kern_threadpool.c revision 1.15.4.2 1 /* $NetBSD: kern_threadpool.c,v 1.15.4.2 2019/06/10 22:09:03 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2014, 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Thread pools.
34 *
35 * A thread pool is a collection of worker threads idle or running
36 * jobs, together with an overseer thread that does not run jobs but
37 * can be given jobs to assign to a worker thread. Scheduling a job in
38 * a thread pool does not allocate or even sleep at all, except perhaps
39 * on an adaptive lock, unlike kthread_create. Jobs reuse threads, so
40 * they do not incur the expense of creating and destroying kthreads
41 * unless there is not much work to be done.
42 *
43 * A per-CPU thread pool (threadpool_percpu) is a collection of thread
44 * pools, one per CPU bound to that CPU. For each priority level in
45 * use, there is one shared unbound thread pool (i.e., pool of threads
46 * not bound to any CPU) and one shared per-CPU thread pool.
47 *
48 * To use the unbound thread pool at priority pri, call
49 * threadpool_get(&pool, pri). When you're done, call
50 * threadpool_put(pool, pri).
51 *
52 * To use the per-CPU thread pools at priority pri, call
53 * threadpool_percpu_get(&pool_percpu, pri), and then use the thread
54 * pool returned by threadpool_percpu_ref(pool_percpu) for the current
55 * CPU, or by threadpool_percpu_ref_remote(pool_percpu, ci) for another
56 * CPU. When you're done, call threadpool_percpu_put(pool_percpu,
57 * pri).
58 *
59 * +--MACHINE-----------------------------------------------+
60 * | +--CPU 0-------+ +--CPU 1-------+ +--CPU n-------+ |
61 * | | <overseer 0> | | <overseer 1> | ... | <overseer n> | |
62 * | | <idle 0a> | | <running 1a> | ... | <idle na> | |
63 * | | <running 0b> | | <running 1b> | ... | <idle nb> | |
64 * | | . | | . | ... | . | |
65 * | | . | | . | ... | . | |
66 * | | . | | . | ... | . | |
67 * | +--------------+ +--------------+ +--------------+ |
68 * | +--unbound---------+ |
69 * | | <overseer n+1> | |
70 * | | <idle (n+1)a> | |
71 * | | <running (n+1)b> | |
72 * | +------------------+ |
73 * +--------------------------------------------------------+
74 *
75 * XXX Why one overseer per CPU? I did that originally to avoid
76 * touching remote CPUs' memory when scheduling a job, but that still
77 * requires interprocessor synchronization. Perhaps we could get by
78 * with a single overseer thread, at the expense of another pointer in
79 * struct threadpool_job to identify the CPU on which it must run
80 * in order for the overseer to schedule it correctly.
81 */
82
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: kern_threadpool.c,v 1.15.4.2 2019/06/10 22:09:03 christos Exp $");
85
86 #include <sys/types.h>
87 #include <sys/param.h>
88 #include <sys/atomic.h>
89 #include <sys/condvar.h>
90 #include <sys/cpu.h>
91 #include <sys/kernel.h>
92 #include <sys/kmem.h>
93 #include <sys/kthread.h>
94 #include <sys/mutex.h>
95 #include <sys/once.h>
96 #include <sys/percpu.h>
97 #include <sys/pool.h>
98 #include <sys/proc.h>
99 #include <sys/queue.h>
100 #include <sys/systm.h>
101 #include <sys/sysctl.h>
102 #include <sys/threadpool.h>
103
104 /* Data structures */
105
106 TAILQ_HEAD(job_head, threadpool_job);
107 TAILQ_HEAD(thread_head, threadpool_thread);
108
109 struct threadpool_thread {
110 struct lwp *tpt_lwp;
111 char *tpt_lwp_savedname;
112 struct threadpool *tpt_pool;
113 struct threadpool_job *tpt_job;
114 kcondvar_t tpt_cv;
115 TAILQ_ENTRY(threadpool_thread) tpt_entry;
116 };
117
118 struct threadpool {
119 kmutex_t tp_lock;
120 struct threadpool_thread tp_overseer;
121 struct job_head tp_jobs;
