kern_tc.c revision 1.61 1 /* $NetBSD: kern_tc.c,v 1.61 2021/04/08 06:20:47 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * ----------------------------------------------------------------------------
34 * "THE BEER-WARE LICENSE" (Revision 42):
35 * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
36 * can do whatever you want with this stuff. If we meet some day, and you think
37 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
38 * ---------------------------------------------------------------------------
39 */
40
41 #include <sys/cdefs.h>
42 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
43 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.61 2021/04/08 06:20:47 simonb Exp $");
44
45 #ifdef _KERNEL_OPT
46 #include "opt_ntp.h"
47 #endif
48
49 #include <sys/param.h>
50 #include <sys/atomic.h>
51 #include <sys/evcnt.h>
52 #include <sys/kauth.h>
53 #include <sys/kernel.h>
54 #include <sys/mutex.h>
55 #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
56 #include <sys/sysctl.h>
57 #include <sys/syslog.h>
58 #include <sys/systm.h>
59 #include <sys/timepps.h>
60 #include <sys/timetc.h>
61 #include <sys/timex.h>
62 #include <sys/xcall.h>
63
64 /*
65 * A large step happens on boot. This constant detects such steps.
66 * It is relatively small so that ntp_update_second gets called enough
67 * in the typical 'missed a couple of seconds' case, but doesn't loop
68 * forever when the time step is large.
69 */
70 #define LARGE_STEP 200
71
72 /*
73 * Implement a dummy timecounter which we can use until we get a real one
74 * in the air. This allows the console and other early stuff to use
75 * time services.
76 */
77
78 static u_int
79 dummy_get_timecount(struct timecounter *tc)
80 {
81 static u_int now;
82
83 return ++now;
84 }
85
86 static struct timecounter dummy_timecounter = {
87 .tc_get_timecount = dummy_get_timecount,
88 .tc_counter_mask = ~0u,
89 .tc_frequency = 1000000,
90 .tc_name = "dummy",
91 .tc_quality = -1000000,
92 .tc_priv = NULL,
93 };
94
95 struct timehands {
96 /* These fields must be initialized by the driver. */
97 struct timecounter *th_counter; /* active timecounter */
98 int64_t th_adjustment; /* frequency adjustment */
99 /* (NTP/adjtime) */
100 uint64_t th_scale; /* scale factor (counter */
101 /* tick->time) */
102 uint64_t th_offset_count; /* offset at last time */
103 /* update (tc_windup()) */
104 struct bintime th_offset; /* bin (up)time at windup */
105 struct timeval th_microtime; /* cached microtime */
106 struct timespec th_nanotime; /* cached nanotime */
107 /* Fields not to be copied in tc_windup start with th_generation. */
108 volatile u_int th_generation; /* current genration */
109 struct timehands *th_next; /* next timehand */
110 };
111
112 static struct timehands th0;
113 static struct timehands th9 = { .th_next = &th0, };
114 static struct timehands th8 = { .th_next = &th9, };
115 static struct timehands th7 = { .th_next = &th8, };
116 static struct timehands th6 = { .th_next = &th7, };
117 static struct timehands th5 = { .th_next = &th6, };
118 static struct timehands th4 = { .th_next = &th5, };
119 static struct timehands th3 = { .th_next = &th4, };
120 static struct timehands th2 = { .th_next = &th3, };
121 static struct timehands th1 = { .th_next = &th2, };
122 static struct timehands th0 = {
123 .th_counter = &dummy_timecounter,
124 .th_scale = (uint64_t)-1 / 1000000,
125 .th_offset = { .sec = 1, .frac = 0 },
126 .th_generation = 1,
127 .th_next = &th1,
128 };
129
130 static struct timehands *volatile timehands = &th0;
131 struct timecounter *timecounter = &dummy_timecounter;
132 static struct timecounter *timecounters = &dummy_timecounter;
133
134 volatile time_t time_second __cacheline_aligned = 1;
135 volatile time_t time_uptime __cacheline_aligned = 1;
136
137 static struct bintime timebasebin;
138
139 static int timestepwarnings;
140
141 kmutex_t timecounter_lock;
142 static u_int timecounter_mods;
143 static volatile int timecounter_removals = 1;
144 static u_int timecounter_bad;
145
146 /*
147 * sysctl helper routine for kern.timercounter.hardware
148 */
149 static int
150 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
151 {
152 struct sysctlnode node;
153 int error;
154 char newname[MAX_TCNAMELEN];
155 struct timecounter *newtc, *tc;
156
157 tc = timecounter;
158
159 strlcpy(newname, tc->tc_name, sizeof(newname));
160
161 node = *rnode;
162 node.sysctl_data = newname;
163 node.sysctl_size = sizeof(newname);
164
165 error = sysctl_lookup(SYSCTLFN_CALL(&node));
166
167 if (error ||
168 newp == NULL ||
169 strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
170 return error;
171
172 if (l != NULL && (error = kauth_authorize_system(l->l_cred,
173 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
174 NULL, NULL)) != 0)
175 return error;
176
177 if (!cold)
178 mutex_spin_enter(&timecounter_lock);
179 error = EINVAL;
180 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
181 if (strcmp(newname, newtc->tc_name) != 0)
182 continue;
