kern_tc.c revision 1.9 1 /* $NetBSD: kern_tc.c,v 1.9 2006/09/02 13:45:04 kardel Exp $ */
2
3 /*-
4 * ----------------------------------------------------------------------------
5 * "THE BEER-WARE LICENSE" (Revision 42):
6 * <phk (at) FreeBSD.ORG> wrote this file. As long as you retain this notice you
7 * can do whatever you want with this stuff. If we meet some day, and you think
8 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
9 * ---------------------------------------------------------------------------
10 */
11
12 #include <sys/cdefs.h>
13 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
14 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.9 2006/09/02 13:45:04 kardel Exp $");
15
16 #include "opt_ntp.h"
17
18 #include <sys/param.h>
19 #ifdef __HAVE_TIMECOUNTER /* XXX */
20 #include <sys/kernel.h>
21 #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
22 #include <sys/sysctl.h>
23 #include <sys/syslog.h>
24 #include <sys/systm.h>
25 #include <sys/timepps.h>
26 #include <sys/timetc.h>
27 #include <sys/timex.h>
28 #include <sys/evcnt.h>
29 #include <sys/kauth.h>
30
31 /*
32 * A large step happens on boot. This constant detects such steps.
33 * It is relatively small so that ntp_update_second gets called enough
34 * in the typical 'missed a couple of seconds' case, but doesn't loop
35 * forever when the time step is large.
36 */
37 #define LARGE_STEP 200
38
39 /*
40 * Implement a dummy timecounter which we can use until we get a real one
41 * in the air. This allows the console and other early stuff to use
42 * time services.
43 */
44
45 static u_int
46 dummy_get_timecount(struct timecounter *tc)
47 {
48 static u_int now;
49
50 return (++now);
51 }
52
53 static struct timecounter dummy_timecounter = {
54 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
55 };
56
57 struct timehands {
58 /* These fields must be initialized by the driver. */
59 struct timecounter *th_counter;
60 int64_t th_adjustment;
61 u_int64_t th_scale;
62 u_int th_offset_count;
63 struct bintime th_offset;
64 struct timeval th_microtime;
65 struct timespec th_nanotime;
66 /* Fields not to be copied in tc_windup start with th_generation. */
67 volatile u_int th_generation;
68 struct timehands *th_next;
69 };
70
71 static struct timehands th0;
72 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
73 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
74 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
75 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
76 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
77 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
78 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
79 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
80 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
81 static struct timehands th0 = {
82 &dummy_timecounter,
83 0,
84 (uint64_t)-1 / 1000000,
85 0,
86 {1, 0},
87 {0, 0},
88 {0, 0},
89 1,
90 &th1
91 };
92
93 static struct timehands *volatile timehands = &th0;
94 struct timecounter *timecounter = &dummy_timecounter;
95 static struct timecounter *timecounters = &dummy_timecounter;
96
97 time_t time_second = 1;
98 time_t time_uptime = 1;
99
100 static struct bintime timebasebin;
101
102 static int timestepwarnings;
103
104 #ifdef __FreeBSD__
105 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
106 ×tepwarnings, 0, "");
107 #endif /* __FreeBSD__ */
108
109 /*
110 * sysctl helper routine for kern.timercounter.current
111 */
112 static int
113 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
114 {
115 struct sysctlnode node;
116 int error;
117 char newname[MAX_TCNAMELEN];
118 struct timecounter *newtc, *tc;
119
120 tc = timecounter;
121
122 strlcpy(newname, tc->tc_name, sizeof(newname));
123
124 node = *rnode;
125 node.sysctl_data = newname;
126 node.sysctl_size = sizeof(newname);
127
128 error = sysctl_lookup(SYSCTLFN_CALL(&node));
129
