Home | History | Annotate | Line # | Download | only in kern
kern_tc.c revision 1.75
      1 /* $NetBSD: kern_tc.c,v 1.75 2023/07/28 10:37:28 riastradh Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * ----------------------------------------------------------------------------
     34  * "THE BEER-WARE LICENSE" (Revision 42):
     35  * <phk (at) FreeBSD.ORG> wrote this file.  As long as you retain this notice you
     36  * can do whatever you want with this stuff. If we meet some day, and you think
     37  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
     38  * ---------------------------------------------------------------------------
     39  */
     40 
     41 /*
     42  * https://papers.freebsd.org/2002/phk-timecounters.files/timecounter.pdf
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
     47 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.75 2023/07/28 10:37:28 riastradh Exp $");
     48 
     49 #ifdef _KERNEL_OPT
     50 #include "opt_ntp.h"
     51 #endif
     52 
     53 #include <sys/param.h>
     54 
     55 #include <sys/atomic.h>
     56 #include <sys/evcnt.h>
     57 #include <sys/kauth.h>
     58 #include <sys/kernel.h>
     59 #include <sys/lock.h>
     60 #include <sys/mutex.h>
     61 #include <sys/reboot.h>	/* XXX just to get AB_VERBOSE */
     62 #include <sys/sysctl.h>
     63 #include <sys/syslog.h>
     64 #include <sys/systm.h>
     65 #include <sys/timepps.h>
     66 #include <sys/timetc.h>
     67 #include <sys/timex.h>
     68 #include <sys/xcall.h>
     69 
     70 /*
     71  * A large step happens on boot.  This constant detects such steps.
     72  * It is relatively small so that ntp_update_second gets called enough
     73  * in the typical 'missed a couple of seconds' case, but doesn't loop
     74  * forever when the time step is large.
     75  */
     76 #define LARGE_STEP	200
     77 
     78 /*
     79  * Implement a dummy timecounter which we can use until we get a real one
     80  * in the air.  This allows the console and other early stuff to use
     81  * time services.
     82  */
     83 
     84 static u_int
     85 dummy_get_timecount(struct timecounter *tc)
     86 {
     87 	static u_int now;
     88 
     89 	return ++now;
     90 }
     91 
     92 static struct timecounter dummy_timecounter = {
     93 	.tc_get_timecount	= dummy_get_timecount,
     94 	.tc_counter_mask	= ~0u,
     95 	.tc_frequency		= 1000000,
     96 	.tc_name		= "dummy",
     97 	.tc_quality		= -1000000,
     98 	.tc_priv		= NULL,
     99 };
    100 
    101 struct timehands {
    102 	/* These fields must be initialized by the driver. */
    103 	struct timecounter	*th_counter;     /* active timecounter */
    104 	int64_t			th_adjustment;   /* frequency adjustment */
    105 						 /* (NTP/adjtime) */
    106 	uint64_t		th_scale;        /* scale factor (counter */
    107 						 /* tick->time) */
    108 	uint64_t 		th_offset_count; /* offset at last time */
    109 						 /* update (tc_windup()) */
    110 	struct bintime		th_offset;       /* bin (up)time at windup */
    111 	struct timeval		th_microtime;    /* cached microtime */
    112 	struct timespec		th_nanotime;     /* cached nanotime */
    113 	/* Fields not to be copied in tc_windup start with th_generation. */
    114 	volatile u_int		th_generation;   /* current genration */
    115 	struct timehands	*th_next;        /* next timehand */
    116 };
    117 
    118 static struct timehands th0;
    119 static struct timehands th9 = { .th_next = &th0, };
    120 static struct timehands th8 = { .th_next = &th9, };
    121 static struct timehands th7 = { .th_next = &th8, };
    122 static struct timehands th6 = { .th_next = &th7, };
    123 static struct timehands th5 = { .th_next = &th6, };
    124 static struct timehands th4 = { .th_next = &th5, };
    125 static struct timehands th3 = { .th_next = &th4, };
    126 static struct timehands th2 = { .th_next = &th3, };
    127 static struct timehands th1 = { .th_next = &th2, };
    128 static struct timehands th0 = {
    129 	.th_counter = &dummy_timecounter,
    130 	.th_scale = (uint64_t)-1 / 1000000,
    131 	.th_offset = { .sec = 1, .frac = 0 },
    132 	.th_generation = 1,
    133 	.th_next = &th1,
    134 };
    135 
    136 static struct timehands *volatile timehands = &th0;
    137 struct timecounter *timecounter = &dummy_timecounter;
    138 static struct timecounter *timecounters = &dummy_timecounter;
    139 
    140 /* used by savecore(8) */
    141 time_t time_second_legacy asm("time_second");
    142 
    143 #ifdef __HAVE_ATOMIC64_LOADSTORE
    144 volatile time_t time__second __cacheline_aligned = 1;
    145 volatile time_t time__uptime __cacheline_aligned = 1;
    146 #else
    147 static volatile struct {
    148 	uint32_t lo, hi;
    149 } time__uptime32 __cacheline_aligned = {
    150 	.lo = 1,
    151 }, time__second32 __cacheline_aligned = {
    152 	.lo = 1,
    153 };
    154 #endif
    155 
    156 static struct {
    157 	struct bintime bin;
    158 	volatile unsigned gen;	/* even when stable, odd when changing */
    159 } timebase __cacheline_aligned;
    160 
    161 static int timestepwarnings;
    162 
    163 kmutex_t timecounter_lock;
    164 static u_int timecounter_mods;
    165 static volatile int timecounter_removals = 1;
    166 static u_int timecounter_bad;
    167 
    168 #ifdef __HAVE_ATOMIC64_LOADSTORE
    169 
    170 static inline void
    171 setrealuptime(time_t second, time_t uptime)
    172 {
    173 
    174 	time_second_legacy = second;
    175 
    176 	atomic_store_relaxed(&time__second, second);
    177 	atomic_store_relaxed(&time__uptime, uptime);
    178 }
    179 
    180 #else
    181 
    182 static inline void
    183 setrealuptime(time_t second, time_t uptime)
    184 {
    185 	uint32_t seclo = second & 0xffffffff, sechi = second >> 32;
    186 	uint32_t uplo = uptime & 0xffffffff, uphi = uptime >> 32;
    187 
    188 	KDASSERT(mutex_owned(&timecounter_lock));
    189 
    190 	time_second_legacy = second;
    191 
    192 	/*
    193 	 * Fast path -- no wraparound, just updating the low bits, so
    194 	 * no need for seqlocked access.
