Home | History | Annotate | Line # | Download | only in kern
kern_threadpool.c revision 1.3.2.3
      1  1.3.2.3  pgoyette /*	$NetBSD: kern_threadpool.c,v 1.3.2.3 2019/01/18 08:50:57 pgoyette Exp $	*/
      2  1.3.2.2  pgoyette 
      3  1.3.2.2  pgoyette /*-
      4  1.3.2.2  pgoyette  * Copyright (c) 2014, 2018 The NetBSD Foundation, Inc.
      5  1.3.2.2  pgoyette  * All rights reserved.
      6  1.3.2.2  pgoyette  *
      7  1.3.2.2  pgoyette  * This code is derived from software contributed to The NetBSD Foundation
      8  1.3.2.2  pgoyette  * by Taylor R. Campbell and Jason R. Thorpe.
      9  1.3.2.2  pgoyette  *
     10  1.3.2.2  pgoyette  * Redistribution and use in source and binary forms, with or without
     11  1.3.2.2  pgoyette  * modification, are permitted provided that the following conditions
     12  1.3.2.2  pgoyette  * are met:
     13  1.3.2.2  pgoyette  * 1. Redistributions of source code must retain the above copyright
     14  1.3.2.2  pgoyette  *    notice, this list of conditions and the following disclaimer.
     15  1.3.2.2  pgoyette  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.3.2.2  pgoyette  *    notice, this list of conditions and the following disclaimer in the
     17  1.3.2.2  pgoyette  *    documentation and/or other materials provided with the distribution.
     18  1.3.2.2  pgoyette  *
     19  1.3.2.2  pgoyette  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.3.2.2  pgoyette  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.3.2.2  pgoyette  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.3.2.2  pgoyette  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.3.2.2  pgoyette  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.3.2.2  pgoyette  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.3.2.2  pgoyette  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.3.2.2  pgoyette  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.3.2.2  pgoyette  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.3.2.2  pgoyette  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.3.2.2  pgoyette  * POSSIBILITY OF SUCH DAMAGE.
     30  1.3.2.2  pgoyette  */
     31  1.3.2.2  pgoyette 
     32  1.3.2.2  pgoyette /*
     33  1.3.2.2  pgoyette  * Thread pools.
     34  1.3.2.2  pgoyette  *
     35  1.3.2.2  pgoyette  * A thread pool is a collection of worker threads idle or running
     36  1.3.2.2  pgoyette  * jobs, together with an overseer thread that does not run jobs but
     37  1.3.2.2  pgoyette  * can be given jobs to assign to a worker thread.  Scheduling a job in
     38  1.3.2.2  pgoyette  * a thread pool does not allocate or even sleep at all, except perhaps
     39  1.3.2.2  pgoyette  * on an adaptive lock, unlike kthread_create.  Jobs reuse threads, so
     40  1.3.2.2  pgoyette  * they do not incur the expense of creating and destroying kthreads
     41  1.3.2.2  pgoyette  * unless there is not much work to be done.
     42  1.3.2.2  pgoyette  *
     43  1.3.2.2  pgoyette  * A per-CPU thread pool (threadpool_percpu) is a collection of thread
     44  1.3.2.2  pgoyette  * pools, one per CPU bound to that CPU.  For each priority level in
     45  1.3.2.2  pgoyette  * use, there is one shared unbound thread pool (i.e., pool of threads
     46  1.3.2.2  pgoyette  * not bound to any CPU) and one shared per-CPU thread pool.
     47  1.3.2.2  pgoyette  *
     48  1.3.2.2  pgoyette  * To use the unbound thread pool at priority pri, call
     49  1.3.2.2  pgoyette  * threadpool_get(&pool, pri).  When you're done, call
     50  1.3.2.2  pgoyette  * threadpool_put(pool, pri).
     51  1.3.2.2  pgoyette  *
     52  1.3.2.2  pgoyette  * To use the per-CPU thread pools at priority pri, call
     53  1.3.2.2  pgoyette  * threadpool_percpu_get(&pool_percpu, pri), and then use the thread
     54  1.3.2.2  pgoyette  * pool returned by threadpool_percpu_ref(pool_percpu) for the current
     55  1.3.2.2  pgoyette  * CPU, or by threadpool_percpu_ref_remote(pool_percpu, ci) for another
     56  1.3.2.2  pgoyette  * CPU.  When you're done, call threadpool_percpu_put(pool_percpu,
     57  1.3.2.2  pgoyette  * pri).
     58  1.3.2.2  pgoyette  *
     59  1.3.2.2  pgoyette  * +--MACHINE-----------------------------------------------+
     60  1.3.2.2  pgoyette  * | +--CPU 0-------+ +--CPU 1-------+     +--CPU n-------+ |
     61  1.3.2.2  pgoyette  * | | <overseer 0> | | <overseer 1> | ... | <overseer n> | |
     62  1.3.2.2  pgoyette  * | | <idle 0a>    | | <running 1a> | ... | <idle na>    | |
     63  1.3.2.2  pgoyette  * | | <running 0b> | | <running 1b> | ... | <idle nb>    | |
     64  1.3.2.2  pgoyette  * | | .            | | .            | ... | .            | |
     65  1.3.2.2  pgoyette  * | | .            | | .            | ... | .            | |
     66  1.3.2.2  pgoyette  * | | .            | | .            | ... | .            | |
     67  1.3.2.2  pgoyette  * | +--------------+ +--------------+     +--------------+ |
     68  1.3.2.2  pgoyette  * |            +--unbound---------+                        |
     69  1.3.2.2  pgoyette  * |            | <overseer n+1>   |                        |
     70  1.3.2.2  pgoyette  * |            | <idle (n+1)a>    |                        |
     71  1.3.2.2  pgoyette  * |            | <running (n+1)b> |                        |
     72  1.3.2.2  pgoyette  * |            +------------------+                        |
     73  1.3.2.2  pgoyette  * +--------------------------------------------------------+
     74  1.3.2.2  pgoyette  *
     75  1.3.2.2  pgoyette  * XXX Why one overseer per CPU?  I did that originally to avoid
     76  1.3.2.2  pgoyette  * touching remote CPUs' memory when scheduling a job, but that still
     77  1.3.2.2  pgoyette  * requires interprocessor synchronization.  Perhaps we could get by
     78  1.3.2.2  pgoyette  * with a single overseer thread, at the expense of another pointer in
     79  1.3.2.3  pgoyette  * struct threadpool_job to identify the CPU on which it must run
     80  1.3.2.2  pgoyette  * in order for the overseer to schedule it correctly.
     81  1.3.2.2  pgoyette  */
     82  1.3.2.2  pgoyette 
     83  1.3.2.2  pgoyette #include <sys/cdefs.h>
     84  1.3.2.3  pgoyette __KERNEL_RCSID(0, "$NetBSD: kern_threadpool.c,v 1.3.2.3 2019/01/18 08:50:57 pgoyette Exp $");
     85  1.3.2.2  pgoyette 
     86  1.3.2.2  pgoyette #include <sys/types.h>
     87  1.3.2.2  pgoyette #include <sys/param.h>
     88  1.3.2.2  pgoyette #include <sys/atomic.h>
     89  1.3.2.2  pgoyette #include <sys/condvar.h>
     90  1.3.2.2  pgoyette #include <sys/cpu.h>
     91  1.3.2.2  pgoyette #include <sys/kernel.h>
     92  1.3.2.2  pgoyette #include <sys/kmem.h>
     93  1.3.2.2  pgoyette #include <sys/kthread.h>
     94  1.3.2.2  pgoyette #include <sys/mutex.h>
     95  1.3.2.2  pgoyette #include <sys/once.h>
     96  1.3.2.2  pgoyette #include <sys/percpu.h>
     97  1.3.2.2  pgoyette #include <sys/pool.h>
     98  1.3.2.2  pgoyette #include <sys/proc.h>
     99  1.3.2.2  pgoyette #include <sys/queue.h>
    100  1.3.2.2  pgoyette #include <sys/systm.h>
    101  1.3.2.3  pgoyette #include <sys/sysctl.h>