183 /* Warm up new timecounter. */
184 (void)newtc->tc_get_timecount(newtc);
185 (void)newtc->tc_get_timecount(newtc);
186 timecounter = newtc;
187 error = 0;
188 break;
189 }
190 if (!cold)
191 mutex_spin_exit(&timecounter_lock);
192 return error;
193 }
194
195 static int
196 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
197 {
198 char buf[MAX_TCNAMELEN+48];
199 char *where;
200 const char *spc;
201 struct timecounter *tc;
202 size_t needed, left, slen;
203 int error, mods;
204
205 if (newp != NULL)
206 return EPERM;
207 if (namelen != 0)
208 return EINVAL;
209
210 mutex_spin_enter(&timecounter_lock);
211 retry:
212 spc = "";
213 error = 0;
214 needed = 0;
215 left = *oldlenp;
216 where = oldp;
217 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
218 if (where == NULL) {
219 needed += sizeof(buf); /* be conservative */
220 } else {
221 slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
222 " Hz)", spc, tc->tc_name, tc->tc_quality,
223 tc->tc_frequency);
224 if (left < slen + 1)
225 break;
226 mods = timecounter_mods;
227 mutex_spin_exit(&timecounter_lock);
228 error = copyout(buf, where, slen + 1);
229 mutex_spin_enter(&timecounter_lock);
230 if (mods != timecounter_mods) {
231 goto retry;
232 }
233 spc = " ";
234 where += slen;
235 needed += slen;
236 left -= slen;
237 }
238 }
239 mutex_spin_exit(&timecounter_lock);
240
241 *oldlenp = needed;
242 return error;
243 }
244
245 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
246 {
247 const struct sysctlnode *node;
248
249 sysctl_createv(clog, 0, NULL, &node,
250 CTLFLAG_PERMANENT,
251 CTLTYPE_NODE, "timecounter",
252 SYSCTL_DESCR("time counter information"),
253 NULL, 0, NULL, 0,
254 CTL_KERN, CTL_CREATE, CTL_EOL);
255
256 if (node != NULL) {
257 sysctl_createv(clog, 0, NULL, NULL,
258 CTLFLAG_PERMANENT,
259 CTLTYPE_STRING, "choice",
260 SYSCTL_DESCR("available counters"),
261 sysctl_kern_timecounter_choice, 0, NULL, 0,
262 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
263
264 sysctl_createv(clog, 0, NULL, NULL,
265 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
266 CTLTYPE_STRING, "hardware",
267 SYSCTL_DESCR("currently active time counter"),
268 sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
269 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
270
271 sysctl_createv(clog, 0, NULL, NULL,
272 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
273 CTLTYPE_INT, "timestepwarnings",
274 SYSCTL_DESCR("log time steps"),
275 NULL, 0, ×tepwarnings, 0,
276 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
277 }
278 }
279
280 #ifdef TC_COUNTERS
281 #define TC_STATS(name) \
282 static struct evcnt n##name = \
283 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
284 EVCNT_ATTACH_STATIC(n##name)
285 TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
286 TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
287 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
288 TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
289 TC_STATS(setclock);
290 #define TC_COUNT(var) var.ev_count++
291 #undef TC_STATS
292 #else
293 #define TC_COUNT(var) /* nothing */
294 #endif /* TC_COUNTERS */
295
296 static void tc_windup(void);
297
298 /*
299 * Return the difference between the timehands' counter value now and what
300 * was when we copied it to the timehands' offset_count.
301 */
302 static inline u_int
303 tc_delta(struct timehands *th)
304 {
305 struct timecounter *tc;
306
307 tc = th->th_counter;
308 return (tc->tc_get_timecount(tc) -
309 th->th_offset_count) & tc->tc_counter_mask;
310 }
311
312 /*
313 * Functions for reading the time. We have to loop until we are sure that
314 * the timehands that we operated on was not updated under our feet. See
315 * the comment in <sys/timevar.h> for a description of these 12 functions.
316 */
317
318 void
319 binuptime(struct bintime *bt)
320 {
321 struct timehands *th;
322 lwp_t *l;
323 u_int lgen, gen;
324
325 TC_COUNT(nbinuptime);
326
327 /*
328 * Provide exclusion against tc_detach().
329 *
330 * We record the number of timecounter removals before accessing
331 * timecounter state. Note that the LWP can be using multiple
332 * "generations" at once, due to interrupts (interrupted while in
333 * this function). Hardware interrupts will borrow the interrupted
334 * LWP's l_tcgen value for this purpose, and can themselves be
335 * interrupted by higher priority interrupts. In this case we need
336 * to ensure that the oldest generation in use is recorded.
337 *
338 * splsched() is too expensive to use, so we take care to structure
339 * this code in such a way that it is not required. Likewise, we
340 * do not disable preemption.
341 *
342 * Memory barriers are also too expensive to use for such a
343 * performance critical function. The good news is that we do not
344 * need memory barriers for this type of exclusion, as the thread
345 * updating timecounter_removals will issue a broadcast cross call
346 * before inspecting our l_tcgen value (this elides memory ordering
347 * issues).