122 struct thread_head tp_idle_threads;
123 uint64_t tp_refcnt;
124 int tp_flags;
125 #define THREADPOOL_DYING 0x01
126 struct cpu_info *tp_cpu;
127 pri_t tp_pri;
128 };
129
130 static void threadpool_hold(struct threadpool *);
131 static void threadpool_rele(struct threadpool *);
132
133 static int threadpool_percpu_create(struct threadpool_percpu **, pri_t);
134 static void threadpool_percpu_destroy(struct threadpool_percpu *);
135
136 static threadpool_job_fn_t threadpool_job_dead;
137
138 static void threadpool_job_hold(struct threadpool_job *);
139 static void threadpool_job_rele(struct threadpool_job *);
140
141 static void threadpool_overseer_thread(void *) __dead;
142 static void threadpool_thread(void *) __dead;
143
144 static pool_cache_t threadpool_thread_pc __read_mostly;
145
146 static kmutex_t threadpools_lock __cacheline_aligned;
147
148 /* Default to 30 second idle timeout for pool threads. */
149 static int threadpool_idle_time_ms = 30 * 1000;
150
151 struct threadpool_unbound {
152 struct threadpool tpu_pool;
153
154 /* protected by threadpools_lock */
155 LIST_ENTRY(threadpool_unbound) tpu_link;
156 uint64_t tpu_refcnt;
157 };
158
159 static LIST_HEAD(, threadpool_unbound) unbound_threadpools;
160
161 static struct threadpool_unbound *
162 threadpool_lookup_unbound(pri_t pri)
163 {
164 struct threadpool_unbound *tpu;
165
166 LIST_FOREACH(tpu, &unbound_threadpools, tpu_link) {
167 if (tpu->tpu_pool.tp_pri == pri)
168 return tpu;
169 }
170 return NULL;
171 }
172
173 static void
174 threadpool_insert_unbound(struct threadpool_unbound *tpu)
175 {
176 KASSERT(threadpool_lookup_unbound(tpu->tpu_pool.tp_pri) == NULL);
177 LIST_INSERT_HEAD(&unbound_threadpools, tpu, tpu_link);
178 }
179
180 static void
181 threadpool_remove_unbound(struct threadpool_unbound *tpu)
182 {
183 KASSERT(threadpool_lookup_unbound(tpu->tpu_pool.tp_pri) == tpu);
184 LIST_REMOVE(tpu, tpu_link);
185 }
186
187 struct threadpool_percpu {
188 percpu_t * tpp_percpu;
189 pri_t tpp_pri;
190
191 /* protected by threadpools_lock */
192 LIST_ENTRY(threadpool_percpu) tpp_link;
193 uint64_t tpp_refcnt;
194 };
195
196 static LIST_HEAD(, threadpool_percpu) percpu_threadpools;
197
198 static struct threadpool_percpu *
199 threadpool_lookup_percpu(pri_t pri)
200 {
201 struct threadpool_percpu *tpp;
202
203 LIST_FOREACH(tpp, &percpu_threadpools, tpp_link) {
204 if (tpp->tpp_pri == pri)
205 return tpp;
206 }
207 return NULL;
208 }
209
210 static void
211 threadpool_insert_percpu(struct threadpool_percpu *tpp)
212 {
213 KASSERT(threadpool_lookup_percpu(tpp->tpp_pri) == NULL);
214 LIST_INSERT_HEAD(&percpu_threadpools, tpp, tpp_link);
215 }
216
217 static void
218 threadpool_remove_percpu(struct threadpool_percpu *tpp)
219 {
220 KASSERT(threadpool_lookup_percpu(tpp->tpp_pri) == tpp);
221 LIST_REMOVE(tpp, tpp_link);
222 }
223
224 #ifdef THREADPOOL_VERBOSE
225 #define TP_LOG(x) printf x
226 #else
227 #define TP_LOG(x) /* nothing */
228 #endif /* THREADPOOL_VERBOSE */
229
230 static int
231 sysctl_kern_threadpool_idle_ms(SYSCTLFN_ARGS)
232 {
233 struct sysctlnode node;
234 int val, error;
235
236 node = *rnode;
237
238 val = threadpool_idle_time_ms;
239 node.sysctl_data = &val;
240 error = sysctl_lookup(SYSCTLFN_CALL(&node));
241 if (error == 0 && newp != NULL) {
242 /* Disallow negative values and 0 (forever). */
243 if (val < 1)
244 error = EINVAL;
245 else
246 threadpool_idle_time_ms = val;
247 }
248
249 return error;
250 }
251
252 SYSCTL_SETUP_PROTO(sysctl_threadpool_setup);
253
254 SYSCTL_SETUP(sysctl_threadpool_setup,
255 "sysctl kern.threadpool subtree setup")
256 {
257 const struct sysctlnode *rnode, *cnode;
258 int error __diagused;
