Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.61
      1 /* $NetBSD: kern_tc.c,v 1.61 2021/04/08 06:20:47 simonb Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * ----------------------------------------------------------------------------
     34  * "THE BEER-WARE LICENSE" (Revision 42):
     35  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
     36  * can do whatever you want with this stuff. If we meet some day, and you think
     37  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
     38  * ---------------------------------------------------------------------------
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     43 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.61 2021/04/08 06:20:47 simonb Exp $");
     44 
     45 #ifdef _KERNEL_OPT
     46 #include "opt_ntp.h"
     47 #endif
     48 
     49 #include <sys/param.h>
     50 #include <sys/atomic.h>
     51 #include <sys/evcnt.h>
     52 #include <sys/kauth.h>
     53 #include <sys/kernel.h>
     54 #include <sys/mutex.h>
     55 #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     56 #include <sys/sysctl.h>
     57 #include <sys/syslog.h>
     58 #include <sys/systm.h>
     59 #include <sys/timepps.h>
     60 #include <sys/timetc.h>
     61 #include <sys/timex.h>
     62 #include <sys/xcall.h>
     63 
     64 /*
     65  * A large step happens on boot.  This constant detects such steps.
     66  * It is relatively small so that ntp_update_second gets called enough
     67  * in the typical 'missed a couple of seconds' case, but doesn't loop
     68  * forever when the time step is large.
     69  */
     70 #define LARGE_STEP	200
     71 
     72 /*
     73  * Implement a dummy timecounter which we can use until we get a real one
     74  * in the air.  This allows the console and other early stuff to use
     75  * time services.
     76  */
     77 
     78 static u_int
     79 dummy_get_timecount(struct timecounter *tc)
     80 {
     81 	static u_int now;
     82 
     83 	return ++now;
     84 }
     85 
     86 static struct timecounter dummy_timecounter = {
     87 	.tc_get_timecount	= dummy_get_timecount,
     88 	.tc_counter_mask	= ~0u,
     89 	.tc_frequency		= 1000000,
     90 	.tc_name		= "dummy",
     91 	.tc_quality		= -1000000,
     92 	.tc_priv		= NULL,
     93 };
     94 
     95 struct timehands {
     96 	/* These fields must be initialized by the driver. */
     97 	struct timecounter	*th_counter;     /* active timecounter */
     98 	int64_t			th_adjustment;   /* frequency adjustment */
     99 						 /* (NTP/adjtime) */
    100 	uint64_t		th_scale;        /* scale factor (counter */
    101 						 /* tick->time) */
    102 	uint64_t 		th_offset_count; /* offset at last time */
    103 						 /* update (tc_windup()) */
    104 	struct bintime		th_offset;       /* bin (up)time at windup */
    105 	struct timeval		th_microtime;    /* cached microtime */
    106 	struct timespec		th_nanotime;     /* cached nanotime */
    107 	/* Fields not to be copied in tc_windup start with th_generation. */
    108 	volatile u_int		th_generation;   /* current genration */
    109 	struct timehands	*th_next;        /* next timehand */
    110 };
    111 
    112 static struct timehands th0;
    113 static struct timehands th9 = { .th_next = &th0, };
    114 static struct timehands th8 = { .th_next = &th9, };
    115 static struct timehands th7 = { .th_next = &th8, };
    116 static struct timehands th6 = { .th_next = &th7, };
    117 static struct timehands th5 = { .th_next = &th6, };
    118 static struct timehands th4 = { .th_next = &th5, };
    119 static struct timehands th3 = { .th_next = &th4, };
    120 static struct timehands th2 = { .th_next = &th3, };
    121 static struct timehands th1 = { .th_next = &th2, };
    122 static struct timehands th0 = {
    123 	.th_counter = &dummy_timecounter,
    124 	.th_scale = (uint64_t)-1 / 1000000,
    125 	.th_offset = { .sec = 1, .frac = 0 },
    126 	.th_generation = 1,
    127 	.th_next = &th1,
    128 };
    129 
    130 static struct timehands *volatile timehands = &th0;
    131 struct timecounter *timecounter = &dummy_timecounter;
    132 static struct timecounter *timecounters = &dummy_timecounter;
    133 
    134 volatile time_t time_second __cacheline_aligned = 1;
    135 volatile time_t time_uptime __cacheline_aligned = 1;
    136 
    137 static struct bintime timebasebin;
    138 
    139 static int timestepwarnings;
    140 
    141 kmutex_t timecounter_lock;
    142 static u_int timecounter_mods;
    143 static volatile int timecounter_removals = 1;
    144 static u_int timecounter_bad;
    145 
    146 /*
    147  * sysctl helper routine for kern.timercounter.hardware
    148  */
    149 static int
    150 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    151 {
    152 	struct sysctlnode node;
    153 	int error;
    154 	char newname[MAX_TCNAMELEN];
    155 	struct timecounter *newtc, *tc;
    156 
    157 	tc = timecounter;
    158 
    159 	strlcpy(newname, tc->tc_name, sizeof(newname));
    160 
    161 	node = *rnode;
    162 	node.sysctl_data = newname;
    163 	node.sysctl_size = sizeof(newname);
    164 
    165 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    166 
    167 	if (error ||
    168 	    newp == NULL ||
    169 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    170 		return error;
    171 
    172 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
    173 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
    174 	    NULL, NULL)) != 0)
    175 		return error;
    176 
    177 	if (!cold)
    178 		mutex_spin_enter(&timecounter_lock);
    179 	error = EINVAL;
    180 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    181 		if (strcmp(newname, newtc->tc_name) != 0)
    182 			continue;
    183 		/* Warm up new timecounter. */
    184 		(void)newtc->tc_get_timecount(newtc);