348 */
349 l = curlwp;
350 lgen = l->l_tcgen;
351 if (__predict_true(lgen == 0)) {
352 l->l_tcgen = timecounter_removals;
353 }
354 __insn_barrier();
355
356 do {
357 th = timehands;
358 gen = th->th_generation;
359 *bt = th->th_offset;
360 bintime_addx(bt, th->th_scale * tc_delta(th));
361 } while (gen == 0 || gen != th->th_generation);
362
363 __insn_barrier();
364 l->l_tcgen = lgen;
365 }
366
367 void
368 nanouptime(struct timespec *tsp)
369 {
370 struct bintime bt;
371
372 TC_COUNT(nnanouptime);
373 binuptime(&bt);
374 bintime2timespec(&bt, tsp);
375 }
376
377 void
378 microuptime(struct timeval *tvp)
379 {
380 struct bintime bt;
381
382 TC_COUNT(nmicrouptime);
383 binuptime(&bt);
384 bintime2timeval(&bt, tvp);
385 }
386
387 void
388 bintime(struct bintime *bt)
389 {
390
391 TC_COUNT(nbintime);
392 binuptime(bt);
393 bintime_add(bt, &timebasebin);
394 }
395
396 void
397 nanotime(struct timespec *tsp)
398 {
399 struct bintime bt;
400
401 TC_COUNT(nnanotime);
402 bintime(&bt);
403 bintime2timespec(&bt, tsp);
404 }
405
406 void
407 microtime(struct timeval *tvp)
408 {
409 struct bintime bt;
410
411 TC_COUNT(nmicrotime);
412 bintime(&bt);
413 bintime2timeval(&bt, tvp);
414 }
415
416 void
417 getbinuptime(struct bintime *bt)
418 {
419 struct timehands *th;
420 u_int gen;
421
422 TC_COUNT(ngetbinuptime);
423 do {
424 th = timehands;
425 gen = th->th_generation;
426 *bt = th->th_offset;
427 } while (gen == 0 || gen != th->th_generation);
428 }
429
430 void
431 getnanouptime(struct timespec *tsp)
432 {
433 struct timehands *th;
434 u_int gen;
435
436 TC_COUNT(ngetnanouptime);
437 do {
438 th = timehands;
439 gen = th->th_generation;
440 bintime2timespec(&th->th_offset, tsp);
441 } while (gen == 0 || gen != th->th_generation);
442 }
443
444 void
445 getmicrouptime(struct timeval *tvp)
446 {
447 struct timehands *th;
448 u_int gen;
449
450 TC_COUNT(ngetmicrouptime);
451 do {
452 th = timehands;
453 gen = th->th_generation;
454 bintime2timeval(&th->th_offset, tvp);
455 } while (gen == 0 || gen != th->th_generation);
456 }
457
458 void
459 getbintime(struct bintime *bt)
460 {
461 struct timehands *th;
462 u_int gen;
463
464 TC_COUNT(ngetbintime);
465 do {
466 th = timehands;
467 gen = th->th_generation;
468 *bt = th->th_offset;
469 } while (gen == 0 || gen != th->th_generation);
470 bintime_add(bt, &timebasebin);
471 }
472
473 static inline void
474 dogetnanotime(struct timespec *tsp)
475 {
476 struct timehands *th;
477 u_int gen;
478
479 TC_COUNT(ngetnanotime);
480 do {
481 th = timehands;
482 gen = th->th_generation;
483 *tsp = th->th_nanotime;
484 } while (gen == 0 || gen != th->th_generation);
485 }
486
487 void
488 getnanotime(struct timespec *tsp)
489 {
490
491 dogetnanotime(tsp);
492 }
493
494 void dtrace_getnanotime(struct timespec *tsp);
495
496 void
497 dtrace_getnanotime(struct timespec *tsp)
498 {
499
500 dogetnanotime(tsp);
501 }
502
503 void
504 getmicrotime(struct timeval *tvp)
505 {
506 struct timehands *th;
507 u_int gen;
508
509 TC_COUNT(ngetmicrotime);
510 do {
511 th = timehands;
512 gen = th->th_generation;
513 *tvp = th->th_microtime;
514 } while (gen == 0 || gen != th->th_generation);
515 }
516
517 void
518 getnanoboottime(struct timespec *tsp)
519 {
520 struct bintime bt;
521
522 getbinboottime(&bt);
523 bintime2timespec(&bt, tsp);
524 }
525
526 void
527 getmicroboottime(struct timeval *tvp)
528 {
529 struct bintime bt;
530
531 getbinboottime(&bt);
532 bintime2timeval(&bt, tvp);
533 }
534
535 void
536 getbinboottime(struct bintime *bt)
537 {
538
539 /*
540 * XXX Need lockless read synchronization around timebasebin
541 * (and not just here).
542 */
543 *bt = timebasebin;
544 }
545
546 /*
547 * Initialize a new timecounter and possibly use it.
548 */
549 void
550 tc_init(struct timecounter *tc)
551 {
552 u_int u;
553
554 KASSERTMSG(tc->tc_next == NULL, "timecounter %s already initialised",
555 tc->tc_name);
556
557 u = tc->tc_frequency / tc->tc_counter_mask;
558 /* XXX: We need some margin here, 10% is a guess */
559 u *= 11;
560 u /= 10;
561 if (u > hz && tc->tc_quality >= 0) {
562 tc->tc_quality = -2000;
563 aprint_verbose(
564 "timecounter: Timecounter \"%s\" frequency %ju Hz",
565 tc->tc_name, (uintmax_t)tc->tc_frequency);
566 aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
567 } else if (tc->tc_quality >= 0 || bootverbose) {
568 aprint_verbose(
569 "timecounter: Timecounter \"%s\" frequency %ju Hz "
570 "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
571 tc->tc_quality);
572 }
573
574 mutex_spin_enter(&timecounter_lock);
575 tc->tc_next = timecounters;
576 timecounters = tc;
577 timecounter_mods++;
578 /*
579 * Never automatically use a timecounter with negative quality.