130 if (error ||
131 newp == NULL ||
132 strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
133 return error;
134
135 if (l != NULL && (error = kauth_authorize_generic(l->l_cred,
136 KAUTH_GENERIC_ISSUSER, &l->l_acflag)) != 0)
137 return (error);
138
139 /* XXX locking */
140
141 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
142 if (strcmp(newname, newtc->tc_name) != 0)
143 continue;
144
145 /* Warm up new timecounter. */
146 (void)newtc->tc_get_timecount(newtc);
147 (void)newtc->tc_get_timecount(newtc);
148
149 timecounter = newtc;
150
151 /* XXX unlock */
152
153 return (0);
154 }
155
156 /* XXX unlock */
157
158 return (EINVAL);
159 }
160
161 static int
162 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
163 {
164 char buf[MAX_TCNAMELEN+48];
165 char *where = oldp;
166 const char *spc;
167 struct timecounter *tc;
168 size_t needed, left, slen;
169 int error;
170
171 if (newp != NULL)
172 return (EPERM);
173 if (namelen != 0)
174 return (EINVAL);
175
176 spc = "";
177 error = 0;
178 needed = 0;
179 left = *oldlenp;
180
181 /* XXX locking */
182
183 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
184 if (where == NULL) {
185 needed += sizeof(buf); /* be conservative */
186 } else {
187 slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
188 " Hz)", spc, tc->tc_name, tc->tc_quality,
189 tc->tc_frequency);
190 if (left < slen + 1)
191 break;
192 /* XXX use sysctl_copyout? (from sysctl_hw_disknames) */
193 error = copyout(buf, where, slen + 1);
194 spc = " ";
195 where += slen;
196 needed += slen;
197 left -= slen;
198 }
199 }
200
201 /* XXX unlock */
202
203 *oldlenp = needed;
204 return (error);
205 }
206
207 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
208 {
209 const struct sysctlnode *node;
210
211 sysctl_createv(clog, 0, NULL, &node,
212 CTLFLAG_PERMANENT,
213 CTLTYPE_NODE, "timecounter",
214 SYSCTL_DESCR("time counter information"),
215 NULL, 0, NULL, 0,
216 CTL_KERN, CTL_CREATE, CTL_EOL);
217
218 if (node != NULL) {
219 sysctl_createv(clog, 0, NULL, NULL,
220 CTLFLAG_PERMANENT,
221 CTLTYPE_STRING, "choice",
222 SYSCTL_DESCR("available counters"),
223 sysctl_kern_timecounter_choice, 0, NULL, 0,
224 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
225
226 sysctl_createv(clog, 0, NULL, NULL,
227 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
228 CTLTYPE_STRING, "hardware",
229 SYSCTL_DESCR("currently active time counter"),
230 sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
231 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
232
233 sysctl_createv(clog, 0, NULL, NULL,
234 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
235 CTLTYPE_INT, "timestepwarnings",
236 SYSCTL_DESCR("log time steps"),
237 NULL, 0, ×tepwarnings, 0,
238 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
239 }
240 }
241
242 #define TC_STATS(name) \
243 static struct evcnt n##name = \
244 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
245 EVCNT_ATTACH_STATIC(n##name)
246
247 TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
248 TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
249 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
250 TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
251 TC_STATS(setclock);
252
253 #undef TC_STATS
254
255 static void tc_windup(void);
256
257 /*
258 * Return the difference between the timehands' counter value now and what
259 * was when we copied it to the timehands' offset_count.
260 */
261 static __inline u_int
262 tc_delta(struct timehands *th)
263 {
264 struct timecounter *tc;
265
266 tc = th->th_counter;
267 return ((tc->tc_get_timecount(tc) -
268 th->th_offset_count) & tc->tc_counter_mask);
269 }
270
271 /*
272 * Functions for reading the time. We have to loop until we are sure that
273 * the timehands that we operated on was not updated under our feet. See
274 * the comment in <sys/time.h> for a description of these 12 functions.