    185 		(void)newtc->tc_get_timecount(newtc);
    186 		timecounter = newtc;
    187 		error = 0;
    188 		break;
    189 	}
    190 	if (!cold)
    191 		mutex_spin_exit(&timecounter_lock);
    192 	return error;
    193 }
    194 
    195 static int
    196 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    197 {
    198 	char buf[MAX_TCNAMELEN+48];
    199 	char *where;
    200 	const char *spc;
    201 	struct timecounter *tc;
    202 	size_t needed, left, slen;
    203 	int error, mods;
    204 
    205 	if (newp != NULL)
    206 		return EPERM;
    207 	if (namelen != 0)
    208 		return EINVAL;
    209 
    210 	mutex_spin_enter(&timecounter_lock);
    211  retry:
    212 	spc = "";
    213 	error = 0;
    214 	needed = 0;
    215 	left = *oldlenp;
    216 	where = oldp;
    217 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    218 		if (where == NULL) {
    219 			needed += sizeof(buf);  /* be conservative */
    220 		} else {
    221 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    222 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    223 					tc->tc_frequency);
    224 			if (left < slen + 1)
    225 				break;
    226 		 	mods = timecounter_mods;
    227 			mutex_spin_exit(&timecounter_lock);
    228 			error = copyout(buf, where, slen + 1);
    229 			mutex_spin_enter(&timecounter_lock);
    230 			if (mods != timecounter_mods) {
    231 				goto retry;
    232 			}
    233 			spc = " ";
    234 			where += slen;
    235 			needed += slen;
    236 			left -= slen;
    237 		}
    238 	}
    239 	mutex_spin_exit(&timecounter_lock);
    240 
    241 	*oldlenp = needed;
    242 	return error;
    243 }
    244 
    245 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    246 {
    247 	const struct sysctlnode *node;
    248 
    249 	sysctl_createv(clog, 0, NULL, &node,
    250 		       CTLFLAG_PERMANENT,
    251 		       CTLTYPE_NODE, "timecounter",
    252 		       SYSCTL_DESCR("time counter information"),
    253 		       NULL, 0, NULL, 0,
    254 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    255 
    256 	if (node != NULL) {
    257 		sysctl_createv(clog, 0, NULL, NULL,
    258 			       CTLFLAG_PERMANENT,
    259 			       CTLTYPE_STRING, "choice",
    260 			       SYSCTL_DESCR("available counters"),
    261 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    262 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    263 
    264 		sysctl_createv(clog, 0, NULL, NULL,
    265 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    266 			       CTLTYPE_STRING, "hardware",
    267 			       SYSCTL_DESCR("currently active time counter"),
    268 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    269 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    270 
    271 		sysctl_createv(clog, 0, NULL, NULL,
    272 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    273 			       CTLTYPE_INT, "timestepwarnings",
    274 			       SYSCTL_DESCR("log time steps"),
    275 			       NULL, 0, &timestepwarnings, 0,
    276 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    277 	}
    278 }
    279 
    280 #ifdef TC_COUNTERS
    281 #define	TC_STATS(name)							\
    282 static struct evcnt n##name =						\
    283     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    284 EVCNT_ATTACH_STATIC(n##name)
    285 TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    286 TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    287 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    288 TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    289 TC_STATS(setclock);
    290 #define	TC_COUNT(var)	var.ev_count++
    291 #undef TC_STATS
    292 #else
    293 #define	TC_COUNT(var)	/* nothing */
    294 #endif	/* TC_COUNTERS */
    295 
    296 static void tc_windup(void);
    297 
    298 /*
    299  * Return the difference between the timehands' counter value now and what
    300  * was when we copied it to the timehands' offset_count.
    301  */
    302 static inline u_int
    303 tc_delta(struct timehands *th)
    304 {
    305 	struct timecounter *tc;
    306 
    307 	tc = th->th_counter;
    308 	return (tc->tc_get_timecount(tc) -
    309 		 th->th_offset_count) & tc->tc_counter_mask;
    310 }
    311 
    312 /*
    313  * Functions for reading the time.  We have to loop until we are sure that
    314  * the timehands that we operated on was not updated under our feet.  See
    315  * the comment in <sys/timevar.h> for a description of these 12 functions.
    316  */
    317 
    318 void
    319 binuptime(struct bintime *bt)
    320 {
    321 	struct timehands *th;
    322 	lwp_t *l;
    323 	u_int lgen, gen;
    324 
    325 	TC_COUNT(nbinuptime);
    326 
    327 	/*
    328 	 * Provide exclusion against tc_detach().
    329 	 *
    330 	 * We record the number of timecounter removals before accessing
    331 	 * timecounter state.  Note that the LWP can be using multiple
    332 	 * "generations" at once, due to interrupts (interrupted while in
    333 	 * this function).  Hardware interrupts will borrow the interrupted
    334 	 * LWP's l_tcgen value for this purpose, and can themselves be
    335 	 * interrupted by higher priority interrupts.  In this case we need
    336 	 * to ensure that the oldest generation in use is recorded.
    337 	 *
    338 	 * splsched() is too expensive to use, so we take care to structure
    339 	 * this code in such a way that it is not required.  Likewise, we
    340 	 * do not disable preemption.
    341 	 *
    342 	 * Memory barriers are also too expensive to use for such a
    343 	 * performance critical function.  The good news is that we do not
    344 	 * need memory barriers for this type of exclusion, as the thread
    345 	 * updating timecounter_removals will issue a broadcast cross call
    346 	 * before inspecting our l_tcgen value (this elides memory ordering
    347 	 * issues).