    195 	 */
    196 	if (__predict_true(sechi == time__second32.hi) &&
    197 	    __predict_true(uphi == time__uptime32.hi)) {
    198 		atomic_store_relaxed(&time__second32.lo, seclo);
    199 		atomic_store_relaxed(&time__uptime32.lo, uplo);
    200 		return;
    201 	}
    202 
    203 	atomic_store_relaxed(&time__second32.hi, 0xffffffff);
    204 	atomic_store_relaxed(&time__uptime32.hi, 0xffffffff);
    205 	membar_producer();
    206 	atomic_store_relaxed(&time__second32.lo, seclo);
    207 	atomic_store_relaxed(&time__uptime32.lo, uplo);
    208 	membar_producer();
    209 	atomic_store_relaxed(&time__second32.hi, sechi);
    210 	atomic_store_relaxed(&time__uptime32.hi, uphi);
    211 }
    212 
    213 time_t
    214 getrealtime(void)
    215 {
    216 	uint32_t lo, hi;
    217 
    218 	do {
    219 		for (;;) {
    220 			hi = atomic_load_relaxed(&time__second32.hi);
    221 			if (__predict_true(hi != 0xffffffff))
    222 				break;
    223 			SPINLOCK_BACKOFF_HOOK;
    224 		}
    225 		membar_consumer();
    226 		lo = atomic_load_relaxed(&time__second32.lo);
    227 		membar_consumer();
    228 	} while (hi != atomic_load_relaxed(&time__second32.hi));
    229 
    230 	return ((time_t)hi << 32) | lo;
    231 }
    232 
    233 time_t
    234 getuptime(void)
    235 {
    236 	uint32_t lo, hi;
    237 
    238 	do {
    239 		for (;;) {
    240 			hi = atomic_load_relaxed(&time__uptime32.hi);
    241 			if (__predict_true(hi != 0xffffffff))
    242 				break;
    243 			SPINLOCK_BACKOFF_HOOK;
    244 		}
    245 		membar_consumer();
    246 		lo = atomic_load_relaxed(&time__uptime32.lo);
    247 		membar_consumer();
    248 	} while (hi != atomic_load_relaxed(&time__uptime32.hi));
    249 
    250 	return ((time_t)hi << 32) | lo;
    251 }
    252 
    253 time_t
    254 getboottime(void)
    255 {
    256 
    257 	return getrealtime() - getuptime();
    258 }
    259 
    260 uint32_t
    261 getuptime32(void)
    262 {
    263 
    264 	return atomic_load_relaxed(&time__uptime32.lo);
    265 }
    266 
    267 #endif	/* !defined(__HAVE_ATOMIC64_LOADSTORE) */
    268 
    269 /*
    270  * sysctl helper routine for kern.timercounter.hardware
    271  */
    272 static int
    273 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
    274 {
    275 	struct sysctlnode node;
    276 	int error;
    277 	char newname[MAX_TCNAMELEN];
    278 	struct timecounter *newtc, *tc;
    279 
    280 	tc = timecounter;
    281 
    282 	strlcpy(newname, tc->tc_name, sizeof(newname));
    283 
    284 	node = *rnode;
    285 	node.sysctl_data = newname;
    286 	node.sysctl_size = sizeof(newname);
    287 
    288 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    289 
    290 	if (error ||
    291 	    newp == NULL ||
    292 	    strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
    293 		return error;
    294 
    295 	if (l != NULL && (error = kauth_authorize_system(l->l_cred,
    296 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
    297 	    NULL, NULL)) != 0)
    298 		return error;
    299 
    300 	if (!cold)
    301 		mutex_spin_enter(&timecounter_lock);
    302 	error = EINVAL;
    303 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
    304 		if (strcmp(newname, newtc->tc_name) != 0)
    305 			continue;
    306 		/* Warm up new timecounter. */
    307 		(void)newtc->tc_get_timecount(newtc);
    308 		(void)newtc->tc_get_timecount(newtc);
    309 		timecounter = newtc;
    310 		error = 0;
    311 		break;
    312 	}
    313 	if (!cold)
    314 		mutex_spin_exit(&timecounter_lock);
    315 	return error;
    316 }
    317 
    318 static int
    319 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
    320 {
    321 	char buf[MAX_TCNAMELEN+48];
    322 	char *where;
    323 	const char *spc;
    324 	struct timecounter *tc;
    325 	size_t needed, left, slen;
    326 	int error, mods;
    327 
    328 	if (newp != NULL)
    329 		return EPERM;
    330 	if (namelen != 0)
    331 		return EINVAL;
    332 
    333 	mutex_spin_enter(&timecounter_lock);
    334  retry:
    335 	spc = "";
    336 	error = 0;
    337 	needed = 0;
    338 	left = *oldlenp;
    339 	where = oldp;
    340 	for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
    341 		if (where == NULL) {
    342 			needed += sizeof(buf);  /* be conservative */
    343 		} else {
    344 			slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
    345 					" Hz)", spc, tc->tc_name, tc->tc_quality,
    346 					tc->tc_frequency);
    347 			if (left < slen + 1)
    348 				break;
    349 		 	mods = timecounter_mods;
    350 			mutex_spin_exit(&timecounter_lock);
    351 			error = copyout(buf, where, slen + 1);
    352 			mutex_spin_enter(&timecounter_lock);
    353 			if (mods != timecounter_mods) {
    354 				goto retry;
    355 			}
    356 			spc = " ";
    357 			where += slen;
    358 			needed += slen;
    359 			left -= slen;
    360 		}
    361 	}
    362 	mutex_spin_exit(&timecounter_lock);
    363 
    364 	*oldlenp = needed;
    365 	return error;
    366 }
    367 
    368 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
    369 {
    370 	const struct sysctlnode *node;
    371 
    372 	sysctl_createv(clog, 0, NULL, &node,
    373 		       CTLFLAG_PERMANENT,
    374 		       CTLTYPE_NODE, "timecounter",
    375 		       SYSCTL_DESCR("time counter information"),
    376 		       NULL, 0, NULL, 0,
    377 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    378 
    379 	if (node != NULL) {
    380 		sysctl_createv(clog, 0, NULL, NULL,
    381 			       CTLFLAG_PERMANENT,
    382 			       CTLTYPE_STRING, "choice",
    383 			       SYSCTL_DESCR("available counters"),
    384 			       sysctl_kern_timecounter_choice, 0, NULL, 0,
    385 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    386 
    387 		sysctl_createv(clog, 0, NULL, NULL,
    388 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    389 			       CTLTYPE_STRING, "hardware",
    390 			       SYSCTL_DESCR("currently active time counter"),
    391 			       sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
    392 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    393 
    394 		sysctl_createv(clog, 0, NULL, NULL,
    395 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    396 			       CTLTYPE_INT, "timestepwarnings",
    397 			       SYSCTL_DESCR("log time steps"),
    398 			       NULL, 0, &timestepwarnings, 0,
    399 			       CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
    400 	}
    401 }
    402 
    403 #ifdef TC_COUNTERS
    404 #define	TC_STATS(name)							\
    405 static struct evcnt n##name =						\
    406     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);	\
    407 EVCNT_ATTACH_STATIC(n##name)
    408 TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
    409 TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
    410 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
    411 TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
    412 TC_STATS(setclock);
    413 #define	TC_COUNT(var)	var.ev_count++
    414 #undef TC_STATS
    415 #else
    416 #define	TC_COUNT(var)	/* nothing */
    417 #endif	/* TC_COUNTERS */
    418 
    419 static void tc_windup(void);
    420 
    421 /*
    422  * Return the difference between the timehands' counter value now and what
    423  * was when we copied it to the timehands' offset_count.