580 * Even though we run on the dummy counter, switching here may be
581 * worse since this timecounter may not be monotonous.
582 */
583 if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
584 (tc->tc_quality == timecounter->tc_quality &&
585 tc->tc_frequency > timecounter->tc_frequency))) {
586 (void)tc->tc_get_timecount(tc);
587 (void)tc->tc_get_timecount(tc);
588 timecounter = tc;
589 tc_windup();
590 }
591 mutex_spin_exit(&timecounter_lock);
592 }
593
594 /*
595 * Pick a new timecounter due to the existing counter going bad.
596 */
597 static void
598 tc_pick(void)
599 {
600 struct timecounter *best, *tc;
601
602 KASSERT(mutex_owned(&timecounter_lock));
603
604 for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
605 if (tc->tc_quality > best->tc_quality)
606 best = tc;
607 else if (tc->tc_quality < best->tc_quality)
608 continue;
609 else if (tc->tc_frequency > best->tc_frequency)
610 best = tc;
611 }
612 (void)best->tc_get_timecount(best);
613 (void)best->tc_get_timecount(best);
614 timecounter = best;
615 }
616
617 /*
618 * A timecounter has gone bad, arrange to pick a new one at the next
619 * clock tick.
620 */
621 void
622 tc_gonebad(struct timecounter *tc)
623 {
624
625 tc->tc_quality = -100;
626 membar_producer();
627 atomic_inc_uint(&timecounter_bad);
628 }
629
630 /*
631 * Stop using a timecounter and remove it from the timecounters list.
632 */
633 int
634 tc_detach(struct timecounter *target)
635 {
636 struct timecounter *tc;
637 struct timecounter **tcp = NULL;
638 int removals;
639 lwp_t *l;
640
641 /* First, find the timecounter. */
642 mutex_spin_enter(&timecounter_lock);
643 for (tcp = &timecounters, tc = timecounters;
644 tc != NULL;
645 tcp = &tc->tc_next, tc = tc->tc_next) {
646 if (tc == target)
647 break;
648 }
649 if (tc == NULL) {
650 mutex_spin_exit(&timecounter_lock);
651 return ESRCH;
652 }
653
654 /* And now, remove it. */
655 *tcp = tc->tc_next;
656 if (timecounter == target) {
657 tc_pick();
658 tc_windup();
659 }
660 timecounter_mods++;
661 removals = timecounter_removals++;
662 mutex_spin_exit(&timecounter_lock);
663
664 /*
665 * We now have to determine if any threads in the system are still
666 * making use of this timecounter.
667 *
668 * We issue a broadcast cross call to elide memory ordering issues,
669 * then scan all LWPs in the system looking at each's timecounter
670 * generation number. We need to see a value of zero (not actively
671 * using a timecounter) or a value greater than our removal value.
672 *
673 * We may race with threads that read `timecounter_removals' and
674 * and then get preempted before updating `l_tcgen'. This is not
675 * a problem, since it means that these threads have not yet started
676 * accessing timecounter state. All we do need is one clean
677 * snapshot of the system where every thread appears not to be using
678 * old timecounter state.
679 */
680 for (;;) {
681 xc_barrier(0);
682
683 mutex_enter(&proc_lock);
684 LIST_FOREACH(l, &alllwp, l_list) {
685 if (l->l_tcgen == 0 || l->l_tcgen > removals) {
686 /*
687 * Not using timecounter or old timecounter
688 * state at time of our xcall or later.
689 */
690 continue;
691 }
692 break;
693 }
694 mutex_exit(&proc_lock);
695
696 /*
697 * If the timecounter is still in use, wait at least 10ms
698 * before retrying.
699 */
700 if (l == NULL) {
701 return 0;
702 }
703 (void)kpause("tcdetach", false, mstohz(10), NULL);
704 }
705 }
706
707 /* Report the frequency of the current timecounter. */
708 uint64_t
709 tc_getfrequency(void)
710 {
711
712 return timehands->th_counter->tc_frequency;
713 }
714
715 /*
716 * Step our concept of UTC. This is done by modifying our estimate of
717 * when we booted.
718 */
719 void
720 tc_setclock(const struct timespec *ts)
721 {
722 struct timespec ts2;
723 struct bintime bt, bt2;
724
725 mutex_spin_enter(&timecounter_lock);
726 TC_COUNT(nsetclock);
727 binuptime(&bt2);
728 timespec2bintime(ts, &bt);
729 bintime_sub(&bt, &bt2);
730 bintime_add(&bt2, &timebasebin);
731 timebasebin = bt;
732 tc_windup();
733 mutex_spin_exit(&timecounter_lock);
734
735 if (timestepwarnings) {
736 bintime2timespec(&bt2, &ts2);
737 log(LOG_INFO,
738 "Time stepped from %lld.%09ld to %lld.%09ld\n",
739 (long long)ts2.tv_sec, ts2.tv_nsec,
740 (long long)ts->tv_sec, ts->tv_nsec);
741 }
742 }
743
744 /*
745 * Initialize the next struct timehands in the ring and make
746 * it the active timehands. Along the way we might switch to a different
747 * timecounter and/or do seconds processing in NTP. Slightly magic.