    348 	 */
    349 	l = curlwp;
    350 	lgen = l->l_tcgen;
    351 	if (__predict_true(lgen == 0)) {
    352 		l->l_tcgen = timecounter_removals;
    353 	}
    354 	__insn_barrier();
    355 
    356 	do {
    357 		th = timehands;
    358 		gen = th->th_generation;
    359 		*bt = th->th_offset;
    360 		bintime_addx(bt, th->th_scale * tc_delta(th));
    361 	} while (gen == 0 || gen != th->th_generation);
    362 
    363 	__insn_barrier();
    364 	l->l_tcgen = lgen;
    365 }
    366 
    367 void
    368 nanouptime(struct timespec *tsp)
    369 {
    370 	struct bintime bt;
    371 
    372 	TC_COUNT(nnanouptime);
    373 	binuptime(&bt);
    374 	bintime2timespec(&bt, tsp);
    375 }
    376 
    377 void
    378 microuptime(struct timeval *tvp)
    379 {
    380 	struct bintime bt;
    381 
    382 	TC_COUNT(nmicrouptime);
    383 	binuptime(&bt);
    384 	bintime2timeval(&bt, tvp);
    385 }
    386 
    387 void
    388 bintime(struct bintime *bt)
    389 {
    390 
    391 	TC_COUNT(nbintime);
    392 	binuptime(bt);
    393 	bintime_add(bt, &timebasebin);
    394 }
    395 
    396 void
    397 nanotime(struct timespec *tsp)
    398 {
    399 	struct bintime bt;
    400 
    401 	TC_COUNT(nnanotime);
    402 	bintime(&bt);
    403 	bintime2timespec(&bt, tsp);
    404 }
    405 
    406 void
    407 microtime(struct timeval *tvp)
    408 {
    409 	struct bintime bt;
    410 
    411 	TC_COUNT(nmicrotime);
    412 	bintime(&bt);
    413 	bintime2timeval(&bt, tvp);
    414 }
    415 
    416 void
    417 getbinuptime(struct bintime *bt)
    418 {
    419 	struct timehands *th;
    420 	u_int gen;
    421 
    422 	TC_COUNT(ngetbinuptime);
    423 	do {
    424 		th = timehands;
    425 		gen = th->th_generation;
    426 		*bt = th->th_offset;
    427 	} while (gen == 0 || gen != th->th_generation);
    428 }
    429 
    430 void
    431 getnanouptime(struct timespec *tsp)
    432 {
    433 	struct timehands *th;
    434 	u_int gen;
    435 
    436 	TC_COUNT(ngetnanouptime);
    437 	do {
    438 		th = timehands;
    439 		gen = th->th_generation;
    440 		bintime2timespec(&th->th_offset, tsp);
    441 	} while (gen == 0 || gen != th->th_generation);
    442 }
    443 
    444 void
    445 getmicrouptime(struct timeval *tvp)
    446 {
    447 	struct timehands *th;
    448 	u_int gen;
    449 
    450 	TC_COUNT(ngetmicrouptime);
    451 	do {
    452 		th = timehands;
    453 		gen = th->th_generation;
    454 		bintime2timeval(&th->th_offset, tvp);
    455 	} while (gen == 0 || gen != th->th_generation);
    456 }
    457 
    458 void
    459 getbintime(struct bintime *bt)
    460 {
    461 	struct timehands *th;
    462 	u_int gen;
    463 
    464 	TC_COUNT(ngetbintime);
    465 	do {
    466 		th = timehands;
    467 		gen = th->th_generation;
    468 		*bt = th->th_offset;
    469 	} while (gen == 0 || gen != th->th_generation);
    470 	bintime_add(bt, &timebasebin);
    471 }
    472 
    473 static inline void
    474 dogetnanotime(struct timespec *tsp)
    475 {
    476 	struct timehands *th;
    477 	u_int gen;
    478 
    479 	TC_COUNT(ngetnanotime);
    480 	do {
    481 		th = timehands;
    482 		gen = th->th_generation;
    483 		*tsp = th->th_nanotime;
    484 	} while (gen == 0 || gen != th->th_generation);
    485 }
    486 
    487 void
    488 getnanotime(struct timespec *tsp)
    489 {
    490 
    491 	dogetnanotime(tsp);
    492 }
    493 
    494 void dtrace_getnanotime(struct timespec *tsp);
    495 
    496 void
    497 dtrace_getnanotime(struct timespec *tsp)
    498 {
    499 
    500 	dogetnanotime(tsp);
    501 }
    502 
    503 void
    504 getmicrotime(struct timeval *tvp)
    505 {
    506 	struct timehands *th;
    507 	u_int gen;
    508 
    509 	TC_COUNT(ngetmicrotime);
    510 	do {
    511 		th = timehands;
    512 		gen = th->th_generation;
    513 		*tvp = th->th_microtime;
    514 	} while (gen == 0 || gen != th->th_generation);
    515 }
    516 
    517 void
    518 getnanoboottime(struct timespec *tsp)
    519 {
    520 	struct bintime bt;
    521 
    522 	getbinboottime(&bt);
    523 	bintime2timespec(&bt, tsp);
    524 }
    525 
    526 void
    527 getmicroboottime(struct timeval *tvp)
    528 {
    529 	struct bintime bt;
    530 
    531 	getbinboottime(&bt);
    532 	bintime2timeval(&bt, tvp);
    533 }
    534 
    535 void
    536 getbinboottime(struct bintime *bt)
    537 {
    538 
    539 	/*
    540 	 * XXX Need lockless read synchronization around timebasebin
    541 	 * (and not just here).
    542 	 */
    543 	*bt = timebasebin;
    544 }
    545 
    546 /*
    547  * Initialize a new timecounter and possibly use it.
    548  */
    549 void
    550 tc_init(struct timecounter *tc)
    551 {
    552 	u_int u;
    553 
    554 	KASSERTMSG(tc->tc_next == NULL, "timecounter %s already initialised",
    555 	    tc->tc_name);
    556 
    557 	u = tc->tc_frequency / tc->tc_counter_mask;
    558 	/* XXX: We need some margin here, 10% is a guess */
    559 	u *= 11;
    560 	u /= 10;
    561 	if (u > hz && tc->tc_quality >= 0) {
    562 		tc->tc_quality = -2000;
    563 		aprint_verbose(
    564 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
    565 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    566 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
    567 	} else if (tc->tc_quality >= 0 || bootverbose) {
    568 		aprint_verbose(
    569 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
    570 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
    571 		    tc->tc_quality);
    572 	}
    573 
    574 	mutex_spin_enter(&timecounter_lock);
    575 	tc->tc_next = timecounters;
    576 	timecounters = tc;
    577 	timecounter_mods++;
    578 	/*
    579 	 * Never automatically use a timecounter with negative quality.
    580 	 * Even though we run on the dummy counter, switching here may be
    581 	 * worse since this timecounter may not be monotonous.