    424  */
    425 static inline u_int
    426 tc_delta(struct timehands *th)
    427 {
    428 	struct timecounter *tc;
    429 
    430 	tc = th->th_counter;
    431 	return (tc->tc_get_timecount(tc) -
    432 		 th->th_offset_count) & tc->tc_counter_mask;
    433 }
    434 
    435 /*
    436  * Functions for reading the time.  We have to loop until we are sure that
    437  * the timehands that we operated on was not updated under our feet.  See
    438  * the comment in <sys/timevar.h> for a description of these 12 functions.
    439  */
    440 
    441 void
    442 binuptime(struct bintime *bt)
    443 {
    444 	struct timehands *th;
    445 	lwp_t *l;
    446 	u_int lgen, gen;
    447 
    448 	TC_COUNT(nbinuptime);
    449 
    450 	/*
    451 	 * Provide exclusion against tc_detach().
    452 	 *
    453 	 * We record the number of timecounter removals before accessing
    454 	 * timecounter state.  Note that the LWP can be using multiple
    455 	 * "generations" at once, due to interrupts (interrupted while in
    456 	 * this function).  Hardware interrupts will borrow the interrupted
    457 	 * LWP's l_tcgen value for this purpose, and can themselves be
    458 	 * interrupted by higher priority interrupts.  In this case we need
    459 	 * to ensure that the oldest generation in use is recorded.
    460 	 *
    461 	 * splsched() is too expensive to use, so we take care to structure
    462 	 * this code in such a way that it is not required.  Likewise, we
    463 	 * do not disable preemption.
    464 	 *
    465 	 * Memory barriers are also too expensive to use for such a
    466 	 * performance critical function.  The good news is that we do not
    467 	 * need memory barriers for this type of exclusion, as the thread
    468 	 * updating timecounter_removals will issue a broadcast cross call
    469 	 * before inspecting our l_tcgen value (this elides memory ordering
    470 	 * issues).
    471 	 *
    472 	 * XXX If the author of the above comment knows how to make it
    473 	 * safe to avoid memory barriers around the access to
    474 	 * th->th_generation, I'm all ears.
    475 	 */
    476 	l = curlwp;
    477 	lgen = l->l_tcgen;
    478 	if (__predict_true(lgen == 0)) {
    479 		l->l_tcgen = timecounter_removals;
    480 	}
    481 	__insn_barrier();
    482 
    483 	do {
    484 		th = atomic_load_consume(&timehands);
    485 		gen = th->th_generation;
    486 		membar_consumer();
    487 		*bt = th->th_offset;
    488 		bintime_addx(bt, th->th_scale * tc_delta(th));
    489 		membar_consumer();
    490 	} while (gen == 0 || gen != th->th_generation);
    491 
    492 	__insn_barrier();
    493 	l->l_tcgen = lgen;
    494 }
    495 
    496 void
    497 nanouptime(struct timespec *tsp)
    498 {
    499 	struct bintime bt;
    500 
    501 	TC_COUNT(nnanouptime);
    502 	binuptime(&bt);
    503 	bintime2timespec(&bt, tsp);
    504 }
    505 
    506 void
    507 microuptime(struct timeval *tvp)
    508 {
    509 	struct bintime bt;
    510 
    511 	TC_COUNT(nmicrouptime);
    512 	binuptime(&bt);
    513 	bintime2timeval(&bt, tvp);
    514 }
    515 
    516 void
    517 bintime(struct bintime *bt)
    518 {
    519 	struct bintime boottime;
    520 
    521 	TC_COUNT(nbintime);
    522 	binuptime(bt);
    523 	getbinboottime(&boottime);
    524 	bintime_add(bt, &boottime);
    525 }
    526 
    527 void
    528 nanotime(struct timespec *tsp)
    529 {
    530 	struct bintime bt;
    531 
    532 	TC_COUNT(nnanotime);
    533 	bintime(&bt);
    534 	bintime2timespec(&bt, tsp);
    535 }
    536 
    537 void
    538 microtime(struct timeval *tvp)
    539 {
    540 	struct bintime bt;
    541 
    542 	TC_COUNT(nmicrotime);
    543 	bintime(&bt);
    544 	bintime2timeval(&bt, tvp);
    545 }
    546 
    547 void
    548 getbinuptime(struct bintime *bt)
    549 {
    550 	struct timehands *th;
    551 	u_int gen;
    552 
    553 	TC_COUNT(ngetbinuptime);
    554 	do {
    555 		th = atomic_load_consume(&timehands);
    556 		gen = th->th_generation;
    557 		membar_consumer();
    558 		*bt = th->th_offset;
    559 		membar_consumer();
    560 	} while (gen == 0 || gen != th->th_generation);
    561 }
    562 
    563 void
    564 getnanouptime(struct timespec *tsp)
    565 {
    566 	struct timehands *th;
    567 	u_int gen;
    568 
    569 	TC_COUNT(ngetnanouptime);
    570 	do {
    571 		th = atomic_load_consume(&timehands);
    572 		gen = th->th_generation;
    573 		membar_consumer();
    574 		bintime2timespec(&th->th_offset, tsp);
    575 		membar_consumer();
    576 	} while (gen == 0 || gen != th->th_generation);
    577 }
    578 
    579 void
    580 getmicrouptime(struct timeval *tvp)
    581 {
    582 	struct timehands *th;
    583 	u_int gen;
    584 
    585 	TC_COUNT(ngetmicrouptime);
    586 	do {
    587 		th = atomic_load_consume(&timehands);
    588 		gen = th->th_generation;
    589 		membar_consumer();
    590 		bintime2timeval(&th->th_offset, tvp);
    591 		membar_consumer();
    592 	} while (gen == 0 || gen != th->th_generation);
    593 }
    594 
    595 void
    596 getbintime(struct bintime *bt)
    597 {
    598 	struct timehands *th;
    599 	struct bintime boottime;
    600 	u_int gen;
    601 
    602 	TC_COUNT(ngetbintime);
    603 	do {
    604 		th = atomic_load_consume(&timehands);
    605 		gen = th->th_generation;
    606 		membar_consumer();
    607 		*bt = th->th_offset;
    608 		membar_consumer();
    609 	} while (gen == 0 || gen != th->th_generation);
    610 	getbinboottime(&boottime);
    611 	bintime_add(bt, &boottime);
    612 }
    613 
    614 static inline void
    615 dogetnanotime(struct timespec *tsp)
    616 {
    617 	struct timehands *th;
    618 	u_int gen;
    619 
    620 	TC_COUNT(ngetnanotime);
    621 	do {
    622 		th = atomic_load_consume(&timehands);
    623 		gen = th->th_generation;
    624 		membar_consumer();
    625 		*tsp = th->th_nanotime;
    626 		membar_consumer();
    627 	} while (gen == 0 || gen != th->th_generation);
    628 }
    629 
    630 void
    631 getnanotime(struct timespec *tsp)
    632 {
    633 
    634 	dogetnanotime(tsp);
    635 }
    636 
    637 void dtrace_getnanotime(struct timespec *tsp);