275 */
276
277 void
278 binuptime(struct bintime *bt)
279 {
280 struct timehands *th;
281 u_int gen;
282
283 nbinuptime.ev_count++;
284 do {
285 th = timehands;
286 gen = th->th_generation;
287 *bt = th->th_offset;
288 bintime_addx(bt, th->th_scale * tc_delta(th));
289 } while (gen == 0 || gen != th->th_generation);
290 }
291
292 void
293 nanouptime(struct timespec *tsp)
294 {
295 struct bintime bt;
296
297 nnanouptime.ev_count++;
298 binuptime(&bt);
299 bintime2timespec(&bt, tsp);
300 }
301
302 void
303 microuptime(struct timeval *tvp)
304 {
305 struct bintime bt;
306
307 nmicrouptime.ev_count++;
308 binuptime(&bt);
309 bintime2timeval(&bt, tvp);
310 }
311
312 void
313 bintime(struct bintime *bt)
314 {
315
316 nbintime.ev_count++;
317 binuptime(bt);
318 bintime_add(bt, &timebasebin);
319 }
320
321 void
322 nanotime(struct timespec *tsp)
323 {
324 struct bintime bt;
325
326 nnanotime.ev_count++;
327 bintime(&bt);
328 bintime2timespec(&bt, tsp);
329 }
330
331 void
332 microtime(struct timeval *tvp)
333 {
334 struct bintime bt;
335
336 nmicrotime.ev_count++;
337 bintime(&bt);
338 bintime2timeval(&bt, tvp);
339 }
340
341 void
342 getbinuptime(struct bintime *bt)
343 {
344 struct timehands *th;
345 u_int gen;
346
347 ngetbinuptime.ev_count++;
348 do {
349 th = timehands;
350 gen = th->th_generation;
351 *bt = th->th_offset;
352 } while (gen == 0 || gen != th->th_generation);
353 }
354
355 void
356 getnanouptime(struct timespec *tsp)
357 {
358 struct timehands *th;
359 u_int gen;
360
361 ngetnanouptime.ev_count++;
362 do {
363 th = timehands;
364 gen = th->th_generation;
365 bintime2timespec(&th->th_offset, tsp);
366 } while (gen == 0 || gen != th->th_generation);
367 }
368
369 void
370 getmicrouptime(struct timeval *tvp)
371 {
372 struct timehands *th;
373 u_int gen;
374
375 ngetmicrouptime.ev_count++;
376 do {
377 th = timehands;
378 gen = th->th_generation;
379 bintime2timeval(&th->th_offset, tvp);
380 } while (gen == 0 || gen != th->th_generation);
381 }
382
383 void
384 getbintime(struct bintime *bt)
385 {
386 struct timehands *th;
387 u_int gen;
388
389 ngetbintime.ev_count++;
390 do {
391 th = timehands;
392 gen = th->th_generation;
393 *bt = th->th_offset;
394 } while (gen == 0 || gen != th->th_generation);
395 bintime_add(bt, &timebasebin);
396 }
397
398 void
399 getnanotime(struct timespec *tsp)
400 {
401 struct timehands *th;
402 u_int gen;
403
404 ngetnanotime.ev_count++;
405 do {
406 th = timehands;
407 gen = th->th_generation;
408 *tsp = th->th_nanotime;
409 } while (gen == 0 || gen != th->th_generation);
410 }
411
412 void
413 getmicrotime(struct timeval *tvp)
414 {
415 struct timehands *th;
416 u_int gen;
417
418 ngetmicrotime.ev_count++;
419 do {
420 th = timehands;
421 gen = th->th_generation;
422 *tvp = th->th_microtime;
423 } while (gen == 0 || gen != th->th_generation);
424 }
425
426 /*
427 * Initialize a new timecounter and possibly use it.
