kern_tc.c revision 1.53 1 /* $NetBSD: kern_tc.c,v 1.53 2019/12/27 09:25:58 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * ----------------------------------------------------------------------------
34 * "THE BEER-WARE LICENSE" (Revision 42):
35 * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
36 * can do whatever you want with this stuff. If we meet some day, and you think
37 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
38 * ---------------------------------------------------------------------------
39 */
40
41 #include <sys/cdefs.h>
42 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
43 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.53 2019/12/27 09:25:58 msaitoh Exp $");
44
45 #ifdef _KERNEL_OPT
46 #include "opt_ntp.h"
47 #endif
48
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51 #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/systm.h>
55 #include <sys/timepps.h>
56 #include <sys/timetc.h>
57 #include <sys/timex.h>
58 #include <sys/evcnt.h>
59 #include <sys/kauth.h>
60 #include <sys/mutex.h>
61 #include <sys/atomic.h>
62 #include <sys/xcall.h>
63
64 /*
65 * A large step happens on boot. This constant detects such steps.
66 * It is relatively small so that ntp_update_second gets called enough
67 * in the typical 'missed a couple of seconds' case, but doesn't loop
68 * forever when the time step is large.
69 */
70 #define LARGE_STEP 200
71
72 /*
73 * Implement a dummy timecounter which we can use until we get a real one
74 * in the air. This allows the console and other early stuff to use
75 * time services.
76 */
77
78 static u_int
79 dummy_get_timecount(struct timecounter *tc)
80 {
81 static u_int now;
82
83 return (++now);
84 }
85
86 static struct timecounter dummy_timecounter = {
87 .tc_get_timecount = dummy_get_timecount,
88 .tc_counter_mask = ~0u,
89 .tc_frequency = 1000000,
90 .tc_name = "dummy",
91 .tc_quality = -1000000,
92 .tc_priv = NULL,
93 };
94
95 struct timehands {
96 /* These fields must be initialized by the driver. */
97 struct timecounter *th_counter; /* active timecounter */
98 int64_t th_adjustment; /* frequency adjustment */
99 /* (NTP/adjtime) */
100 u_int64_t th_scale; /* scale factor (counter */
101 /* tick->time) */
102 u_int64_t th_offset_count; /* offset at last time */
103 /* update (tc_windup()) */
104 struct bintime th_offset; /* bin (up)time at windup */
105 struct timeval th_microtime; /* cached microtime */
106 struct timespec th_nanotime; /* cached nanotime */
107 /* Fields not to be copied in tc_windup start with th_generation. */
108 volatile u_int th_generation; /* current genration */
109 struct timehands *th_next; /* next timehand */
110 };
111
112 static struct timehands th0;
113 static struct timehands th9 = { .th_next = &th0, };
114 static struct timehands th8 = { .th_next = &th9, };
115 static struct timehands th7 = { .th_next = &th8, };
116 static struct timehands th6 = { .th_next = &th7, };
117 static struct timehands th5 = { .th_next = &th6, };
118 static struct timehands th4 = { .th_next = &th5, };
119 static struct timehands th3 = { .th_next = &th4, };
120 static struct timehands th2 = { .th_next = &th3, };
121 static struct timehands th1 = { .th_next = &th2, };
122 static struct timehands th0 = {
123 .th_counter = &dummy_timecounter,
124 .th_scale = (uint64_t)-1 / 1000000,
125 .th_offset = { .sec = 1, .frac = 0 },
126 .th_generation = 1,
127 .th_next = &th1,
128 };
129
130 static struct timehands *volatile timehands = &th0;
131 struct timecounter *timecounter = &dummy_timecounter;
132 static struct timecounter *timecounters = &dummy_timecounter;
133
134 volatile time_t time_second __cacheline_aligned = 1;
135 volatile time_t time_uptime __cacheline_aligned = 1;
136
137 static struct bintime timebasebin;
138
139 static int timestepwarnings;
140
141 kmutex_t timecounter_lock;
142 static u_int timecounter_mods;
143 static volatile int timecounter_removals = 1;
144 static u_int timecounter_bad;
145
146 #ifdef __FreeBSD__
147 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
148 ×tepwarnings, 0, "");
149 #endif /* __FreeBSD__ */
150
151 /*
152 * sysctl helper routine for kern.timercounter.hardware
153 */
154 static int
155 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
156 {
157 struct sysctlnode node;
158 int error;
159 char newname[MAX_TCNAMELEN];
160 struct timecounter *newtc, *tc;
161
162 tc = timecounter;
163
164 strlcpy(newname, tc->tc_name, sizeof(newname));
165
166 node = *rnode;
167 node.sysctl_data = newname;
168 node.sysctl_size = sizeof(newname);
169
170 error = sysctl_lookup(SYSCTLFN_CALL(&node));
171
172 if (error ||
173 newp == NULL ||
174 strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
175 return error;
176
177 if (l != NULL && (error = kauth_authorize_system(l->l_cred,
178 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
179 NULL, NULL)) != 0)
180 return (error);
181
182 if (!cold)
183 mutex_spin_enter(&timecounter_lock);
184 error = EINVAL;
185 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
186 if (strcmp(newname, newtc->tc_name) != 0)