748 */
749 static void
750 tc_windup(void)
751 {
752 struct bintime bt;
753 struct timehands *th, *tho;
754 uint64_t scale;
755 u_int delta, ncount, ogen;
756 int i, s_update;
757 time_t t;
758
759 KASSERT(mutex_owned(&timecounter_lock));
760
761 s_update = 0;
762
763 /*
764 * Make the next timehands a copy of the current one, but do not
765 * overwrite the generation or next pointer. While we update
766 * the contents, the generation must be zero. Ensure global
767 * visibility of the generation before proceeding.
768 */
769 tho = timehands;
770 th = tho->th_next;
771 ogen = th->th_generation;
772 th->th_generation = 0;
773 membar_producer();
774 bcopy(tho, th, offsetof(struct timehands, th_generation));
775
776 /*
777 * Capture a timecounter delta on the current timecounter and if
778 * changing timecounters, a counter value from the new timecounter.
779 * Update the offset fields accordingly.
780 */
781 delta = tc_delta(th);
782 if (th->th_counter != timecounter)
783 ncount = timecounter->tc_get_timecount(timecounter);
784 else
785 ncount = 0;
786 th->th_offset_count += delta;
787 bintime_addx(&th->th_offset, th->th_scale * delta);
788
789 /*
790 * Hardware latching timecounters may not generate interrupts on
791 * PPS events, so instead we poll them. There is a finite risk that
792 * the hardware might capture a count which is later than the one we
793 * got above, and therefore possibly in the next NTP second which might
794 * have a different rate than the current NTP second. It doesn't
795 * matter in practice.
796 */
797 if (tho->th_counter->tc_poll_pps)
798 tho->th_counter->tc_poll_pps(tho->th_counter);
799
800 /*
801 * Deal with NTP second processing. The for loop normally
802 * iterates at most once, but in extreme situations it might
803 * keep NTP sane if timeouts are not run for several seconds.
804 * At boot, the time step can be large when the TOD hardware
805 * has been read, so on really large steps, we call
806 * ntp_update_second only twice. We need to call it twice in
807 * case we missed a leap second.
808 * If NTP is not compiled in ntp_update_second still calculates
809 * the adjustment resulting from adjtime() calls.
810 */
811 bt = th->th_offset;
812 bintime_add(&bt, &timebasebin);
813 i = bt.sec - tho->th_microtime.tv_sec;
814 if (i > LARGE_STEP)
815 i = 2;
816 for (; i > 0; i--) {
817 t = bt.sec;
818 ntp_update_second(&th->th_adjustment, &bt.sec);
819 s_update = 1;
820 if (bt.sec != t)
821 timebasebin.sec += bt.sec - t;
822 }
823
824 /* Update the UTC timestamps used by the get*() functions. */
825 /* XXX shouldn't do this here. Should force non-`get' versions. */
826 bintime2timeval(&bt, &th->th_microtime);
827 bintime2timespec(&bt, &th->th_nanotime);
828 /* Now is a good time to change timecounters. */
829 if (th->th_counter != timecounter) {
830 th->th_counter = timecounter;
831 th->th_offset_count = ncount;
832 s_update = 1;
833 }
834
835 /*-
836 * Recalculate the scaling factor. We want the number of 1/2^64
837 * fractions of a second per period of the hardware counter, taking
838 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
839 * processing provides us with.
840 *
841 * The th_adjustment is nanoseconds per second with 32 bit binary
842 * fraction and we want 64 bit binary fraction of second:
843 *
844 * x = a * 2^32 / 10^9 = a * 4.294967296
845 *
846 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
847 * we can only multiply by about 850 without overflowing, but that
848 * leaves suitably precise fractions for multiply before divide.
849 *
850 * Divide before multiply with a fraction of 2199/512 results in a
851 * systematic undercompensation of 10PPM of th_adjustment. On a
852 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
853 *
854 * We happily sacrifice the lowest of the 64 bits of our result
855 * to the goddess of code clarity.
856 *
857 */
858 if (s_update) {
859 scale = (uint64_t)1 << 63;
860 scale += (th->th_adjustment / 1024) * 2199;
861 scale /= th->th_counter->tc_frequency;
862 th->th_scale = scale * 2;
863 }
864 /*
865 * Now that the struct timehands is again consistent, set the new
866 * generation number, making sure to not make it zero. Ensure
867 * changes are globally visible before changing.
868 */
869 if (++ogen == 0)
870 ogen = 1;
871 membar_producer();
872 th->th_generation = ogen;
873
874 /*
875 * Go live with the new struct timehands. Ensure changes are
876 * globally visible before changing.
877 */
878 time_second = th->th_microtime.tv_sec;
879 time_uptime = th->th_offset.sec;
880 membar_producer();
881 timehands = th;
882
883 /*
884 * Force users of the old timehand to move on. This is
885 * necessary for MP systems; we need to ensure that the
886 * consumers will move away from the old timehand before
887 * we begin updating it again when we eventually wrap
888 * around.
889 */
890 if (++tho->th_generation == 0)
891 tho->th_generation = 1;
892 }
893
894 /*
895 * RFC 2783 PPS-API implementation.