428 */
429 void
430 tc_init(struct timecounter *tc)
431 {
432 u_int u;
433
434 u = tc->tc_frequency / tc->tc_counter_mask;
435 /* XXX: We need some margin here, 10% is a guess */
436 u *= 11;
437 u /= 10;
438 if (u > hz && tc->tc_quality >= 0) {
439 tc->tc_quality = -2000;
440 if (bootverbose) {
441 printf("timecounter: Timecounter \"%s\" frequency %ju Hz",
442 tc->tc_name, (uintmax_t)tc->tc_frequency);
443 printf(" -- Insufficient hz, needs at least %u\n", u);
444 }
445 } else if (tc->tc_quality >= 0 || bootverbose) {
446 printf("timecounter: Timecounter \"%s\" frequency %ju Hz quality %d\n",
447 tc->tc_name, (uintmax_t)tc->tc_frequency,
448 tc->tc_quality);
449 }
450
451 /* XXX locking */
452 tc->tc_next = timecounters;
453 timecounters = tc;
454 /*
455 * Never automatically use a timecounter with negative quality.
456 * Even though we run on the dummy counter, switching here may be
457 * worse since this timecounter may not be monotonous.
458 */
459 if (tc->tc_quality < 0)
460 return;
461 if (tc->tc_quality < timecounter->tc_quality)
462 return;
463 if (tc->tc_quality == timecounter->tc_quality &&
464 tc->tc_frequency < timecounter->tc_frequency)
465 return;
466 (void)tc->tc_get_timecount(tc);
467 (void)tc->tc_get_timecount(tc);
468 timecounter = tc;
469 tc_windup();
470 }
471
472 /* Report the frequency of the current timecounter. */
473 u_int64_t
474 tc_getfrequency(void)
475 {
476
477 return (timehands->th_counter->tc_frequency);
478 }
479
480 /*
481 * Step our concept of UTC. This is done by modifying our estimate of
482 * when we booted.
483 * XXX: not locked.
484 */
485 void
486 tc_setclock(struct timespec *ts)
487 {
488 struct timespec ts2;
489 struct bintime bt, bt2;
490
491 nsetclock.ev_count++;
492 binuptime(&bt2);
493 timespec2bintime(ts, &bt);
494 bintime_sub(&bt, &bt2);
495 bintime_add(&bt2, &timebasebin);
496 timebasebin = bt;
497
498 /* XXX fiddle all the little crinkly bits around the fiords... */
499 tc_windup();
500 if (timestepwarnings) {
501 bintime2timespec(&bt2, &ts2);
502 log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
503 (intmax_t)ts2.tv_sec, ts2.tv_nsec,
504 (intmax_t)ts->tv_sec, ts->tv_nsec);
505 }
506 }
507
508 /*
509 * Initialize the next struct timehands in the ring and make
510 * it the active timehands. Along the way we might switch to a different
511 * timecounter and/or do seconds processing in NTP. Slightly magic.
512 */
513 static void
514 tc_windup(void)
515 {
516 struct bintime bt;
517 struct timehands *th, *tho;
518 u_int64_t scale;
519 u_int delta, ncount, ogen;
520 int i;
521 time_t t;
522
523 /*
524 * Make the next timehands a copy of the current one, but do not
525 * overwrite the generation or next pointer. While we update
526 * the contents, the generation must be zero.
527 */
528 tho = timehands;
529 th = tho->th_next;
530 ogen = th->th_generation;
531 th->th_generation = 0;
532 bcopy(tho, th, offsetof(struct timehands, th_generation));
533
534 /*
535 * Capture a timecounter delta on the current timecounter and if
536 * changing timecounters, a counter value from the new timecounter.
537 * Update the offset fields accordingly.
538 */
539 delta = tc_delta(th);
540 if (th->th_counter != timecounter)
541 ncount = timecounter->tc_get_timecount(timecounter);
542 else
543 ncount = 0;
544 th->th_offset_count += delta;
545 th->th_offset_count &= th->th_counter->tc_counter_mask;
546 bintime_addx(&th->th_offset, th->th_scale * delta);
547
548 /*
549 * Hardware latching timecounters may not generate interrupts on
550 * PPS events, so instead we poll them. There is a finite risk that
551 * the hardware might capture a count which is later than the one we
552 * got above, and therefore possibly in the next NTP second which might
553 * have a different rate than the current NTP second. It doesn't
554 * matter in practice.