187 continue;
188 /* Warm up new timecounter. */
189 (void)newtc->tc_get_timecount(newtc);
190 (void)newtc->tc_get_timecount(newtc);
191 timecounter = newtc;
192 error = 0;
193 break;
194 }
195 if (!cold)
196 mutex_spin_exit(&timecounter_lock);
197 return error;
198 }
199
200 static int
201 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
202 {
203 char buf[MAX_TCNAMELEN+48];
204 char *where;
205 const char *spc;
206 struct timecounter *tc;
207 size_t needed, left, slen;
208 int error, mods;
209
210 if (newp != NULL)
211 return (EPERM);
212 if (namelen != 0)
213 return (EINVAL);
214
215 mutex_spin_enter(&timecounter_lock);
216 retry:
217 spc = "";
218 error = 0;
219 needed = 0;
220 left = *oldlenp;
221 where = oldp;
222 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
223 if (where == NULL) {
224 needed += sizeof(buf); /* be conservative */
225 } else {
226 slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
227 " Hz)", spc, tc->tc_name, tc->tc_quality,
228 tc->tc_frequency);
229 if (left < slen + 1)
230 break;
231 mods = timecounter_mods;
232 mutex_spin_exit(&timecounter_lock);
233 error = copyout(buf, where, slen + 1);
234 mutex_spin_enter(&timecounter_lock);
235 if (mods != timecounter_mods) {
236 goto retry;
237 }
238 spc = " ";
239 where += slen;
240 needed += slen;
241 left -= slen;
242 }
243 }
244 mutex_spin_exit(&timecounter_lock);
245
246 *oldlenp = needed;
247 return (error);
248 }
249
250 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
251 {
252 const struct sysctlnode *node;
253
254 sysctl_createv(clog, 0, NULL, &node,
255 CTLFLAG_PERMANENT,
256 CTLTYPE_NODE, "timecounter",
257 SYSCTL_DESCR("time counter information"),
258 NULL, 0, NULL, 0,
259 CTL_KERN, CTL_CREATE, CTL_EOL);
260
261 if (node != NULL) {
262 sysctl_createv(clog, 0, NULL, NULL,
263 CTLFLAG_PERMANENT,
264 CTLTYPE_STRING, "choice",
265 SYSCTL_DESCR("available counters"),
266 sysctl_kern_timecounter_choice, 0, NULL, 0,
267 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
268
269 sysctl_createv(clog, 0, NULL, NULL,
270 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
271 CTLTYPE_STRING, "hardware",
272 SYSCTL_DESCR("currently active time counter"),
273 sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
274 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
275
276 sysctl_createv(clog, 0, NULL, NULL,
277 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
278 CTLTYPE_INT, "timestepwarnings",
279 SYSCTL_DESCR("log time steps"),
280 NULL, 0, ×tepwarnings, 0,
281 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
282 }
283 }
284
285 #ifdef TC_COUNTERS
286 #define TC_STATS(name) \
287 static struct evcnt n##name = \
288 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
289 EVCNT_ATTACH_STATIC(n##name)
290 TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
291 TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
292 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
293 TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
294 TC_STATS(setclock);
295 #define TC_COUNT(var) var.ev_count++
296 #undef TC_STATS
297 #else
298 #define TC_COUNT(var) /* nothing */
299 #endif /* TC_COUNTERS */
300
301 static void tc_windup(void);
302
303 /*
304 * Return the difference between the timehands' counter value now and what
305 * was when we copied it to the timehands' offset_count.
306 */
307 static inline u_int
308 tc_delta(struct timehands *th)
309 {
310 struct timecounter *tc;
311
312 tc = th->th_counter;
313 return ((tc->tc_get_timecount(tc) -
314 th->th_offset_count) & tc->tc_counter_mask);
315 }
316
317 /*
318 * Functions for reading the time. We have to loop until we are sure that
319 * the timehands that we operated on was not updated under our feet. See
320 * the comment in <sys/timevar.h> for a description of these 12 functions.
321 */
322
323 void
324 binuptime(struct bintime *bt)
325 {
326 struct timehands *th;
327 lwp_t *l;
328 u_int lgen, gen;
329
330 TC_COUNT(nbinuptime);
331
332 /*
333 * Provide exclusion against tc_detach().
334 *
335 * We record the number of timecounter removals before accessing
336 * timecounter state. Note that the LWP can be using multiple
337 * "generations" at once, due to interrupts (interrupted while in
338 * this function). Hardware interrupts will borrow the interrupted
339 * LWP's l_tcgen value for this purpose, and can themselves be
340 * interrupted by higher priority interrupts. In this case we need
341 * to ensure that the oldest generation in use is recorded.
342 *
343 * splsched() is too expensive to use, so we take care to structure
344 * this code in such a way that it is not required. Likewise, we
345 * do not disable preemption.
346 *
347 * Memory barriers are also too expensive to use for such a
348 * performance critical function. The good news is that we do not
349 * need memory barriers for this type of exclusion, as the thread
350 * updating timecounter_removals will issue a broadcast cross call
351 * before inspecting our l_tcgen value (this elides memory ordering
352 * issues).