896 */
897
898 int
899 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
900 {
901 pps_params_t *app;
902 pps_info_t *pipi;
903 #ifdef PPS_SYNC
904 int *epi;
905 #endif
906
907 KASSERT(mutex_owned(&timecounter_lock));
908
909 KASSERT(pps != NULL);
910
911 switch (cmd) {
912 case PPS_IOC_CREATE:
913 return 0;
914 case PPS_IOC_DESTROY:
915 return 0;
916 case PPS_IOC_SETPARAMS:
917 app = (pps_params_t *)data;
918 if (app->mode & ~pps->ppscap)
919 return EINVAL;
920 pps->ppsparam = *app;
921 return 0;
922 case PPS_IOC_GETPARAMS:
923 app = (pps_params_t *)data;
924 *app = pps->ppsparam;
925 app->api_version = PPS_API_VERS_1;
926 return 0;
927 case PPS_IOC_GETCAP:
928 *(int*)data = pps->ppscap;
929 return 0;
930 case PPS_IOC_FETCH:
931 pipi = (pps_info_t *)data;
932 pps->ppsinfo.current_mode = pps->ppsparam.mode;
933 *pipi = pps->ppsinfo;
934 return 0;
935 case PPS_IOC_KCBIND:
936 #ifdef PPS_SYNC
937 epi = (int *)data;
938 /* XXX Only root should be able to do this */
939 if (*epi & ~pps->ppscap)
940 return EINVAL;
941 pps->kcmode = *epi;
942 return 0;
943 #else
944 return EOPNOTSUPP;
945 #endif
946 default:
947 return EPASSTHROUGH;
948 }
949 }
950
951 void
952 pps_init(struct pps_state *pps)
953 {
954
955 KASSERT(mutex_owned(&timecounter_lock));
956
957 pps->ppscap |= PPS_TSFMT_TSPEC;
958 if (pps->ppscap & PPS_CAPTUREASSERT)
959 pps->ppscap |= PPS_OFFSETASSERT;
960 if (pps->ppscap & PPS_CAPTURECLEAR)
961 pps->ppscap |= PPS_OFFSETCLEAR;
962 }
963
964 /*
965 * capture a timetamp in the pps structure
966 */
967 void
968 pps_capture(struct pps_state *pps)
969 {
970 struct timehands *th;
971
972 KASSERT(mutex_owned(&timecounter_lock));
973 KASSERT(pps != NULL);
974
975 th = timehands;
976 pps->capgen = th->th_generation;
977 pps->capth = th;
978 pps->capcount = (uint64_t)tc_delta(th) + th->th_offset_count;
979 if (pps->capgen != th->th_generation)
980 pps->capgen = 0;
981 }
982
983 #ifdef PPS_DEBUG
984 int ppsdebug = 0;
985 #endif
986
987 /*
988 * process a pps_capture()ed event
989 */
990 void
991 pps_event(struct pps_state *pps, int event)
992 {
993 pps_ref_event(pps, event, NULL, PPS_REFEVNT_PPS|PPS_REFEVNT_CAPTURE);
994 }
995
996 /*
997 * extended pps api / kernel pll/fll entry point
998 *
999 * feed reference time stamps to PPS engine
1000 *
1001 * will simulate a PPS event and feed
1002 * the NTP PLL/FLL if requested.
1003 *
1004 * the ref time stamps should be roughly once
1005 * a second but do not need to be exactly in phase
1006 * with the UTC second but should be close to it.
1007 * this relaxation of requirements allows callout
1008 * driven timestamping mechanisms to feed to pps
1009 * capture/kernel pll logic.
1010 *
1011 * calling pattern is:
1012 * pps_capture() (for PPS_REFEVNT_{CAPTURE|CAPCUR})
1013 * read timestamp from reference source
1014 * pps_ref_event()
1015 *
1016 * supported refmodes:
1017 * PPS_REFEVNT_CAPTURE
1018 * use system timestamp of pps_capture()
1019 * PPS_REFEVNT_CURRENT
1020 * use system timestamp of this call
1021 * PPS_REFEVNT_CAPCUR
1022 * use average of read capture and current system time stamp
1023 * PPS_REFEVNT_PPS
1024 * assume timestamp on second mark - ref_ts is ignored
1025 *
1026 */
1027
1028 void
1029 pps_ref_event(struct pps_state *pps,
1030 int event,
1031 struct bintime *ref_ts,
1032 int refmode
1033 )
1034 {
1035 struct bintime bt; /* current time */
1036 struct bintime btd; /* time difference */
1037 struct bintime bt_ref; /* reference time */
1038 struct timespec ts, *tsp, *osp;
1039 struct timehands *th;
1040 uint64_t tcount, acount, dcount, *pcount;
1041 int foff, gen;
1042 #ifdef PPS_SYNC
1043 int fhard;
1044 #endif
1045 pps_seq_t *pseq;
1046
1047 KASSERT(mutex_owned(&timecounter_lock));
1048
1049 KASSERT(pps != NULL);
1050
1051 /* pick up current time stamp if needed */
1052 if (refmode & (PPS_REFEVNT_CURRENT|PPS_REFEVNT_CAPCUR)) {
1053 /* pick up current time stamp */
1054 th = timehands;
1055 gen = th->th_generation;
1056 tcount = (uint64_t)tc_delta(th) + th->th_offset_count;
1057 if (gen != th->th_generation)
1058 gen = 0;
1059
1060 /* If the timecounter was wound up underneath us, bail out. */
1061 if (pps->capgen == 0 ||
1062 pps->capgen != pps->capth->th_generation ||
1063 gen == 0 ||
1064 gen != pps->capgen) {
1065 #ifdef PPS_DEBUG
1066 if (ppsdebug & 0x1) {
1067 log(LOG_DEBUG,
1068 "pps_ref_event(pps=%p, event=%d, ...): DROP (wind-up)\n",
1069 pps, event);
1070 }
1071 #endif
1072 return;
1073 }
1074 } else {