    582 	 */
    583 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
    584 	    (tc->tc_quality == timecounter->tc_quality &&
    585 	    tc->tc_frequency > timecounter->tc_frequency))) {
    586 		(void)tc->tc_get_timecount(tc);
    587 		(void)tc->tc_get_timecount(tc);
    588 		timecounter = tc;
    589 		tc_windup();
    590 	}
    591 	mutex_spin_exit(&timecounter_lock);
    592 }
    593 
    594 /*
    595  * Pick a new timecounter due to the existing counter going bad.
    596  */
    597 static void
    598 tc_pick(void)
    599 {
    600 	struct timecounter *best, *tc;
    601 
    602 	KASSERT(mutex_owned(&timecounter_lock));
    603 
    604 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
    605 		if (tc->tc_quality > best->tc_quality)
    606 			best = tc;
    607 		else if (tc->tc_quality < best->tc_quality)
    608 			continue;
    609 		else if (tc->tc_frequency > best->tc_frequency)
    610 			best = tc;
    611 	}
    612 	(void)best->tc_get_timecount(best);
    613 	(void)best->tc_get_timecount(best);
    614 	timecounter = best;
    615 }
    616 
    617 /*
    618  * A timecounter has gone bad, arrange to pick a new one at the next
    619  * clock tick.
    620  */
    621 void
    622 tc_gonebad(struct timecounter *tc)
    623 {
    624 
    625 	tc->tc_quality = -100;
    626 	membar_producer();
    627 	atomic_inc_uint(&timecounter_bad);
    628 }
    629 
    630 /*
    631  * Stop using a timecounter and remove it from the timecounters list.
    632  */
    633 int
    634 tc_detach(struct timecounter *target)
    635 {
    636 	struct timecounter *tc;
    637 	struct timecounter **tcp = NULL;
    638 	int removals;
    639 	lwp_t *l;
    640 
    641 	/* First, find the timecounter. */
    642 	mutex_spin_enter(&timecounter_lock);
    643 	for (tcp = &timecounters, tc = timecounters;
    644 	     tc != NULL;
    645 	     tcp = &tc->tc_next, tc = tc->tc_next) {
    646 		if (tc == target)
    647 			break;
    648 	}
    649 	if (tc == NULL) {
    650 		mutex_spin_exit(&timecounter_lock);
    651 		return ESRCH;
    652 	}
    653 
    654 	/* And now, remove it. */
    655 	*tcp = tc->tc_next;
    656 	if (timecounter == target) {
    657 		tc_pick();
    658 		tc_windup();
    659 	}
    660 	timecounter_mods++;
    661 	removals = timecounter_removals++;
    662 	mutex_spin_exit(&timecounter_lock);
    663 
    664 	/*
    665 	 * We now have to determine if any threads in the system are still
    666 	 * making use of this timecounter.
    667 	 *
    668 	 * We issue a broadcast cross call to elide memory ordering issues,
    669 	 * then scan all LWPs in the system looking at each's timecounter
    670 	 * generation number.  We need to see a value of zero (not actively
    671 	 * using a timecounter) or a value greater than our removal value.
    672 	 *
    673 	 * We may race with threads that read `timecounter_removals' and
    674 	 * and then get preempted before updating `l_tcgen'.  This is not
    675 	 * a problem, since it means that these threads have not yet started
    676 	 * accessing timecounter state.  All we do need is one clean
    677 	 * snapshot of the system where every thread appears not to be using
    678 	 * old timecounter state.
    679 	 */
    680 	for (;;) {
    681 		xc_barrier(0);
    682 
    683 		mutex_enter(&proc_lock);
    684 		LIST_FOREACH(l, &alllwp, l_list) {
    685 			if (l->l_tcgen == 0 || l->l_tcgen > removals) {
    686 				/*
    687 				 * Not using timecounter or old timecounter
    688 				 * state at time of our xcall or later.
    689 				 */
    690 				continue;
    691 			}
    692 			break;
    693 		}
    694 		mutex_exit(&proc_lock);
    695 
    696 		/*
    697 		 * If the timecounter is still in use, wait at least 10ms
    698 		 * before retrying.
    699 		 */
    700 		if (l == NULL) {
    701 			return 0;
    702 		}
    703 		(void)kpause("tcdetach", false, mstohz(10), NULL);
    704 	}
    705 }
    706 
    707 /* Report the frequency of the current timecounter. */
    708 uint64_t
    709 tc_getfrequency(void)
    710 {
    711 
    712 	return timehands->th_counter->tc_frequency;
    713 }
    714 
    715 /*
    716  * Step our concept of UTC.  This is done by modifying our estimate of
    717  * when we booted.
    718  */
    719 void
    720 tc_setclock(const struct timespec *ts)
    721 {
    722 	struct timespec ts2;
    723 	struct bintime bt, bt2;
    724 
    725 	mutex_spin_enter(&timecounter_lock);
    726 	TC_COUNT(nsetclock);
    727 	binuptime(&bt2);
    728 	timespec2bintime(ts, &bt);
    729 	bintime_sub(&bt, &bt2);
    730 	bintime_add(&bt2, &timebasebin);
    731 	timebasebin = bt;
    732 	tc_windup();
    733 	mutex_spin_exit(&timecounter_lock);
    734 
    735 	if (timestepwarnings) {
    736 		bintime2timespec(&bt2, &ts2);
    737 		log(LOG_INFO,
    738 		    "Time stepped from %lld.%09ld to %lld.%09ld\n",
    739 		    (long long)ts2.tv_sec, ts2.tv_nsec,
    740 		    (long long)ts->tv_sec, ts->tv_nsec);
    741 	}
    742 }
    743 
    744 /*
    745  * Initialize the next struct timehands in the ring and make
    746  * it the active timehands.  Along the way we might switch to a different
    747  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    748  */
    749 static void
    750 tc_windup(void)
    751 {
    752 	struct bintime bt;
    753 	struct timehands *th, *tho;
    754 	uint64_t scale;
    755 	u_int delta, ncount, ogen;
    756 	int i, s_update;
    757 	time_t t;
    758 
    759 	KASSERT(mutex_owned(&timecounter_lock));
    760 
    761 	s_update = 0;
    762 
    763 	/*
    764 	 * Make the next timehands a copy of the current one, but do not
    765 	 * overwrite the generation or next pointer.  While we update
    766 	 * the contents, the generation must be zero.  Ensure global
    767 	 * visibility of the generation before proceeding.