353 */
354 l = curlwp;
355 lgen = l->l_tcgen;
356 if (__predict_true(lgen == 0)) {
357 l->l_tcgen = timecounter_removals;
358 }
359 __insn_barrier();
360
361 do {
362 th = timehands;
363 gen = th->th_generation;
364 *bt = th->th_offset;
365 bintime_addx(bt, th->th_scale * tc_delta(th));
366 } while (gen == 0 || gen != th->th_generation);
367
368 __insn_barrier();
369 l->l_tcgen = lgen;
370 }
371
372 void
373 nanouptime(struct timespec *tsp)
374 {
375 struct bintime bt;
376
377 TC_COUNT(nnanouptime);
378 binuptime(&bt);
379 bintime2timespec(&bt, tsp);
380 }
381
382 void
383 microuptime(struct timeval *tvp)
384 {
385 struct bintime bt;
386
387 TC_COUNT(nmicrouptime);
388 binuptime(&bt);
389 bintime2timeval(&bt, tvp);
390 }
391
392 void
393 bintime(struct bintime *bt)
394 {
395
396 TC_COUNT(nbintime);
397 binuptime(bt);
398 bintime_add(bt, &timebasebin);
399 }
400
401 void
402 nanotime(struct timespec *tsp)
403 {
404 struct bintime bt;
405
406 TC_COUNT(nnanotime);
407 bintime(&bt);
408 bintime2timespec(&bt, tsp);
409 }
410
411 void
412 microtime(struct timeval *tvp)
413 {
414 struct bintime bt;
415
416 TC_COUNT(nmicrotime);
417 bintime(&bt);
418 bintime2timeval(&bt, tvp);
419 }
420
421 void
422 getbinuptime(struct bintime *bt)
423 {
424 struct timehands *th;
425 u_int gen;
426
427 TC_COUNT(ngetbinuptime);
428 do {
429 th = timehands;
430 gen = th->th_generation;
431 *bt = th->th_offset;
432 } while (gen == 0 || gen != th->th_generation);
433 }
434
435 void
436 getnanouptime(struct timespec *tsp)
437 {
438 struct timehands *th;
439 u_int gen;
440
441 TC_COUNT(ngetnanouptime);
442 do {
443 th = timehands;
444 gen = th->th_generation;
445 bintime2timespec(&th->th_offset, tsp);
446 } while (gen == 0 || gen != th->th_generation);
447 }
448
449 void
450 getmicrouptime(struct timeval *tvp)
451 {
452 struct timehands *th;
453 u_int gen;
454
455 TC_COUNT(ngetmicrouptime);
456 do {
457 th = timehands;
458 gen = th->th_generation;
459 bintime2timeval(&th->th_offset, tvp);
460 } while (gen == 0 || gen != th->th_generation);
461 }
462
463 void
464 getbintime(struct bintime *bt)
465 {
466 struct timehands *th;
467 u_int gen;
468
469 TC_COUNT(ngetbintime);
470 do {
471 th = timehands;
472 gen = th->th_generation;
473 *bt = th->th_offset;
474 } while (gen == 0 || gen != th->th_generation);
475 bintime_add(bt, &timebasebin);
476 }
477
478 static inline void
479 dogetnanotime(struct timespec *tsp)
480 {
481 struct timehands *th;
482 u_int gen;
483
484 TC_COUNT(ngetnanotime);
485 do {
486 th = timehands;
487 gen = th->th_generation;
488 *tsp = th->th_nanotime;
489 } while (gen == 0 || gen != th->th_generation);
490 }
491
492 void
493 getnanotime(struct timespec *tsp)
494 {
495
496 dogetnanotime(tsp);
497 }
498
499 void dtrace_getnanotime(struct timespec *tsp);
500
501 void
502 dtrace_getnanotime(struct timespec *tsp)
503 {
504
505 dogetnanotime(tsp);
506 }
507
508 void
509 getmicrotime(struct timeval *tvp)
510 {
511 struct timehands *th;
512 u_int gen;
513
514 TC_COUNT(ngetmicrotime);
515 do {
516 th = timehands;
517 gen = th->th_generation;
518 *tvp = th->th_microtime;
519 } while (gen == 0 || gen != th->th_generation);
520 }
521
522 /*
523 * Initialize a new timecounter and possibly use it.
524 */
525 void
526 tc_init(struct timecounter *tc)
527 {
528 u_int u;
529
530 u = tc->tc_frequency / tc->tc_counter_mask;
531 /* XXX: We need some margin here, 10% is a guess */
532 u *= 11;
533 u /= 10;
534 if (u > hz && tc->tc_quality >= 0) {
535 tc->tc_quality = -2000;
536 aprint_verbose(
537 "timecounter: Timecounter \"%s\" frequency %ju Hz",
538 tc->tc_name, (uintmax_t)tc->tc_frequency);
539 aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
540 } else if (tc->tc_quality >= 0 || bootverbose) {
541 aprint_verbose(
542 "timecounter: Timecounter \"%s\" frequency %ju Hz "
543 "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
544 tc->tc_quality);
545 }
546
547 mutex_spin_enter(&timecounter_lock);
548 tc->tc_next = timecounters;
549 timecounters = tc;
550 timecounter_mods++;
551 /*
552 * Never automatically use a timecounter with negative quality.
553 * Even though we run on the dummy counter, switching here may be
554 * worse since this timecounter may not be monotonous.
