec,
1312 df);
1313 }
1314 #endif
1315
1316 hardpps(tsp, timespec2ns(&ts));
1317 }
1318 #endif
1319 }
1320
1321 /*
1322 * Timecounters need to be updated every so often to prevent the hardware
1323 * counter from overflowing. Updating also recalculates the cached values
1324 * used by the get*() family of functions, so their precision depends on
1325 * the update frequency.
1326 */
1327
1328 static int tc_tick;
1329
1330 void
1331 tc_ticktock(void)
1332 {
1333 static int count;
1334
1335 if (++count < tc_tick)
1336 return;
1337 count = 0;
1338 mutex_spin_enter(&timecounter_lock);
1339 if (timecounter_bad != 0) {
1340 /* An existing timecounter has gone bad, pick a new one. */
1341 (void)atomic_swap_uint(&timecounter_bad, 0);
1342 if (timecounter->tc_quality < 0) {
1343 tc_pick();
1344 }
1345 }
1346 tc_windup();
1347 mutex_spin_exit(&timecounter_lock);
1348 }
1349
1350 void
1351 inittimecounter(void)
1352 {
1353 u_int p;
1354
1355 mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
1356
1357 /*
1358 * Set the initial timeout to
1359 * max(1, <approx. number of hardclock ticks in a millisecond>).
1360 * People should probably not use the sysctl to set the timeout
1361 * to smaller than its initial value, since that value is the
1362 * smallest reasonable one. If they want better timestamps they
1363 * should use the non-"get"* functions.
1364 */
1365 if (hz > 1000)
1366 tc_tick = (hz + 500) / 1000;
1367 else
1368 tc_tick = 1;
1369 p = (tc_tick * 1000000) / hz;
1370 aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
1371 p / 1000, p % 1000);
1372
1373 /* warm up new timecounter (again) and get rolling. */
1374 (void)timecounter->tc_get_timecount(timecounter);
1375 (void)timecounter->tc_get_timecount(timecounter);
1376 }
1377