    638 
    639 void
    640 dtrace_getnanotime(struct timespec *tsp)
    641 {
    642 
    643 	dogetnanotime(tsp);
    644 }
    645 
    646 void
    647 getmicrotime(struct timeval *tvp)
    648 {
    649 	struct timehands *th;
    650 	u_int gen;
    651 
    652 	TC_COUNT(ngetmicrotime);
    653 	do {
    654 		th = atomic_load_consume(&timehands);
    655 		gen = th->th_generation;
    656 		membar_consumer();
    657 		*tvp = th->th_microtime;
    658 		membar_consumer();
    659 	} while (gen == 0 || gen != th->th_generation);
    660 }
    661 
    662 void
    663 getnanoboottime(struct timespec *tsp)
    664 {
    665 	struct bintime bt;
    666 
    667 	getbinboottime(&bt);
    668 	bintime2timespec(&bt, tsp);
    669 }
    670 
    671 void
    672 getmicroboottime(struct timeval *tvp)
    673 {
    674 	struct bintime bt;
    675 
    676 	getbinboottime(&bt);
    677 	bintime2timeval(&bt, tvp);
    678 }
    679 
    680 void
    681 getbinboottime(struct bintime *basep)
    682 {
    683 	struct bintime base;
    684 	unsigned gen;
    685 
    686 	do {
    687 		/* Spin until the timebase isn't changing.  */
    688 		while ((gen = atomic_load_relaxed(&timebase.gen)) & 1)
    689 			SPINLOCK_BACKOFF_HOOK;
    690 
    691 		/* Read out a snapshot of the timebase.  */
    692 		membar_consumer();
    693 		base = timebase.bin;
    694 		membar_consumer();
    695 
    696 		/* Restart if it changed while we were reading.  */
    697 	} while (gen != atomic_load_relaxed(&timebase.gen));
    698 
    699 	*basep = base;
    700 }
    701 
    702 /*
    703  * Initialize a new timecounter and possibly use it.
    704  */
    705 void
    706 tc_init(struct timecounter *tc)
    707 {
    708 	u_int u;
    709 
    710 	KASSERTMSG(tc->tc_next == NULL, "timecounter %s already initialised",
    711 	    tc->tc_name);
    712 
    713 	u = tc->tc_frequency / tc->tc_counter_mask;
    714 	/* XXX: We need some margin here, 10% is a guess */
    715 	u *= 11;
    716 	u /= 10;
    717 	if (u > hz && tc->tc_quality >= 0) {
    718 		tc->tc_quality = -2000;
    719 		aprint_verbose(
    720 		    "timecounter: Timecounter \"%s\" frequency %ju Hz",
    721 			    tc->tc_name, (uintmax_t)tc->tc_frequency);
    722 		aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
    723 	} else if (tc->tc_quality >= 0 || bootverbose) {
    724 		aprint_verbose(
    725 		    "timecounter: Timecounter \"%s\" frequency %ju Hz "
    726 		    "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
    727 		    tc->tc_quality);
    728 	}
    729 
    730 	mutex_spin_enter(&timecounter_lock);
    731 	tc->tc_next = timecounters;
    732 	timecounters = tc;
    733 	timecounter_mods++;
    734 	/*
    735 	 * Never automatically use a timecounter with negative quality.
    736 	 * Even though we run on the dummy counter, switching here may be
    737 	 * worse since this timecounter may not be monotonous.
    738 	 */
    739 	if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
    740 	    (tc->tc_quality == timecounter->tc_quality &&
    741 	    tc->tc_frequency > timecounter->tc_frequency))) {
    742 		(void)tc->tc_get_timecount(tc);
    743 		(void)tc->tc_get_timecount(tc);
    744 		timecounter = tc;
    745 		tc_windup();
    746 	}
    747 	mutex_spin_exit(&timecounter_lock);
    748 }
    749 
    750 /*
    751  * Pick a new timecounter due to the existing counter going bad.
    752  */
    753 static void
    754 tc_pick(void)
    755 {
    756 	struct timecounter *best, *tc;
    757 
    758 	KASSERT(mutex_owned(&timecounter_lock));
    759 
    760 	for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
    761 		if (tc->tc_quality > best->tc_quality)
    762 			best = tc;
    763 		else if (tc->tc_quality < best->tc_quality)
    764 			continue;
    765 		else if (tc->tc_frequency > best->tc_frequency)
    766 			best = tc;
    767 	}
    768 	(void)best->tc_get_timecount(best);
    769 	(void)best->tc_get_timecount(best);
    770 	timecounter = best;
    771 }
    772 
    773 /*
    774  * A timecounter has gone bad, arrange to pick a new one at the next
    775  * clock tick.
    776  */
    777 void
    778 tc_gonebad(struct timecounter *tc)
    779 {
    780 
    781 	tc->tc_quality = -100;
    782 	membar_producer();
    783 	atomic_inc_uint(&timecounter_bad);
    784 }
    785 
    786 /*
    787  * Stop using a timecounter and remove it from the timecounters list.
    788  */
    789 int
    790 tc_detach(struct timecounter *target)
    791 {
    792 	struct timecounter *tc;
    793 	struct timecounter **tcp = NULL;
    794 	int removals;
    795 	lwp_t *l;
    796 
    797 	/* First, find the timecounter. */
    798 	mutex_spin_enter(&timecounter_lock);
    799 	for (tcp = &timecounters, tc = timecounters;
    800 	     tc != NULL;
    801 	     tcp = &tc->tc_next, tc = tc->tc_next) {
    802 		if (tc == target)
    803 			break;
    804 	}
    805 	if (tc == NULL) {
    806 		mutex_spin_exit(&timecounter_lock);
    807 		return ESRCH;
    808 	}
    809 
    810 	/* And now, remove it. */
    811 	*tcp = tc->tc_next;
    812 	if (timecounter == target) {
    813 		tc_pick();
    814 		tc_windup();
    815 	}
    816 	timecounter_mods++;
    817 	removals = timecounter_removals++;
    818 	mutex_spin_exit(&timecounter_lock);
    819 
    820 	/*
    821 	 * We now have to determine if any threads in the system are still
    822 	 * making use of this timecounter.
    823 	 *
    824 	 * We issue a broadcast cross call to elide memory ordering issues,
    825 	 * then scan all LWPs in the system looking at each's timecounter
    826 	 * generation number.  We need to see a value of zero (not actively
    827 	 * using a timecounter) or a value greater than our removal value.
    828 	 *
    829 	 * We may race with threads that read `timecounter_removals' and
    830 	 * and then get preempted before updating `l_tcgen'.  This is not
    831 	 * a problem, since it means that these threads have not yet started
    832 	 * accessing timecounter state.  All we do need is one clean
    833 	 * snapshot of the system where every thread appears not to be using
    834 	 * old timecounter state.