555 */
556 if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
557 (tc->tc_quality == timecounter->tc_quality &&
558 tc->tc_frequency > timecounter->tc_frequency))) {
559 (void)tc->tc_get_timecount(tc);
560 (void)tc->tc_get_timecount(tc);
561 timecounter = tc;
562 tc_windup();
563 }
564 mutex_spin_exit(&timecounter_lock);
565 }
566
567 /*
568 * Pick a new timecounter due to the existing counter going bad.
569 */
570 static void
571 tc_pick(void)
572 {
573 struct timecounter *best, *tc;
574
575 KASSERT(mutex_owned(&timecounter_lock));
576
577 for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
578 if (tc->tc_quality > best->tc_quality)
579 best = tc;
580 else if (tc->tc_quality < best->tc_quality)
581 continue;
582 else if (tc->tc_frequency > best->tc_frequency)
583 best = tc;
584 }
585 (void)best->tc_get_timecount(best);
586 (void)best->tc_get_timecount(best);
587 timecounter = best;
588 }
589
590 /*
591 * A timecounter has gone bad, arrange to pick a new one at the next
592 * clock tick.
593 */
594 void
595 tc_gonebad(struct timecounter *tc)
596 {
597
598 tc->tc_quality = -100;
599 membar_producer();
600 atomic_inc_uint(&timecounter_bad);
601 }
602
603 /*
604 * Stop using a timecounter and remove it from the timecounters list.
605 */
606 int
607 tc_detach(struct timecounter *target)
608 {
609 struct timecounter *tc;
610 struct timecounter **tcp = NULL;
611 int removals;
612 lwp_t *l;
613
614 /* First, find the timecounter. */
615 mutex_spin_enter(&timecounter_lock);
616 for (tcp = &timecounters, tc = timecounters;
617 tc != NULL;
618 tcp = &tc->tc_next, tc = tc->tc_next) {
619 if (tc == target)
620 break;
621 }
622 if (tc == NULL) {
623 mutex_spin_exit(&timecounter_lock);
624 return ESRCH;
625 }
626
627 /* And now, remove it. */
628 *tcp = tc->tc_next;
629 if (timecounter == target) {
630 tc_pick();
631 tc_windup();
632 }
633 timecounter_mods++;
634 removals = timecounter_removals++;
635 mutex_spin_exit(&timecounter_lock);
636
637 /*
638 * We now have to determine if any threads in the system are still
639 * making use of this timecounter.
640 *
641 * We issue a broadcast cross call to elide memory ordering issues,
642 * then scan all LWPs in the system looking at each's timecounter
643 * generation number. We need to see a value of zero (not actively
644 * using a timecounter) or a value greater than our removal value.
645 *
646 * We may race with threads that read `timecounter_removals' and
647 * and then get preempted before updating `l_tcgen'. This is not
648 * a problem, since it means that these threads have not yet started
649 * accessing timecounter state. All we do need is one clean
650 * snapshot of the system where every thread appears not to be using
651 * old timecounter state.
652 */
653 for (;;) {
654 xc_barrier(0);
655
656 mutex_enter(proc_lock);
657 LIST_FOREACH(l, &alllwp, l_list) {
658 if (l->l_tcgen == 0 || l->l_tcgen > removals) {
659 /*
660 * Not using timecounter or old timecounter
661 * state at time of our xcall or later.
662 */
663 continue;
664 }
665 break;
666 }
667 mutex_exit(proc_lock);
668
669 /*
670 * If the timecounter is still in use, wait at least 10ms
671 * before retrying.
672 */
673 if (l == NULL) {
674 return 0;
675 }
676 (void)kpause("tcdetach", false, mstohz(10), NULL);
677 }
678 }
679
680 /* Report the frequency of the current timecounter. */
681 u_int64_t
682 tc_getfrequency(void)
683 {
684
685 return (timehands->th_counter->tc_frequency);
686 }
687
688 /*
689 * Step our concept of UTC. This is done by modifying our estimate of
690 * when we booted.
691 */
692 void
693 tc_setclock(const struct timespec *ts)
694 {
695 struct timespec ts2;
696 struct bintime bt, bt2;
697
698 mutex_spin_enter(&timecounter_lock);
699 TC_COUNT(nsetclock);
700 binuptime(&bt2);
701 timespec2bintime(ts, &bt);
702 bintime_sub(&bt, &bt2);
703 bintime_add(&bt2, &timebasebin);
704 timebasebin = bt;
705 tc_windup();
706 mutex_spin_exit(&timecounter_lock);
707
708 if (timestepwarnings) {
709 bintime2timespec(&bt2, &ts2);
710 log(LOG_INFO,
711 "Time stepped from %lld.%09ld to %lld.%09ld\n",
712 (long long)ts2.tv_sec, ts2.tv_nsec,
713 (long long)ts->tv_sec, ts->tv_nsec);
714 }
715 }
716
717 /*
718 * Initialize the next struct timehands in the ring and make
719 * it the active timehands. Along the way we might switch to a different
720 * timecounter and/or do seconds processing in NTP. Slightly magic.
721 */
722 static void
723 tc_windup(void)
724 {
725 struct bintime bt;
726 struct timehands *th, *tho;
727 u_int64_t scale;
728 u_int delta, ncount, ogen;
729 int i, s_update;
730 time_t t;
731
732 KASSERT(mutex_owned(&timecounter_lock));
733
734 s_update = 0;
735
736 /*
737 * Make the next timehands a copy of the current one, but do not
738 * overwrite the generation or next pointer. While we update
739 * the contents, the generation must be zero. Ensure global
740 * visibility of the generation before proceeding.