    102  1.3.2.2  pgoyette #include <sys/threadpool.h>
    103  1.3.2.2  pgoyette 
    104  1.3.2.2  pgoyette /* Data structures */
    105  1.3.2.2  pgoyette 
    106  1.3.2.3  pgoyette TAILQ_HEAD(job_head, threadpool_job);
    107  1.3.2.2  pgoyette TAILQ_HEAD(thread_head, threadpool_thread);
    108  1.3.2.2  pgoyette 
    109  1.3.2.2  pgoyette struct threadpool_thread {
    110  1.3.2.2  pgoyette 	struct lwp			*tpt_lwp;
    111  1.3.2.3  pgoyette 	char				*tpt_lwp_savedname;
    112  1.3.2.3  pgoyette 	struct threadpool		*tpt_pool;
    113  1.3.2.3  pgoyette 	struct threadpool_job		*tpt_job;
    114  1.3.2.2  pgoyette 	kcondvar_t			tpt_cv;
    115  1.3.2.2  pgoyette 	TAILQ_ENTRY(threadpool_thread)	tpt_entry;
    116  1.3.2.2  pgoyette };
    117  1.3.2.2  pgoyette 
    118  1.3.2.2  pgoyette struct threadpool {
    119  1.3.2.2  pgoyette 	kmutex_t			tp_lock;
    120  1.3.2.2  pgoyette 	struct threadpool_thread	tp_overseer;
    121  1.3.2.2  pgoyette 	struct job_head			tp_jobs;
    122  1.3.2.2  pgoyette 	struct thread_head		tp_idle_threads;
    123  1.3.2.3  pgoyette 	uint64_t			tp_refcnt;
    124  1.3.2.2  pgoyette 	int				tp_flags;
    125  1.3.2.2  pgoyette #define	THREADPOOL_DYING	0x01
    126  1.3.2.2  pgoyette 	struct cpu_info			*tp_cpu;
    127  1.3.2.2  pgoyette 	pri_t				tp_pri;
    128  1.3.2.2  pgoyette };
    129  1.3.2.2  pgoyette 
    130  1.3.2.3  pgoyette static void	threadpool_hold(struct threadpool *);
    131  1.3.2.3  pgoyette static void	threadpool_rele(struct threadpool *);
    132  1.3.2.2  pgoyette 
    133  1.3.2.3  pgoyette static int	threadpool_percpu_create(struct threadpool_percpu **, pri_t);
    134  1.3.2.3  pgoyette static void	threadpool_percpu_destroy(struct threadpool_percpu *);
    135  1.3.2.2  pgoyette 
    136  1.3.2.3  pgoyette static threadpool_job_fn_t threadpool_job_dead;
    137  1.3.2.2  pgoyette 
    138  1.3.2.3  pgoyette static void	threadpool_job_hold(struct threadpool_job *);
    139  1.3.2.3  pgoyette static void	threadpool_job_rele(struct threadpool_job *);
    140  1.3.2.2  pgoyette 
    141  1.3.2.2  pgoyette static void	threadpool_overseer_thread(void *) __dead;
    142  1.3.2.2  pgoyette static void	threadpool_thread(void *) __dead;
    143  1.3.2.2  pgoyette 
    144  1.3.2.2  pgoyette static pool_cache_t	threadpool_thread_pc __read_mostly;
    145  1.3.2.2  pgoyette 
    146  1.3.2.2  pgoyette static kmutex_t		threadpools_lock __cacheline_aligned;
    147  1.3.2.2  pgoyette 
    148  1.3.2.3  pgoyette 	/* Default to 30 second idle timeout for pool threads. */
    149  1.3.2.3  pgoyette static int	threadpool_idle_time_ms = 30 * 1000;
    150  1.3.2.2  pgoyette 
    151  1.3.2.2  pgoyette struct threadpool_unbound {
    152  1.3.2.2  pgoyette 	struct threadpool		tpu_pool;
    153  1.3.2.2  pgoyette 
    154  1.3.2.2  pgoyette 	/* protected by threadpools_lock */
    155  1.3.2.2  pgoyette 	LIST_ENTRY(threadpool_unbound)	tpu_link;
    156  1.3.2.3  pgoyette 	uint64_t			tpu_refcnt;
    157  1.3.2.2  pgoyette };
    158  1.3.2.2  pgoyette 
    159  1.3.2.2  pgoyette static LIST_HEAD(, threadpool_unbound) unbound_threadpools;
    160  1.3.2.2  pgoyette 
    161  1.3.2.2  pgoyette static struct threadpool_unbound *
    162  1.3.2.2  pgoyette threadpool_lookup_unbound(pri_t pri)
    163  1.3.2.2  pgoyette {
    164  1.3.2.2  pgoyette 	struct threadpool_unbound *tpu;
    165  1.3.2.2  pgoyette 
    166  1.3.2.2  pgoyette 	LIST_FOREACH(tpu, &unbound_threadpools, tpu_link) {
    167  1.3.2.2  pgoyette 		if (tpu->tpu_pool.tp_pri == pri)
    168  1.3.2.2  pgoyette 			return tpu;
    169  1.3.2.2  pgoyette 	}
    170  1.3.2.2  pgoyette 	return NULL;
    171  1.3.2.2  pgoyette }
    172  1.3.2.2  pgoyette 
    173  1.3.2.2  pgoyette static void
    174  1.3.2.2  pgoyette threadpool_insert_unbound(struct threadpool_unbound *tpu)
    175  1.3.2.2  pgoyette {
    176  1.3.2.2  pgoyette 	KASSERT(threadpool_lookup_unbound(tpu->tpu_pool.tp_pri) == NULL);
    177  1.3.2.2  pgoyette 	LIST_INSERT_HEAD(&unbound_threadpools, tpu, tpu_link);
    178  1.3.2.2  pgoyette }
    179  1.3.2.2  pgoyette 
    180  1.3.2.2  pgoyette static void
    181  1.3.2.2  pgoyette threadpool_remove_unbound(struct threadpool_unbound *tpu)
    182  1.3.2.2  pgoyette {
    183  1.3.2.2  pgoyette 	KASSERT(threadpool_lookup_unbound(tpu->tpu_pool.tp_pri) == tpu);
    184  1.3.2.2  pgoyette 	LIST_REMOVE(tpu, tpu_link);
    185  1.3.2.2  pgoyette }
    186  1.3.2.2  pgoyette 
    187  1.3.2.2  pgoyette struct threadpool_percpu {
    188  1.3.2.2  pgoyette 	percpu_t *			tpp_percpu;
    189  1.3.2.2  pgoyette 	pri_t				tpp_pri;
    190  1.3.2.2  pgoyette 
    191  1.3.2.2  pgoyette 	/* protected by threadpools_lock */
    192  1.3.2.2  pgoyette 	LIST_ENTRY(threadpool_percpu)	tpp_link;
    193  1.3.2.3  pgoyette 	uint64_t			tpp_refcnt;
    194  1.3.2.2  pgoyette };
    195  1.3.2.2  pgoyette 
    196  1.3.2.2  pgoyette static LIST_HEAD(, threadpool_percpu) percpu_threadpools;
    197  1.3.2.2  pgoyette 
    198  1.3.2.3  pgoyette static struct threadpool_percpu *
    199  1.3.2.2  pgoyette threadpool_lookup_percpu(pri_t pri)
    200  1.3.2.2  pgoyette {
    201  1.3.2.3  pgoyette 	struct threadpool_percpu *tpp;
    202  1.3.2.2  pgoyette 
    203  1.3.2.2  pgoyette 	LIST_FOREACH(tpp, &percpu_threadpools, tpp_link) {
    204  1.3.2.2  pgoyette 		if (tpp->tpp_pri == pri)
    205  1.3.2.2  pgoyette 			return tpp;
    206  1.3.2.2  pgoyette 	}
    207  1.3.2.2  pgoyette 	return NULL;
    208  1.3.2.2  pgoyette }
    209  1.3.2.2  pgoyette 
    210  1.3.2.2  pgoyette static void
    211  1.3.2.3  pgoyette threadpool_insert_percpu(struct threadpool_percpu *tpp)
    212  1.3.2.2  pgoyette {
    213  1.3.2.2  pgoyette 	KASSERT(threadpool_lookup_percpu(tpp->tpp_pri) == NULL);
    214  1.3.2.2  pgoyette 	LIST_INSERT_HEAD(&percpu_threadpools, tpp, tpp_link);
    215  1.3.2.2  pgoyette }
    216  1.3.2.2  pgoyette 
    217  1.3.2.2  pgoyette static void
    218  1.3.2.3  pgoyette threadpool_remove_percpu(struct threadpool_percpu *tpp)
    219  1.3.2.2  pgoyette {
    220  1.3.2.2  pgoyette 	KASSERT(threadpool_lookup_percpu(tpp->tpp_pri) == tpp);
    221  1.3.2.2  pgoyette 	LIST_REMOVE(tpp, tpp_link);
    222  1.3.2.2  pgoyette }
    223  1.3.2.2  pgoyette 
    224  1.3.2.2  pgoyette #ifdef THREADPOOL_VERBOSE
    225  1.3.2.2  pgoyette #define	TP_LOG(x)		printf x
    226  1.3.2.2  pgoyette #else
    227  1.3.2.2  pgoyette #define	TP_LOG(x)		/* nothing */
    228  1.3.2.2  pgoyette #endif /* THREADPOOL_VERBOSE */
    229  1.3.2.2  pgoyette 
    230  1.3.2.2  pgoyette static int
    231  1.3.2.3  pgoyette sysctl_kern_threadpool_idle_ms(SYSCTLFN_ARGS)
    232  1.3.2.3  pgoyette {
    233  1.3.2.3  pgoyette 	struct sysctlnode node;
    234  1.3.2.3  pgoyette 	int val, error;
    235  1.3.2.3  pgoyette 
    236  1.3.2.3  pgoyette 	node = *rnode;
    237  1.3.2.3  pgoyette 
    238  1.3.2.3  pgoyette 	val = threadpool_idle_time_ms;
    239  1.3.2.3  pgoyette 	node.sysctl_data = &val;
    240  1.3.2.3  pgoyette 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    241  1.3.2.3  pgoyette 	if (error == 0 && newp != NULL) {