    768 	 */
    769 	tho = timehands;
    770 	th = tho->th_next;
    771 	ogen = th->th_generation;
    772 	th->th_generation = 0;
    773 	membar_producer();
    774 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    775 
    776 	/*
    777 	 * Capture a timecounter delta on the current timecounter and if
    778 	 * changing timecounters, a counter value from the new timecounter.
    779 	 * Update the offset fields accordingly.
    780 	 */
    781 	delta = tc_delta(th);
    782 	if (th->th_counter != timecounter)
    783 		ncount = timecounter->tc_get_timecount(timecounter);
    784 	else
    785 		ncount = 0;
    786 	th->th_offset_count += delta;
    787 	bintime_addx(&th->th_offset, th->th_scale * delta);
    788 
    789 	/*
    790 	 * Hardware latching timecounters may not generate interrupts on
    791 	 * PPS events, so instead we poll them.  There is a finite risk that
    792 	 * the hardware might capture a count which is later than the one we
    793 	 * got above, and therefore possibly in the next NTP second which might
    794 	 * have a different rate than the current NTP second.  It doesn't
    795 	 * matter in practice.
    796 	 */
    797 	if (tho->th_counter->tc_poll_pps)
    798 		tho->th_counter->tc_poll_pps(tho->th_counter);
    799 
    800 	/*
    801 	 * Deal with NTP second processing.  The for loop normally
    802 	 * iterates at most once, but in extreme situations it might
    803 	 * keep NTP sane if timeouts are not run for several seconds.
    804 	 * At boot, the time step can be large when the TOD hardware
    805 	 * has been read, so on really large steps, we call
    806 	 * ntp_update_second only twice.  We need to call it twice in
    807 	 * case we missed a leap second.
    808 	 * If NTP is not compiled in ntp_update_second still calculates
    809 	 * the adjustment resulting from adjtime() calls.
    810 	 */
    811 	bt = th->th_offset;
    812 	bintime_add(&bt, &timebasebin);
    813 	i = bt.sec - tho->th_microtime.tv_sec;
    814 	if (i > LARGE_STEP)
    815 		i = 2;
    816 	for (; i > 0; i--) {
    817 		t = bt.sec;
    818 		ntp_update_second(&th->th_adjustment, &bt.sec);
    819 		s_update = 1;
    820 		if (bt.sec != t)
    821 			timebasebin.sec += bt.sec - t;
    822 	}
    823 
    824 	/* Update the UTC timestamps used by the get*() functions. */
    825 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    826 	bintime2timeval(&bt, &th->th_microtime);
    827 	bintime2timespec(&bt, &th->th_nanotime);
    828 	/* Now is a good time to change timecounters. */
    829 	if (th->th_counter != timecounter) {
    830 		th->th_counter = timecounter;
    831 		th->th_offset_count = ncount;
    832 		s_update = 1;
    833 	}
    834 
    835 	/*-
    836 	 * Recalculate the scaling factor.  We want the number of 1/2^64
    837 	 * fractions of a second per period of the hardware counter, taking
    838 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
    839 	 * processing provides us with.
    840 	 *
    841 	 * The th_adjustment is nanoseconds per second with 32 bit binary
    842 	 * fraction and we want 64 bit binary fraction of second:
    843 	 *
    844 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
    845 	 *
    846 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
    847 	 * we can only multiply by about 850 without overflowing, but that
    848 	 * leaves suitably precise fractions for multiply before divide.
    849 	 *
    850 	 * Divide before multiply with a fraction of 2199/512 results in a
    851 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
    852 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
    853  	 *
    854 	 * We happily sacrifice the lowest of the 64 bits of our result
    855 	 * to the goddess of code clarity.
    856 	 *
    857 	 */
    858 	if (s_update) {
    859 		scale = (uint64_t)1 << 63;
    860 		scale += (th->th_adjustment / 1024) * 2199;
    861 		scale /= th->th_counter->tc_frequency;
    862 		th->th_scale = scale * 2;
    863 	}
    864 	/*
    865 	 * Now that the struct timehands is again consistent, set the new
    866 	 * generation number, making sure to not make it zero.  Ensure
    867 	 * changes are globally visible before changing.
    868 	 */
    869 	if (++ogen == 0)
    870 		ogen = 1;
    871 	membar_producer();
    872 	th->th_generation = ogen;
    873 
    874 	/*
    875 	 * Go live with the new struct timehands.  Ensure changes are
    876 	 * globally visible before changing.
    877 	 */
    878 	time_second = th->th_microtime.tv_sec;
    879 	time_uptime = th->th_offset.sec;
    880 	membar_producer();
    881 	timehands = th;
    882 
    883 	/*
    884 	 * Force users of the old timehand to move on.  This is
    885 	 * necessary for MP systems; we need to ensure that the
    886 	 * consumers will move away from the old timehand before
    887 	 * we begin updating it again when we eventually wrap
    888 	 * around.
    889 	 */
    890 	if (++tho->th_generation == 0)
    891 		tho->th_generation = 1;
    892 }
    893 
    894 /*
    895  * RFC 2783 PPS-API implementation.
