Home | History | Annotate | Line # | Download | only in kern
kern_threadpool.c revision 1.11
      1 /*	$NetBSD: kern_threadpool.c,v 1.11 2018/12/26 22:16:26 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2014, 2018 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Taylor R. Campbell and Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Thread pools.
     34  *
     35  * A thread pool is a collection of worker threads idle or running
     36  * jobs, together with an overseer thread that does not run jobs but
     37  * can be given jobs to assign to a worker thread.  Scheduling a job in
     38  * a thread pool does not allocate or even sleep at all, except perhaps
     39  * on an adaptive lock, unlike kthread_create.  Jobs reuse threads, so
     40  * they do not incur the expense of creating and destroying kthreads
     41  * unless there is not much work to be done.
     42  *
     43  * A per-CPU thread pool (threadpool_percpu) is a collection of thread
     44  * pools, one per CPU bound to that CPU.  For each priority level in
     45  * use, there is one shared unbound thread pool (i.e., pool of threads
     46  * not bound to any CPU) and one shared per-CPU thread pool.
     47  *
     48  * To use the unbound thread pool at priority pri, call
     49  * threadpool_get(&pool, pri).  When you're done, call
     50  * threadpool_put(pool, pri).
     51  *
     52  * To use the per-CPU thread pools at priority pri, call
     53  * threadpool_percpu_get(&pool_percpu, pri), and then use the thread
     54  * pool returned by threadpool_percpu_ref(pool_percpu) for the current
     55  * CPU, or by threadpool_percpu_ref_remote(pool_percpu, ci) for another
     56  * CPU.  When you're done, call threadpool_percpu_put(pool_percpu,
     57  * pri).
     58  *
     59  * +--MACHINE-----------------------------------------------+
     60  * | +--CPU 0-------+ +--CPU 1-------+     +--CPU n-------+ |
     61  * | | <overseer 0> | | <overseer 1> | ... | <overseer n> | |
     62  * | | <idle 0a>    | | <running 1a> | ... | <idle na>    | |
     63  * | | <running 0b> | | <running 1b> | ... | <idle nb>    | |
     64  * | | .            | | .            | ... | .            | |
     65  * | | .            | | .            | ... | .            | |
     66  * | | .            | | .            | ... | .            | |
     67  * | +--------------+ +--------------+     +--------------+ |
     68  * |            +--unbound---------+                        |
     69  * |            | <overseer n+1>   |                        |
     70  * |            | <idle (n+1)a>    |                        |
     71  * |            | <running (n+1)b> |                        |
     72  * |            +------------------+                        |
     73  * +--------------------------------------------------------+
     74  *
     75  * XXX Why one overseer per CPU?  I did that originally to avoid
     76  * touching remote CPUs' memory when scheduling a job, but that still
     77  * requires interprocessor synchronization.  Perhaps we could get by
     78  * with a single overseer thread, at the expense of another pointer in
     79  * struct threadpool_job to identify the CPU on which it must run
     80  * in order for the overseer to schedule it correctly.
     81  */
     82 
     83 #include <sys/cdefs.h>
     84 __KERNEL_RCSID(0, "$NetBSD: kern_threadpool.c,v 1.11 2018/12/26 22:16:26 thorpej Exp $");
     85 
     86 #include <sys/types.h>
     87 #include <sys/param.h>
     88 #include <sys/atomic.h>
     89 #include <sys/condvar.h>
     90 #include <sys/cpu.h>
     91 #include <sys/kernel.h>
     92 #include <sys/kmem.h>
     93 #include <sys/kthread.h>
     94 #include <sys/mutex.h>
     95 #include <sys/once.h>
     96 #include <sys/percpu.h>
     97 #include <sys/pool.h>
     98 #include <sys/proc.h>
     99 #include <sys/queue.h>
    100 #include <sys/systm.h>
    101 #include <sys/threadpool.h>
    102 
    103 /* Data structures */
    104 
    105 TAILQ_HEAD(job_head, threadpool_job);
    106 TAILQ_HEAD(thread_head, threadpool_thread);