259
260 error = sysctl_createv(clog, 0, NULL, &rnode,
261 CTLFLAG_PERMANENT,
262 CTLTYPE_NODE, "threadpool",
263 SYSCTL_DESCR("threadpool subsystem options"),
264 NULL, 0, NULL, 0,
265 CTL_KERN, CTL_CREATE, CTL_EOL);
266 KASSERT(error == 0);
267
268 error = sysctl_createv(clog, 0, &rnode, &cnode,
269 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
270 CTLTYPE_INT, "idle_ms",
271 SYSCTL_DESCR("idle thread timeout in ms"),
272 sysctl_kern_threadpool_idle_ms, 0, NULL, 0,
273 CTL_CREATE, CTL_EOL);
274 KASSERT(error == 0);
275 }
276
277 void
278 threadpools_init(void)
279 {
280
281 threadpool_thread_pc =
282 pool_cache_init(sizeof(struct threadpool_thread), 0, 0, 0,
283 "thplthrd", NULL, IPL_NONE, NULL, NULL, NULL);
284
285 LIST_INIT(&unbound_threadpools);
286 LIST_INIT(&percpu_threadpools);
287 mutex_init(&threadpools_lock, MUTEX_DEFAULT, IPL_NONE);
288 }
289
290 /* Thread pool creation */
291
292 static bool
293 threadpool_pri_is_valid(pri_t pri)
294 {
295 return (pri == PRI_NONE || (pri >= PRI_USER && pri < PRI_COUNT));
296 }
297
298 static int
299 threadpool_create(struct threadpool *const pool, struct cpu_info *ci,
300 pri_t pri)
301 {
302 struct lwp *lwp;
303 int ktflags;
304 int error;
305
306 KASSERT(threadpool_pri_is_valid(pri));
307
308 mutex_init(&pool->tp_lock, MUTEX_DEFAULT, IPL_VM);
309 /* XXX overseer */
310 TAILQ_INIT(&pool->tp_jobs);
311 TAILQ_INIT(&pool->tp_idle_threads);
312 pool->tp_refcnt = 1; /* overseer's reference */
313 pool->tp_flags = 0;
314 pool->tp_cpu = ci;
315 pool->tp_pri = pri;
316
317 pool->tp_overseer.tpt_lwp = NULL;
318 pool->tp_overseer.tpt_pool = pool;
319 pool->tp_overseer.tpt_job = NULL;
320 cv_init(&pool->tp_overseer.tpt_cv, "poolover");
321
322 ktflags = 0;
323 ktflags |= KTHREAD_MPSAFE;
324 if (pri < PRI_KERNEL)
325 ktflags |= KTHREAD_TS;
326 error = kthread_create(pri, ktflags, ci, &threadpool_overseer_thread,
327 &pool->tp_overseer, &lwp,
328 "pooloverseer/%d@%d", (ci ? cpu_index(ci) : -1), (int)pri);
329 if (error)
330 goto fail0;
331
332 mutex_spin_enter(&pool->tp_lock);
333 pool->tp_overseer.tpt_lwp = lwp;
334 cv_broadcast(&pool->tp_overseer.tpt_cv);
335 mutex_spin_exit(&pool->tp_lock);
336
337 return 0;
338
339 fail0: KASSERT(error);
340 KASSERT(pool->tp_overseer.tpt_job == NULL);
341 KASSERT(pool->tp_overseer.tpt_pool == pool);
342 KASSERT(pool->tp_flags == 0);
343 KASSERT(pool->tp_refcnt == 0);
344 KASSERT(TAILQ_EMPTY(&pool->tp_idle_threads));
345 KASSERT(TAILQ_EMPTY(&pool->tp_jobs));
346 KASSERT(!cv_has_waiters(&pool->tp_overseer.tpt_cv));
347 cv_destroy(&pool->tp_overseer.tpt_cv);
348 mutex_destroy(&pool->tp_lock);
349 return error;
350 }
351
352 /* Thread pool destruction */
353
354 static void
355 threadpool_destroy(struct threadpool *pool)
356 {
357 struct threadpool_thread *thread;
358
359 /* Mark the pool dying and wait for threads to commit suicide. */
360 mutex_spin_enter(&pool->tp_lock);
361 KASSERT(TAILQ_EMPTY(&pool->tp_jobs));
362 pool->tp_flags |= THREADPOOL_DYING;
363 cv_broadcast(&pool->tp_overseer.tpt_cv);
364 TAILQ_FOREACH(thread, &pool->tp_idle_threads, tpt_entry)
365 cv_broadcast(&thread->tpt_cv);
366 while (0 < pool->tp_refcnt) {
367 TP_LOG(("%s: draining %" PRIu64 " references...\n", __func__,
368 pool->tp_refcnt));
369 cv_wait(&pool->tp_overseer.tpt_cv, &pool->tp_lock);
370 }
371 mutex_spin_exit(&pool->tp_lock);
372
373 KASSERT(pool->tp_overseer.tpt_job == NULL);
374 KASSERT(pool->tp_overseer.tpt_pool == pool);
375 KASSERT(pool->tp_flags == THREADPOOL_DYING);
376 KASSERT(pool->tp_refcnt == 0);
377 KASSERT(TAILQ_EMPTY(&pool->tp_idle_threads));
378 KASSERT(TAILQ_EMPTY(&pool->tp_jobs));
379 KASSERT(!cv_has_waiters(&pool->tp_overseer.tpt_cv));