    242  1.3.2.3  pgoyette 		/* Disallow negative values and 0 (forever). */
    243  1.3.2.3  pgoyette 		if (val < 1)
    244  1.3.2.3  pgoyette 			error = EINVAL;
    245  1.3.2.3  pgoyette 		else
    246  1.3.2.3  pgoyette 			threadpool_idle_time_ms = val;
    247  1.3.2.3  pgoyette 	}
    248  1.3.2.3  pgoyette 
    249  1.3.2.3  pgoyette 	return error;
    250  1.3.2.3  pgoyette }
    251  1.3.2.3  pgoyette 
    252  1.3.2.3  pgoyette SYSCTL_SETUP_PROTO(sysctl_threadpool_setup);
    253  1.3.2.3  pgoyette 
    254  1.3.2.3  pgoyette SYSCTL_SETUP(sysctl_threadpool_setup,
    255  1.3.2.3  pgoyette     "sysctl kern.threadpool subtree setup")
    256  1.3.2.3  pgoyette {
    257  1.3.2.3  pgoyette 	const struct sysctlnode *rnode, *cnode;
    258  1.3.2.3  pgoyette 	int error __diagused;
    259  1.3.2.3  pgoyette 
    260  1.3.2.3  pgoyette 	error = sysctl_createv(clog, 0, NULL, &rnode,
    261  1.3.2.3  pgoyette 	    CTLFLAG_PERMANENT,
    262  1.3.2.3  pgoyette 	    CTLTYPE_NODE, "threadpool",
    263  1.3.2.3  pgoyette 	    SYSCTL_DESCR("threadpool subsystem options"),
    264  1.3.2.3  pgoyette 	    NULL, 0, NULL, 0,
    265  1.3.2.3  pgoyette 	    CTL_KERN, CTL_CREATE, CTL_EOL);
    266  1.3.2.3  pgoyette 	KASSERT(error == 0);
    267  1.3.2.3  pgoyette 
    268  1.3.2.3  pgoyette 	error = sysctl_createv(clog, 0, &rnode, &cnode,
    269  1.3.2.3  pgoyette 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
    270  1.3.2.3  pgoyette 	    CTLTYPE_INT, "idle_ms",
    271  1.3.2.3  pgoyette 	    SYSCTL_DESCR("idle thread timeout in ms"),
    272  1.3.2.3  pgoyette 	    sysctl_kern_threadpool_idle_ms, 0, NULL, 0,
    273  1.3.2.3  pgoyette 	    CTL_CREATE, CTL_EOL);
    274  1.3.2.3  pgoyette 	KASSERT(error == 0);
    275  1.3.2.3  pgoyette }
    276  1.3.2.3  pgoyette 
    277  1.3.2.3  pgoyette void
    278  1.3.2.2  pgoyette threadpools_init(void)
    279  1.3.2.2  pgoyette {
    280  1.3.2.2  pgoyette 
    281  1.3.2.2  pgoyette 	threadpool_thread_pc =
    282  1.3.2.2  pgoyette 	    pool_cache_init(sizeof(struct threadpool_thread), 0, 0, 0,
    283  1.3.2.2  pgoyette 		"thplthrd", NULL, IPL_NONE, NULL, NULL, NULL);
    284  1.3.2.2  pgoyette 
    285  1.3.2.2  pgoyette 	LIST_INIT(&unbound_threadpools);
    286  1.3.2.2  pgoyette 	LIST_INIT(&percpu_threadpools);
    287  1.3.2.2  pgoyette 	mutex_init(&threadpools_lock, MUTEX_DEFAULT, IPL_NONE);
    288  1.3.2.2  pgoyette }
    289  1.3.2.2  pgoyette 
    290  1.3.2.2  pgoyette /* Thread pool creation */
    291  1.3.2.2  pgoyette 
    292  1.3.2.2  pgoyette static bool
    293  1.3.2.2  pgoyette threadpool_pri_is_valid(pri_t pri)
    294  1.3.2.2  pgoyette {
    295  1.3.2.2  pgoyette 	return (pri == PRI_NONE || (pri >= PRI_USER && pri < PRI_COUNT));
    296  1.3.2.2  pgoyette }
    297  1.3.2.2  pgoyette 
    298  1.3.2.2  pgoyette static int
    299  1.3.2.3  pgoyette threadpool_create(struct threadpool *const pool, struct cpu_info *ci,
    300  1.3.2.3  pgoyette     pri_t pri)
    301  1.3.2.2  pgoyette {
    302  1.3.2.2  pgoyette 	struct lwp *lwp;
    303  1.3.2.2  pgoyette 	int ktflags;
    304  1.3.2.2  pgoyette 	int error;
    305  1.3.2.2  pgoyette 
    306  1.3.2.2  pgoyette 	KASSERT(threadpool_pri_is_valid(pri));
    307  1.3.2.2  pgoyette 
    308  1.3.2.2  pgoyette 	mutex_init(&pool->tp_lock, MUTEX_DEFAULT, IPL_VM);
    309  1.3.2.2  pgoyette 	/* XXX overseer */
    310  1.3.2.2  pgoyette 	TAILQ_INIT(&pool->tp_jobs);
    311  1.3.2.2  pgoyette 	TAILQ_INIT(&pool->tp_idle_threads);
    312  1.3.2.3  pgoyette 	pool->tp_refcnt = 1;		/* overseer's reference */
    313  1.3.2.2  pgoyette 	pool->tp_flags = 0;
    314  1.3.2.2  pgoyette 	pool->tp_cpu = ci;
    315  1.3.2.2  pgoyette 	pool->tp_pri = pri;
    316  1.3.2.2  pgoyette 
    317  1.3.2.2  pgoyette 	pool->tp_overseer.tpt_lwp = NULL;
    318  1.3.2.2  pgoyette 	pool->tp_overseer.tpt_pool = pool;
    319  1.3.2.2  pgoyette 	pool->tp_overseer.tpt_job = NULL;
    320  1.3.2.2  pgoyette 	cv_init(&pool->tp_overseer.tpt_cv, "poolover");
    321  1.3.2.2  pgoyette 
    322  1.3.2.2  pgoyette 	ktflags = 0;
    323  1.3.2.2  pgoyette 	ktflags |= KTHREAD_MPSAFE;
    324  1.3.2.2  pgoyette 	if (pri < PRI_KERNEL)
    325  1.3.2.2  pgoyette 		ktflags |= KTHREAD_TS;
    326  1.3.2.2  pgoyette 	error = kthread_create(pri, ktflags, ci, &threadpool_overseer_thread,
    327  1.3.2.2  pgoyette 	    &pool->tp_overseer, &lwp,
    328  1.3.2.2  pgoyette 	    "pooloverseer/%d@%d", (ci ? cpu_index(ci) : -1), (int)pri);
    329  1.3.2.2  pgoyette 	if (error)
    330  1.3.2.2  pgoyette 		goto fail0;
    331  1.3.2.2  pgoyette 
    332  1.3.2.2  pgoyette 	mutex_spin_enter(&pool->tp_lock);
    333  1.3.2.2  pgoyette 	pool->tp_overseer.tpt_lwp = lwp;
    334  1.3.2.2  pgoyette 	cv_broadcast(&pool->tp_overseer.tpt_cv);
    335  1.3.2.2  pgoyette 	mutex_spin_exit(&pool->tp_lock);
    336  1.3.2.2  pgoyette 
    337  1.3.2.2  pgoyette 	return 0;
    338  1.3.2.2  pgoyette 
    339  1.3.2.2  pgoyette fail0:	KASSERT(error);
    340  1.3.2.2  pgoyette 	KASSERT(pool->tp_overseer.tpt_job == NULL);
    341  1.3.2.2  pgoyette 	KASSERT(pool->tp_overseer.tpt_pool == pool);
    342  1.3.2.2  pgoyette 	KASSERT(pool->tp_flags == 0);
    343  1.3.2.2  pgoyette 	KASSERT(pool->tp_refcnt == 0);
    344  1.3.2.2  pgoyette 	KASSERT(TAILQ_EMPTY(&pool->tp_idle_threads));
    345  1.3.2.2  pgoyette 	KASSERT(TAILQ_EMPTY(&pool->tp_jobs));
    346  1.3.2.2  pgoyette 	KASSERT(!cv_has_waiters(&pool->tp_overseer.tpt_cv));
    347  1.3.2.2  pgoyette 	cv_destroy(&pool->tp_overseer.tpt_cv);
    348  1.3.2.2  pgoyette 	mutex_destroy(&pool->tp_lock);
    349  1.3.2.2  pgoyette 	return error;
    350  1.3.2.2  pgoyette }
    351  1.3.2.2  pgoyette 
    352  1.3.2.2  pgoyette /* Thread pool destruction */
    353  1.3.2.2  pgoyette 
    354  1.3.2.2  pgoyette static void
    355  1.3.2.3  pgoyette threadpool_destroy(struct threadpool *pool)
    356  1.3.2.2  pgoyette {
    357  1.3.2.2  pgoyette 	struct threadpool_thread *thread;
    358  1.3.2.2  pgoyette 
    359  1.3.2.2  pgoyette 	/* Mark the pool dying and wait for threads to commit suicide.  */
    360  1.3.2.2  pgoyette 	mutex_spin_enter(&pool->tp_lock);
    361  1.3.2.2  pgoyette 	KASSERT(TAILQ_EMPTY(&pool->tp_jobs));
    362  1.3.2.2  pgoyette 	pool->tp_flags |= THREADPOOL_DYING;
    363  1.3.2.2  pgoyette 	cv_broadcast(&pool->tp_overseer.tpt_cv);
    364  1.3.2.2  pgoyette 	TAILQ_FOREACH(thread, &pool->tp_idle_threads, tpt_entry)
    365  1.3.2.2  pgoyette 		cv_broadcast(&thread->tpt_cv);
    366  1.3.2.2  pgoyette 	while (0 < pool->tp_refcnt) {
    367  1.3.2.3  pgoyette 		TP_LOG(("%s: draining %" PRIu64 " references...\n", __func__,
    368  1.3.2.2  pgoyette 		    pool->tp_refcnt));
    369  1.3.2.2  pgoyette 		cv_wait(&pool->tp_overseer.tpt_cv, &pool->tp_lock);
    370  1.3.2.2  pgoyette 	}
    371  1.3.2.2  pgoyette 	mutex_spin_exit(&pool->tp_lock);
    372  1.3.2.2  pgoyette 
    373  1.3.2.2  pgoyette 	KASSERT(pool->tp_overseer.tpt_job == NULL);
    374  1.3.2.2  pgoyette 	KASSERT(pool->tp_overseer.tpt_pool == pool);
    375  1.3.2.2  pgoyette 	KASSERT(pool->tp_flags == THREADPOOL_DYING);
    376  1.3.2.2  pgoyette 	KASSERT(pool->tp_refcnt == 0);