    896  */
    897 
    898 int
    899 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
    900 {
    901 	pps_params_t *app;
    902 	pps_info_t *pipi;
    903 #ifdef PPS_SYNC
    904 	int *epi;
    905 #endif
    906 
    907 	KASSERT(mutex_owned(&timecounter_lock));
    908 
    909 	KASSERT(pps != NULL);
    910 
    911 	switch (cmd) {
    912 	case PPS_IOC_CREATE:
    913 		return 0;
    914 	case PPS_IOC_DESTROY:
    915 		return 0;
    916 	case PPS_IOC_SETPARAMS:
    917 		app = (pps_params_t *)data;
    918 		if (app->mode & ~pps->ppscap)
    919 			return EINVAL;
    920 		pps->ppsparam = *app;
    921 		return 0;
    922 	case PPS_IOC_GETPARAMS:
    923 		app = (pps_params_t *)data;
    924 		*app = pps->ppsparam;
    925 		app->api_version = PPS_API_VERS_1;
    926 		return 0;
    927 	case PPS_IOC_GETCAP:
    928 		*(int*)data = pps->ppscap;
    929 		return 0;
    930 	case PPS_IOC_FETCH:
    931 		pipi = (pps_info_t *)data;
    932 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
    933 		*pipi = pps->ppsinfo;
    934 		return 0;
    935 	case PPS_IOC_KCBIND:
    936 #ifdef PPS_SYNC
    937 		epi = (int *)data;
    938 		/* XXX Only root should be able to do this */
    939 		if (*epi & ~pps->ppscap)
    940 			return EINVAL;
    941 		pps->kcmode = *epi;
    942 		return 0;
    943 #else
    944 		return EOPNOTSUPP;
    945 #endif
    946 	default:
    947 		return EPASSTHROUGH;
    948 	}
    949 }
    950 
    951 void
    952 pps_init(struct pps_state *pps)
    953 {
    954 
    955 	KASSERT(mutex_owned(&timecounter_lock));
    956 
    957 	pps->ppscap |= PPS_TSFMT_TSPEC;
    958 	if (pps->ppscap & PPS_CAPTUREASSERT)
    959 		pps->ppscap |= PPS_OFFSETASSERT;
    960 	if (pps->ppscap & PPS_CAPTURECLEAR)
    961 		pps->ppscap |= PPS_OFFSETCLEAR;
    962 }
    963 
    964 /*
    965  * capture a timetamp in the pps structure
    966  */
    967 void
    968 pps_capture(struct pps_state *pps)
    969 {
    970 	struct timehands *th;
    971 
    972 	KASSERT(mutex_owned(&timecounter_lock));
    973 	KASSERT(pps != NULL);
    974 
    975 	th = timehands;
    976 	pps->capgen = th->th_generation;
    977 	pps->capth = th;
    978 	pps->capcount = (uint64_t)tc_delta(th) + th->th_offset_count;
    979 	if (pps->capgen != th->th_generation)
    980 		pps->capgen = 0;
    981 }
    982 
    983 #ifdef PPS_DEBUG
    984 int ppsdebug = 0;
    985 #endif
    986 
    987 /*
    988  * process a pps_capture()ed event
    989  */
    990 void
    991 pps_event(struct pps_state *pps, int event)
    992 {
    993 	pps_ref_event(pps, event, NULL, PPS_REFEVNT_PPS|PPS_REFEVNT_CAPTURE);
    994 }
    995 
    996 /*
    997  * extended pps api /  kernel pll/fll entry point
    998  *
    999  * feed reference time stamps to PPS engine
   1000  *
   1001  * will simulate a PPS event and feed
   1002  * the NTP PLL/FLL if requested.
   1003  *
   1004  * the ref time stamps should be roughly once
   1005  * a second but do not need to be exactly in phase
   1006  * with the UTC second but should be close to it.
   1007  * this relaxation of requirements allows callout
   1008  * driven timestamping mechanisms to feed to pps
   1009  * capture/kernel pll logic.
   1010  *
   1011  * calling pattern is:
   1012  *  pps_capture() (for PPS_REFEVNT_{CAPTURE|CAPCUR})
   1013  *  read timestamp from reference source
   1014  *  pps_ref_event()
   1015  *
   1016  * supported refmodes:
   1017  *  PPS_REFEVNT_CAPTURE
   1018  *    use system timestamp of pps_capture()
   1019  *  PPS_REFEVNT_CURRENT
   1020  *    use system timestamp of this call
   1021  *  PPS_REFEVNT_CAPCUR
   1022  *    use average of read capture and current system time stamp
   1023  *  PPS_REFEVNT_PPS
   1024  *    assume timestamp on second mark - ref_ts is ignored
   1025  *
   1026  */
   1027 
   1028 void
   1029 pps_ref_event(struct pps_state *pps,
   1030 	      int event,
   1031 	      struct bintime *ref_ts,
   1032 	      int refmode
   1033 	)
   1034 {
   1035 	struct bintime bt;	/* current time */
   1036 	struct bintime btd;	/* time difference */
   1037 	struct bintime bt_ref;	/* reference time */
   1038 	struct timespec ts, *tsp, *osp;
   1039 	struct timehands *th;
   1040 	uint64_t tcount, acount, dcount, *pcount;
   1041 	int foff, gen;
   1042 #ifdef PPS_SYNC
   1043 	int fhard;
   1044 #endif
   1045 	pps_seq_t *pseq;
   1046 
   1047 	KASSERT(mutex_owned(&timecounter_lock));
   1048 
   1049 	KASSERT(pps != NULL);
   1050 
   1051         /* pick up current time stamp if needed */
   1052 	if (refmode & (PPS_REFEVNT_CURRENT|PPS_REFEVNT_CAPCUR)) {
   1053 		/* pick up current time stamp */
   1054 		th = timehands;
   1055 		gen = th->th_generation;
   1056 		tcount = (uint64_t)tc_delta(th) + th->th_offset_count;
   1057 		if (gen != th->th_generation)
   1058 			gen = 0;
   1059 
   1060 		/* If the timecounter was wound up underneath us, bail out. */
   1061 		if (pps->capgen == 0 ||
   1062 		    pps->capgen != pps->capth->th_generation ||
   1063 		    gen == 0 ||
   1064 		    gen != pps->capgen) {
   1065 #ifdef PPS_DEBUG
   1066 			if (ppsdebug & 0x1) {
   1067 				log(LOG_DEBUG,
   1068 				    "pps_ref_event(pps=%p, event=%d, ...): DROP (wind-up)\n",
   1069 				    pps, event);
   1070 			}
   1071 #endif
   1072 			return;