380 cv_destroy(&pool->tp_overseer.tpt_cv);
381 mutex_destroy(&pool->tp_lock);
382 }
383
384 static void
385 threadpool_hold(struct threadpool *pool)
386 {
387
388 KASSERT(mutex_owned(&pool->tp_lock));
389 pool->tp_refcnt++;
390 KASSERT(pool->tp_refcnt != 0);
391 }
392
393 static void
394 threadpool_rele(struct threadpool *pool)
395 {
396
397 KASSERT(mutex_owned(&pool->tp_lock));
398 KASSERT(0 < pool->tp_refcnt);
399 if (--pool->tp_refcnt == 0)
400 cv_broadcast(&pool->tp_overseer.tpt_cv);
401 }
402
403 /* Unbound thread pools */
404
405 int
406 threadpool_get(struct threadpool **poolp, pri_t pri)
407 {
408 struct threadpool_unbound *tpu, *tmp = NULL;
409 int error;
410
411 ASSERT_SLEEPABLE();
412
413 if (! threadpool_pri_is_valid(pri))
414 return EINVAL;
415
416 mutex_enter(&threadpools_lock);
417 tpu = threadpool_lookup_unbound(pri);
418 if (tpu == NULL) {
419 mutex_exit(&threadpools_lock);
420 TP_LOG(("%s: No pool for pri=%d, creating one.\n",
421 __func__, (int)pri));
422 tmp = kmem_zalloc(sizeof(*tmp), KM_SLEEP);
423 error = threadpool_create(&tmp->tpu_pool, NULL, pri);
424 if (error) {
425 kmem_free(tmp, sizeof(*tmp));
426 return error;
427 }
428 mutex_enter(&threadpools_lock);
429 tpu = threadpool_lookup_unbound(pri);
430 if (tpu == NULL) {
431 TP_LOG(("%s: Won the creation race for pri=%d.\n",
432 __func__, (int)pri));
433 tpu = tmp;
434 tmp = NULL;
435 threadpool_insert_unbound(tpu);
436 }
437 }
438 KASSERT(tpu != NULL);
439 tpu->tpu_refcnt++;
440 KASSERT(tpu->tpu_refcnt != 0);
441 mutex_exit(&threadpools_lock);
442
443 if (tmp != NULL) {
444 threadpool_destroy(&tmp->tpu_pool);
445 kmem_free(tmp, sizeof(*tmp));
446 }
447 KASSERT(tpu != NULL);
448 *poolp = &tpu->tpu_pool;
449 return 0;
450 }
451
452 void
453 threadpool_put(struct threadpool *pool, pri_t pri)
454 {
455 struct threadpool_unbound *tpu =
456 container_of(pool, struct threadpool_unbound, tpu_pool);
457
458 ASSERT_SLEEPABLE();
459
460 KASSERT(threadpool_pri_is_valid(pri));
461
462 mutex_enter(&threadpools_lock);
463 KASSERT(tpu == threadpool_lookup_unbound(pri));
464 KASSERT(0 < tpu->tpu_refcnt);
465 if (--tpu->tpu_refcnt == 0) {
466 TP_LOG(("%s: Last reference for pri=%d, destroying pool.\n",
467 __func__, (int)pri));
468 threadpool_remove_unbound(tpu);
469 } else {
470 tpu = NULL;
471 }
472 mutex_exit(&threadpools_lock);
473
474 if (tpu) {
475 threadpool_destroy(&tpu->tpu_pool);
476 kmem_free(tpu, sizeof(*tpu));
477 }
478 }
479
480 /* Per-CPU thread pools */
481
482 int
483 threadpool_percpu_get(struct threadpool_percpu **pool_percpup, pri_t pri)
484 {
485 struct threadpool_percpu *pool_percpu, *tmp = NULL;
486 int error;
487
488 ASSERT_SLEEPABLE();
489
490 if (! threadpool_pri_is_valid(pri))
491 return EINVAL;
492
493 mutex_enter(&threadpools_lock);
494 pool_percpu = threadpool_lookup_percpu(pri);
495 if (pool_percpu == NULL) {
496 mutex_exit(&threadpools_lock);
497 TP_LOG(("%s: No pool for pri=%d, creating one.\n",
498 __func__, (int)pri));
499 error = threadpool_percpu_create(&tmp, pri);
500 if (error)
501 return error;
502 KASSERT(tmp != NULL);
503 mutex_enter(&threadpools_lock);
504 pool_percpu = threadpool_lookup_percpu(pri);
505 if (pool_percpu == NULL) {
506 TP_LOG(("%s: Won the creation race for pri=%d.\n",
507 __func__, (int)pri));
508 pool_percpu = tmp;
509 tmp = NULL;
510 threadpool_insert_percpu(pool_percpu);
511 }
512 }
513 KASSERT(pool_percpu != NULL);
514 pool_percpu->tpp_refcnt++;
515 KASSERT(pool_percpu->tpp_refcnt != 0);
516 mutex_exit(&threadpools_lock);
517
518 if (tmp != NULL)
519 threadpool_percpu_destroy(tmp);
520 KASSERT(pool_percpu != NULL);
521 *pool_percpup = pool_percpu;
522 return 0;