    107 
    108 struct threadpool_thread {
    109 	struct lwp			*tpt_lwp;
    110 	struct threadpool		*tpt_pool;
    111 	struct threadpool_job		*tpt_job;
    112 	kcondvar_t			tpt_cv;
    113 	TAILQ_ENTRY(threadpool_thread)	tpt_entry;
    114 };
    115 
    116 struct threadpool {
    117 	kmutex_t			tp_lock;
    118 	struct threadpool_thread	tp_overseer;
    119 	struct job_head			tp_jobs;
    120 	struct thread_head		tp_idle_threads;
    121 	uint64_t			tp_refcnt;
    122 	int				tp_flags;
    123 #define	THREADPOOL_DYING	0x01
    124 	struct cpu_info			*tp_cpu;
    125 	pri_t				tp_pri;
    126 };
    127 
    128 static void	threadpool_hold(struct threadpool *);
    129 static void	threadpool_rele(struct threadpool *);
    130 
    131 static int	threadpool_percpu_create(struct threadpool_percpu **, pri_t);
    132 static void	threadpool_percpu_destroy(struct threadpool_percpu *);
    133 
    134 static threadpool_job_fn_t threadpool_job_dead;
    135 
    136 static int	threadpool_job_hold(struct threadpool_job *);
    137 static void	threadpool_job_rele(struct threadpool_job *);
    138 
    139 static void	threadpool_overseer_thread(void *) __dead;
    140 static void	threadpool_thread(void *) __dead;
    141 
    142 static pool_cache_t	threadpool_thread_pc __read_mostly;
    143 
    144 static kmutex_t		threadpools_lock __cacheline_aligned;
    145 
    146 	/* Idle out threads after 30 seconds */
    147 #define	THREADPOOL_IDLE_TICKS	mstohz(30 * 1000)
    148 
    149 struct threadpool_unbound {
    150 	struct threadpool		tpu_pool;
    151 
    152 	/* protected by threadpools_lock */
    153 	LIST_ENTRY(threadpool_unbound)	tpu_link;
    154 	uint64_t			tpu_refcnt;
    155 };
    156 
    157 static LIST_HEAD(, threadpool_unbound) unbound_threadpools;
    158 
    159 static struct threadpool_unbound *
    160 threadpool_lookup_unbound(pri_t pri)
    161 {
    162 	struct threadpool_unbound *tpu;
    163 
    164 	LIST_FOREACH(tpu, &unbound_threadpools, tpu_link) {
    165 		if (tpu->tpu_pool.tp_pri == pri)
    166 			return tpu;
    167 	}
    168 	return NULL;
    169 }
    170 
    171 static void
    172 threadpool_insert_unbound(struct threadpool_unbound *tpu)
    173 {
    174 	KASSERT(threadpool_lookup_unbound(tpu->tpu_pool.tp_pri) == NULL);
    175 	LIST_INSERT_HEAD(&unbound_threadpools, tpu, tpu_link);
    176 }
    177 
    178 static void
    179 threadpool_remove_unbound(struct threadpool_unbound *tpu)
    180 {
    181 	KASSERT(threadpool_lookup_unbound(tpu->tpu_pool.tp_pri) == tpu);
    182 	LIST_REMOVE(tpu, tpu_link);
    183 }
    184 
    185 struct threadpool_percpu {
    186 	percpu_t *			tpp_percpu;
    187 	pri_t				tpp_pri;
    188 
    189 	/* protected by threadpools_lock */
    190 	LIST_ENTRY(threadpool_percpu)	tpp_link;
    191 	uint64_t			tpp_refcnt;
    192 };
    193 
    194 static LIST_HEAD(, threadpool_percpu) percpu_threadpools;
    195 
    196 static struct threadpool_percpu *
    197 threadpool_lookup_percpu(pri_t pri)
    198 {
    199 	struct threadpool_percpu *tpp;
    200 
    201 	LIST_FOREACH(tpp, &percpu_threadpools, tpp_link) {
    202 		if (tpp->tpp_pri == pri)
    203 			return tpp;
    204 	}
    205 	return NULL;
    206 }
    207 
    208 static void
    209 threadpool_insert_percpu(struct threadpool_percpu *tpp)
    210 {
    211 	KASSERT(threadpool_lookup_percpu(tpp->tpp_pri) == NULL);
    212 	LIST_INSERT_HEAD(&percpu_threadpools, tpp, tpp_link);
    213 }
    214 
    215 static void
    216 threadpool_remove_percpu(struct threadpool_percpu *tpp)
    217 {
    218 	KASSERT(threadpool_lookup_percpu(tpp->tpp_pri) == tpp);
    219 	LIST_REMOVE(tpp, tpp_link);
    220 }
    221 
    222 #ifdef THREADPOOL_VERBOSE
    223 #define	TP_LOG(x)		printf x
    224 #else
    225 #define	TP_LOG(x)		/* nothing */
    226 #endif /* THREADPOOL_VERBOSE */
    227 
    228 void
    229 threadpools_init(void)
    230 {
    231 
    232 	threadpool_thread_pc =
    233 	    pool_cache_init(sizeof(struct threadpool_thread), 0, 0, 0,