    377  1.3.2.2  pgoyette 	KASSERT(TAILQ_EMPTY(&pool->tp_idle_threads));
    378  1.3.2.2  pgoyette 	KASSERT(TAILQ_EMPTY(&pool->tp_jobs));
    379  1.3.2.2  pgoyette 	KASSERT(!cv_has_waiters(&pool->tp_overseer.tpt_cv));
    380  1.3.2.2  pgoyette 	cv_destroy(&pool->tp_overseer.tpt_cv);
    381  1.3.2.2  pgoyette 	mutex_destroy(&pool->tp_lock);
    382  1.3.2.2  pgoyette }
    383  1.3.2.2  pgoyette 
    384  1.3.2.3  pgoyette static void
    385  1.3.2.3  pgoyette threadpool_hold(struct threadpool *pool)
    386  1.3.2.2  pgoyette {
    387  1.3.2.2  pgoyette 
    388  1.3.2.3  pgoyette 	KASSERT(mutex_owned(&pool->tp_lock));
    389  1.3.2.3  pgoyette 	pool->tp_refcnt++;
    390  1.3.2.3  pgoyette 	KASSERT(pool->tp_refcnt != 0);
    391  1.3.2.2  pgoyette }
    392  1.3.2.2  pgoyette 
    393  1.3.2.2  pgoyette static void
    394  1.3.2.3  pgoyette threadpool_rele(struct threadpool *pool)
    395  1.3.2.2  pgoyette {
    396  1.3.2.2  pgoyette 
    397  1.3.2.3  pgoyette 	KASSERT(mutex_owned(&pool->tp_lock));
    398  1.3.2.3  pgoyette 	KASSERT(0 < pool->tp_refcnt);
    399  1.3.2.3  pgoyette 	if (--pool->tp_refcnt == 0)
    400  1.3.2.3  pgoyette 		cv_broadcast(&pool->tp_overseer.tpt_cv);
    401  1.3.2.2  pgoyette }
    402  1.3.2.2  pgoyette 
    403  1.3.2.2  pgoyette /* Unbound thread pools */
    404  1.3.2.2  pgoyette 
    405  1.3.2.2  pgoyette int
    406  1.3.2.3  pgoyette threadpool_get(struct threadpool **poolp, pri_t pri)
    407  1.3.2.2  pgoyette {
    408  1.3.2.2  pgoyette 	struct threadpool_unbound *tpu, *tmp = NULL;
    409  1.3.2.2  pgoyette 	int error;
    410  1.3.2.2  pgoyette 
    411  1.3.2.2  pgoyette 	ASSERT_SLEEPABLE();
    412  1.3.2.2  pgoyette 
    413  1.3.2.2  pgoyette 	if (! threadpool_pri_is_valid(pri))
    414  1.3.2.2  pgoyette 		return EINVAL;
    415  1.3.2.2  pgoyette 
    416  1.3.2.2  pgoyette 	mutex_enter(&threadpools_lock);
    417  1.3.2.2  pgoyette 	tpu = threadpool_lookup_unbound(pri);
    418  1.3.2.2  pgoyette 	if (tpu == NULL) {
    419  1.3.2.2  pgoyette 		mutex_exit(&threadpools_lock);
    420  1.3.2.2  pgoyette 		TP_LOG(("%s: No pool for pri=%d, creating one.\n",
    421  1.3.2.3  pgoyette 		    __func__, (int)pri));
    422  1.3.2.3  pgoyette 		tmp = kmem_zalloc(sizeof(*tmp), KM_SLEEP);
    423  1.3.2.3  pgoyette 		error = threadpool_create(&tmp->tpu_pool, NULL, pri);
    424  1.3.2.3  pgoyette 		if (error) {
    425  1.3.2.3  pgoyette 			kmem_free(tmp, sizeof(*tmp));
    426  1.3.2.2  pgoyette 			return error;
    427  1.3.2.3  pgoyette 		}
    428  1.3.2.2  pgoyette 		mutex_enter(&threadpools_lock);
    429  1.3.2.2  pgoyette 		tpu = threadpool_lookup_unbound(pri);
    430  1.3.2.2  pgoyette 		if (tpu == NULL) {
    431  1.3.2.2  pgoyette 			TP_LOG(("%s: Won the creation race for pri=%d.\n",
    432  1.3.2.3  pgoyette 			    __func__, (int)pri));
    433  1.3.2.2  pgoyette 			tpu = tmp;
    434  1.3.2.2  pgoyette 			tmp = NULL;
    435  1.3.2.2  pgoyette 			threadpool_insert_unbound(tpu);
    436  1.3.2.2  pgoyette 		}
    437  1.3.2.2  pgoyette 	}
    438  1.3.2.2  pgoyette 	KASSERT(tpu != NULL);
    439  1.3.2.2  pgoyette 	tpu->tpu_refcnt++;
    440  1.3.2.3  pgoyette 	KASSERT(tpu->tpu_refcnt != 0);
    441  1.3.2.2  pgoyette 	mutex_exit(&threadpools_lock);
    442  1.3.2.2  pgoyette 
    443  1.3.2.3  pgoyette 	if (tmp != NULL) {
    444  1.3.2.3  pgoyette 		threadpool_destroy(&tmp->tpu_pool);
    445  1.3.2.3  pgoyette 		kmem_free(tmp, sizeof(*tmp));
    446  1.3.2.3  pgoyette 	}
    447  1.3.2.2  pgoyette 	KASSERT(tpu != NULL);
    448  1.3.2.2  pgoyette 	*poolp = &tpu->tpu_pool;
    449  1.3.2.2  pgoyette 	return 0;
    450  1.3.2.2  pgoyette }
    451  1.3.2.2  pgoyette 
    452  1.3.2.2  pgoyette void
    453  1.3.2.3  pgoyette threadpool_put(struct threadpool *pool, pri_t pri)
    454  1.3.2.2  pgoyette {
    455  1.3.2.2  pgoyette 	struct threadpool_unbound *tpu =
    456  1.3.2.2  pgoyette 	    container_of(pool, struct threadpool_unbound, tpu_pool);
    457  1.3.2.2  pgoyette 
    458  1.3.2.2  pgoyette 	ASSERT_SLEEPABLE();
    459  1.3.2.2  pgoyette 
    460  1.3.2.2  pgoyette 	KASSERT(threadpool_pri_is_valid(pri));
    461  1.3.2.2  pgoyette 
    462  1.3.2.2  pgoyette 	mutex_enter(&threadpools_lock);
    463  1.3.2.2  pgoyette 	KASSERT(tpu == threadpool_lookup_unbound(pri));
    464  1.3.2.2  pgoyette 	KASSERT(0 < tpu->tpu_refcnt);
    465  1.3.2.2  pgoyette 	if (--tpu->tpu_refcnt == 0) {
    466  1.3.2.2  pgoyette 		TP_LOG(("%s: Last reference for pri=%d, destroying pool.\n",
    467  1.3.2.3  pgoyette 		    __func__, (int)pri));
    468  1.3.2.2  pgoyette 		threadpool_remove_unbound(tpu);
    469  1.3.2.3  pgoyette 	} else {
    470  1.3.2.2  pgoyette 		tpu = NULL;
    471  1.3.2.3  pgoyette 	}
    472  1.3.2.2  pgoyette 	mutex_exit(&threadpools_lock);
    473  1.3.2.2  pgoyette 
    474  1.3.2.3  pgoyette 	if (tpu) {
    475  1.3.2.3  pgoyette 		threadpool_destroy(&tpu->tpu_pool);
    476  1.3.2.3  pgoyette 		kmem_free(tpu, sizeof(*tpu));
    477  1.3.2.3  pgoyette 	}
    478  1.3.2.2  pgoyette }
    479  1.3.2.2  pgoyette 
    480  1.3.2.2  pgoyette /* Per-CPU thread pools */
    481  1.3.2.2  pgoyette 
    482  1.3.2.2  pgoyette int
    483  1.3.2.3  pgoyette threadpool_percpu_get(struct threadpool_percpu **pool_percpup, pri_t pri)
    484  1.3.2.2  pgoyette {
    485  1.3.2.3  pgoyette 	struct threadpool_percpu *pool_percpu, *tmp = NULL;
    486  1.3.2.2  pgoyette 	int error;
    487  1.3.2.2  pgoyette 
    488  1.3.2.2  pgoyette 	ASSERT_SLEEPABLE();
    489  1.3.2.2  pgoyette 
    490  1.3.2.2  pgoyette 	if (! threadpool_pri_is_valid(pri))
    491  1.3.2.2  pgoyette 		return EINVAL;
    492  1.3.2.2  pgoyette 
    493  1.3.2.2  pgoyette 	mutex_enter(&threadpools_lock);
    494  1.3.2.2  pgoyette 	pool_percpu = threadpool_lookup_percpu(pri);
    495  1.3.2.2  pgoyette 	if (pool_percpu == NULL) {
    496  1.3.2.2  pgoyette 		mutex_exit(&threadpools_lock);
    497  1.3.2.2  pgoyette 		TP_LOG(("%s: No pool for pri=%d, creating one.\n",
    498  1.3.2.3  pgoyette 		    __func__, (int)pri));
    499  1.3.2.2  pgoyette 		error = threadpool_percpu_create(&tmp, pri);
    500  1.3.2.2  pgoyette 		if (error)
    501  1.3.2.2  pgoyette 			return error;
    502  1.3.2.2  pgoyette 		KASSERT(tmp != NULL);
    503  1.3.2.2  pgoyette 		mutex_enter(&threadpools_lock);
    504  1.3.2.2  pgoyette 		pool_percpu = threadpool_lookup_percpu(pri);
    505  1.3.2.2  pgoyette 		if (pool_percpu == NULL) {
    506  1.3.2.2  pgoyette 			TP_LOG(("%s: Won the creation race for pri=%d.\n",
    507  1.3.2.3  pgoyette 			    __func__, (int)pri));
    508  1.3.2.2  pgoyette 			pool_percpu = tmp;
    509  1.3.2.2  pgoyette 			tmp = NULL;
    510  1.3.2.2  pgoyette 			threadpool_insert_percpu(pool_percpu);
    511  1.3.2.2  pgoyette 		}
    512  1.3.2.2  pgoyette 	}
    513  1.3.2.2  pgoyette 	KASSERT(pool_percpu != NULL);
    514  1.3.2.2  pgoyette 	pool_percpu->tpp_refcnt++;
    515  1.3.2.3  pgoyette 	KASSERT(pool_percpu->tpp_refcnt != 0);
    516  1.3.2.2  pgoyette 	mutex_exit(&threadpools_lock);
    517  1.3.2.2  pgoyette 
    518  1.3.2.2  pgoyette 	if (tmp != NULL)