741 */
742 tho = timehands;
743 th = tho->th_next;
744 ogen = th->th_generation;
745 th->th_generation = 0;
746 membar_producer();
747 bcopy(tho, th, offsetof(struct timehands, th_generation));
748
749 /*
750 * Capture a timecounter delta on the current timecounter and if
751 * changing timecounters, a counter value from the new timecounter.
752 * Update the offset fields accordingly.
753 */
754 delta = tc_delta(th);
755 if (th->th_counter != timecounter)
756 ncount = timecounter->tc_get_timecount(timecounter);
757 else
758 ncount = 0;
759 th->th_offset_count += delta;
760 bintime_addx(&th->th_offset, th->th_scale * delta);
761
762 /*
763 * Hardware latching timecounters may not generate interrupts on
764 * PPS events, so instead we poll them. There is a finite risk that
765 * the hardware might capture a count which is later than the one we
766 * got above, and therefore possibly in the next NTP second which might
767 * have a different rate than the current NTP second. It doesn't
768 * matter in practice.
769 */
770 if (tho->th_counter->tc_poll_pps)
771 tho->th_counter->tc_poll_pps(tho->th_counter);
772
773 /*
774 * Deal with NTP second processing. The for loop normally
775 * iterates at most once, but in extreme situations it might
776 * keep NTP sane if timeouts are not run for several seconds.
777 * At boot, the time step can be large when the TOD hardware
778 * has been read, so on really large steps, we call
779 * ntp_update_second only twice. We need to call it twice in
780 * case we missed a leap second.
781 * If NTP is not compiled in ntp_update_second still calculates
782 * the adjustment resulting from adjtime() calls.
783 */
784 bt = th->th_offset;
785 bintime_add(&bt, &timebasebin);
786 i = bt.sec - tho->th_microtime.tv_sec;
787 if (i > LARGE_STEP)
788 i = 2;
789 for (; i > 0; i--) {
790 t = bt.sec;
791 ntp_update_second(&th->th_adjustment, &bt.sec);
792 s_update = 1;
793 if (bt.sec != t)
794 timebasebin.sec += bt.sec - t;
795 }
796
797 /* Update the UTC timestamps used by the get*() functions. */
798 /* XXX shouldn't do this here. Should force non-`get' versions. */
799 bintime2timeval(&bt, &th->th_microtime);
800 bintime2timespec(&bt, &th->th_nanotime);
801 /* Now is a good time to change timecounters. */
802 if (th->th_counter != timecounter) {
803 th->th_counter = timecounter;
804 th->th_offset_count = ncount;
805 s_update = 1;
806 }
807
808 /*-
809 * Recalculate the scaling factor. We want the number of 1/2^64
810 * fractions of a second per period of the hardware counter, taking
811 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
812 * processing provides us with.
813 *
814 * The th_adjustment is nanoseconds per second with 32 bit binary
815 * fraction and we want 64 bit binary fraction of second:
816 *
817 * x = a * 2^32 / 10^9 = a * 4.294967296
818 *
819 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
820 * we can only multiply by about 850 without overflowing, but that
821 * leaves suitably precise fractions for multiply before divide.
822 *
823 * Divide before multiply with a fraction of 2199/512 results in a
824 * systematic undercompensation of 10PPM of th_adjustment. On a
825 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
826 *
827 * We happily sacrifice the lowest of the 64 bits of our result
828 * to the goddess of code clarity.
829 *
830 */
831 if (s_update) {
832 scale = (u_int64_t)1 << 63;
833 scale += (th->th_adjustment / 1024) * 2199;
834 scale /= th->th_counter->tc_frequency;
835 th->th_scale = scale * 2;
836 }
837 /*
838 * Now that the struct timehands is again consistent, set the new
839 * generation number, making sure to not make it zero. Ensure
840 * changes are globally visible before changing.
841 */
842 if (++ogen == 0)
843 ogen = 1;
844 membar_producer();
845 th->th_generation = ogen;
846
847 /*
848 * Go live with the new struct timehands. Ensure changes are
849 * globally visible before changing.
850 */
851 time_second = th->th_microtime.tv_sec;
852 time_uptime = th->th_offset.sec;
853 membar_producer();
854 timehands = th;
855
856 /*
857 * Force users of the old timehand to move on. This is
858 * necessary for MP systems; we need to ensure that the
859 * consumers will move away from the old timehand before
860 * we begin updating it again when we eventually wrap
861 * around.
862 */
863 if (++tho->th_generation == 0)
864 tho->th_generation = 1;
865 }
866
867 /*
868 * RFC 2783 PPS-API implementation.