    234 		"thplthrd", NULL, IPL_NONE, NULL, NULL, NULL);
    235 
    236 	LIST_INIT(&unbound_threadpools);
    237 	LIST_INIT(&percpu_threadpools);
    238 	mutex_init(&threadpools_lock, MUTEX_DEFAULT, IPL_NONE);
    239 }
    240 
    241 /* Thread pool creation */
    242 
    243 static bool
    244 threadpool_pri_is_valid(pri_t pri)
    245 {
    246 	return (pri == PRI_NONE || (pri >= PRI_USER && pri < PRI_COUNT));
    247 }
    248 
    249 static int
    250 threadpool_create(struct threadpool *const pool, struct cpu_info *ci,
    251     pri_t pri)
    252 {
    253 	struct lwp *lwp;
    254 	int ktflags;
    255 	int error;
    256 
    257 	KASSERT(threadpool_pri_is_valid(pri));
    258 
    259 	mutex_init(&pool->tp_lock, MUTEX_DEFAULT, IPL_VM);
    260 	/* XXX overseer */
    261 	TAILQ_INIT(&pool->tp_jobs);
    262 	TAILQ_INIT(&pool->tp_idle_threads);
    263 	pool->tp_refcnt = 1;		/* overseer's reference */
    264 	pool->tp_flags = 0;
    265 	pool->tp_cpu = ci;
    266 	pool->tp_pri = pri;
    267 
    268 	pool->tp_overseer.tpt_lwp = NULL;
    269 	pool->tp_overseer.tpt_pool = pool;
    270 	pool->tp_overseer.tpt_job = NULL;
    271 	cv_init(&pool->tp_overseer.tpt_cv, "poolover");
    272 
    273 	ktflags = 0;
    274 	ktflags |= KTHREAD_MPSAFE;
    275 	if (pri < PRI_KERNEL)
    276 		ktflags |= KTHREAD_TS;
    277 	error = kthread_create(pri, ktflags, ci, &threadpool_overseer_thread,
    278 	    &pool->tp_overseer, &lwp,
    279 	    "pooloverseer/%d@%d", (ci ? cpu_index(ci) : -1), (int)pri);
    280 	if (error)
    281 		goto fail0;
    282 
    283 	mutex_spin_enter(&pool->tp_lock);
    284 	pool->tp_overseer.tpt_lwp = lwp;
    285 	cv_broadcast(&pool->tp_overseer.tpt_cv);
    286 	mutex_spin_exit(&pool->tp_lock);
    287 
    288 	return 0;
    289 
    290 fail0:	KASSERT(error);
    291 	KASSERT(pool->tp_overseer.tpt_job == NULL);
    292 	KASSERT(pool->tp_overseer.tpt_pool == pool);
    293 	KASSERT(pool->tp_flags == 0);
    294 	KASSERT(pool->tp_refcnt == 0);
    295 	KASSERT(TAILQ_EMPTY(&pool->tp_idle_threads));
    296 	KASSERT(TAILQ_EMPTY(&pool->tp_jobs));
    297 	KASSERT(!cv_has_waiters(&pool->tp_overseer.tpt_cv));
    298 	cv_destroy(&pool->tp_overseer.tpt_cv);
    299 	mutex_destroy(&pool->tp_lock);
    300 	return error;
    301 }
    302 
    303 /* Thread pool destruction */
    304 
    305 static void
    306 threadpool_destroy(struct threadpool *pool)
    307 {
    308 	struct threadpool_thread *thread;
    309 
    310 	/* Mark the pool dying and wait for threads to commit suicide.  */
    311 	mutex_spin_enter(&pool->tp_lock);
    312 	KASSERT(TAILQ_EMPTY(&pool->tp_jobs));
    313 	pool->tp_flags |= THREADPOOL_DYING;
    314 	cv_broadcast(&pool->tp_overseer.tpt_cv);
    315 	TAILQ_FOREACH(thread, &pool->tp_idle_threads, tpt_entry)
    316 		cv_broadcast(&thread->tpt_cv);
    317 	while (0 < pool->tp_refcnt) {
    318 		TP_LOG(("%s: draining %u references...\n", __func__,
    319 		    pool->tp_refcnt));
    320 		cv_wait(&pool->tp_overseer.tpt_cv, &pool->tp_lock);
    321 	}
    322 	mutex_spin_exit(&pool->tp_lock);
    323 
    324 	KASSERT(pool->tp_overseer.tpt_job == NULL);
    325 	KASSERT(pool->tp_overseer.tpt_pool == pool);
    326 	KASSERT(pool->tp_flags == THREADPOOL_DYING);
    327 	KASSERT(pool->tp_refcnt == 0);
    328 	KASSERT(TAILQ_EMPTY(&pool->tp_idle_threads));
    329 	KASSERT(TAILQ_EMPTY(&pool->tp_jobs));
    330 	KASSERT(!cv_has_waiters(&pool->tp_overseer.tpt_cv));
    331 	cv_destroy(&pool->tp_overseer.tpt_cv);
    332 	mutex_destroy(&pool->tp_lock);
    333 }
    334 
    335 static void
    336 threadpool_hold(struct threadpool *pool)
    337 {
    338 
    339 	KASSERT(mutex_owned(&pool->tp_lock));
    340 	pool->tp_refcnt++;
    341 	KASSERT(pool->tp_refcnt != 0);
    342 }
    343 
    344 static void
    345 threadpool_rele(struct threadpool *pool)
    346 {
    347 
    348 	KASSERT(mutex_owned(&pool->tp_lock));
    349 	KASSERT(0 < pool->tp_refcnt);
    350 	if (--pool->tp_refcnt == 0)
    351 		cv_broadcast(&pool->tp_overseer.tpt_cv);
    352 }
    353 