   1073 		}
   1074 	} else {
   1075 		tcount = 0;	/* keep GCC happy */
   1076 	}
   1077 
   1078 #ifdef PPS_DEBUG
   1079 	if (ppsdebug & 0x1) {
   1080 		struct timespec tmsp;
   1081 
   1082 		if (ref_ts == NULL) {
   1083 			tmsp.tv_sec = 0;
   1084 			tmsp.tv_nsec = 0;
   1085 		} else {
   1086 			bintime2timespec(ref_ts, &tmsp);
   1087 		}
   1088 
   1089 		log(LOG_DEBUG,
   1090 		    "pps_ref_event(pps=%p, event=%d, ref_ts=%"PRIi64
   1091 		    ".%09"PRIi32", refmode=0x%1x)\n",
   1092 		    pps, event, tmsp.tv_sec, (int32_t)tmsp.tv_nsec, refmode);
   1093 	}
   1094 #endif
   1095 
   1096 	/* setup correct event references */
   1097 	if (event == PPS_CAPTUREASSERT) {
   1098 		tsp = &pps->ppsinfo.assert_timestamp;
   1099 		osp = &pps->ppsparam.assert_offset;
   1100 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
   1101 #ifdef PPS_SYNC
   1102 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
   1103 #endif
   1104 		pcount = &pps->ppscount[0];
   1105 		pseq = &pps->ppsinfo.assert_sequence;
   1106 	} else {
   1107 		tsp = &pps->ppsinfo.clear_timestamp;
   1108 		osp = &pps->ppsparam.clear_offset;
   1109 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
   1110 #ifdef PPS_SYNC
   1111 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
   1112 #endif
   1113 		pcount = &pps->ppscount[1];
   1114 		pseq = &pps->ppsinfo.clear_sequence;
   1115 	}
   1116 
   1117 	/* determine system time stamp according to refmode */
   1118 	dcount = 0;		/* keep GCC happy */
   1119 	switch (refmode & PPS_REFEVNT_RMASK) {
   1120 	case PPS_REFEVNT_CAPTURE:
   1121 		acount = pps->capcount;	/* use capture timestamp */
   1122 		break;
   1123 
   1124 	case PPS_REFEVNT_CURRENT:
   1125 		acount = tcount; /* use current timestamp */
   1126 		break;
   1127 
   1128 	case PPS_REFEVNT_CAPCUR:
   1129 		/*
   1130 		 * calculate counter value between pps_capture() and
   1131 		 * pps_ref_event()
   1132 		 */
   1133 		dcount = tcount - pps->capcount;
   1134 		acount = (dcount / 2) + pps->capcount;
   1135 		break;
   1136 
   1137 	default:		/* ignore call error silently */
   1138 		return;
   1139 	}
   1140 
   1141 	/*
   1142 	 * If the timecounter changed, we cannot compare the count values, so
   1143 	 * we have to drop the rest of the PPS-stuff until the next event.
   1144 	 */
   1145 	if (pps->ppstc != pps->capth->th_counter) {
   1146 		pps->ppstc = pps->capth->th_counter;
   1147 		pps->capcount = acount;
   1148 		*pcount = acount;
   1149 		pps->ppscount[2] = acount;
   1150 #ifdef PPS_DEBUG
   1151 		if (ppsdebug & 0x1) {
   1152 			log(LOG_DEBUG,
   1153 			    "pps_ref_event(pps=%p, event=%d, ...): DROP (time-counter change)\n",
   1154 			    pps, event);
   1155 		}
   1156 #endif
   1157 		return;
   1158 	}
   1159 
   1160 	pps->capcount = acount;
   1161 
   1162 	/* Convert the count to a bintime. */
   1163 	bt = pps->capth->th_offset;
   1164 	bintime_addx(&bt, pps->capth->th_scale * (acount - pps->capth->th_offset_count));
   1165 	bintime_add(&bt, &timebasebin);
   1166 
   1167 	if ((refmode & PPS_REFEVNT_PPS) == 0) {
   1168 		/* determine difference to reference time stamp */
   1169 		bt_ref = *ref_ts;
   1170 
   1171 		btd = bt;
   1172 		bintime_sub(&btd, &bt_ref);
   1173 
   1174 		/*
   1175 		 * simulate a PPS timestamp by dropping the fraction
   1176 		 * and applying the offset
   1177 		 */
   1178 		if (bt.frac >= (uint64_t)1<<63)	/* skip to nearest second */
   1179 			bt.sec++;
   1180 		bt.frac = 0;
   1181 		bintime_add(&bt, &btd);
   1182 	} else {
   1183 		/*
   1184 		 * create ref_ts from current time -
   1185 		 * we are supposed to be called on
   1186 		 * the second mark
   1187 		 */
   1188 		bt_ref = bt;
   1189 		if (bt_ref.frac >= (uint64_t)1<<63)	/* skip to nearest second */
   1190 			bt_ref.sec++;
   1191 		bt_ref.frac = 0;
   1192 	}
   1193 
   1194 	/* convert bintime to timestamp */
   1195 	bintime2timespec(&bt, &ts);
   1196 
   1197 	/* If the timecounter was wound up underneath us, bail out. */
   1198 	if (pps->capgen != pps->capth->th_generation)
   1199 		return;
   1200 
   1201 	/* store time stamp */
   1202 	*pcount = pps->capcount;
   1203 	(*pseq)++;
   1204 	*tsp = ts;
   1205 
   1206 	/* add offset correction */
   1207 	if (foff) {
   1208 		timespecadd(tsp, osp, tsp);
   1209 		if (tsp->tv_nsec < 0) {
   1210 			tsp->tv_nsec += 1000000000;
   1211 			tsp->tv_sec -= 1;
   1212 		}
   1213 	}
   1214 
   1215 #ifdef PPS_DEBUG
   1216 	if (ppsdebug & 0x2) {
   1217 		struct timespec ts2;
   1218 		struct timespec ts3;
   1219 
   1220 		bintime2timespec(&bt_ref, &ts2);
   1221 
   1222 		bt.sec = 0;
   1223 		bt.frac = 0;
   1224 
   1225 		if (refmode & PPS_REFEVNT_CAPCUR) {
   1226 			    bintime_addx(&bt, pps->capth->th_scale * dcount);
   1227 		}
   1228 		bintime2timespec(&bt, &ts3);
   1229 
   1230 		log(LOG_DEBUG, "ref_ts=%"PRIi64".%09"PRIi32
   1231 		    ", ts=%"PRIi64".%09"PRIi32", read latency=%"PRIi64" ns\n",
   1232 		    ts2.tv_sec, (int32_t)ts2.tv_nsec,
   1233 		    tsp->tv_sec, (int32_t)tsp->tv_nsec,
   1234 		    timespec2ns(&ts3));
   1235 	}
   1236 #endif
   1237 
   1238 #ifdef PPS_SYNC
   1239 	if (fhard) {
   1240 		uint64_t scale;
   1241 		uint64_t div;
   1242 
   1243 		/*
   1244 		 * Feed the NTP PLL/FLL.