523 }
524
525 void
526 threadpool_percpu_put(struct threadpool_percpu *pool_percpu, pri_t pri)
527 {
528
529 ASSERT_SLEEPABLE();
530
531 KASSERT(threadpool_pri_is_valid(pri));
532
533 mutex_enter(&threadpools_lock);
534 KASSERT(pool_percpu == threadpool_lookup_percpu(pri));
535 KASSERT(0 < pool_percpu->tpp_refcnt);
536 if (--pool_percpu->tpp_refcnt == 0) {
537 TP_LOG(("%s: Last reference for pri=%d, destroying pool.\n",
538 __func__, (int)pri));
539 threadpool_remove_percpu(pool_percpu);
540 } else {
541 pool_percpu = NULL;
542 }
543 mutex_exit(&threadpools_lock);
544
545 if (pool_percpu)
546 threadpool_percpu_destroy(pool_percpu);
547 }
548
549 struct threadpool *
550 threadpool_percpu_ref(struct threadpool_percpu *pool_percpu)
551 {
552 struct threadpool **poolp, *pool;
553
554 poolp = percpu_getref(pool_percpu->tpp_percpu);
555 pool = *poolp;
556 percpu_putref(pool_percpu->tpp_percpu);
557
558 return pool;
559 }
560
561 struct threadpool *
562 threadpool_percpu_ref_remote(struct threadpool_percpu *pool_percpu,
563 struct cpu_info *ci)
564 {
565 struct threadpool **poolp, *pool;
566
567 percpu_traverse_enter();
568 poolp = percpu_getptr_remote(pool_percpu->tpp_percpu, ci);
569 pool = *poolp;
570 percpu_traverse_exit();
571
572 return pool;
573 }
574
575 static int
576 threadpool_percpu_create(struct threadpool_percpu **pool_percpup, pri_t pri)
577 {
578 struct threadpool_percpu *pool_percpu;
579 struct cpu_info *ci;
580 CPU_INFO_ITERATOR cii;
581 unsigned int i, j;
582 int error;
583
584 pool_percpu = kmem_zalloc(sizeof(*pool_percpu), KM_SLEEP);
585 if (pool_percpu == NULL) {
586 error = ENOMEM;
587 goto fail0;
588 }
589 pool_percpu->tpp_pri = pri;
590
591 pool_percpu->tpp_percpu = percpu_alloc(sizeof(struct threadpool *));
592 if (pool_percpu->tpp_percpu == NULL) {
593 error = ENOMEM;
594 goto fail1;
595 }
596
597 for (i = 0, CPU_INFO_FOREACH(cii, ci), i++) {
598 struct threadpool *pool;
599
600 pool = kmem_zalloc(sizeof(*pool), KM_SLEEP);
601 error = threadpool_create(pool, ci, pri);
602 if (error) {
603 kmem_free(pool, sizeof(*pool));
604 goto fail2;
605 }
606 percpu_traverse_enter();
607 struct threadpool **const poolp =
608 percpu_getptr_remote(pool_percpu->tpp_percpu, ci);
609 *poolp = pool;
610 percpu_traverse_exit();
611 }
612
613 /* Success! */
614 *pool_percpup = (struct threadpool_percpu *)pool_percpu;
615 return 0;
616
617 fail2: for (j = 0, CPU_INFO_FOREACH(cii, ci), j++) {
618 if (i <= j)
619 break;
620 percpu_traverse_enter();
621 struct threadpool **const poolp =
622 percpu_getptr_remote(pool_percpu->tpp_percpu, ci);
623 struct threadpool *const pool = *poolp;
624 percpu_traverse_exit();
625 threadpool_destroy(pool);
626 kmem_free(pool, sizeof(*pool));
627 }
628 percpu_free(pool_percpu->tpp_percpu, sizeof(struct taskthread_pool *));
629 fail1: kmem_free(pool_percpu, sizeof(*pool_percpu));
630 fail0: return error;
631 }
632
633 static void
634 threadpool_percpu_destroy(struct threadpool_percpu *pool_percpu)
635 {
636 struct cpu_info *ci;
637 CPU_INFO_ITERATOR cii;
638
639 for (CPU_INFO_FOREACH(cii, ci)) {
640 percpu_traverse_enter();
641 struct threadpool **const poolp =
642 percpu_getptr_remote(pool_percpu->tpp_percpu, ci);
643 struct threadpool *const pool = *poolp;
644 percpu_traverse_exit();
645 threadpool_destroy(pool);
646 kmem_free(pool, sizeof(*pool));
647 }
648
649 percpu_free(pool_percpu->tpp_percpu, sizeof(struct threadpool *));
650 kmem_free(pool_percpu, sizeof(*pool_percpu));
651 }
652
653 /* Thread pool jobs */
654
655 void __printflike(4,5)
656 threadpool_job_init(struct threadpool_job *job, threadpool_job_fn_t fn,
657 kmutex_t *lock, const char *fmt, ...)