    354 /* Unbound thread pools */
    355 
    356 int
    357 threadpool_get(struct threadpool **poolp, pri_t pri)
    358 {
    359 	struct threadpool_unbound *tpu, *tmp = NULL;
    360 	int error;
    361 
    362 	ASSERT_SLEEPABLE();
    363 
    364 	if (! threadpool_pri_is_valid(pri))
    365 		return EINVAL;
    366 
    367 	mutex_enter(&threadpools_lock);
    368 	tpu = threadpool_lookup_unbound(pri);
    369 	if (tpu == NULL) {
    370 		mutex_exit(&threadpools_lock);
    371 		TP_LOG(("%s: No pool for pri=%d, creating one.\n",
    372 		    __func__, (int)pri));
    373 		tmp = kmem_zalloc(sizeof(*tmp), KM_SLEEP);
    374 		error = threadpool_create(&tmp->tpu_pool, NULL, pri);
    375 		if (error) {
    376 			kmem_free(tmp, sizeof(*tmp));
    377 			return error;
    378 		}
    379 		mutex_enter(&threadpools_lock);
    380 		tpu = threadpool_lookup_unbound(pri);
    381 		if (tpu == NULL) {
    382 			TP_LOG(("%s: Won the creation race for pri=%d.\n",
    383 			    __func__, (int)pri));
    384 			tpu = tmp;
    385 			tmp = NULL;
    386 			threadpool_insert_unbound(tpu);
    387 		}
    388 	}
    389 	KASSERT(tpu != NULL);
    390 	tpu->tpu_refcnt++;
    391 	KASSERT(tpu->tpu_refcnt != 0);
    392 	mutex_exit(&threadpools_lock);
    393 
    394 	if (tmp != NULL) {
    395 		threadpool_destroy(&tmp->tpu_pool);
    396 		kmem_free(tmp, sizeof(*tmp));
    397 	}
    398 	KASSERT(tpu != NULL);
    399 	*poolp = &tpu->tpu_pool;
    400 	return 0;
    401 }
    402 
    403 void
    404 threadpool_put(struct threadpool *pool, pri_t pri)
    405 {
    406 	struct threadpool_unbound *tpu =
    407 	    container_of(pool, struct threadpool_unbound, tpu_pool);
    408 
    409 	ASSERT_SLEEPABLE();
    410 
    411 	KASSERT(threadpool_pri_is_valid(pri));
    412 
    413 	mutex_enter(&threadpools_lock);
    414 	KASSERT(tpu == threadpool_lookup_unbound(pri));
    415 	KASSERT(0 < tpu->tpu_refcnt);
    416 	if (--tpu->tpu_refcnt == 0) {
    417 		TP_LOG(("%s: Last reference for pri=%d, destroying pool.\n",
    418 		    __func__, (int)pri));
    419 		threadpool_remove_unbound(tpu);
    420 	} else {
    421 		tpu = NULL;
    422 	}
    423 	mutex_exit(&threadpools_lock);
    424 
    425 	if (tpu) {
    426 		threadpool_destroy(&tpu->tpu_pool);
    427 		kmem_free(tpu, sizeof(*tpu));
    428 	}
    429 }
    430 
    431 /* Per-CPU thread pools */
    432 
    433 int
    434 threadpool_percpu_get(struct threadpool_percpu **pool_percpup, pri_t pri)
    435 {
    436 	struct threadpool_percpu *pool_percpu, *tmp = NULL;
    437 	int error;
    438 
    439 	ASSERT_SLEEPABLE();
    440 
    441 	if (! threadpool_pri_is_valid(pri))
    442 		return EINVAL;
    443 
    444 	mutex_enter(&threadpools_lock);
    445 	pool_percpu = threadpool_lookup_percpu(pri);
    446 	if (pool_percpu == NULL) {
    447 		mutex_exit(&threadpools_lock);
    448 		TP_LOG(("%s: No pool for pri=%d, creating one.\n",
    449 		    __func__, (int)pri));
    450 		error = threadpool_percpu_create(&tmp, pri);
    451 		if (error)
    452 			return error;
    453 		KASSERT(tmp != NULL);
    454 		mutex_enter(&threadpools_lock);
    455 		pool_percpu = threadpool_lookup_percpu(pri);
    456 		if (pool_percpu == NULL) {
    457 			TP_LOG(("%s: Won the creation race for pri=%d.\n",
    458 			    __func__, (int)pri));
    459 			pool_percpu = tmp;
    460 			tmp = NULL;
    461 			threadpool_insert_percpu(pool_percpu);
    462 		}
    463 	}
    464 	KASSERT(pool_percpu != NULL);
    465 	pool_percpu->tpp_refcnt++;
    466 	KASSERT(pool_percpu->tpp_refcnt != 0);
    467 	mutex_exit(&threadpools_lock);
    468 
    469 	if (tmp != NULL)
    470 		threadpool_percpu_destroy(tmp);
    471 	KASSERT(pool_percpu != NULL);
    472 	*pool_percpup = pool_percpu;
    473 	return 0;
    474 }
    475 
    476 void
    477 threadpool_percpu_put(struct threadpool_percpu *pool_percpu, pri_t pri)
    478 {
    479 
    480 	ASSERT_SLEEPABLE();
    481 
    482 	KASSERT(threadpool_pri_is_valid(pri));
    483 
    484 	mutex_enter(&threadpools_lock);