    835 	 */
    836 	for (;;) {
    837 		xc_barrier(0);
    838 
    839 		mutex_enter(&proc_lock);
    840 		LIST_FOREACH(l, &alllwp, l_list) {
    841 			if (l->l_tcgen == 0 || l->l_tcgen > removals) {
    842 				/*
    843 				 * Not using timecounter or old timecounter
    844 				 * state at time of our xcall or later.
    845 				 */
    846 				continue;
    847 			}
    848 			break;
    849 		}
    850 		mutex_exit(&proc_lock);
    851 
    852 		/*
    853 		 * If the timecounter is still in use, wait at least 10ms
    854 		 * before retrying.
    855 		 */
    856 		if (l == NULL) {
    857 			break;
    858 		}
    859 		(void)kpause("tcdetach", false, mstohz(10), NULL);
    860 	}
    861 
    862 	tc->tc_next = NULL;
    863 	return 0;
    864 }
    865 
    866 /* Report the frequency of the current timecounter. */
    867 uint64_t
    868 tc_getfrequency(void)
    869 {
    870 
    871 	return atomic_load_consume(&timehands)->th_counter->tc_frequency;
    872 }
    873 
    874 /*
    875  * Step our concept of UTC.  This is done by modifying our estimate of
    876  * when we booted.
    877  */
    878 void
    879 tc_setclock(const struct timespec *ts)
    880 {
    881 	struct timespec ts2;
    882 	struct bintime bt, bt2;
    883 
    884 	mutex_spin_enter(&timecounter_lock);
    885 	TC_COUNT(nsetclock);
    886 	binuptime(&bt2);
    887 	timespec2bintime(ts, &bt);
    888 	bintime_sub(&bt, &bt2);
    889 	bintime_add(&bt2, &timebase.bin);
    890 	timebase.gen |= 1;	/* change in progress */
    891 	membar_producer();
    892 	timebase.bin = bt;
    893 	membar_producer();
    894 	timebase.gen++;		/* commit change */
    895 	tc_windup();
    896 	mutex_spin_exit(&timecounter_lock);
    897 
    898 	if (timestepwarnings) {
    899 		bintime2timespec(&bt2, &ts2);
    900 		log(LOG_INFO,
    901 		    "Time stepped from %lld.%09ld to %lld.%09ld\n",
    902 		    (long long)ts2.tv_sec, ts2.tv_nsec,
    903 		    (long long)ts->tv_sec, ts->tv_nsec);
    904 	}
    905 }
    906 
    907 /*
    908  * Initialize the next struct timehands in the ring and make
    909  * it the active timehands.  Along the way we might switch to a different
    910  * timecounter and/or do seconds processing in NTP.  Slightly magic.
    911  */
    912 static void
    913 tc_windup(void)
    914 {
    915 	struct bintime bt;
    916 	struct timehands *th, *tho;
    917 	uint64_t scale;
    918 	u_int delta, ncount, ogen;
    919 	int i, s_update;
    920 	time_t t;
    921 
    922 	KASSERT(mutex_owned(&timecounter_lock));
    923 
    924 	s_update = 0;
    925 
    926 	/*
    927 	 * Make the next timehands a copy of the current one, but do not
    928 	 * overwrite the generation or next pointer.  While we update
    929 	 * the contents, the generation must be zero.  Ensure global
    930 	 * visibility of the generation before proceeding.
    931 	 */
    932 	tho = timehands;
    933 	th = tho->th_next;
    934 	ogen = th->th_generation;
    935 	th->th_generation = 0;
    936 	membar_producer();
    937 	bcopy(tho, th, offsetof(struct timehands, th_generation));
    938 
    939 	/*
    940 	 * Capture a timecounter delta on the current timecounter and if
    941 	 * changing timecounters, a counter value from the new timecounter.
    942 	 * Update the offset fields accordingly.
    943 	 */
    944 	delta = tc_delta(th);
    945 	if (th->th_counter != timecounter)
    946 		ncount = timecounter->tc_get_timecount(timecounter);
    947 	else
    948 		ncount = 0;
    949 	th->th_offset_count += delta;
    950 	bintime_addx(&th->th_offset, th->th_scale * delta);
    951 
    952 	/*
    953 	 * Hardware latching timecounters may not generate interrupts on
    954 	 * PPS events, so instead we poll them.  There is a finite risk that
    955 	 * the hardware might capture a count which is later than the one we
    956 	 * got above, and therefore possibly in the next NTP second which might
    957 	 * have a different rate than the current NTP second.  It doesn't
    958 	 * matter in practice.
    959 	 */
    960 	if (tho->th_counter->tc_poll_pps)
    961 		tho->th_counter->tc_poll_pps(tho->th_counter);
    962 
    963 	/*
    964 	 * Deal with NTP second processing.  The for loop normally
    965 	 * iterates at most once, but in extreme situations it might
    966 	 * keep NTP sane if timeouts are not run for several seconds.
    967 	 * At boot, the time step can be large when the TOD hardware
    968 	 * has been read, so on really large steps, we call
    969 	 * ntp_update_second only twice.  We need to call it twice in
    970 	 * case we missed a leap second.
    971 	 * If NTP is not compiled in ntp_update_second still calculates
    972 	 * the adjustment resulting from adjtime() calls.
    973 	 */
    974 	bt = th->th_offset;
    975 	bintime_add(&bt, &timebase.bin);
    976 	i = bt.sec - tho->th_microtime.tv_sec;
    977 	if (i > LARGE_STEP)
    978 		i = 2;
    979 	for (; i > 0; i--) {
    980 		t = bt.sec;
    981 		ntp_update_second(&th->th_adjustment, &bt.sec);
    982 		s_update = 1;
    983 		if (bt.sec != t) {
    984 			timebase.gen |= 1;	/* change in progress */
    985 			membar_producer();
    986 			timebase.bin.sec += bt.sec - t;
    987 			membar_producer();
    988 			timebase.gen++;		/* commit change */
    989 		}
    990 	}
    991 
    992 	/* Update the UTC timestamps used by the get*() functions. */
    993 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
    994 	bintime2timeval(&bt, &th->th_microtime);
    995 	bintime2timespec(&bt, &th->th_nanotime);
    996 	/* Now is a good time to change timecounters. */
    997 	if (th->th_counter != timecounter) {
    998 		th->th_counter = timecounter;
    999 		th->th_offset_count = ncount;
   1000 		s_update = 1;
   1001 	}
   1002 
   1003 	/*-
   1004 	 * Recalculate the scaling factor.  We want the number of 1/2^64
   1005 	 * fractions of a second per period of the hardware counter, taking
   1006 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
   1007 	 * processing provides us with.
   1008 	 *
   1009 	 * The th_adjustment is nanoseconds per second with 32 bit binary
   1010 	 * fraction and we want 64 bit binary fraction of second:
   1011 	 *
   1012 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
   1013 	 *
   1014 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
   1015 	 * we can only multiply by about 850 without overflowing, but that
   1016 	 * leaves suitably precise fractions for multiply before divide.