    519  1.3.2.2  pgoyette 		threadpool_percpu_destroy(tmp);
    520  1.3.2.2  pgoyette 	KASSERT(pool_percpu != NULL);
    521  1.3.2.2  pgoyette 	*pool_percpup = pool_percpu;
    522  1.3.2.2  pgoyette 	return 0;
    523  1.3.2.2  pgoyette }
    524  1.3.2.2  pgoyette 
    525  1.3.2.2  pgoyette void
    526  1.3.2.3  pgoyette threadpool_percpu_put(struct threadpool_percpu *pool_percpu, pri_t pri)
    527  1.3.2.2  pgoyette {
    528  1.3.2.2  pgoyette 
    529  1.3.2.2  pgoyette 	ASSERT_SLEEPABLE();
    530  1.3.2.2  pgoyette 
    531  1.3.2.2  pgoyette 	KASSERT(threadpool_pri_is_valid(pri));
    532  1.3.2.2  pgoyette 
    533  1.3.2.2  pgoyette 	mutex_enter(&threadpools_lock);
    534  1.3.2.2  pgoyette 	KASSERT(pool_percpu == threadpool_lookup_percpu(pri));
    535  1.3.2.2  pgoyette 	KASSERT(0 < pool_percpu->tpp_refcnt);
    536  1.3.2.2  pgoyette 	if (--pool_percpu->tpp_refcnt == 0) {
    537  1.3.2.2  pgoyette 		TP_LOG(("%s: Last reference for pri=%d, destroying pool.\n",
    538  1.3.2.3  pgoyette 		    __func__, (int)pri));
    539  1.3.2.2  pgoyette 		threadpool_remove_percpu(pool_percpu);
    540  1.3.2.3  pgoyette 	} else {
    541  1.3.2.2  pgoyette 		pool_percpu = NULL;
    542  1.3.2.3  pgoyette 	}
    543  1.3.2.2  pgoyette 	mutex_exit(&threadpools_lock);
    544  1.3.2.2  pgoyette 
    545  1.3.2.2  pgoyette 	if (pool_percpu)
    546  1.3.2.2  pgoyette 		threadpool_percpu_destroy(pool_percpu);
    547  1.3.2.2  pgoyette }
    548  1.3.2.2  pgoyette 
    549  1.3.2.3  pgoyette struct threadpool *
    550  1.3.2.3  pgoyette threadpool_percpu_ref(struct threadpool_percpu *pool_percpu)
    551  1.3.2.2  pgoyette {
    552  1.3.2.3  pgoyette 	struct threadpool **poolp, *pool;
    553  1.3.2.2  pgoyette 
    554  1.3.2.2  pgoyette 	poolp = percpu_getref(pool_percpu->tpp_percpu);
    555  1.3.2.2  pgoyette 	pool = *poolp;
    556  1.3.2.2  pgoyette 	percpu_putref(pool_percpu->tpp_percpu);
    557  1.3.2.2  pgoyette 
    558  1.3.2.2  pgoyette 	return pool;
    559  1.3.2.2  pgoyette }
    560  1.3.2.2  pgoyette 
    561  1.3.2.3  pgoyette struct threadpool *
    562  1.3.2.3  pgoyette threadpool_percpu_ref_remote(struct threadpool_percpu *pool_percpu,
    563  1.3.2.2  pgoyette     struct cpu_info *ci)
    564  1.3.2.2  pgoyette {
    565  1.3.2.3  pgoyette 	struct threadpool **poolp, *pool;
    566  1.3.2.2  pgoyette 
    567  1.3.2.2  pgoyette 	percpu_traverse_enter();
    568  1.3.2.2  pgoyette 	poolp = percpu_getptr_remote(pool_percpu->tpp_percpu, ci);
    569  1.3.2.2  pgoyette 	pool = *poolp;
    570  1.3.2.2  pgoyette 	percpu_traverse_exit();
    571  1.3.2.2  pgoyette 
    572  1.3.2.2  pgoyette 	return pool;
    573  1.3.2.2  pgoyette }
    574  1.3.2.2  pgoyette 
    575  1.3.2.2  pgoyette static int
    576  1.3.2.3  pgoyette threadpool_percpu_create(struct threadpool_percpu **pool_percpup, pri_t pri)
    577  1.3.2.2  pgoyette {
    578  1.3.2.3  pgoyette 	struct threadpool_percpu *pool_percpu;
    579  1.3.2.2  pgoyette 	struct cpu_info *ci;
    580  1.3.2.2  pgoyette 	CPU_INFO_ITERATOR cii;
    581  1.3.2.2  pgoyette 	unsigned int i, j;
    582  1.3.2.2  pgoyette 	int error;
    583  1.3.2.2  pgoyette 
    584  1.3.2.2  pgoyette 	pool_percpu = kmem_zalloc(sizeof(*pool_percpu), KM_SLEEP);
    585  1.3.2.2  pgoyette 	if (pool_percpu == NULL) {
    586  1.3.2.2  pgoyette 		error = ENOMEM;
    587  1.3.2.2  pgoyette 		goto fail0;
    588  1.3.2.2  pgoyette 	}
    589  1.3.2.2  pgoyette 	pool_percpu->tpp_pri = pri;
    590  1.3.2.2  pgoyette 
    591  1.3.2.3  pgoyette 	pool_percpu->tpp_percpu = percpu_alloc(sizeof(struct threadpool *));
    592  1.3.2.2  pgoyette 	if (pool_percpu->tpp_percpu == NULL) {
    593  1.3.2.2  pgoyette 		error = ENOMEM;
    594  1.3.2.2  pgoyette 		goto fail1;
    595  1.3.2.2  pgoyette 	}
    596  1.3.2.2  pgoyette 
    597  1.3.2.2  pgoyette 	for (i = 0, CPU_INFO_FOREACH(cii, ci), i++) {
    598  1.3.2.3  pgoyette 		struct threadpool *pool;
    599  1.3.2.2  pgoyette 
    600  1.3.2.3  pgoyette 		pool = kmem_zalloc(sizeof(*pool), KM_SLEEP);
    601  1.3.2.3  pgoyette 		error = threadpool_create(pool, ci, pri);
    602  1.3.2.3  pgoyette 		if (error) {
    603  1.3.2.3  pgoyette 			kmem_free(pool, sizeof(*pool));
    604  1.3.2.2  pgoyette 			goto fail2;
    605  1.3.2.3  pgoyette 		}
    606  1.3.2.2  pgoyette 		percpu_traverse_enter();
    607  1.3.2.3  pgoyette 		struct threadpool **const poolp =
    608  1.3.2.2  pgoyette 		    percpu_getptr_remote(pool_percpu->tpp_percpu, ci);
    609  1.3.2.2  pgoyette 		*poolp = pool;
    610  1.3.2.2  pgoyette 		percpu_traverse_exit();
    611  1.3.2.2  pgoyette 	}
    612  1.3.2.2  pgoyette 
    613  1.3.2.2  pgoyette 	/* Success!  */
    614  1.3.2.3  pgoyette 	*pool_percpup = (struct threadpool_percpu *)pool_percpu;
    615  1.3.2.2  pgoyette 	return 0;
    616  1.3.2.2  pgoyette 
    617  1.3.2.2  pgoyette fail2:	for (j = 0, CPU_INFO_FOREACH(cii, ci), j++) {
    618  1.3.2.2  pgoyette 		if (i <= j)
    619  1.3.2.2  pgoyette 			break;
    620  1.3.2.2  pgoyette 		percpu_traverse_enter();
    621  1.3.2.3  pgoyette 		struct threadpool **const poolp =
    622  1.3.2.2  pgoyette 		    percpu_getptr_remote(pool_percpu->tpp_percpu, ci);
    623  1.3.2.3  pgoyette 		struct threadpool *const pool = *poolp;
    624  1.3.2.2  pgoyette 		percpu_traverse_exit();
    625  1.3.2.3  pgoyette 		threadpool_destroy(pool);
    626  1.3.2.3  pgoyette 		kmem_free(pool, sizeof(*pool));
    627  1.3.2.2  pgoyette 	}
    628  1.3.2.2  pgoyette 	percpu_free(pool_percpu->tpp_percpu, sizeof(struct taskthread_pool *));
    629  1.3.2.2  pgoyette fail1:	kmem_free(pool_percpu, sizeof(*pool_percpu));
    630  1.3.2.2  pgoyette fail0:	return error;
    631  1.3.2.2  pgoyette }
    632  1.3.2.2  pgoyette 
    633  1.3.2.2  pgoyette static void
    634  1.3.2.3  pgoyette threadpool_percpu_destroy(struct threadpool_percpu *pool_percpu)
    635  1.3.2.2  pgoyette {
    636  1.3.2.2  pgoyette 	struct cpu_info *ci;
    637  1.3.2.2  pgoyette 	CPU_INFO_ITERATOR cii;
    638  1.3.2.2  pgoyette 
    639  1.3.2.2  pgoyette 	for (CPU_INFO_FOREACH(cii, ci)) {
    640  1.3.2.2  pgoyette 		percpu_traverse_enter();
    641  1.3.2.3  pgoyette 		struct threadpool **const poolp =
    642  1.3.2.2  pgoyette 		    percpu_getptr_remote(pool_percpu->tpp_percpu, ci);
    643  1.3.2.3  pgoyette 		struct threadpool *const pool = *poolp;
    644  1.3.2.2  pgoyette 		percpu_traverse_exit();
    645  1.3.2.3  pgoyette 		threadpool_destroy(pool);
    646  1.3.2.3  pgoyette 		kmem_free(pool, sizeof(*pool));
    647  1.3.2.2  pgoyette 	}
    648  1.3.2.2  pgoyette 
    649  1.3.2.3  pgoyette 	percpu_free(pool_percpu->tpp_percpu, sizeof(struct threadpool *));
    650  1.3.2.2  pgoyette 	kmem_free(pool_percpu, sizeof(*pool_percpu));
    651  1.3.2.2  pgoyette }
    652  1.3.2.2  pgoyette 
    653  1.3.2.2  pgoyette /* Thread pool jobs */
    654  1.3.2.2  pgoyette 
    655  1.3.2.2  pgoyette void __printflike(4,5)
    656  1.3.2.3  pgoyette threadpool_job_init(struct threadpool_job *job, threadpool_job_fn_t fn,
    657  1.3.2.2  pgoyette     kmutex_t *lock, const char *fmt, ...)