658 {
659 va_list ap;
660
661 va_start(ap, fmt);
662 (void)vsnprintf(job->job_name, sizeof(job->job_name), fmt, ap);
663 va_end(ap);
664
665 job->job_lock = lock;
666 job->job_thread = NULL;
667 job->job_refcnt = 0;
668 cv_init(&job->job_cv, job->job_name);
669 job->job_fn = fn;
670 }
671
672 static void
673 threadpool_job_dead(struct threadpool_job *job)
674 {
675
676 panic("threadpool job %p ran after destruction", job);
677 }
678
679 void
680 threadpool_job_destroy(struct threadpool_job *job)
681 {
682
683 ASSERT_SLEEPABLE();
684
685 KASSERTMSG((job->job_thread == NULL), "job %p still running", job);
686
687 mutex_enter(job->job_lock);
688 while (0 < job->job_refcnt)
689 cv_wait(&job->job_cv, job->job_lock);
690 mutex_exit(job->job_lock);
691
692 job->job_lock = NULL;
693 KASSERT(job->job_thread == NULL);
694 KASSERT(job->job_refcnt == 0);
695 KASSERT(!cv_has_waiters(&job->job_cv));
696 cv_destroy(&job->job_cv);
697 job->job_fn = threadpool_job_dead;
698 (void)strlcpy(job->job_name, "deadjob", sizeof(job->job_name));
699 }
700
701 static void
702 threadpool_job_hold(struct threadpool_job *job)
703 {
704 unsigned int refcnt;
705
706 do {
707 refcnt = job->job_refcnt;
708 KASSERT(refcnt != UINT_MAX);
709 } while (atomic_cas_uint(&job->job_refcnt, refcnt, (refcnt + 1))
710 != refcnt);
711 }
712
713 static void
714 threadpool_job_rele(struct threadpool_job *job)
715 {
716 unsigned int refcnt;
717
718 KASSERT(mutex_owned(job->job_lock));
719
720 do {
721 refcnt = job->job_refcnt;
722 KASSERT(0 < refcnt);
723 if (refcnt == 1) {
724 refcnt = atomic_dec_uint_nv(&job->job_refcnt);
725 KASSERT(refcnt != UINT_MAX);
726 if (refcnt == 0)
727 cv_broadcast(&job->job_cv);
728 return;
729 }
730 } while (atomic_cas_uint(&job->job_refcnt, refcnt, (refcnt - 1))
731 != refcnt);
732 }
733
734 void
735 threadpool_job_done(struct threadpool_job *job)
736 {
737
738 KASSERT(mutex_owned(job->job_lock));
739 KASSERT(job->job_thread != NULL);
740 KASSERT(job->job_thread->tpt_lwp == curlwp);
741
742 /*
743 * We can safely read this field; it's only modified right before
744 * we call the job work function, and we are only preserving it
745 * to use here; no one cares if it contains junk afterward.
746 */
747 lwp_lock(curlwp);
748 curlwp->l_name = job->job_thread->tpt_lwp_savedname;
749 lwp_unlock(curlwp);
750
751 /*
752 * Inline the work of threadpool_job_rele(); the job is already
753 * locked, the most likely scenario (XXXJRT only scenario?) is
754 * that we're dropping the last reference (the one taken in
755 * threadpool_schedule_job()), and we always do the cv_broadcast()
756 * anyway.
757 */
758 KASSERT(0 < job->job_refcnt);
759 unsigned int refcnt __diagused = atomic_dec_uint_nv(&job->job_refcnt);
760 KASSERT(refcnt != UINT_MAX);
761 cv_broadcast(&job->job_cv);
762 job->job_thread = NULL;
763 }
764
765 void
766 threadpool_schedule_job(struct threadpool *pool, struct threadpool_job *job)
767 {
768
769 KASSERT(mutex_owned(job->job_lock));
770
771 /*
772 * If the job's already running, let it keep running. The job
773 * is guaranteed by the interlock not to end early -- if it had
774 * ended early, threadpool_job_done would have set job_thread
775 * to NULL under the interlock.
776 */
777 if (__predict_true(job->job_thread != NULL)) {
778 TP_LOG(("%s: job '%s' already runnining.\n",
779 __func__, job->job_name));
780 return;
781 }
782
783 threadpool_job_hold(job);
784
785 /* Otherwise, try to assign a thread to the job. */
786 mutex_spin_enter(&pool->tp_lock);
787 if (__predict_false(TAILQ_EMPTY(&pool->tp_idle_threads))) {
788 /* Nobody's idle. Give it to the overseer. */
789 TP_LOG(("%s: giving job '%s' to overseer.\n",
790 __func__, job->job_name));
791 job->job_thread = &pool->tp_overseer;
792 TAILQ_INSERT_TAIL(&pool->tp_jobs, job, job_entry);
793 } else {
794 /* Assign it to the first idle thread. */
795 job->job_thread = TAILQ_FIRST(&pool->tp_idle_threads);
796 TP_LOG(("%s: giving job '%s' to idle thread %p.\n",
797 __func__, job->job_name, job->job_thread));
798 TAILQ_REMOVE(&pool->tp_idle_threads, job->job_thread,
799 tpt_entry);
800 job->job_thread->tpt_job = job;
801 }
802
803 /* Notify whomever we gave it to, overseer or idle thread. */
804 KASSERT(job->job_thread != NULL);
805 cv_broadcast(&job->job_thread->tpt_cv);
806 mutex_spin_exit(&pool->tp_lock);
807 }
808
809 bool
810 threadpool_cancel_job_async(struct threadpool *pool, struct threadpool_job *job)
811 {
812
813 KASSERT(mutex_owned(job->job_lock));
814
815 /*
816 * XXXJRT This fails (albeit safely) when all of the following
817 * are true:
818 *
819 * => "pool" is something other than what the job was
820 * scheduled on. This can legitimately occur if,
821 * for example, a job is percpu-scheduled on CPU0
822 * and then CPU1 attempts to cancel it without taking
823 * a remote pool reference. (this might happen by
824 * "luck of the draw").