    485 	KASSERT(pool_percpu == threadpool_lookup_percpu(pri));
    486 	KASSERT(0 < pool_percpu->tpp_refcnt);
    487 	if (--pool_percpu->tpp_refcnt == 0) {
    488 		TP_LOG(("%s: Last reference for pri=%d, destroying pool.\n",
    489 		    __func__, (int)pri));
    490 		threadpool_remove_percpu(pool_percpu);
    491 	} else {
    492 		pool_percpu = NULL;
    493 	}
    494 	mutex_exit(&threadpools_lock);
    495 
    496 	if (pool_percpu)
    497 		threadpool_percpu_destroy(pool_percpu);
    498 }
    499 
    500 struct threadpool *
    501 threadpool_percpu_ref(struct threadpool_percpu *pool_percpu)
    502 {
    503 	struct threadpool **poolp, *pool;
    504 
    505 	poolp = percpu_getref(pool_percpu->tpp_percpu);
    506 	pool = *poolp;
    507 	percpu_putref(pool_percpu->tpp_percpu);
    508 
    509 	return pool;
    510 }
    511 
    512 struct threadpool *
    513 threadpool_percpu_ref_remote(struct threadpool_percpu *pool_percpu,
    514     struct cpu_info *ci)
    515 {
    516 	struct threadpool **poolp, *pool;
    517 
    518 	percpu_traverse_enter();
    519 	poolp = percpu_getptr_remote(pool_percpu->tpp_percpu, ci);
    520 	pool = *poolp;
    521 	percpu_traverse_exit();
    522 
    523 	return pool;
    524 }
    525 
    526 static int
    527 threadpool_percpu_create(struct threadpool_percpu **pool_percpup, pri_t pri)
    528 {
    529 	struct threadpool_percpu *pool_percpu;
    530 	struct cpu_info *ci;
    531 	CPU_INFO_ITERATOR cii;
    532 	unsigned int i, j;
    533 	int error;
    534 
    535 	pool_percpu = kmem_zalloc(sizeof(*pool_percpu), KM_SLEEP);
    536 	if (pool_percpu == NULL) {
    537 		error = ENOMEM;
    538 		goto fail0;
    539 	}
    540 	pool_percpu->tpp_pri = pri;
    541 
    542 	pool_percpu->tpp_percpu = percpu_alloc(sizeof(struct threadpool *));
    543 	if (pool_percpu->tpp_percpu == NULL) {
    544 		error = ENOMEM;
    545 		goto fail1;
    546 	}
    547 
    548 	for (i = 0, CPU_INFO_FOREACH(cii, ci), i++) {
    549 		struct threadpool *pool;
    550 
    551 		pool = kmem_zalloc(sizeof(*pool), KM_SLEEP);
    552 		error = threadpool_create(pool, ci, pri);
    553 		if (error) {
    554 			kmem_free(pool, sizeof(*pool));
    555 			goto fail2;
    556 		}
    557 		percpu_traverse_enter();
    558 		struct threadpool **const poolp =
    559 		    percpu_getptr_remote(pool_percpu->tpp_percpu, ci);
    560 		*poolp = pool;
    561 		percpu_traverse_exit();
    562 	}
    563 
    564 	/* Success!  */
    565 	*pool_percpup = (struct threadpool_percpu *)pool_percpu;
    566 	return 0;
    567 
    568 fail2:	for (j = 0, CPU_INFO_FOREACH(cii, ci), j++) {
    569 		if (i <= j)
    570 			break;
    571 		percpu_traverse_enter();
    572 		struct threadpool **const poolp =
    573 		    percpu_getptr_remote(pool_percpu->tpp_percpu, ci);
    574 		struct threadpool *const pool = *poolp;
    575 		percpu_traverse_exit();
    576 		threadpool_destroy(pool);
    577 		kmem_free(pool, sizeof(*pool));
    578 	}
    579 	percpu_free(pool_percpu->tpp_percpu, sizeof(struct taskthread_pool *));
    580 fail1:	kmem_free(pool_percpu, sizeof(*pool_percpu));
    581 fail0:	return error;
    582 }
    583 
    584 static void
    585 threadpool_percpu_destroy(struct threadpool_percpu *pool_percpu)
    586 {
    587 	struct cpu_info *ci;
    588 	CPU_INFO_ITERATOR cii;
    589 
    590 	for (CPU_INFO_FOREACH(cii, ci)) {
    591 		percpu_traverse_enter();
    592 		struct threadpool **const poolp =
    593 		    percpu_getptr_remote(pool_percpu->tpp_percpu, ci);
    594 		struct threadpool *const pool = *poolp;
    595 		percpu_traverse_exit();
    596 		threadpool_destroy(pool);
    597 		kmem_free(pool, sizeof(*pool));
    598 	}
    599 
    600 	percpu_free(pool_percpu->tpp_percpu, sizeof(struct threadpool *));
    601 	kmem_free(pool_percpu, sizeof(*pool_percpu));
    602 }
    603 
    604 /* Thread pool jobs */
    605 
    606 void __printflike(4,5)
    607 threadpool_job_init(struct threadpool_job *job, threadpool_job_fn_t fn,
    608     kmutex_t *lock, const char *fmt, ...)