   1245 		 * The FLL wants to know how many (hardware) nanoseconds
   1246 		 * elapsed since the previous event (mod 1 second) thus
   1247 		 * we are actually looking at the frequency difference scaled
   1248 		 * in nsec.
   1249 		 * As the counter time stamps are not truly at 1Hz
   1250 		 * we need to scale the count by the elapsed
   1251 		 * reference time.
   1252 		 * valid sampling interval: [0.5..2[ sec
   1253 		 */
   1254 
   1255 		/* calculate elapsed raw count */
   1256 		tcount = pps->capcount - pps->ppscount[2];
   1257 		pps->ppscount[2] = pps->capcount;
   1258 		tcount &= pps->capth->th_counter->tc_counter_mask;
   1259 
   1260 		/* calculate elapsed ref time */
   1261 		btd = bt_ref;
   1262 		bintime_sub(&btd, &pps->ref_time);
   1263 		pps->ref_time = bt_ref;
   1264 
   1265 		/* check that we stay below 2 sec */
   1266 		if (btd.sec < 0 || btd.sec > 1)
   1267 			return;
   1268 
   1269 		/* we want at least 0.5 sec between samples */
   1270 		if (btd.sec == 0 && btd.frac < (uint64_t)1<<63)
   1271 			return;
   1272 
   1273 		/*
   1274 		 * calculate cycles per period by multiplying
   1275 		 * the frequency with the elapsed period
   1276 		 * we pick a fraction of 30 bits
   1277 		 * ~1ns resolution for elapsed time
   1278 		 */
   1279 		div   = (uint64_t)btd.sec << 30;
   1280 		div  |= (btd.frac >> 34) & (((uint64_t)1 << 30) - 1);
   1281 		div  *= pps->capth->th_counter->tc_frequency;
   1282 		div >>= 30;
   1283 
   1284 		if (div == 0)	/* safeguard */
   1285 			return;
   1286 
   1287 		scale = (uint64_t)1 << 63;
   1288 		scale /= div;
   1289 		scale *= 2;
   1290 
   1291 		bt.sec = 0;
   1292 		bt.frac = 0;
   1293 		bintime_addx(&bt, scale * tcount);
   1294 		bintime2timespec(&bt, &ts);
   1295 
   1296 #ifdef PPS_DEBUG
   1297 		if (ppsdebug & 0x4) {
   1298 			struct timespec ts2;
   1299 			int64_t df;
   1300 
   1301 			bintime2timespec(&bt_ref, &ts2);
   1302 			df = timespec2ns(&ts);
   1303 			if (df > 500000000)
   1304 				df -= 1000000000;
   1305 			log(LOG_DEBUG, "hardpps: ref_ts=%"PRIi64
   1306 			    ".%09"PRIi32", ts=%"PRIi64".%09"PRIi32
   1307 			    ", freqdiff=%"PRIi64" ns/s\n",
   1308 			    ts2.tv_sec, (int32_t)ts2.tv_nsec,
   1309 			    tsp->tv_sec, (int32_t)tsp->tv_nsec,
   1310 			    df);
   1311 		}
   1312 #endif
   1313 
   1314 		hardpps(tsp, timespec2ns(&ts));
   1315 	}
   1316 #endif
   1317 }
   1318 
   1319 /*
   1320  * Timecounters need to be updated every so often to prevent the hardware
   1321  * counter from overflowing.  Updating also recalculates the cached values
   1322  * used by the get*() family of functions, so their precision depends on
   1323  * the update frequency.
   1324  */
   1325 
   1326 static int tc_tick;
   1327 
   1328 void
   1329 tc_ticktock(void)
   1330 {
   1331 	static int count;
   1332 
   1333 	if (++count < tc_tick)
   1334 		return;
   1335 	count = 0;
   1336 	mutex_spin_enter(&timecounter_lock);
   1337 	if (__predict_false(timecounter_bad != 0)) {
   1338 		/* An existing timecounter has gone bad, pick a new one. */
   1339 		(void)atomic_swap_uint(&timecounter_bad, 0);
   1340 		if (timecounter->tc_quality < 0) {
   1341 			tc_pick();
   1342 		}
   1343 	}
   1344 	tc_windup();
   1345 	mutex_spin_exit(&timecounter_lock);
   1346 }
   1347 
   1348 void
   1349 inittimecounter(void)
   1350 {
   1351 	u_int p;
   1352 
   1353 	mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
   1354 
   1355 	/*
   1356 	 * Set the initial timeout to
   1357 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
   1358 	 * People should probably not use the sysctl to set the timeout
   1359 	 * to smaller than its initial value, since that value is the
   1360 	 * smallest reasonable one.  If they want better timestamps they
   1361 	 * should use the non-"get"* functions.
   1362 	 */
   1363 	if (hz > 1000)
   1364 		tc_tick = (hz + 500) / 1000;
   1365 	else
   1366 		tc_tick = 1;
   1367 	p = (tc_tick * 1000000) / hz;
   1368 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
   1369 	    p / 1000, p % 1000);
   1370 
   1371 	/* warm up new timecounter (again) and get rolling. */
   1372 	(void)timecounter->tc_get_timecount(timecounter);
   1373 	(void)timecounter->tc_get_timecount(timecounter);
   1374 }
   1375