825 *
826 * => "job" is not yet running, but is assigned to the
827 * overseer.
828 *
829 * When this happens, this code makes the determination that
830 * the job is already running. The failure mode is that the
831 * caller is told the job is running, and thus has to wait.
832 * The overseer will eventually get to it and the job will
833 * proceed as if it had been already running.
834 */
835
836 if (job->job_thread == NULL) {
837 /* Nothing to do. Guaranteed not running. */
838 return true;
839 } else if (job->job_thread == &pool->tp_overseer) {
840 /* Take it off the list to guarantee it won't run. */
841 job->job_thread = NULL;
842 mutex_spin_enter(&pool->tp_lock);
843 TAILQ_REMOVE(&pool->tp_jobs, job, job_entry);
844 mutex_spin_exit(&pool->tp_lock);
845 threadpool_job_rele(job);
846 return true;
847 } else {
848 /* Too late -- already running. */
849 return false;
850 }
851 }
852
853 void
854 threadpool_cancel_job(struct threadpool *pool, struct threadpool_job *job)
855 {
856
857 ASSERT_SLEEPABLE();
858
859 KASSERT(mutex_owned(job->job_lock));
860
861 if (threadpool_cancel_job_async(pool, job))
862 return;
863
864 /* Already running. Wait for it to complete. */
865 while (job->job_thread != NULL)
866 cv_wait(&job->job_cv, job->job_lock);
867 }
868
869 /* Thread pool overseer thread */
870
871 static void __dead
872 threadpool_overseer_thread(void *arg)
873 {
874 struct threadpool_thread *const overseer = arg;
875 struct threadpool *const pool = overseer->tpt_pool;
876 struct lwp *lwp = NULL;
877 int ktflags;
878 int error;
879
880 KASSERT((pool->tp_cpu == NULL) || (pool->tp_cpu == curcpu()));
881
882 /* Wait until we're initialized. */
883 mutex_spin_enter(&pool->tp_lock);
884 while (overseer->tpt_lwp == NULL)
885 cv_wait(&overseer->tpt_cv, &pool->tp_lock);
886
887 TP_LOG(("%s: starting.\n", __func__));
888
889 for (;;) {
890 /* Wait until there's a job. */
891 while (TAILQ_EMPTY(&pool->tp_jobs)) {
892 if (ISSET(pool->tp_flags, THREADPOOL_DYING)) {
893 TP_LOG(("%s: THREADPOOL_DYING\n",
894 __func__));
895 break;
896 }
897 cv_wait(&overseer->tpt_cv, &pool->tp_lock);
898 }
899 if (__predict_false(TAILQ_EMPTY(&pool->tp_jobs)))
900 break;
901
902 /* If there are no threads, we'll have to try to start one. */
903 if (TAILQ_EMPTY(&pool->tp_idle_threads)) {
904 TP_LOG(("%s: Got a job, need to create a thread.\n",
905 __func__));
906 threadpool_hold(pool);
907 mutex_spin_exit(&pool->tp_lock);
908
909 struct threadpool_thread *const thread =
910 pool_cache_get(threadpool_thread_pc, PR_WAITOK);
911 thread->tpt_lwp = NULL;
912 thread->tpt_pool = pool;
913 thread->tpt_job = NULL;
914 cv_init(&thread->tpt_cv, "poolthrd");
915
916 ktflags = 0;
917 ktflags |= KTHREAD_MPSAFE;
918 if (pool->tp_pri < PRI_KERNEL)
919 ktflags |= KTHREAD_TS;
920 error = kthread_create(pool->tp_pri, ktflags,
921 pool->tp_cpu, &threadpool_thread, thread, &lwp,
922 "poolthread/%d@%d",
923 (pool->tp_cpu ? cpu_index(pool->tp_cpu) : -1),
924 (int)pool->tp_pri);
925
926 mutex_spin_enter(&pool->tp_lock);
927 if (error) {
928 pool_cache_put(threadpool_thread_pc, thread);
929 threadpool_rele(pool);
930 /* XXX What to do to wait for memory? */
931 (void)kpause("thrdplcr", false, hz,
932 &pool->tp_lock);
933 continue;
934 }
935 /*
936 * New kthread now owns the reference to the pool
937 * taken above.
938 */
939 KASSERT(lwp != NULL);
940 TAILQ_INSERT_TAIL(&pool->tp_idle_threads, thread,
941 tpt_entry);
942 thread->tpt_lwp = lwp;
943 lwp = NULL;
944 cv_broadcast(&thread->tpt_cv);
945 continue;
946 }
947
948 /* There are idle threads, so try giving one a job. */
949 struct threadpool_job *const job = TAILQ_FIRST(&pool->tp_jobs);
950 TAILQ_REMOVE(&pool->tp_jobs, job, job_entry);
951 /*
952 * Take an extra reference on the job temporarily so that
953 * it won't disappear on us while we have both locks dropped.