    609 {
    610 	va_list ap;
    611 
    612 	va_start(ap, fmt);
    613 	(void)vsnprintf(job->job_name, sizeof(job->job_name), fmt, ap);
    614 	va_end(ap);
    615 
    616 	job->job_lock = lock;
    617 	job->job_thread = NULL;
    618 	job->job_refcnt = 0;
    619 	cv_init(&job->job_cv, job->job_name);
    620 	job->job_fn = fn;
    621 }
    622 
    623 static void
    624 threadpool_job_dead(struct threadpool_job *job)
    625 {
    626 
    627 	panic("threadpool job %p ran after destruction", job);
    628 }
    629 
    630 void
    631 threadpool_job_destroy(struct threadpool_job *job)
    632 {
    633 
    634 	ASSERT_SLEEPABLE();
    635 
    636 	KASSERTMSG((job->job_thread == NULL), "job %p still running", job);
    637 
    638 	mutex_enter(job->job_lock);
    639 	while (0 < job->job_refcnt)
    640 		cv_wait(&job->job_cv, job->job_lock);
    641 	mutex_exit(job->job_lock);
    642 
    643 	job->job_lock = NULL;
    644 	KASSERT(job->job_thread == NULL);
    645 	KASSERT(job->job_refcnt == 0);
    646 	KASSERT(!cv_has_waiters(&job->job_cv));
    647 	cv_destroy(&job->job_cv);
    648 	job->job_fn = threadpool_job_dead;
    649 	(void)strlcpy(job->job_name, "deadjob", sizeof(job->job_name));
    650 }
    651 
    652 static int
    653 threadpool_job_hold(struct threadpool_job *job)
    654 {
    655 	unsigned int refcnt;
    656 
    657 	do {
    658 		refcnt = job->job_refcnt;
    659 		if (refcnt == UINT_MAX)
    660 			return EBUSY;
    661 	} while (atomic_cas_uint(&job->job_refcnt, refcnt, (refcnt + 1))
    662 	    != refcnt);
    663 
    664 	return 0;
    665 }
    666 
    667 static void
    668 threadpool_job_rele(struct threadpool_job *job)
    669 {
    670 	unsigned int refcnt;
    671 
    672 	do {
    673 		refcnt = job->job_refcnt;
    674 		KASSERT(0 < refcnt);
    675 		if (refcnt == 1) {
    676 			mutex_enter(job->job_lock);
    677 			refcnt = atomic_dec_uint_nv(&job->job_refcnt);
    678 			KASSERT(refcnt != UINT_MAX);
    679 			if (refcnt == 0)
    680 				cv_broadcast(&job->job_cv);
    681 			mutex_exit(job->job_lock);
    682 			return;
    683 		}
    684 	} while (atomic_cas_uint(&job->job_refcnt, refcnt, (refcnt - 1))
    685 	    != refcnt);
    686 }
    687 
    688 void
    689 threadpool_job_done(struct threadpool_job *job)
    690 {
    691 
    692 	KASSERT(mutex_owned(job->job_lock));
    693 	KASSERT(job->job_thread != NULL);
    694 	KASSERT(job->job_thread->tpt_lwp == curlwp);
    695 
    696 	cv_broadcast(&job->job_cv);
    697 	job->job_thread = NULL;
    698 }
    699 
    700 void
    701 threadpool_schedule_job(struct threadpool *pool, struct threadpool_job *job)
    702 {
    703 
    704 	KASSERT(mutex_owned(job->job_lock));
    705 
    706 	/*
    707 	 * If the job's already running, let it keep running.  The job
    708 	 * is guaranteed by the interlock not to end early -- if it had
    709 	 * ended early, threadpool_job_done would have set job_thread
    710 	 * to NULL under the interlock.
    711 	 */
    712 	if (__predict_true(job->job_thread != NULL)) {
    713 		TP_LOG(("%s: job '%s' already runnining.\n",
    714 		    __func__, job->job_name));
    715 		return;
    716 	}
    717 
    718 	/* Otherwise, try to assign a thread to the job.  */
    719 	mutex_spin_enter(&pool->tp_lock);
    720 	if (__predict_false(TAILQ_EMPTY(&pool->tp_idle_threads))) {
    721 		/* Nobody's idle.  Give it to the overseer.  */
    722 		TP_LOG(("%s: giving job '%s' to overseer.\n",
    723 		    __func__, job->job_name));
    724 		job->job_thread = &pool->tp_overseer;
    725 		TAILQ_INSERT_TAIL(&pool->tp_jobs, job, job_entry);
    726 	} else {
    727 		/* Assign it to the first idle thread.  */
    728 		job->job_thread = TAILQ_FIRST(&pool->tp_idle_threads);
    729 		TP_LOG(("%s: giving job '%s' to idle thread %p.\n",
    730 		    __func__, job->job_name, job->job_thread));
    731 		TAILQ_REMOVE(&pool->tp_idle_threads, job->job_thread,
    732 		    tpt_entry);
    733 		threadpool_job_hold(job);
    734 		job->job_thread->tpt_job = job;
    735 	}
    736 
    737 	/* Notify whomever we gave it to, overseer or idle thread.  */
    738 	KASSERT(job->job_thread != NULL);
    739 	cv_broadcast(&job->job_thread->tpt_cv);
    740 	mutex_spin_exit(&pool->tp_lock);
    741 }
    742 
    743 bool
    744 threadpool_cancel_job_async(struct threadpool *pool, struct threadpool_job *job)
    745 {
    746 
    747 	KASSERT(mutex_owned(job->job_lock));
    748 
    749 	/*
    750 	 * XXXJRT This fails (albeit safely) when all of the following
    751 	 * are true:
    752 	 *
    753 	 *	=> "pool" is something other than what the job was
    754 	 *	   scheduled on.  This can legitimately occur if,
    755 	 *	   for example, a job is percpu-scheduled on CPU0
    756 	 *	   and then CPU1 attempts to cancel it without taking
    757 	 *	   a remote pool reference.  (this might happen by
    758 	 *	   "luck of the draw").
    759 	 *
    760 	 *	=> "job" is not yet running, but is assigned to the
    761 	 *	   overseer.
    762 	 *
    763 	 * When this happens, this code makes the determination that
    764 	 * the job is already running.  The failure mode is that the
    765 	 * caller is told the job is running, and thus has to wait.
    766 	 * The overseer will eventually get to it and the job will
    767 	 * proceed as if it had been already running.