555 */
556 if (tho->th_counter->tc_poll_pps)
557 tho->th_counter->tc_poll_pps(tho->th_counter);
558
559 /*
560 * Deal with NTP second processing. The for loop normally
561 * iterates at most once, but in extreme situations it might
562 * keep NTP sane if timeouts are not run for several seconds.
563 * At boot, the time step can be large when the TOD hardware
564 * has been read, so on really large steps, we call
565 * ntp_update_second only twice. We need to call it twice in
566 * case we missed a leap second.
567 * If NTP is not compiled in ntp_update_second still calculates
568 * the adjustment resulting from adjtime() calls.
569 */
570 bt = th->th_offset;
571 bintime_add(&bt, &timebasebin);
572 i = bt.sec - tho->th_microtime.tv_sec;
573 if (i > LARGE_STEP)
574 i = 2;
575 for (; i > 0; i--) {
576 t = bt.sec;
577 ntp_update_second(&th->th_adjustment, &bt.sec);
578 if (bt.sec != t)
579 timebasebin.sec += bt.sec - t;
580 }
581
582 /* Update the UTC timestamps used by the get*() functions. */
583 /* XXX shouldn't do this here. Should force non-`get' versions. */
584 bintime2timeval(&bt, &th->th_microtime);
585 bintime2timespec(&bt, &th->th_nanotime);
586
587 /* Now is a good time to change timecounters. */
588 if (th->th_counter != timecounter) {
589 th->th_counter = timecounter;
590 th->th_offset_count = ncount;
591
592 printf("timecounter: selected timecounter \"%s\" frequency %ju Hz quality %d\n",
593 timecounter->tc_name, (uintmax_t)timecounter->tc_frequency,
594 timecounter->tc_quality);
595 }
596
597 /*-
598 * Recalculate the scaling factor. We want the number of 1/2^64
599 * fractions of a second per period of the hardware counter, taking
600 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
601 * processing provides us with.
602 *
603 * The th_adjustment is nanoseconds per second with 32 bit binary
604 * fraction and we want 64 bit binary fraction of second:
605 *
606 * x = a * 2^32 / 10^9 = a * 4.294967296
607 *
608 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
609 * we can only multiply by about 850 without overflowing, but that
610 * leaves suitably precise fractions for multiply before divide.
611 *
612 * Divide before multiply with a fraction of 2199/512 results in a
613 * systematic undercompensation of 10PPM of th_adjustment. On a
614 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
615 *
616 * We happily sacrifice the lowest of the 64 bits of our result
617 * to the goddess of code clarity.
618 *
619 */
620 scale = (u_int64_t)1 << 63;
621 scale += (th->th_adjustment / 1024) * 2199;
622 scale /= th->th_counter->tc_frequency;
623 th->th_scale = scale * 2;
624
625 /*
626 * Now that the struct timehands is again consistent, set the new
627 * generation number, making sure to not make it zero.
628 */
629 if (++ogen == 0)
630 ogen = 1;
631 th->th_generation = ogen;
632
633 /* Go live with the new struct timehands. */
634 time_second = th->th_microtime.tv_sec;
635 time_uptime = th->th_offset.sec;
636 timehands = th;
637 }
638
639 #ifdef __FreeBSD__
640 /* Report or change the active timecounter hardware. */
641 static int
642 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
643 {
644 char newname[32];
645 struct timecounter *newtc, *tc;
646 int error;
647
648 tc = timecounter;
649 strlcpy(newname, tc->tc_name, sizeof(newname));
650
651 error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
652 if (error != 0 || req->newptr == NULL ||
653 strcmp(newname, tc->tc_name) == 0)
654 return (error);
655
656 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
657 if (strcmp(newname, newtc->tc_name) != 0)
658 continue;
659
660 /* Warm up new timecounter. */
661 (void)newtc->tc_get_timecount(newtc);
662 (void)newtc->tc_get_timecount(newtc);
663
664 timecounter = newtc;
665 return (0);
666 }
667 return (EINVAL);
668 }
669
670 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
671 0, 0, sysctl_kern_timecounter_hardware, "A", "");
672
673
674 /* Report or change the active timecounter hardware. */
675 static int
676 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
677 {
678 char buf[32], *spc;
679 struct timecounter *tc;
680 int error;
681
682 spc = "";
683 error = 0;
684 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
685 sprintf(buf, "%s%s(%d)",
686 spc, tc->tc_name, tc->tc_quality);
687 error = SYSCTL_OUT(req, buf, strlen(buf));
688 spc = " ";
689 }
690 return (error);
691 }
692
693 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
694 0, 0, sysctl_kern_timecounter_choice, "A", "");
695 #endif /* __FreeBSD__ */
696
697 /*
698 * RFC 2783 PPS-API implementation.