869 */
870
871 int
872 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
873 {
874 pps_params_t *app;
875 pps_info_t *pipi;
876 #ifdef PPS_SYNC
877 int *epi;
878 #endif
879
880 KASSERT(mutex_owned(&timecounter_lock));
881
882 KASSERT(pps != NULL);
883
884 switch (cmd) {
885 case PPS_IOC_CREATE:
886 return (0);
887 case PPS_IOC_DESTROY:
888 return (0);
889 case PPS_IOC_SETPARAMS:
890 app = (pps_params_t *)data;
891 if (app->mode & ~pps->ppscap)
892 return (EINVAL);
893 pps->ppsparam = *app;
894 return (0);
895 case PPS_IOC_GETPARAMS:
896 app = (pps_params_t *)data;
897 *app = pps->ppsparam;
898 app->api_version = PPS_API_VERS_1;
899 return (0);
900 case PPS_IOC_GETCAP:
901 *(int*)data = pps->ppscap;
902 return (0);
903 case PPS_IOC_FETCH:
904 pipi = (pps_info_t *)data;
905 pps->ppsinfo.current_mode = pps->ppsparam.mode;
906 *pipi = pps->ppsinfo;
907 return (0);
908 case PPS_IOC_KCBIND:
909 #ifdef PPS_SYNC
910 epi = (int *)data;
911 /* XXX Only root should be able to do this */
912 if (*epi & ~pps->ppscap)
913 return (EINVAL);
914 pps->kcmode = *epi;
915 return (0);
916 #else
917 return (EOPNOTSUPP);
918 #endif
919 default:
920 return (EPASSTHROUGH);
921 }
922 }
923
924 void
925 pps_init(struct pps_state *pps)
926 {
927
928 KASSERT(mutex_owned(&timecounter_lock));
929
930 pps->ppscap |= PPS_TSFMT_TSPEC;
931 if (pps->ppscap & PPS_CAPTUREASSERT)
932 pps->ppscap |= PPS_OFFSETASSERT;
933 if (pps->ppscap & PPS_CAPTURECLEAR)
934 pps->ppscap |= PPS_OFFSETCLEAR;
935 }
936
937 /*
938 * capture a timetamp in the pps structure
939 */
940 void
941 pps_capture(struct pps_state *pps)
942 {
943 struct timehands *th;
944
945 KASSERT(mutex_owned(&timecounter_lock));
946 KASSERT(pps != NULL);
947
948 th = timehands;
949 pps->capgen = th->th_generation;
950 pps->capth = th;
951 pps->capcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
952 if (pps->capgen != th->th_generation)
953 pps->capgen = 0;
954 }
955
956 #ifdef PPS_DEBUG
957 int ppsdebug = 0;
958 #endif
959
960 /*
961 * process a pps_capture()ed event
962 */
963 void
964 pps_event(struct pps_state *pps, int event)
965 {
966 pps_ref_event(pps, event, NULL, PPS_REFEVNT_PPS|PPS_REFEVNT_CAPTURE);
967 }
968
969 /*
970 * extended pps api / kernel pll/fll entry point
971 *
972 * feed reference time stamps to PPS engine
973 *
974 * will simulate a PPS event and feed
975 * the NTP PLL/FLL if requested.
976 *
977 * the ref time stamps should be roughly once
978 * a second but do not need to be exactly in phase
979 * with the UTC second but should be close to it.
980 * this relaxation of requirements allows callout
981 * driven timestamping mechanisms to feed to pps
982 * capture/kernel pll logic.
983 *
984 * calling pattern is:
985 * pps_capture() (for PPS_REFEVNT_{CAPTURE|CAPCUR})
986 * read timestamp from reference source
987 * pps_ref_event()
988 *
989 * supported refmodes:
990 * PPS_REFEVNT_CAPTURE
991 * use system timestamp of pps_capture()
992 * PPS_REFEVNT_CURRENT
993 * use system timestamp of this call
994 * PPS_REFEVNT_CAPCUR
995 * use average of read capture and current system time stamp
996 * PPS_REFEVNT_PPS
997 * assume timestamp on second mark - ref_ts is ignored
998 *
999 */
1000
1001 void
1002 pps_ref_event(struct pps_state *pps,
1003 int event,
1004 struct bintime *ref_ts,
1005 int refmode
1006 )
1007 {
1008 struct bintime bt; /* current time */
1009 struct bintime btd; /* time difference */
1010 struct bintime bt_ref; /* reference time */
1011 struct timespec ts, *tsp, *osp;
1012 struct timehands *th;
1013 u_int64_t tcount, acount, dcount, *pcount;
1014 int foff, gen;
1015 #ifdef PPS_SYNC
1016 int fhard;
1017 #endif
1018 pps_seq_t *pseq;
1019
1020 KASSERT(mutex_owned(&timecounter_lock));
1021
1022 KASSERT(pps != NULL);
1023
1024 /* pick up current time stamp if needed */
1025 if (refmode & (PPS_REFEVNT_CURRENT|PPS_REFEVNT_CAPCUR)) {
1026 /* pick up current time stamp */
1027 th = timehands;
1028 gen = th->th_generation;
1029 tcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
1030 if (gen != th->th_generation)
1031 gen = 0;
1032
1033 /* If the timecounter was wound up underneath us, bail out. */
1034 if (pps->capgen == 0 ||
1035 pps->capgen != pps->capth->th_generation ||
1036 gen == 0 ||
1037 gen != pps->capgen) {
1038 #ifdef PPS_DEBUG
1039 if (ppsdebug & 0x1) {
1040 log(LOG_DEBUG,
1041 "pps_ref_event(pps=%p, event=%d, ...): DROP (wind-up)\n",
1042 pps, event);
1043 }
1044 #endif
1045 return;
1046 }
1047 } else {
1048 tcount = 0; /* keep GCC happy */