1075 tcount = 0; /* keep GCC happy */
1076 }
1077
1078 #ifdef PPS_DEBUG
1079 if (ppsdebug & 0x1) {
1080 struct timespec tmsp;
1081
1082 if (ref_ts == NULL) {
1083 tmsp.tv_sec = 0;
1084 tmsp.tv_nsec = 0;
1085 } else {
1086 bintime2timespec(ref_ts, &tmsp);
1087 }
1088
1089 log(LOG_DEBUG,
1090 "pps_ref_event(pps=%p, event=%d, ref_ts=%"PRIi64
1091 ".%09"PRIi32", refmode=0x%1x)\n",
1092 pps, event, tmsp.tv_sec, (int32_t)tmsp.tv_nsec, refmode);
1093 }
1094 #endif
1095
1096 /* setup correct event references */
1097 if (event == PPS_CAPTUREASSERT) {
1098 tsp = &pps->ppsinfo.assert_timestamp;
1099 osp = &pps->ppsparam.assert_offset;
1100 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1101 #ifdef PPS_SYNC
1102 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1103 #endif
1104 pcount = &pps->ppscount[0];
1105 pseq = &pps->ppsinfo.assert_sequence;
1106 } else {
1107 tsp = &pps->ppsinfo.clear_timestamp;
1108 osp = &pps->ppsparam.clear_offset;
1109 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1110 #ifdef PPS_SYNC
1111 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1112 #endif
1113 pcount = &pps->ppscount[1];
1114 pseq = &pps->ppsinfo.clear_sequence;
1115 }
1116
1117 /* determine system time stamp according to refmode */
1118 dcount = 0; /* keep GCC happy */
1119 switch (refmode & PPS_REFEVNT_RMASK) {
1120 case PPS_REFEVNT_CAPTURE:
1121 acount = pps->capcount; /* use capture timestamp */
1122 break;
1123
1124 case PPS_REFEVNT_CURRENT:
1125 acount = tcount; /* use current timestamp */
1126 break;
1127
1128 case PPS_REFEVNT_CAPCUR:
1129 /*
1130 * calculate counter value between pps_capture() and
1131 * pps_ref_event()
1132 */
1133 dcount = tcount - pps->capcount;
1134 acount = (dcount / 2) + pps->capcount;
1135 break;
1136
1137 default: /* ignore call error silently */
1138 return;
1139 }
1140
1141 /*
1142 * If the timecounter changed, we cannot compare the count values, so
1143 * we have to drop the rest of the PPS-stuff until the next event.
1144 */
1145 if (pps->ppstc != pps->capth->th_counter) {
1146 pps->ppstc = pps->capth->th_counter;
1147 pps->capcount = acount;
1148 *pcount = acount;
1149 pps->ppscount[2] = acount;
1150 #ifdef PPS_DEBUG
1151 if (ppsdebug & 0x1) {
1152 log(LOG_DEBUG,
1153 "pps_ref_event(pps=%p, event=%d, ...): DROP (time-counter change)\n",
1154 pps, event);
1155 }
1156 #endif
1157 return;
1158 }
1159
1160 pps->capcount = acount;
1161
1162 /* Convert the count to a bintime. */
1163 bt = pps->capth->th_offset;
1164 bintime_addx(&bt, pps->capth->th_scale * (acount - pps->capth->th_offset_count));
1165 bintime_add(&bt, &timebasebin);
1166
1167 if ((refmode & PPS_REFEVNT_PPS) == 0) {
1168 /* determine difference to reference time stamp */
1169 bt_ref = *ref_ts;
1170
1171 btd = bt;
1172 bintime_sub(&btd, &bt_ref);
1173
1174 /*
1175 * simulate a PPS timestamp by dropping the fraction
1176 * and applying the offset
1177 */
1178 if (bt.frac >= (uint64_t)1<<63) /* skip to nearest second */
1179 bt.sec++;
1180 bt.frac = 0;
1181 bintime_add(&bt, &btd);
1182 } else {
1183 /*
1184 * create ref_ts from current time -
1185 * we are supposed to be called on
1186 * the second mark
1187 */
1188 bt_ref = bt;
1189 if (bt_ref.frac >= (uint64_t)1<<63) /* skip to nearest second */
1190 bt_ref.sec++;
1191 bt_ref.frac = 0;
1192 }
1193
1194 /* convert bintime to timestamp */
1195 bintime2timespec(&bt, &ts);
1196
1197 /* If the timecounter was wound up underneath us, bail out. */
1198 if (pps->capgen != pps->capth->th_generation)
1199 return;
1200
1201 /* store time stamp */
1202 *pcount = pps->capcount;
1203 (*pseq)++;
1204 *tsp = ts;
1205
1206 /* add offset correction */
1207 if (foff) {
1208 timespecadd(tsp, osp, tsp);
1209 if (tsp->tv_nsec < 0) {
1210 tsp->tv_nsec += 1000000000;
1211 tsp->tv_sec -= 1;
1212 }
1213 }
1214
1215 #ifdef PPS_DEBUG
1216 if (ppsdebug & 0x2) {
1217 struct timespec ts2;
1218 struct timespec ts3;
1219
1220 bintime2timespec(&bt_ref, &ts2);
1221
1222 bt.sec = 0;
1223 bt.frac = 0;
1224
1225 if (refmode & PPS_REFEVNT_CAPCUR) {
1226 bintime_addx(&bt, pps->capth->th_scale * dcount);
1227 }
1228 bintime2timespec(&bt, &ts3);
1229
1230 log(LOG_DEBUG, "ref_ts=%"PRIi64".%09"PRIi32
1231 ", ts=%"PRIi64".%09"PRIi32", read latency=%"PRIi64" ns\n",
1232 ts2.tv_sec, (int32_t)ts2.tv_nsec,
1233 tsp->tv_sec, (int32_t)tsp->tv_nsec,
1234 timespec2ns(&ts3));
1235 }
1236 #endif
1237
1238 #ifdef PPS_SYNC
1239 if (fhard) {
1240 uint64_t scale;
1241 uint64_t div;
1242
1243 /*
1244 * Feed the NTP PLL/FLL.