    658  1.3.2.2  pgoyette {
    659  1.3.2.2  pgoyette 	va_list ap;
    660  1.3.2.2  pgoyette 
    661  1.3.2.2  pgoyette 	va_start(ap, fmt);
    662  1.3.2.2  pgoyette 	(void)vsnprintf(job->job_name, sizeof(job->job_name), fmt, ap);
    663  1.3.2.2  pgoyette 	va_end(ap);
    664  1.3.2.2  pgoyette 
    665  1.3.2.2  pgoyette 	job->job_lock = lock;
    666  1.3.2.2  pgoyette 	job->job_thread = NULL;
    667  1.3.2.2  pgoyette 	job->job_refcnt = 0;
    668  1.3.2.2  pgoyette 	cv_init(&job->job_cv, job->job_name);
    669  1.3.2.2  pgoyette 	job->job_fn = fn;
    670  1.3.2.2  pgoyette }
    671  1.3.2.2  pgoyette 
    672  1.3.2.2  pgoyette static void
    673  1.3.2.3  pgoyette threadpool_job_dead(struct threadpool_job *job)
    674  1.3.2.2  pgoyette {
    675  1.3.2.2  pgoyette 
    676  1.3.2.3  pgoyette 	panic("threadpool job %p ran after destruction", job);
    677  1.3.2.2  pgoyette }
    678  1.3.2.2  pgoyette 
    679  1.3.2.2  pgoyette void
    680  1.3.2.3  pgoyette threadpool_job_destroy(struct threadpool_job *job)
    681  1.3.2.2  pgoyette {
    682  1.3.2.2  pgoyette 
    683  1.3.2.2  pgoyette 	ASSERT_SLEEPABLE();
    684  1.3.2.2  pgoyette 
    685  1.3.2.2  pgoyette 	KASSERTMSG((job->job_thread == NULL), "job %p still running", job);
    686  1.3.2.2  pgoyette 
    687  1.3.2.2  pgoyette 	mutex_enter(job->job_lock);
    688  1.3.2.2  pgoyette 	while (0 < job->job_refcnt)
    689  1.3.2.2  pgoyette 		cv_wait(&job->job_cv, job->job_lock);
    690  1.3.2.2  pgoyette 	mutex_exit(job->job_lock);
    691  1.3.2.2  pgoyette 
    692  1.3.2.2  pgoyette 	job->job_lock = NULL;
    693  1.3.2.2  pgoyette 	KASSERT(job->job_thread == NULL);
    694  1.3.2.2  pgoyette 	KASSERT(job->job_refcnt == 0);
    695  1.3.2.2  pgoyette 	KASSERT(!cv_has_waiters(&job->job_cv));
    696  1.3.2.2  pgoyette 	cv_destroy(&job->job_cv);
    697  1.3.2.2  pgoyette 	job->job_fn = threadpool_job_dead;
    698  1.3.2.2  pgoyette 	(void)strlcpy(job->job_name, "deadjob", sizeof(job->job_name));
    699  1.3.2.2  pgoyette }
    700  1.3.2.2  pgoyette 
    701  1.3.2.3  pgoyette static void
    702  1.3.2.3  pgoyette threadpool_job_hold(struct threadpool_job *job)
    703  1.3.2.2  pgoyette {
    704  1.3.2.2  pgoyette 	unsigned int refcnt;
    705  1.3.2.3  pgoyette 
    706  1.3.2.2  pgoyette 	do {
    707  1.3.2.2  pgoyette 		refcnt = job->job_refcnt;
    708  1.3.2.3  pgoyette 		KASSERT(refcnt != UINT_MAX);
    709  1.3.2.2  pgoyette 	} while (atomic_cas_uint(&job->job_refcnt, refcnt, (refcnt + 1))
    710  1.3.2.2  pgoyette 	    != refcnt);
    711  1.3.2.2  pgoyette }
    712  1.3.2.2  pgoyette 
    713  1.3.2.2  pgoyette static void
    714  1.3.2.3  pgoyette threadpool_job_rele(struct threadpool_job *job)
    715  1.3.2.2  pgoyette {
    716  1.3.2.2  pgoyette 	unsigned int refcnt;
    717  1.3.2.2  pgoyette 
    718  1.3.2.3  pgoyette 	KASSERT(mutex_owned(job->job_lock));
    719  1.3.2.3  pgoyette 
    720  1.3.2.2  pgoyette 	do {
    721  1.3.2.2  pgoyette 		refcnt = job->job_refcnt;
    722  1.3.2.2  pgoyette 		KASSERT(0 < refcnt);
    723  1.3.2.2  pgoyette 		if (refcnt == 1) {
    724  1.3.2.2  pgoyette 			refcnt = atomic_dec_uint_nv(&job->job_refcnt);
    725  1.3.2.2  pgoyette 			KASSERT(refcnt != UINT_MAX);
    726  1.3.2.2  pgoyette 			if (refcnt == 0)
    727  1.3.2.2  pgoyette 				cv_broadcast(&job->job_cv);
    728  1.3.2.2  pgoyette 			return;
    729  1.3.2.2  pgoyette 		}
    730  1.3.2.2  pgoyette 	} while (atomic_cas_uint(&job->job_refcnt, refcnt, (refcnt - 1))
    731  1.3.2.2  pgoyette 	    != refcnt);
    732  1.3.2.2  pgoyette }
    733  1.3.2.2  pgoyette 
    734  1.3.2.2  pgoyette void
    735  1.3.2.3  pgoyette threadpool_job_done(struct threadpool_job *job)
    736  1.3.2.2  pgoyette {
    737  1.3.2.2  pgoyette 
    738  1.3.2.2  pgoyette 	KASSERT(mutex_owned(job->job_lock));
    739  1.3.2.2  pgoyette 	KASSERT(job->job_thread != NULL);
    740  1.3.2.2  pgoyette 	KASSERT(job->job_thread->tpt_lwp == curlwp);
    741  1.3.2.2  pgoyette 
    742  1.3.2.3  pgoyette 	/*
    743  1.3.2.3  pgoyette 	 * We can safely read this field; it's only modified right before
    744  1.3.2.3  pgoyette 	 * we call the job work function, and we are only preserving it
    745  1.3.2.3  pgoyette 	 * to use here; no one cares if it contains junk afterward.
    746  1.3.2.3  pgoyette 	 */
    747  1.3.2.3  pgoyette 	lwp_lock(curlwp);
    748  1.3.2.3  pgoyette 	curlwp->l_name = job->job_thread->tpt_lwp_savedname;
    749  1.3.2.3  pgoyette 	lwp_unlock(curlwp);
    750  1.3.2.3  pgoyette 
    751  1.3.2.3  pgoyette 	/*
    752  1.3.2.3  pgoyette 	 * Inline the work of threadpool_job_rele(); the job is already
    753  1.3.2.3  pgoyette 	 * locked, the most likely scenario (XXXJRT only scenario?) is
    754  1.3.2.3  pgoyette 	 * that we're dropping the last reference (the one taken in
    755  1.3.2.3  pgoyette 	 * threadpool_schedule_job()), and we always do the cv_broadcast()
    756  1.3.2.3  pgoyette 	 * anyway.
    757  1.3.2.3  pgoyette 	 */
    758  1.3.2.3  pgoyette 	KASSERT(0 < job->job_refcnt);
    759  1.3.2.3  pgoyette 	unsigned int refcnt __diagused = atomic_dec_uint_nv(&job->job_refcnt);
    760  1.3.2.3  pgoyette 	KASSERT(refcnt != UINT_MAX);
    761  1.3.2.2  pgoyette 	cv_broadcast(&job->job_cv);
    762  1.3.2.2  pgoyette 	job->job_thread = NULL;
    763  1.3.2.2  pgoyette }
    764  1.3.2.2  pgoyette 
    765  1.3.2.2  pgoyette void
    766  1.3.2.3  pgoyette threadpool_schedule_job(struct threadpool *pool, struct threadpool_job *job)
    767  1.3.2.2  pgoyette {
    768  1.3.2.2  pgoyette 
    769  1.3.2.2  pgoyette 	KASSERT(mutex_owned(job->job_lock));
    770  1.3.2.2  pgoyette 
    771  1.3.2.2  pgoyette 	/*
    772  1.3.2.2  pgoyette 	 * If the job's already running, let it keep running.  The job
    773  1.3.2.2  pgoyette 	 * is guaranteed by the interlock not to end early -- if it had
    774  1.3.2.2  pgoyette 	 * ended early, threadpool_job_done would have set job_thread
    775  1.3.2.2  pgoyette 	 * to NULL under the interlock.
    776  1.3.2.2  pgoyette 	 */
    777  1.3.2.2  pgoyette 	if (__predict_true(job->job_thread != NULL)) {
    778  1.3.2.2  pgoyette 		TP_LOG(("%s: job '%s' already runnining.\n",
    779  1.3.2.3  pgoyette 		    __func__, job->job_name));
    780  1.3.2.2  pgoyette 		return;
    781  1.3.2.2  pgoyette 	}
    782  1.3.2.2  pgoyette 
    783  1.3.2.3  pgoyette 	threadpool_job_hold(job);
    784  1.3.2.3  pgoyette 
    785  1.3.2.2  pgoyette 	/* Otherwise, try to assign a thread to the job.  */
    786  1.3.2.2  pgoyette 	mutex_spin_enter(&pool->tp_lock);
    787  1.3.2.2  pgoyette 	if (__predict_false(TAILQ_EMPTY(&pool->tp_idle_threads))) {
    788  1.3.2.2  pgoyette 		/* Nobody's idle.  Give it to the overseer.  */
    789  1.3.2.2  pgoyette 		TP_LOG(("%s: giving job '%s' to overseer.\n",
    790  1.3.2.3  pgoyette 		    __func__, job->job_name));
    791  1.3.2.2  pgoyette 		job->job_thread = &pool->tp_overseer;
    792  1.3.2.2  pgoyette 		TAILQ_INSERT_TAIL(&pool->tp_jobs, job, job_entry);
    793  1.3.2.2  pgoyette 	} else {
    794  1.3.2.2  pgoyette 		/* Assign it to the first idle thread.  */
    795  1.3.2.2  pgoyette 		job->job_thread = TAILQ_FIRST(&pool->tp_idle_threads);
    796  1.3.2.2  pgoyette 		TP_LOG(("%s: giving job '%s' to idle thread %p.\n",
    797  1.3.2.3  pgoyette 		    __func__, job->job_name, job->job_thread));
    798  1.3.2.2  pgoyette 		TAILQ_REMOVE(&pool->tp_idle_threads, job->job_thread,
    799  1.3.2.2  pgoyette 		    tpt_entry);
    800  1.3.2.2  pgoyette 		job->job_thread->tpt_job = job;
    801  1.3.2.2  pgoyette 	}
    802  1.3.2.2  pgoyette 
    803  1.3.2.2  pgoyette 	/* Notify whomever we gave it to, overseer or idle thread.  */
    804  1.3.2.2  pgoyette 	KASSERT(job->job_thread != NULL);
    805  1.3.2.2  pgoyette 	cv_broadcast(&job->job_thread->tpt_cv);
    806  1.3.2.2  pgoyette 	mutex_spin_exit(&pool->tp_lock);
    807  1.3.2.2  pgoyette }
    808  1.3.2.2  pgoyette 
    809  1.3.2.2  pgoyette bool
    810  1.3.2.3  pgoyette threadpool_cancel_job_async(struct threadpool *pool, struct threadpool_job *job)
    811  1.3.2.2  pgoyette {
    812  1.3.2.2  pgoyette 
    813  1.3.2.2  pgoyette 	KASSERT(mutex_owned(job->job_lock));
    814  1.3.2.2  pgoyette 
    815  1.3.2.2  pgoyette 	/*
    816  1.3.2.2  pgoyette 	 * XXXJRT This fails (albeit safely) when all of the following
    817  1.3.2.2  pgoyette 	 * are true:
    818  1.3.2.2  pgoyette 	 *
    819  1.3.2.2  pgoyette 	 *	=> "pool" is something other than what the job was
    820  1.3.2.2  pgoyette 	 *	   scheduled on.  This can legitimately occur if,
    821  1.3.2.2  pgoyette 	 *	   for example, a job is percpu-scheduled on CPU0
    822  1.3.2.2  pgoyette 	 *	   and then CPU1 attempts to cancel it without taking
    823  1.3.2.2  pgoyette 	 *	   a remote pool reference.  (this might happen by
    824  1.3.2.2  pgoyette 	 *	   "luck of the draw").