1049 }
1050
1051 #ifdef PPS_DEBUG
1052 if (ppsdebug & 0x1) {
1053 struct timespec tmsp;
1054
1055 if (ref_ts == NULL) {
1056 tmsp.tv_sec = 0;
1057 tmsp.tv_nsec = 0;
1058 } else {
1059 bintime2timespec(ref_ts, &tmsp);
1060 }
1061
1062 log(LOG_DEBUG,
1063 "pps_ref_event(pps=%p, event=%d, ref_ts=%"PRIi64
1064 ".%09"PRIi32", refmode=0x%1x)\n",
1065 pps, event, tmsp.tv_sec, (int32_t)tmsp.tv_nsec, refmode);
1066 }
1067 #endif
1068
1069 /* setup correct event references */
1070 if (event == PPS_CAPTUREASSERT) {
1071 tsp = &pps->ppsinfo.assert_timestamp;
1072 osp = &pps->ppsparam.assert_offset;
1073 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1074 #ifdef PPS_SYNC
1075 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1076 #endif
1077 pcount = &pps->ppscount[0];
1078 pseq = &pps->ppsinfo.assert_sequence;
1079 } else {
1080 tsp = &pps->ppsinfo.clear_timestamp;
1081 osp = &pps->ppsparam.clear_offset;
1082 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1083 #ifdef PPS_SYNC
1084 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1085 #endif
1086 pcount = &pps->ppscount[1];
1087 pseq = &pps->ppsinfo.clear_sequence;
1088 }
1089
1090 /* determine system time stamp according to refmode */
1091 dcount = 0; /* keep GCC happy */
1092 switch (refmode & PPS_REFEVNT_RMASK) {
1093 case PPS_REFEVNT_CAPTURE:
1094 acount = pps->capcount; /* use capture timestamp */
1095 break;
1096
1097 case PPS_REFEVNT_CURRENT:
1098 acount = tcount; /* use current timestamp */
1099 break;
1100
1101 case PPS_REFEVNT_CAPCUR:
1102 /*
1103 * calculate counter value between pps_capture() and
1104 * pps_ref_event()
1105 */
1106 dcount = tcount - pps->capcount;
1107 acount = (dcount / 2) + pps->capcount;
1108 break;
1109
1110 default: /* ignore call error silently */
1111 return;
1112 }
1113
1114 /*
1115 * If the timecounter changed, we cannot compare the count values, so
1116 * we have to drop the rest of the PPS-stuff until the next event.
1117 */
1118 if (pps->ppstc != pps->capth->th_counter) {
1119 pps->ppstc = pps->capth->th_counter;
1120 pps->capcount = acount;
1121 *pcount = acount;
1122 pps->ppscount[2] = acount;
1123 #ifdef PPS_DEBUG
1124 if (ppsdebug & 0x1) {
1125 log(LOG_DEBUG,
1126 "pps_ref_event(pps=%p, event=%d, ...): DROP (time-counter change)\n",
1127 pps, event);
1128 }
1129 #endif
1130 return;
1131 }
1132
1133 pps->capcount = acount;
1134
1135 /* Convert the count to a bintime. */
1136 bt = pps->capth->th_offset;
1137 bintime_addx(&bt, pps->capth->th_scale * (acount - pps->capth->th_offset_count));
1138 bintime_add(&bt, &timebasebin);
1139
1140 if ((refmode & PPS_REFEVNT_PPS) == 0) {
1141 /* determine difference to reference time stamp */
1142 bt_ref = *ref_ts;
1143
1144 btd = bt;
1145 bintime_sub(&btd, &bt_ref);
1146
1147 /*
1148 * simulate a PPS timestamp by dropping the fraction
1149 * and applying the offset
1150 */
1151 if (bt.frac >= (uint64_t)1<<63) /* skip to nearest second */
1152 bt.sec++;
1153 bt.frac = 0;
1154 bintime_add(&bt, &btd);
1155 } else {
1156 /*
1157 * create ref_ts from current time -
1158 * we are supposed to be called on
1159 * the second mark
1160 */
1161 bt_ref = bt;
1162 if (bt_ref.frac >= (uint64_t)1<<63) /* skip to nearest second */
1163 bt_ref.sec++;
1164 bt_ref.frac = 0;
1165 }
1166
1167 /* convert bintime to timestamp */
1168 bintime2timespec(&bt, &ts);
1169
1170 /* If the timecounter was wound up underneath us, bail out. */
1171 if (pps->capgen != pps->capth->th_generation)
1172 return;
1173
1174 /* store time stamp */
1175 *pcount = pps->capcount;
1176 (*pseq)++;
1177 *tsp = ts;
1178
1179 /* add offset correction */
1180 if (foff) {
1181 timespecadd(tsp, osp, tsp);
1182 if (tsp->tv_nsec < 0) {
1183 tsp->tv_nsec += 1000000000;
1184 tsp->tv_sec -= 1;
1185 }
1186 }
1187
1188 #ifdef PPS_DEBUG
1189 if (ppsdebug & 0x2) {
1190 struct timespec ts2;
1191 struct timespec ts3;
1192
1193 bintime2timespec(&bt_ref, &ts2);
1194
1195 bt.sec = 0;
1196 bt.frac = 0;
1197
1198 if (refmode & PPS_REFEVNT_CAPCUR) {
1199 bintime_addx(&bt, pps->capth->th_scale * dcount);
1200 }
1201 bintime2timespec(&bt, &ts3);
1202
1203 log(LOG_DEBUG, "ref_ts=%"PRIi64".%09"PRIi32
1204 ", ts=%"PRIi64".%09"PRIi32", read latency=%"PRIi64" ns\n",
1205 ts2.tv_sec, (int32_t)ts2.tv_nsec,
1206 tsp->tv_sec, (int32_t)tsp->tv_nsec,
1207 timespec2ns(&ts3));
1208 }
1209 #endif
1210
1211 #ifdef PPS_SYNC
1212 if (fhard) {
1213 uint64_t scale;
1214 uint64_t div;
1215
1216 /*
1217 * Feed the NTP PLL/FLL.