    768 	 */
    769 
    770 	if (job->job_thread == NULL) {
    771 		/* Nothing to do.  Guaranteed not running.  */
    772 		return true;
    773 	} else if (job->job_thread == &pool->tp_overseer) {
    774 		/* Take it off the list to guarantee it won't run.  */
    775 		job->job_thread = NULL;
    776 		mutex_spin_enter(&pool->tp_lock);
    777 		TAILQ_REMOVE(&pool->tp_jobs, job, job_entry);
    778 		mutex_spin_exit(&pool->tp_lock);
    779 		return true;
    780 	} else {
    781 		/* Too late -- already running.  */
    782 		return false;
    783 	}
    784 }
    785 
    786 void
    787 threadpool_cancel_job(struct threadpool *pool, struct threadpool_job *job)
    788 {
    789 
    790 	ASSERT_SLEEPABLE();
    791 
    792 	KASSERT(mutex_owned(job->job_lock));
    793 
    794 	if (threadpool_cancel_job_async(pool, job))
    795 		return;
    796 
    797 	/* Already running.  Wait for it to complete.  */
    798 	while (job->job_thread != NULL)
    799 		cv_wait(&job->job_cv, job->job_lock);
    800 }
    801 
    802 /* Thread pool overseer thread */
    803 
    804 static void __dead
    805 threadpool_overseer_thread(void *arg)
    806 {
    807 	struct threadpool_thread *const overseer = arg;
    808 	struct threadpool *const pool = overseer->tpt_pool;
    809 	struct lwp *lwp = NULL;
    810 	int ktflags;
    811 	int error;
    812 
    813 	KASSERT((pool->tp_cpu == NULL) || (pool->tp_cpu == curcpu()));
    814 
    815 	/* Wait until we're initialized.  */
    816 	mutex_spin_enter(&pool->tp_lock);
    817 	while (overseer->tpt_lwp == NULL)
    818 		cv_wait(&overseer->tpt_cv, &pool->tp_lock);
    819 
    820 	TP_LOG(("%s: starting.\n", __func__));
    821 
    822 	for (;;) {
    823 		/* Wait until there's a job.  */
    824 		while (TAILQ_EMPTY(&pool->tp_jobs)) {
    825 			if (ISSET(pool->tp_flags, THREADPOOL_DYING)) {
    826 				TP_LOG(("%s: THREADPOOL_DYING\n",
    827 				    __func__));
    828 				break;
    829 			}
    830 			cv_wait(&overseer->tpt_cv, &pool->tp_lock);
    831 		}
    832 		if (__predict_false(TAILQ_EMPTY(&pool->tp_jobs)))
    833 			break;
    834 
    835 		/* If there are no threads, we'll have to try to start one.  */
    836 		if (TAILQ_EMPTY(&pool->tp_idle_threads)) {
    837 			TP_LOG(("%s: Got a job, need to create a thread.\n",
    838 			    __func__));
    839 			threadpool_hold(pool);
    840 			mutex_spin_exit(&pool->tp_lock);
    841 
    842 			struct threadpool_thread *const thread =
    843 			    pool_cache_get(threadpool_thread_pc, PR_WAITOK);
    844 			thread->tpt_lwp = NULL;
    845 			thread->tpt_pool = pool;
    846 			thread->tpt_job = NULL;
    847 			cv_init(&thread->tpt_cv, "poolthrd");
    848 
    849 			ktflags = 0;
    850 			ktflags |= KTHREAD_MPSAFE;
    851 			if (pool->tp_pri < PRI_KERNEL)
    852 				ktflags |= KTHREAD_TS;
    853 			error = kthread_create(pool->tp_pri, ktflags,
    854 			    pool->tp_cpu, &threadpool_thread, thread, &lwp,
    855 			    "poolthread/%d@%d",
    856 			    (pool->tp_cpu ? cpu_index(pool->tp_cpu) : -1),
    857 			    (int)pool->tp_pri);
    858 
    859 			mutex_spin_enter(&pool->tp_lock);
    860 			if (error) {
    861 				pool_cache_put(threadpool_thread_pc, thread);
    862 				threadpool_rele(pool);
    863 				/* XXX What to do to wait for memory?  */
    864 				(void)kpause("thrdplcr", false, hz,
    865 				    &pool->tp_lock);
    866 				continue;
    867 			}
    868 			/*
    869 			 * New kthread now owns the reference to the pool
    870 			 * taken above.
    871 			 */
    872 			KASSERT(lwp != NULL);
    873 			TAILQ_INSERT_TAIL(&pool->tp_idle_threads, thread,
    874 			    tpt_entry);
    875 			thread->tpt_lwp = lwp;
    876 			lwp = NULL;
    877 			cv_broadcast(&thread->tpt_cv);
    878 			continue;
    879 		}
    880 
    881 		/* There are idle threads, so try giving one a job.  */
    882 		bool rele_job = true;
    883 		struct threadpool_job *const job = TAILQ_FIRST(&pool->tp_jobs);
    884 		TAILQ_REMOVE(&pool->tp_jobs, job, job_entry);
    885 		error = threadpool_job_hold(job);
    886 		if (error) {
    887 			TAILQ_INSERT_HEAD(&pool->tp_jobs, job, job_entry);
    888 			(void)kpause("pooljob", false, hz, &pool->tp_lock);
    889 			continue;
    890 		}
    891 		mutex_spin_exit(&pool->tp_lock);
    892 
    893 		mutex_enter(job->job_lock);
    894 		/* If the job was cancelled, we'll no longer be its thread.  */
    895 		if (__predict_true(job->job_thread == overseer)) {
    896 			mutex_spin_enter(&pool->tp_lock);
    897 			if (__predict_false(
    898 				    TAILQ_EMPTY(&pool->tp_idle_threads))) {
    899 				/*
    900 				 * Someone else snagged the thread
    901 				 * first.  We'll have to try again.