699 */
700
701 int
702 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
703 {
704 pps_params_t *app;
705 pps_info_t *pipi;
706 #ifdef PPS_SYNC
707 int *epi;
708 #endif
709
710 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
711 switch (cmd) {
712 case PPS_IOC_CREATE:
713 return (0);
714 case PPS_IOC_DESTROY:
715 return (0);
716 case PPS_IOC_SETPARAMS:
717 app = (pps_params_t *)data;
718 if (app->mode & ~pps->ppscap)
719 return (EINVAL);
720 pps->ppsparam = *app;
721 return (0);
722 case PPS_IOC_GETPARAMS:
723 app = (pps_params_t *)data;
724 *app = pps->ppsparam;
725 app->api_version = PPS_API_VERS_1;
726 return (0);
727 case PPS_IOC_GETCAP:
728 *(int*)data = pps->ppscap;
729 return (0);
730 case PPS_IOC_FETCH:
731 pipi = (pps_info_t *)data;
732 pps->ppsinfo.current_mode = pps->ppsparam.mode;
733 *pipi = pps->ppsinfo;
734 return (0);
735 case PPS_IOC_KCBIND:
736 #ifdef PPS_SYNC
737 epi = (int *)data;
738 /* XXX Only root should be able to do this */
739 if (*epi & ~pps->ppscap)
740 return (EINVAL);
741 pps->kcmode = *epi;
742 return (0);
743 #else
744 return (EOPNOTSUPP);
745 #endif
746 default:
747 return (EPASSTHROUGH);
748 }
749 }
750
751 void
752 pps_init(struct pps_state *pps)
753 {
754 pps->ppscap |= PPS_TSFMT_TSPEC;
755 if (pps->ppscap & PPS_CAPTUREASSERT)
756 pps->ppscap |= PPS_OFFSETASSERT;
757 if (pps->ppscap & PPS_CAPTURECLEAR)
758 pps->ppscap |= PPS_OFFSETCLEAR;
759 }
760
761 void
762 pps_capture(struct pps_state *pps)
763 {
764 struct timehands *th;
765
766 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_capture") */
767 th = timehands;
768 pps->capgen = th->th_generation;
769 pps->capth = th;
770 pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
771 if (pps->capgen != th->th_generation)
772 pps->capgen = 0;
773 }
774
775 void
776 pps_event(struct pps_state *pps, int event)
777 {
778 struct bintime bt;
779 struct timespec ts, *tsp, *osp;
780 u_int tcount, *pcount;
781 int foff, fhard;
782 pps_seq_t *pseq;
783
784 KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
785 /* If the timecounter was wound up underneath us, bail out. */
786 if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
787 return;
788
789 /* Things would be easier with arrays. */
790 if (event == PPS_CAPTUREASSERT) {
791 tsp = &pps->ppsinfo.assert_timestamp;
792 osp = &pps->ppsparam.assert_offset;
793 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
794 fhard = pps->kcmode & PPS_CAPTUREASSERT;
795 pcount = &pps->ppscount[0];
796 pseq = &pps->ppsinfo.assert_sequence;
797 } else {
798 tsp = &pps->ppsinfo.clear_timestamp;
799 osp = &pps->ppsparam.clear_offset;
800 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
801 fhard = pps->kcmode & PPS_CAPTURECLEAR;
802 pcount = &pps->ppscount[1];
803 pseq = &pps->ppsinfo.clear_sequence;
804 }
805
806 /*
807 * If the timecounter changed, we cannot compare the count values, so
808 * we have to drop the rest of the PPS-stuff until the next event.