954 */
955 threadpool_job_hold(job);
956 mutex_spin_exit(&pool->tp_lock);
957
958 mutex_enter(job->job_lock);
959 /* If the job was cancelled, we'll no longer be its thread. */
960 if (__predict_true(job->job_thread == overseer)) {
961 mutex_spin_enter(&pool->tp_lock);
962 if (__predict_false(
963 TAILQ_EMPTY(&pool->tp_idle_threads))) {
964 /*
965 * Someone else snagged the thread
966 * first. We'll have to try again.
967 */
968 TP_LOG(("%s: '%s' lost race to use idle thread.\n",
969 __func__, job->job_name));
970 TAILQ_INSERT_HEAD(&pool->tp_jobs, job,
971 job_entry);
972 } else {
973 /*
974 * Assign the job to the thread and
975 * wake the thread so it starts work.
976 */
977 struct threadpool_thread *const thread =
978 TAILQ_FIRST(&pool->tp_idle_threads);
979
980 TP_LOG(("%s: '%s' gets thread %p\n",
981 __func__, job->job_name, thread));
982 KASSERT(thread->tpt_job == NULL);
983 TAILQ_REMOVE(&pool->tp_idle_threads, thread,
984 tpt_entry);
985 thread->tpt_job = job;
986 job->job_thread = thread;
987 cv_broadcast(&thread->tpt_cv);
988 }
989 mutex_spin_exit(&pool->tp_lock);
990 }
991 threadpool_job_rele(job);
992 mutex_exit(job->job_lock);
993
994 mutex_spin_enter(&pool->tp_lock);
995 }
996 threadpool_rele(pool);
997 mutex_spin_exit(&pool->tp_lock);
998
999 TP_LOG(("%s: exiting.\n", __func__));
1000
1001 kthread_exit(0);
1002 }
1003
1004 /* Thread pool thread */
1005
1006 static void __dead
1007 threadpool_thread(void *arg)
1008 {
1009 struct threadpool_thread *const thread = arg;
1010 struct threadpool *const pool = thread->tpt_pool;
1011
1012 KASSERT((pool->tp_cpu == NULL) || (pool->tp_cpu == curcpu()));
1013
1014 /* Wait until we're initialized and on the queue. */
1015 mutex_spin_enter(&pool->tp_lock);
1016 while (thread->tpt_lwp == NULL)
1017 cv_wait(&thread->tpt_cv, &pool->tp_lock);
1018
1019 TP_LOG(("%s: starting.\n", __func__));
1020
1021 KASSERT(thread->tpt_lwp == curlwp);
1022 for (;;) {
1023 /* Wait until we are assigned a job. */
1024 while (thread->tpt_job == NULL) {
1025 if (ISSET(pool->tp_flags, THREADPOOL_DYING)) {
1026 TP_LOG(("%s: THREADPOOL_DYING\n",
1027 __func__));
1028 break;
1029 }
1030 if (cv_timedwait(&thread->tpt_cv, &pool->tp_lock,
1031 mstohz(threadpool_idle_time_ms)))
1032 break;
1033 }
1034 if (__predict_false(thread->tpt_job == NULL)) {
1035 TAILQ_REMOVE(&pool->tp_idle_threads, thread,
1036 tpt_entry);
1037 break;
1038 }
1039
1040 struct threadpool_job *const job = thread->tpt_job;
1041 KASSERT(job != NULL);
1042
1043 /* Set our lwp name to reflect what job we're doing. */
1044 lwp_lock(curlwp);
1045 char *const lwp_name __diagused = curlwp->l_name;
1046 thread->tpt_lwp_savedname = curlwp->l_name;
1047 curlwp->l_name = job->job_name;
1048 lwp_unlock(curlwp);
1049
1050 mutex_spin_exit(&pool->tp_lock);
1051
1052 TP_LOG(("%s: running job '%s' on thread %p.\n",
1053 __func__, job->job_name, thread));
1054
1055 /* Run the job. */
1056 (*job->job_fn)(job);
1057
1058 /* lwp name restored in threadpool_job_done(). */
1059 KASSERTMSG((curlwp->l_name == lwp_name),
1060 "someone forgot to call threadpool_job_done()!");
1061
1062 /*
1063 * We can compare pointers, but we can no longer deference
1064 * job after this because threadpool_job_done() drops the
1065 * last reference on the job while the job is locked.
1066 */
1067
1068 mutex_spin_enter(&pool->tp_lock);
1069 KASSERT(thread->tpt_job == job);
1070 thread->tpt_job = NULL;
1071 TAILQ_INSERT_TAIL(&pool->tp_idle_threads, thread, tpt_entry);
1072 }
1073 threadpool_rele(pool);
1074 mutex_spin_exit(&pool->tp_lock);
1075
1076 TP_LOG(("%s: thread %p exiting.\n", __func__, thread));
1077
1078 KASSERT(!cv_has_waiters(&thread->tpt_cv));
1079 cv_destroy(&thread->tpt_cv);
1080 pool_cache_put(threadpool_thread_pc, thread);
1081 kthread_exit(0);
1082 }
1083