    825  1.3.2.2  pgoyette 	 *
    826  1.3.2.2  pgoyette 	 *	=> "job" is not yet running, but is assigned to the
    827  1.3.2.2  pgoyette 	 *	   overseer.
    828  1.3.2.2  pgoyette 	 *
    829  1.3.2.2  pgoyette 	 * When this happens, this code makes the determination that
    830  1.3.2.2  pgoyette 	 * the job is already running.  The failure mode is that the
    831  1.3.2.2  pgoyette 	 * caller is told the job is running, and thus has to wait.
    832  1.3.2.2  pgoyette 	 * The overseer will eventually get to it and the job will
    833  1.3.2.2  pgoyette 	 * proceed as if it had been already running.
    834  1.3.2.2  pgoyette 	 */
    835  1.3.2.2  pgoyette 
    836  1.3.2.2  pgoyette 	if (job->job_thread == NULL) {
    837  1.3.2.2  pgoyette 		/* Nothing to do.  Guaranteed not running.  */
    838  1.3.2.2  pgoyette 		return true;
    839  1.3.2.2  pgoyette 	} else if (job->job_thread == &pool->tp_overseer) {
    840  1.3.2.2  pgoyette 		/* Take it off the list to guarantee it won't run.  */
    841  1.3.2.2  pgoyette 		job->job_thread = NULL;
    842  1.3.2.2  pgoyette 		mutex_spin_enter(&pool->tp_lock);
    843  1.3.2.2  pgoyette 		TAILQ_REMOVE(&pool->tp_jobs, job, job_entry);
    844  1.3.2.2  pgoyette 		mutex_spin_exit(&pool->tp_lock);
    845  1.3.2.3  pgoyette 		threadpool_job_rele(job);
    846  1.3.2.2  pgoyette 		return true;
    847  1.3.2.2  pgoyette 	} else {
    848  1.3.2.2  pgoyette 		/* Too late -- already running.  */
    849  1.3.2.2  pgoyette 		return false;
    850  1.3.2.2  pgoyette 	}
    851  1.3.2.2  pgoyette }
    852  1.3.2.2  pgoyette 
    853  1.3.2.2  pgoyette void
    854  1.3.2.3  pgoyette threadpool_cancel_job(struct threadpool *pool, struct threadpool_job *job)
    855  1.3.2.2  pgoyette {
    856  1.3.2.2  pgoyette 
    857  1.3.2.2  pgoyette 	ASSERT_SLEEPABLE();
    858  1.3.2.2  pgoyette 
    859  1.3.2.2  pgoyette 	KASSERT(mutex_owned(job->job_lock));
    860  1.3.2.2  pgoyette 
    861  1.3.2.3  pgoyette 	if (threadpool_cancel_job_async(pool, job))
    862  1.3.2.2  pgoyette 		return;
    863  1.3.2.2  pgoyette 
    864  1.3.2.2  pgoyette 	/* Already running.  Wait for it to complete.  */
    865  1.3.2.2  pgoyette 	while (job->job_thread != NULL)
    866  1.3.2.2  pgoyette 		cv_wait(&job->job_cv, job->job_lock);
    867  1.3.2.2  pgoyette }
    868  1.3.2.2  pgoyette 
    869  1.3.2.2  pgoyette /* Thread pool overseer thread */
    870  1.3.2.2  pgoyette 
    871  1.3.2.2  pgoyette static void __dead
    872  1.3.2.2  pgoyette threadpool_overseer_thread(void *arg)
    873  1.3.2.2  pgoyette {
    874  1.3.2.2  pgoyette 	struct threadpool_thread *const overseer = arg;
    875  1.3.2.3  pgoyette 	struct threadpool *const pool = overseer->tpt_pool;
    876  1.3.2.2  pgoyette 	struct lwp *lwp = NULL;
    877  1.3.2.2  pgoyette 	int ktflags;
    878  1.3.2.2  pgoyette 	int error;
    879  1.3.2.2  pgoyette 
    880  1.3.2.2  pgoyette 	KASSERT((pool->tp_cpu == NULL) || (pool->tp_cpu == curcpu()));
    881  1.3.2.2  pgoyette 
    882  1.3.2.2  pgoyette 	/* Wait until we're initialized.  */
    883  1.3.2.2  pgoyette 	mutex_spin_enter(&pool->tp_lock);
    884  1.3.2.2  pgoyette 	while (overseer->tpt_lwp == NULL)
    885  1.3.2.2  pgoyette 		cv_wait(&overseer->tpt_cv, &pool->tp_lock);
    886  1.3.2.2  pgoyette 
    887  1.3.2.2  pgoyette 	TP_LOG(("%s: starting.\n", __func__));
    888  1.3.2.2  pgoyette 
    889  1.3.2.2  pgoyette 	for (;;) {
    890  1.3.2.2  pgoyette 		/* Wait until there's a job.  */
    891  1.3.2.2  pgoyette 		while (TAILQ_EMPTY(&pool->tp_jobs)) {
    892  1.3.2.2  pgoyette 			if (ISSET(pool->tp_flags, THREADPOOL_DYING)) {
    893  1.3.2.2  pgoyette 				TP_LOG(("%s: THREADPOOL_DYING\n",
    894  1.3.2.3  pgoyette 				    __func__));
    895  1.3.2.2  pgoyette 				break;
    896  1.3.2.2  pgoyette 			}
    897  1.3.2.2  pgoyette 			cv_wait(&overseer->tpt_cv, &pool->tp_lock);
    898  1.3.2.2  pgoyette 		}
    899  1.3.2.2  pgoyette 		if (__predict_false(TAILQ_EMPTY(&pool->tp_jobs)))
    900  1.3.2.2  pgoyette 			break;
    901  1.3.2.2  pgoyette 
    902  1.3.2.2  pgoyette 		/* If there are no threads, we'll have to try to start one.  */
    903  1.3.2.2  pgoyette 		if (TAILQ_EMPTY(&pool->tp_idle_threads)) {
    904  1.3.2.2  pgoyette 			TP_LOG(("%s: Got a job, need to create a thread.\n",
    905  1.3.2.3  pgoyette 			    __func__));
    906  1.3.2.3  pgoyette 			threadpool_hold(pool);
    907  1.3.2.2  pgoyette 			mutex_spin_exit(&pool->tp_lock);
    908  1.3.2.2  pgoyette 
    909  1.3.2.2  pgoyette 			struct threadpool_thread *const thread =
    910  1.3.2.2  pgoyette 			    pool_cache_get(threadpool_thread_pc, PR_WAITOK);
    911  1.3.2.2  pgoyette 			thread->tpt_lwp = NULL;
    912  1.3.2.2  pgoyette 			thread->tpt_pool = pool;
    913  1.3.2.2  pgoyette 			thread->tpt_job = NULL;
    914  1.3.2.2  pgoyette 			cv_init(&thread->tpt_cv, "poolthrd");
    915  1.3.2.2  pgoyette 
    916  1.3.2.2  pgoyette 			ktflags = 0;
    917  1.3.2.2  pgoyette 			ktflags |= KTHREAD_MPSAFE;
    918  1.3.2.2  pgoyette 			if (pool->tp_pri < PRI_KERNEL)
    919  1.3.2.2  pgoyette 				ktflags |= KTHREAD_TS;
    920  1.3.2.2  pgoyette 			error = kthread_create(pool->tp_pri, ktflags,
    921  1.3.2.2  pgoyette 			    pool->tp_cpu, &threadpool_thread, thread, &lwp,
    922  1.3.2.2  pgoyette 			    "poolthread/%d@%d",
    923  1.3.2.2  pgoyette 			    (pool->tp_cpu ? cpu_index(pool->tp_cpu) : -1),
    924  1.3.2.2  pgoyette 			    (int)pool->tp_pri);
    925  1.3.2.2  pgoyette 
    926  1.3.2.2  pgoyette 			mutex_spin_enter(&pool->tp_lock);
    927  1.3.2.2  pgoyette 			if (error) {
    928  1.3.2.2  pgoyette 				pool_cache_put(threadpool_thread_pc, thread);
    929  1.3.2.2  pgoyette 				threadpool_rele(pool);
    930  1.3.2.2  pgoyette 				/* XXX What to do to wait for memory?  */
    931  1.3.2.2  pgoyette 				(void)kpause("thrdplcr", false, hz,
    932  1.3.2.2  pgoyette 				    &pool->tp_lock);
    933  1.3.2.2  pgoyette 				continue;
    934  1.3.2.2  pgoyette 			}
    935  1.3.2.3  pgoyette 			/*
    936  1.3.2.3  pgoyette 			 * New kthread now owns the reference to the pool
    937  1.3.2.3  pgoyette 			 * taken above.
    938  1.3.2.3  pgoyette 			 */
    939  1.3.2.2  pgoyette 			KASSERT(lwp != NULL);
    940  1.3.2.2  pgoyette 			TAILQ_INSERT_TAIL(&pool->tp_idle_threads, thread,
    941  1.3.2.2  pgoyette 			    tpt_entry);
    942  1.3.2.2  pgoyette 			thread->tpt_lwp = lwp;
    943  1.3.2.2  pgoyette 			lwp = NULL;
    944  1.3.2.2  pgoyette 			cv_broadcast(&thread->tpt_cv);
    945  1.3.2.2  pgoyette 			continue;
    946  1.3.2.2  pgoyette 		}
    947  1.3.2.2  pgoyette 
    948  1.3.2.2  pgoyette 		/* There are idle threads, so try giving one a job.  */
    949  1.3.2.3  pgoyette 		struct threadpool_job *const job = TAILQ_FIRST(&pool->tp_jobs);
    950  1.3.2.2  pgoyette 		TAILQ_REMOVE(&pool->tp_jobs, job, job_entry);
    951  1.3.2.3  pgoyette 		/*
    952  1.3.2.3  pgoyette 		 * Take an extra reference on the job temporarily so that
    953  1.3.2.3  pgoyette 		 * it won't disappear on us while we have both locks dropped.