   1017 	 *
   1018 	 * Divide before multiply with a fraction of 2199/512 results in a
   1019 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
   1020 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
   1021  	 *
   1022 	 * We happily sacrifice the lowest of the 64 bits of our result
   1023 	 * to the goddess of code clarity.
   1024 	 *
   1025 	 */
   1026 	if (s_update) {
   1027 		scale = (uint64_t)1 << 63;
   1028 		scale += (th->th_adjustment / 1024) * 2199;
   1029 		scale /= th->th_counter->tc_frequency;
   1030 		th->th_scale = scale * 2;
   1031 	}
   1032 	/*
   1033 	 * Now that the struct timehands is again consistent, set the new
   1034 	 * generation number, making sure to not make it zero.  Ensure
   1035 	 * changes are globally visible before changing.
   1036 	 */
   1037 	if (++ogen == 0)
   1038 		ogen = 1;
   1039 	membar_producer();
   1040 	th->th_generation = ogen;
   1041 
   1042 	/*
   1043 	 * Go live with the new struct timehands.  Ensure changes are
   1044 	 * globally visible before changing.
   1045 	 */
   1046 	setrealuptime(th->th_microtime.tv_sec, th->th_offset.sec);
   1047 	atomic_store_release(&timehands, th);
   1048 
   1049 	/*
   1050 	 * Force users of the old timehand to move on.  This is
   1051 	 * necessary for MP systems; we need to ensure that the
   1052 	 * consumers will move away from the old timehand before
   1053 	 * we begin updating it again when we eventually wrap
   1054 	 * around.
   1055 	 */
   1056 	if (++tho->th_generation == 0)
   1057 		tho->th_generation = 1;
   1058 }
   1059 
   1060 /*
   1061  * RFC 2783 PPS-API implementation.
   1062  */
   1063 
   1064 int
   1065 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
   1066 {
   1067 	pps_params_t *app;
   1068 	pps_info_t *pipi;
   1069 #ifdef PPS_SYNC
   1070 	int *epi;
   1071 #endif
   1072 
   1073 	KASSERT(mutex_owned(&timecounter_lock));
   1074 
   1075 	KASSERT(pps != NULL);
   1076 
   1077 	switch (cmd) {
   1078 	case PPS_IOC_CREATE:
   1079 		return 0;
   1080 	case PPS_IOC_DESTROY:
   1081 		return 0;
   1082 	case PPS_IOC_SETPARAMS:
   1083 		app = (pps_params_t *)data;
   1084 		if (app->mode & ~pps->ppscap)
   1085 			return EINVAL;
   1086 		pps->ppsparam = *app;
   1087 		return 0;
   1088 	case PPS_IOC_GETPARAMS:
   1089 		app = (pps_params_t *)data;
   1090 		*app = pps->ppsparam;
   1091 		app->api_version = PPS_API_VERS_1;
   1092 		return 0;
   1093 	case PPS_IOC_GETCAP:
   1094 		*(int*)data = pps->ppscap;
   1095 		return 0;
   1096 	case PPS_IOC_FETCH:
   1097 		pipi = (pps_info_t *)data;
   1098 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
   1099 		*pipi = pps->ppsinfo;
   1100 		return 0;
   1101 	case PPS_IOC_KCBIND:
   1102 #ifdef PPS_SYNC
   1103 		epi = (int *)data;
   1104 		/* XXX Only root should be able to do this */
   1105 		if (*epi & ~pps->ppscap)
   1106 			return EINVAL;
   1107 		pps->kcmode = *epi;
   1108 		return 0;
   1109 #else
   1110 		return EOPNOTSUPP;
   1111 #endif
   1112 	default:
   1113 		return EPASSTHROUGH;
   1114 	}
   1115 }
   1116 
   1117 void
   1118 pps_init(struct pps_state *pps)
   1119 {
   1120 
   1121 	KASSERT(mutex_owned(&timecounter_lock));
   1122 
   1123 	pps->ppscap |= PPS_TSFMT_TSPEC;
   1124 	if (pps->ppscap & PPS_CAPTUREASSERT)
   1125 		pps->ppscap |= PPS_OFFSETASSERT;
   1126 	if (pps->ppscap & PPS_CAPTURECLEAR)
   1127 		pps->ppscap |= PPS_OFFSETCLEAR;
   1128 }
   1129 
   1130 /*
   1131  * capture a timetamp in the pps structure
   1132  */
   1133 void
   1134 pps_capture(struct pps_state *pps)
   1135 {
   1136 	struct timehands *th;
   1137 
   1138 	KASSERT(mutex_owned(&timecounter_lock));
   1139 	KASSERT(pps != NULL);
   1140 
   1141 	th = timehands;
   1142 	pps->capgen = th->th_generation;
   1143 	pps->capth = th;
   1144 	pps->capcount = (uint64_t)tc_delta(th) + th->th_offset_count;
   1145 	if (pps->capgen != th->th_generation)
   1146 		pps->capgen = 0;
   1147 }
   1148 
   1149 #ifdef PPS_DEBUG
   1150 int ppsdebug = 0;
   1151 #endif
   1152 
   1153 /*
   1154  * process a pps_capture()ed event
   1155  */
   1156 void
   1157 pps_event(struct pps_state *pps, int event)
   1158 {
   1159 	pps_ref_event(pps, event, NULL, PPS_REFEVNT_PPS|PPS_REFEVNT_CAPTURE);
   1160 }
   1161 
   1162 /*
   1163  * extended pps api /  kernel pll/fll entry point
   1164  *
   1165  * feed reference time stamps to PPS engine
   1166  *
   1167  * will simulate a PPS event and feed
   1168  * the NTP PLL/FLL if requested.
   1169  *
   1170  * the ref time stamps should be roughly once
   1171  * a second but do not need to be exactly in phase
   1172  * with the UTC second but should be close to it.
   1173  * this relaxation of requirements allows callout
   1174  * driven timestamping mechanisms to feed to pps
   1175  * capture/kernel pll logic.