    902 				 */
    903 				TP_LOG(("%s: '%s' lost race to use idle thread.\n",
    904 				    __func__, job->job_name));
    905 				TAILQ_INSERT_HEAD(&pool->tp_jobs, job,
    906 				    job_entry);
    907 			} else {
    908 				/*
    909 				 * Assign the job to the thread and
    910 				 * wake the thread so it starts work.
    911 				 */
    912 				struct threadpool_thread *const thread =
    913 				    TAILQ_FIRST(&pool->tp_idle_threads);
    914 
    915 				TP_LOG(("%s: '%s' gets thread %p\n",
    916 				    __func__, job->job_name, thread));
    917 				KASSERT(thread->tpt_job == NULL);
    918 				TAILQ_REMOVE(&pool->tp_idle_threads, thread,
    919 				    tpt_entry);
    920 				thread->tpt_job = job;
    921 				job->job_thread = thread;
    922 				cv_broadcast(&thread->tpt_cv);
    923 				/* Gave the thread our job reference.  */
    924 				rele_job = false;
    925 			}
    926 			mutex_spin_exit(&pool->tp_lock);
    927 		}
    928 		mutex_exit(job->job_lock);
    929 		if (__predict_false(rele_job))
    930 			threadpool_job_rele(job);
    931 
    932 		mutex_spin_enter(&pool->tp_lock);
    933 	}
    934 	threadpool_rele(pool);
    935 	mutex_spin_exit(&pool->tp_lock);
    936 
    937 	TP_LOG(("%s: exiting.\n", __func__));
    938 
    939 	kthread_exit(0);
    940 }
    941 
    942 /* Thread pool thread */
    943 
    944 static void __dead
    945 threadpool_thread(void *arg)
    946 {
    947 	struct threadpool_thread *const thread = arg;
    948 	struct threadpool *const pool = thread->tpt_pool;
    949 
    950 	KASSERT((pool->tp_cpu == NULL) || (pool->tp_cpu == curcpu()));
    951 
    952 	/* Wait until we're initialized and on the queue.  */
    953 	mutex_spin_enter(&pool->tp_lock);
    954 	while (thread->tpt_lwp == NULL)
    955 		cv_wait(&thread->tpt_cv, &pool->tp_lock);
    956 
    957 	TP_LOG(("%s: starting.\n", __func__));
    958 
    959 	KASSERT(thread->tpt_lwp == curlwp);
    960 	for (;;) {
    961 		/* Wait until we are assigned a job.  */
    962 		while (thread->tpt_job == NULL) {
    963 			if (ISSET(pool->tp_flags, THREADPOOL_DYING)) {
    964 				TP_LOG(("%s: THREADPOOL_DYING\n",
    965 				    __func__));
    966 				break;
    967 			}
    968 			if (cv_timedwait(&thread->tpt_cv, &pool->tp_lock,
    969 				THREADPOOL_IDLE_TICKS))
    970 				break;
    971 		}
    972 		if (__predict_false(thread->tpt_job == NULL)) {
    973 			TAILQ_REMOVE(&pool->tp_idle_threads, thread,
    974 			    tpt_entry);
    975 			break;
    976 		}
    977 
    978 		struct threadpool_job *const job = thread->tpt_job;
    979 		KASSERT(job != NULL);
    980 		mutex_spin_exit(&pool->tp_lock);
    981 
    982 		TP_LOG(("%s: running job '%s' on thread %p.\n",
    983 		    __func__, job->job_name, thread));
    984 
    985 		/* Set our lwp name to reflect what job we're doing.  */
    986 		lwp_lock(curlwp);
    987 		char *const lwp_name = curlwp->l_name;
    988 		curlwp->l_name = job->job_name;
    989 		lwp_unlock(curlwp);
    990 
    991 		/* Run the job.  */
    992 		(*job->job_fn)(job);
    993 
    994 		/* Restore our lwp name.  */
    995 		lwp_lock(curlwp);
    996 		curlwp->l_name = lwp_name;
    997 		lwp_unlock(curlwp);
    998 
    999 		/* Job is done and its name is unreferenced.  Release it.  */
   1000 		threadpool_job_rele(job);
   1001 
   1002 		mutex_spin_enter(&pool->tp_lock);
   1003 		KASSERT(thread->tpt_job == job);
   1004 		thread->tpt_job = NULL;
   1005 		TAILQ_INSERT_TAIL(&pool->tp_idle_threads, thread, tpt_entry);
   1006 	}
   1007 	threadpool_rele(pool);
   1008 	mutex_spin_exit(&pool->tp_lock);
   1009 
   1010 	TP_LOG(("%s: thread %p exiting.\n", __func__, thread));
   1011 
   1012 	KASSERT(!cv_has_waiters(&thread->tpt_cv));
   1013 	cv_destroy(&thread->tpt_cv);
   1014 	pool_cache_put(threadpool_thread_pc, thread);
   1015 	kthread_exit(0);
   1016 }
   1017