1245 * The FLL wants to know how many (hardware) nanoseconds
1246 * elapsed since the previous event (mod 1 second) thus
1247 * we are actually looking at the frequency difference scaled
1248 * in nsec.
1249 * As the counter time stamps are not truly at 1Hz
1250 * we need to scale the count by the elapsed
1251 * reference time.
1252 * valid sampling interval: [0.5..2[ sec
1253 */
1254
1255 /* calculate elapsed raw count */
1256 tcount = pps->capcount - pps->ppscount[2];
1257 pps->ppscount[2] = pps->capcount;
1258 tcount &= pps->capth->th_counter->tc_counter_mask;
1259
1260 /* calculate elapsed ref time */
1261 btd = bt_ref;
1262 bintime_sub(&btd, &pps->ref_time);
1263 pps->ref_time = bt_ref;
1264
1265 /* check that we stay below 2 sec */
1266 if (btd.sec < 0 || btd.sec > 1)
1267 return;
1268
1269 /* we want at least 0.5 sec between samples */
1270 if (btd.sec == 0 && btd.frac < (uint64_t)1<<63)
1271 return;
1272
1273 /*
1274 * calculate cycles per period by multiplying
1275 * the frequency with the elapsed period
1276 * we pick a fraction of 30 bits
1277 * ~1ns resolution for elapsed time
1278 */
1279 div = (uint64_t)btd.sec << 30;
1280 div |= (btd.frac >> 34) & (((uint64_t)1 << 30) - 1);
1281 div *= pps->capth->th_counter->tc_frequency;
1282 div >>= 30;
1283
1284 if (div == 0) /* safeguard */
1285 return;
1286
1287 scale = (uint64_t)1 << 63;
1288 scale /= div;
1289 scale *= 2;
1290
1291 bt.sec = 0;
1292 bt.frac = 0;
1293 bintime_addx(&bt, scale * tcount);
1294 bintime2timespec(&bt, &ts);
1295
1296 #ifdef PPS_DEBUG
1297 if (ppsdebug & 0x4) {
1298 struct timespec ts2;
1299 int64_t df;
1300
1301 bintime2timespec(&bt_ref, &ts2);
1302 df = timespec2ns(&ts);
1303 if (df > 500000000)
1304 df -= 1000000000;
1305 log(LOG_DEBUG, "hardpps: ref_ts=%"PRIi64
1306 ".%09"PRIi32", ts=%"PRIi64".%09"PRIi32
1307 ", freqdiff=%"PRIi64" ns/s\n",
1308 ts2.tv_sec, (int32_t)ts2.tv_nsec,
1309 tsp->tv_sec, (int32_t)tsp->tv_nsec,
1310 df);
1311 }
1312 #endif
1313
1314 hardpps(tsp, timespec2ns(&ts));
1315 }
1316 #endif
1317 }
1318
1319 /*
1320 * Timecounters need to be updated every so often to prevent the hardware
1321 * counter from overflowing. Updating also recalculates the cached values
1322 * used by the get*() family of functions, so their precision depends on
1323 * the update frequency.
1324 */
1325
1326 static int tc_tick;
1327
1328 void
1329 tc_ticktock(void)
1330 {
1331 static int count;
1332
1333 if (++count < tc_tick)
1334 return;
1335 count = 0;
1336 mutex_spin_enter(&timecounter_lock);
1337 if (__predict_false(timecounter_bad != 0)) {
1338 /* An existing timecounter has gone bad, pick a new one. */
1339 (void)atomic_swap_uint(&timecounter_bad, 0);
1340 if (timecounter->tc_quality < 0) {
1341 tc_pick();
1342 }
1343 }
1344 tc_windup();
1345 mutex_spin_exit(&timecounter_lock);
1346 }
1347
1348 void
1349 inittimecounter(void)
1350 {
1351 u_int p;
1352
1353 mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
1354
1355 /*
1356 * Set the initial timeout to
1357 * max(1, <approx. number of hardclock ticks in a millisecond>).
1358 * People should probably not use the sysctl to set the timeout
1359 * to smaller than its initial value, since that value is the
1360 * smallest reasonable one. If they want better timestamps they
1361 * should use the non-"get"* functions.
1362 */
1363 if (hz > 1000)
1364 tc_tick = (hz + 500) / 1000;
1365 else
1366 tc_tick = 1;
1367 p = (tc_tick * 1000000) / hz;
1368 aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
1369 p / 1000, p % 1000);
1370
1371 /* warm up new timecounter (again) and get rolling. */
1372 (void)timecounter->tc_get_timecount(timecounter);
1373 (void)timecounter->tc_get_timecount(timecounter);
1374 }
1375