   1176  *
   1177  * calling pattern is:
   1178  *  pps_capture() (for PPS_REFEVNT_{CAPTURE|CAPCUR})
   1179  *  read timestamp from reference source
   1180  *  pps_ref_event()
   1181  *
   1182  * supported refmodes:
   1183  *  PPS_REFEVNT_CAPTURE
   1184  *    use system timestamp of pps_capture()
   1185  *  PPS_REFEVNT_CURRENT
   1186  *    use system timestamp of this call
   1187  *  PPS_REFEVNT_CAPCUR
   1188  *    use average of read capture and current system time stamp
   1189  *  PPS_REFEVNT_PPS
   1190  *    assume timestamp on second mark - ref_ts is ignored
   1191  *
   1192  */
   1193 
   1194 void
   1195 pps_ref_event(struct pps_state *pps,
   1196 	      int event,
   1197 	      struct bintime *ref_ts,
   1198 	      int refmode
   1199 	)
   1200 {
   1201 	struct bintime bt;	/* current time */
   1202 	struct bintime btd;	/* time difference */
   1203 	struct bintime bt_ref;	/* reference time */
   1204 	struct timespec ts, *tsp, *osp;
   1205 	struct timehands *th;
   1206 	uint64_t tcount, acount, dcount, *pcount;
   1207 	int foff, gen;
   1208 #ifdef PPS_SYNC
   1209 	int fhard;
   1210 #endif
   1211 	pps_seq_t *pseq;
   1212 
   1213 	KASSERT(mutex_owned(&timecounter_lock));
   1214 
   1215 	KASSERT(pps != NULL);
   1216 
   1217         /* pick up current time stamp if needed */
   1218 	if (refmode & (PPS_REFEVNT_CURRENT|PPS_REFEVNT_CAPCUR)) {
   1219 		/* pick up current time stamp */
   1220 		th = timehands;
   1221 		gen = th->th_generation;
   1222 		tcount = (uint64_t)tc_delta(th) + th->th_offset_count;
   1223 		if (gen != th->th_generation)
   1224 			gen = 0;
   1225 
   1226 		/* If the timecounter was wound up underneath us, bail out. */
   1227 		if (pps->capgen == 0 ||
   1228 		    pps->capgen != pps->capth->th_generation ||
   1229 		    gen == 0 ||
   1230 		    gen != pps->capgen) {
   1231 #ifdef PPS_DEBUG
   1232 			if (ppsdebug & 0x1) {
   1233 				log(LOG_DEBUG,
   1234 				    "pps_ref_event(pps=%p, event=%d, ...): DROP (wind-up)\n",
   1235 				    pps, event);
   1236 			}
   1237 #endif
   1238 			return;
   1239 		}
   1240 	} else {
   1241 		tcount = 0;	/* keep GCC happy */
   1242 	}
   1243 
   1244 #ifdef PPS_DEBUG
   1245 	if (ppsdebug & 0x1) {
   1246 		struct timespec tmsp;
   1247 
   1248 		if (ref_ts == NULL) {
   1249 			tmsp.tv_sec = 0;
   1250 			tmsp.tv_nsec = 0;
   1251 		} else {
   1252 			bintime2timespec(ref_ts, &tmsp);
   1253 		}
   1254 
   1255 		log(LOG_DEBUG,
   1256 		    "pps_ref_event(pps=%p, event=%d, ref_ts=%"PRIi64
   1257 		    ".%09"PRIi32", refmode=0x%1x)\n",
   1258 		    pps, event, tmsp.tv_sec, (int32_t)tmsp.tv_nsec, refmode);
   1259 	}
   1260 #endif
   1261 
   1262 	/* setup correct event references */
   1263 	if (event == PPS_CAPTUREASSERT) {
   1264 		tsp = &pps->ppsinfo.assert_timestamp;
   1265 		osp = &pps->ppsparam.assert_offset;
   1266 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
   1267 #ifdef PPS_SYNC
   1268 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
   1269 #endif
   1270 		pcount = &pps->ppscount[0];
   1271 		pseq = &pps->ppsinfo.assert_sequence;
   1272 	} else {
   1273 		tsp = &pps->ppsinfo.clear_timestamp;
   1274 		osp = &pps->ppsparam.clear_offset;
   1275 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
   1276 #ifdef PPS_SYNC
   1277 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
   1278 #endif
   1279 		pcount = &pps->ppscount[1];
   1280 		pseq = &pps->ppsinfo.clear_sequence;
   1281 	}
   1282 
   1283 	/* determine system time stamp according to refmode */
   1284 	dcount = 0;		/* keep GCC happy */
   1285 	switch (refmode & PPS_REFEVNT_RMASK) {
   1286 	case PPS_REFEVNT_CAPTURE:
   1287 		acount = pps->capcount;	/* use capture timestamp */
   1288 		break;
   1289 
   1290 	case PPS_REFEVNT_CURRENT:
   1291 		acount = tcount; /* use current timestamp */
   1292 		break;
   1293 
   1294 	case PPS_REFEVNT_CAPCUR:
   1295 		/*
   1296 		 * calculate counter value between pps_capture() and
   1297 		 * pps_ref_event()
   1298 		 */
   1299 		dcount = tcount - pps->capcount;
   1300 		acount = (dcount / 2) + pps->capcount;
   1301 		break;
   1302 
   1303 	default:		/* ignore call error silently */
   1304 		return;
   1305 	}
   1306 
   1307 	/*
   1308 	 * If the timecounter changed, we cannot compare the count values, so
   1309 	 * we have to drop the rest of the PPS-stuff until the next event.
   1310 	 */
   1311 	if (pps->ppstc != pps->capth->th_counter) {
   1312 		pps->ppstc = pps->capth->th_counter;
   1313 		pps->capcount = acount;
   1314 		*pcount = acount;
   1315 		pps->ppscount[2] = acount;
   1316 #ifdef PPS_DEBUG
   1317 		if (ppsdebug & 0x1) {
   1318 			log(LOG_DEBUG,
   1319 			    "pps_ref_event(pps=%p, event=%d, ...): DROP (time-counter change)\n",
   1320 			    pps, event);
   1321 		}
   1322 #endif
   1323 		return;
   1324 	}
   1325 
   1326 	pps->capcount = acount;
   1327 
   1328 	/* Convert the count to a bintime. */
   1329 	bt = pps->capth->th_offset;
   1330 	bintime_addx(&bt, pps->capth->th_scale * (acount - pps->capth->th_offset_count));
   1331 	bintime_add(&bt, &timebase.bin);
   1332 
   1333 	if ((refmode & PPS_REFEVNT_PPS) == 0) {
   1334 		/* determine difference to reference time stamp */
   1335 		bt_ref = *ref_ts;
   1336 
   1337 		btd = bt;
   1338 		bintime_sub(&btd, &bt_ref);
   1339 
   1340 		/*
   1341 		 * simulate a PPS timestamp by dropping the fraction
   1342 		 * and applying the offset
   1343 		 */
   1344 		if (bt.frac >= (uint64_t)1<<63)	/* skip to nearest second */
   1345 			bt.sec++;
   1346 		bt.frac = 0;
   1347 		bintime_add(&bt, &btd);
   1348 	} else {
   1349 		/*
   1350 		 * create ref_ts from current time -
   1351 		 * we are supposed to be called on
   1352 		 * the second mark
   1353 		 */
   1354 		bt_ref = bt;
   1355 		if (bt_ref.frac >= (uint64_t)1<<63)	/* skip to nearest second */
   1356 			bt_ref.sec++;
   1357 		bt_ref.frac = 0;
   1358 	}
   1359 
   1360 	/* convert bintime to timestamp */
   1361 	bintime2timespec(&bt, &ts);
   1362 
   1363 	/* If the timecounter was wound up underneath us, bail out. */
   1364 	if (pps->capgen != pps->capth->th_generation)
   1365 		return;
   1366 
   1367 	/* store time stamp */
   1368 	*pcount = pps->capcount;
   1369 	(*pseq)++;
   1370 	*tsp = ts;
   1371 
   1372 	/* add offset correction */
   1373 	if (foff) {
   1374 		timespecadd(tsp, osp, tsp);
   1375 		if (tsp->tv_nsec < 0) {
   1376 			tsp->tv_nsec += 1000000000;
   1377 			tsp->tv_sec -= 1;
   1378 		}
   1379 	}
   1380 
   1381 #ifdef PPS_DEBUG
   1382 	if (ppsdebug & 0x2) {
   1383 		struct timespec ts2;
   1384 		struct timespec ts3;
   1385 
   1386 		bintime2timespec(&bt_ref, &ts2);
   1387 
   1388 		bt.sec = 0;
   1389 		bt.frac = 0;
   1390 
   1391 		if (refmode & PPS_REFEVNT_CAPCUR) {
   1392 			    bintime_addx(&bt, pps->capth->th_scale * dcount);
   1393 		}
   1394 		bintime2timespec(&bt, &ts3);
   1395 
   1396 		log(LOG_DEBUG, "ref_ts=%"PRIi64".%09"PRIi32
   1397 		    ", ts=%"PRIi64".%09"PRIi32", read latency=%"PRIi64" ns\n",
   1398 		    ts2.tv_sec, (int32_t)ts2.tv_nsec,
   1399 		    tsp->tv_sec, (int32_t)tsp->tv_nsec,
   1400 		    timespec2ns(&ts3));
   1401 	}
   1402 #endif
   1403 
   1404 #ifdef PPS_SYNC
   1405 	if (fhard) {
   1406 		uint64_t scale;
   1407 		uint64_t div;
   1408 
   1409 		/*
   1410 		 * Feed the NTP PLL/FLL.