1218 * The FLL wants to know how many (hardware) nanoseconds
1219 * elapsed since the previous event (mod 1 second) thus
1220 * we are actually looking at the frequency difference scaled
1221 * in nsec.
1222 * As the counter time stamps are not truly at 1Hz
1223 * we need to scale the count by the elapsed
1224 * reference time.
1225 * valid sampling interval: [0.5..2[ sec
1226 */
1227
1228 /* calculate elapsed raw count */
1229 tcount = pps->capcount - pps->ppscount[2];
1230 pps->ppscount[2] = pps->capcount;
1231 tcount &= pps->capth->th_counter->tc_counter_mask;
1232
1233 /* calculate elapsed ref time */
1234 btd = bt_ref;
1235 bintime_sub(&btd, &pps->ref_time);
1236 pps->ref_time = bt_ref;
1237
1238 /* check that we stay below 2 sec */
1239 if (btd.sec < 0 || btd.sec > 1)
1240 return;
1241
1242 /* we want at least 0.5 sec between samples */
1243 if (btd.sec == 0 && btd.frac < (uint64_t)1<<63)
1244 return;
1245
1246 /*
1247 * calculate cycles per period by multiplying
1248 * the frequency with the elapsed period
1249 * we pick a fraction of 30 bits
1250 * ~1ns resolution for elapsed time
1251 */
1252 div = (uint64_t)btd.sec << 30;
1253 div |= (btd.frac >> 34) & (((uint64_t)1 << 30) - 1);
1254 div *= pps->capth->th_counter->tc_frequency;
1255 div >>= 30;
1256
1257 if (div == 0) /* safeguard */
1258 return;
1259
1260 scale = (uint64_t)1 << 63;
1261 scale /= div;
1262 scale *= 2;
1263
1264 bt.sec = 0;
1265 bt.frac = 0;
1266 bintime_addx(&bt, scale * tcount);
1267 bintime2timespec(&bt, &ts);
1268
1269 #ifdef PPS_DEBUG
1270 if (ppsdebug & 0x4) {
1271 struct timespec ts2;
1272 int64_t df;
1273
1274 bintime2timespec(&bt_ref, &ts2);
1275 df = timespec2ns(&ts);
1276 if (df > 500000000)
1277 df -= 1000000000;
1278 log(LOG_DEBUG, "hardpps: ref_ts=%"PRIi64
1279 ".%09"PRIi32", ts=%"PRIi64".%09"PRIi32
1280 ", freqdiff=%"PRIi64" ns/s\n",
1281 ts2.tv_sec, (int32_t)ts2.tv_nsec,
1282 tsp->tv_sec, (int32_t)tsp->tv_nsec,
1283 df);
1284 }
1285 #endif
1286
1287 hardpps(tsp, timespec2ns(&ts));
1288 }
1289 #endif
1290 }
1291
1292 /*
1293 * Timecounters need to be updated every so often to prevent the hardware
1294 * counter from overflowing. Updating also recalculates the cached values
1295 * used by the get*() family of functions, so their precision depends on
1296 * the update frequency.
1297 */
1298
1299 static int tc_tick;
1300
1301 void
1302 tc_ticktock(void)
1303 {
1304 static int count;
1305
1306 if (++count < tc_tick)
1307 return;
1308 count = 0;
1309 mutex_spin_enter(&timecounter_lock);
1310 if (timecounter_bad != 0) {
1311 /* An existing timecounter has gone bad, pick a new one. */
1312 (void)atomic_swap_uint(&timecounter_bad, 0);
1313 if (timecounter->tc_quality < 0) {
1314 tc_pick();
1315 }
1316 }
1317 tc_windup();
1318 mutex_spin_exit(&timecounter_lock);
1319 }
1320
1321 void
1322 inittimecounter(void)
1323 {
1324 u_int p;
1325
1326 mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
1327
1328 /*
1329 * Set the initial timeout to
1330 * max(1, <approx. number of hardclock ticks in a millisecond>).
1331 * People should probably not use the sysctl to set the timeout
1332 * to smaller than its initial value, since that value is the
1333 * smallest reasonable one. If they want better timestamps they
1334 * should use the non-"get"* functions.
1335 */
1336 if (hz > 1000)
1337 tc_tick = (hz + 500) / 1000;
1338 else
1339 tc_tick = 1;
1340 p = (tc_tick * 1000000) / hz;
1341 aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
1342 p / 1000, p % 1000);
1343
1344 /* warm up new timecounter (again) and get rolling. */
1345 (void)timecounter->tc_get_timecount(timecounter);
1346 (void)timecounter->tc_get_timecount(timecounter);
1347 }
1348