809 */
810 if (pps->ppstc != pps->capth->th_counter) {
811 pps->ppstc = pps->capth->th_counter;
812 *pcount = pps->capcount;
813 pps->ppscount[2] = pps->capcount;
814 return;
815 }
816
817 /* Convert the count to a timespec. */
818 tcount = pps->capcount - pps->capth->th_offset_count;
819 tcount &= pps->capth->th_counter->tc_counter_mask;
820 bt = pps->capth->th_offset;
821 bintime_addx(&bt, pps->capth->th_scale * tcount);
822 bintime_add(&bt, &timebasebin);
823 bintime2timespec(&bt, &ts);
824
825 /* If the timecounter was wound up underneath us, bail out. */
826 if (pps->capgen != pps->capth->th_generation)
827 return;
828
829 *pcount = pps->capcount;
830 (*pseq)++;
831 *tsp = ts;
832
833 if (foff) {
834 timespecadd(tsp, osp, tsp);
835 if (tsp->tv_nsec < 0) {
836 tsp->tv_nsec += 1000000000;
837 tsp->tv_sec -= 1;
838 }
839 }
840 #ifdef PPS_SYNC
841 if (fhard) {
842 u_int64_t scale;
843
844 /*
845 * Feed the NTP PLL/FLL.
846 * The FLL wants to know how many (hardware) nanoseconds
847 * elapsed since the previous event.
848 */
849 tcount = pps->capcount - pps->ppscount[2];
850 pps->ppscount[2] = pps->capcount;
851 tcount &= pps->capth->th_counter->tc_counter_mask;
852 scale = (u_int64_t)1 << 63;
853 scale /= pps->capth->th_counter->tc_frequency;
854 scale *= 2;
855 bt.sec = 0;
856 bt.frac = 0;
857 bintime_addx(&bt, scale * tcount);
858 bintime2timespec(&bt, &ts);
859 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
860 }
861 #endif
862 }
863
864 /*
865 * Timecounters need to be updated every so often to prevent the hardware
866 * counter from overflowing. Updating also recalculates the cached values
867 * used by the get*() family of functions, so their precision depends on
868 * the update frequency.
869 */
870
871 static int tc_tick;
872 #ifdef __FreeBSD__
873 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
874 #endif /* __FreeBSD__ */
875
876 void
877 tc_ticktock(void)
878 {
879 static int count;
880
881 if (++count < tc_tick)
882 return;
883 count = 0;
884 tc_windup();
885 }
886
887 void
888 inittimecounter(void)
889 {
890 u_int p;
891
892 /*
893 * Set the initial timeout to
894 * max(1, <approx. number of hardclock ticks in a millisecond>).
895 * People should probably not use the sysctl to set the timeout
896 * to smaller than its inital value, since that value is the
897 * smallest reasonable one. If they want better timestamps they
898 * should use the non-"get"* functions.
899 */
900 if (hz > 1000)
901 tc_tick = (hz + 500) / 1000;
902 else
903 tc_tick = 1;
904 p = (tc_tick * 1000000) / hz;
905 printf("timecounter: Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
906
907 /* warm up new timecounter (again) and get rolling. */
908 (void)timecounter->tc_get_timecount(timecounter);
909 (void)timecounter->tc_get_timecount(timecounter);
910 }
911
912 #ifdef __FreeBSD__
913 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)
914 #endif /* __FreeBSD__ */
915 #endif /* __HAVE_TIMECOUNTER */
916