    954  1.3.2.3  pgoyette 		 */
    955  1.3.2.3  pgoyette 		threadpool_job_hold(job);
    956  1.3.2.2  pgoyette 		mutex_spin_exit(&pool->tp_lock);
    957  1.3.2.2  pgoyette 
    958  1.3.2.2  pgoyette 		mutex_enter(job->job_lock);
    959  1.3.2.2  pgoyette 		/* If the job was cancelled, we'll no longer be its thread.  */
    960  1.3.2.2  pgoyette 		if (__predict_true(job->job_thread == overseer)) {
    961  1.3.2.2  pgoyette 			mutex_spin_enter(&pool->tp_lock);
    962  1.3.2.2  pgoyette 			if (__predict_false(
    963  1.3.2.2  pgoyette 				    TAILQ_EMPTY(&pool->tp_idle_threads))) {
    964  1.3.2.2  pgoyette 				/*
    965  1.3.2.2  pgoyette 				 * Someone else snagged the thread
    966  1.3.2.2  pgoyette 				 * first.  We'll have to try again.
    967  1.3.2.2  pgoyette 				 */
    968  1.3.2.2  pgoyette 				TP_LOG(("%s: '%s' lost race to use idle thread.\n",
    969  1.3.2.3  pgoyette 				    __func__, job->job_name));
    970  1.3.2.2  pgoyette 				TAILQ_INSERT_HEAD(&pool->tp_jobs, job,
    971  1.3.2.2  pgoyette 				    job_entry);
    972  1.3.2.2  pgoyette 			} else {
    973  1.3.2.2  pgoyette 				/*
    974  1.3.2.2  pgoyette 				 * Assign the job to the thread and
    975  1.3.2.2  pgoyette 				 * wake the thread so it starts work.
    976  1.3.2.2  pgoyette 				 */
    977  1.3.2.2  pgoyette 				struct threadpool_thread *const thread =
    978  1.3.2.2  pgoyette 				    TAILQ_FIRST(&pool->tp_idle_threads);
    979  1.3.2.2  pgoyette 
    980  1.3.2.2  pgoyette 				TP_LOG(("%s: '%s' gets thread %p\n",
    981  1.3.2.3  pgoyette 				    __func__, job->job_name, thread));
    982  1.3.2.2  pgoyette 				KASSERT(thread->tpt_job == NULL);
    983  1.3.2.2  pgoyette 				TAILQ_REMOVE(&pool->tp_idle_threads, thread,
    984  1.3.2.2  pgoyette 				    tpt_entry);
    985  1.3.2.2  pgoyette 				thread->tpt_job = job;
    986  1.3.2.2  pgoyette 				job->job_thread = thread;
    987  1.3.2.2  pgoyette 				cv_broadcast(&thread->tpt_cv);
    988  1.3.2.2  pgoyette 			}
    989  1.3.2.2  pgoyette 			mutex_spin_exit(&pool->tp_lock);
    990  1.3.2.2  pgoyette 		}
    991  1.3.2.3  pgoyette 		threadpool_job_rele(job);
    992  1.3.2.2  pgoyette 		mutex_exit(job->job_lock);
    993  1.3.2.2  pgoyette 
    994  1.3.2.2  pgoyette 		mutex_spin_enter(&pool->tp_lock);
    995  1.3.2.2  pgoyette 	}
    996  1.3.2.3  pgoyette 	threadpool_rele(pool);
    997  1.3.2.2  pgoyette 	mutex_spin_exit(&pool->tp_lock);
    998  1.3.2.2  pgoyette 
    999  1.3.2.2  pgoyette 	TP_LOG(("%s: exiting.\n", __func__));
   1000  1.3.2.2  pgoyette 
   1001  1.3.2.2  pgoyette 	kthread_exit(0);
   1002  1.3.2.2  pgoyette }
   1003  1.3.2.2  pgoyette 
   1004  1.3.2.2  pgoyette /* Thread pool thread */
   1005  1.3.2.2  pgoyette 
   1006  1.3.2.2  pgoyette static void __dead
   1007  1.3.2.2  pgoyette threadpool_thread(void *arg)
   1008  1.3.2.2  pgoyette {
   1009  1.3.2.2  pgoyette 	struct threadpool_thread *const thread = arg;
   1010  1.3.2.3  pgoyette 	struct threadpool *const pool = thread->tpt_pool;
   1011  1.3.2.2  pgoyette 
   1012  1.3.2.2  pgoyette 	KASSERT((pool->tp_cpu == NULL) || (pool->tp_cpu == curcpu()));
   1013  1.3.2.2  pgoyette 
   1014  1.3.2.2  pgoyette 	/* Wait until we're initialized and on the queue.  */
   1015  1.3.2.2  pgoyette 	mutex_spin_enter(&pool->tp_lock);
   1016  1.3.2.2  pgoyette 	while (thread->tpt_lwp == NULL)
   1017  1.3.2.2  pgoyette 		cv_wait(&thread->tpt_cv, &pool->tp_lock);
   1018  1.3.2.2  pgoyette 
   1019  1.3.2.2  pgoyette 	TP_LOG(("%s: starting.\n", __func__));
   1020  1.3.2.2  pgoyette 
   1021  1.3.2.2  pgoyette 	KASSERT(thread->tpt_lwp == curlwp);
   1022  1.3.2.2  pgoyette 	for (;;) {
   1023  1.3.2.2  pgoyette 		/* Wait until we are assigned a job.  */
   1024  1.3.2.2  pgoyette 		while (thread->tpt_job == NULL) {
   1025  1.3.2.2  pgoyette 			if (ISSET(pool->tp_flags, THREADPOOL_DYING)) {
   1026  1.3.2.2  pgoyette 				TP_LOG(("%s: THREADPOOL_DYING\n",
   1027  1.3.2.3  pgoyette 				    __func__));
   1028  1.3.2.2  pgoyette 				break;
   1029  1.3.2.2  pgoyette 			}
   1030  1.3.2.2  pgoyette 			if (cv_timedwait(&thread->tpt_cv, &pool->tp_lock,
   1031  1.3.2.3  pgoyette 				mstohz(threadpool_idle_time_ms)))
   1032  1.3.2.2  pgoyette 				break;
   1033  1.3.2.2  pgoyette 		}
   1034  1.3.2.2  pgoyette 		if (__predict_false(thread->tpt_job == NULL)) {
   1035  1.3.2.2  pgoyette 			TAILQ_REMOVE(&pool->tp_idle_threads, thread,
   1036  1.3.2.2  pgoyette 			    tpt_entry);
   1037  1.3.2.2  pgoyette 			break;
   1038  1.3.2.2  pgoyette 		}
   1039  1.3.2.2  pgoyette 
   1040  1.3.2.3  pgoyette 		struct threadpool_job *const job = thread->tpt_job;
   1041  1.3.2.2  pgoyette 		KASSERT(job != NULL);
   1042  1.3.2.2  pgoyette 
   1043  1.3.2.2  pgoyette 		/* Set our lwp name to reflect what job we're doing.  */
   1044  1.3.2.2  pgoyette 		lwp_lock(curlwp);
   1045  1.3.2.3  pgoyette 		char *const lwp_name __diagused = curlwp->l_name;
   1046  1.3.2.3  pgoyette 		thread->tpt_lwp_savedname = curlwp->l_name;
   1047  1.3.2.2  pgoyette 		curlwp->l_name = job->job_name;
   1048  1.3.2.2  pgoyette 		lwp_unlock(curlwp);
   1049  1.3.2.2  pgoyette 
   1050  1.3.2.3  pgoyette 		mutex_spin_exit(&pool->tp_lock);
   1051  1.3.2.2  pgoyette 
   1052  1.3.2.3  pgoyette 		TP_LOG(("%s: running job '%s' on thread %p.\n",
   1053  1.3.2.3  pgoyette 		    __func__, job->job_name, thread));
   1054  1.3.2.2  pgoyette 
   1055  1.3.2.3  pgoyette 		/* Run the job.  */
   1056  1.3.2.3  pgoyette 		(*job->job_fn)(job);
   1057  1.3.2.3  pgoyette 
   1058  1.3.2.3  pgoyette 		/* lwp name restored in threadpool_job_done(). */
   1059  1.3.2.3  pgoyette 		KASSERTMSG((curlwp->l_name == lwp_name),
   1060  1.3.2.3  pgoyette 		    "someone forgot to call threadpool_job_done()!");
   1061  1.3.2.3  pgoyette 
   1062  1.3.2.3  pgoyette 		/*
   1063  1.3.2.3  pgoyette 		 * We can compare pointers, but we can no longer deference
   1064  1.3.2.3  pgoyette 		 * job after this because threadpool_job_done() drops the
   1065  1.3.2.3  pgoyette 		 * last reference on the job while the job is locked.
   1066  1.3.2.3  pgoyette 		 */
   1067  1.3.2.2  pgoyette 
   1068  1.3.2.2  pgoyette 		mutex_spin_enter(&pool->tp_lock);
   1069  1.3.2.2  pgoyette 		KASSERT(thread->tpt_job == job);
   1070  1.3.2.2  pgoyette 		thread->tpt_job = NULL;
   1071  1.3.2.2  pgoyette 		TAILQ_INSERT_TAIL(&pool->tp_idle_threads, thread, tpt_entry);
   1072  1.3.2.2  pgoyette 	}
   1073  1.3.2.3  pgoyette 	threadpool_rele(pool);
   1074  1.3.2.2  pgoyette 	mutex_spin_exit(&pool->tp_lock);
   1075  1.3.2.2  pgoyette 
   1076  1.3.2.2  pgoyette 	TP_LOG(("%s: thread %p exiting.\n", __func__, thread));
   1077  1.3.2.2  pgoyette 
   1078  1.3.2.2  pgoyette 	KASSERT(!cv_has_waiters(&thread->tpt_cv));
   1079  1.3.2.2  pgoyette 	cv_destroy(&thread->tpt_cv);
   1080  1.3.2.2  pgoyette 	pool_cache_put(threadpool_thread_pc, thread);
   1081  1.3.2.2  pgoyette 	kthread_exit(0);
   1082  1.3.2.2  pgoyette }
   1083