   1411 		 * The FLL wants to know how many (hardware) nanoseconds
   1412 		 * elapsed since the previous event (mod 1 second) thus
   1413 		 * we are actually looking at the frequency difference scaled
   1414 		 * in nsec.
   1415 		 * As the counter time stamps are not truly at 1Hz
   1416 		 * we need to scale the count by the elapsed
   1417 		 * reference time.
   1418 		 * valid sampling interval: [0.5..2[ sec
   1419 		 */
   1420 
   1421 		/* calculate elapsed raw count */
   1422 		tcount = pps->capcount - pps->ppscount[2];
   1423 		pps->ppscount[2] = pps->capcount;
   1424 		tcount &= pps->capth->th_counter->tc_counter_mask;
   1425 
   1426 		/* calculate elapsed ref time */
   1427 		btd = bt_ref;
   1428 		bintime_sub(&btd, &pps->ref_time);
   1429 		pps->ref_time = bt_ref;
   1430 
   1431 		/* check that we stay below 2 sec */
   1432 		if (btd.sec < 0 || btd.sec > 1)
   1433 			return;
   1434 
   1435 		/* we want at least 0.5 sec between samples */
   1436 		if (btd.sec == 0 && btd.frac < (uint64_t)1<<63)
   1437 			return;
   1438 
   1439 		/*
   1440 		 * calculate cycles per period by multiplying
   1441 		 * the frequency with the elapsed period
   1442 		 * we pick a fraction of 30 bits
   1443 		 * ~1ns resolution for elapsed time
   1444 		 */
   1445 		div   = (uint64_t)btd.sec << 30;
   1446 		div  |= (btd.frac >> 34) & (((uint64_t)1 << 30) - 1);
   1447 		div  *= pps->capth->th_counter->tc_frequency;
   1448 		div >>= 30;
   1449 
   1450 		if (div == 0)	/* safeguard */
   1451 			return;
   1452 
   1453 		scale = (uint64_t)1 << 63;
   1454 		scale /= div;
   1455 		scale *= 2;
   1456 
   1457 		bt.sec = 0;
   1458 		bt.frac = 0;
   1459 		bintime_addx(&bt, scale * tcount);
   1460 		bintime2timespec(&bt, &ts);
   1461 
   1462 #ifdef PPS_DEBUG
   1463 		if (ppsdebug & 0x4) {
   1464 			struct timespec ts2;
   1465 			int64_t df;
   1466 
   1467 			bintime2timespec(&bt_ref, &ts2);
   1468 			df = timespec2ns(&ts);
   1469 			if (df > 500000000)
   1470 				df -= 1000000000;
   1471 			log(LOG_DEBUG, "hardpps: ref_ts=%"PRIi64
   1472 			    ".%09"PRIi32", ts=%"PRIi64".%09"PRIi32
   1473 			    ", freqdiff=%"PRIi64" ns/s\n",
   1474 			    ts2.tv_sec, (int32_t)ts2.tv_nsec,
   1475 			    tsp->tv_sec, (int32_t)tsp->tv_nsec,
   1476 			    df);
   1477 		}
   1478 #endif
   1479 
   1480 		hardpps(tsp, timespec2ns(&ts));
   1481 	}
   1482 #endif
   1483 }
   1484 
   1485 /*
   1486  * Timecounters need to be updated every so often to prevent the hardware
   1487  * counter from overflowing.  Updating also recalculates the cached values
   1488  * used by the get*() family of functions, so their precision depends on
   1489  * the update frequency.
   1490  */
   1491 
   1492 static int tc_tick;
   1493 
   1494 void
   1495 tc_ticktock(void)
   1496 {
   1497 	static int count;
   1498 
   1499 	if (++count < tc_tick)
   1500 		return;
   1501 	count = 0;
   1502 	mutex_spin_enter(&timecounter_lock);
   1503 	if (__predict_false(timecounter_bad != 0)) {
   1504 		/* An existing timecounter has gone bad, pick a new one. */
   1505 		(void)atomic_swap_uint(&timecounter_bad, 0);
   1506 		if (timecounter->tc_quality < 0) {
   1507 			tc_pick();
   1508 		}
   1509 	}
   1510 	tc_windup();
   1511 	mutex_spin_exit(&timecounter_lock);
   1512 }
   1513 
   1514 void
   1515 inittimecounter(void)
   1516 {
   1517 	u_int p;
   1518 
   1519 	mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
   1520 
   1521 	/*
   1522 	 * Set the initial timeout to
   1523 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
   1524 	 * People should probably not use the sysctl to set the timeout
   1525 	 * to smaller than its initial value, since that value is the
   1526 	 * smallest reasonable one.  If they want better timestamps they
   1527 	 * should use the non-"get"* functions.
   1528 	 */
   1529 	if (hz > 1000)
   1530 		tc_tick = (hz + 500) / 1000;
   1531 	else
   1532 		tc_tick = 1;
   1533 	p = (tc_tick * 1000000) / hz;
   1534 	aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
   1535 	    p / 1000, p % 1000);
   1536 
   1537 	/* warm up new timecounter (again) and get rolling. */
   1538 	(void)timecounter->tc_get_timecount(timecounter);
   1539 	(void)timecounter->tc_get_timecount(timecounter);
   1540 }
   1541