Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.1.1.2
      1      1.1   cgd /*
      2  1.1.1.2  fvdl  * Copyright (c) 1982, 1986, 1989, 1993
      3  1.1.1.2  fvdl  *	The Regents of the University of California.  All rights reserved.
      4      1.1   cgd  *
      5      1.1   cgd  * Redistribution and use in source and binary forms, with or without
      6      1.1   cgd  * modification, are permitted provided that the following conditions
      7      1.1   cgd  * are met:
      8      1.1   cgd  * 1. Redistributions of source code must retain the above copyright
      9      1.1   cgd  *    notice, this list of conditions and the following disclaimer.
     10      1.1   cgd  * 2. Redistributions in binary form must reproduce the above copyright
     11      1.1   cgd  *    notice, this list of conditions and the following disclaimer in the
     12      1.1   cgd  *    documentation and/or other materials provided with the distribution.
     13      1.1   cgd  * 3. All advertising materials mentioning features or use of this software
     14      1.1   cgd  *    must display the following acknowledgement:
     15      1.1   cgd  *	This product includes software developed by the University of
     16      1.1   cgd  *	California, Berkeley and its contributors.
     17      1.1   cgd  * 4. Neither the name of the University nor the names of its contributors
     18      1.1   cgd  *    may be used to endorse or promote products derived from this software
     19      1.1   cgd  *    without specific prior written permission.
     20      1.1   cgd  *
     21      1.1   cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22      1.1   cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23      1.1   cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24      1.1   cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25      1.1   cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26      1.1   cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27      1.1   cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28      1.1   cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29      1.1   cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30      1.1   cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31      1.1   cgd  * SUCH DAMAGE.
     32      1.1   cgd  *
     33  1.1.1.2  fvdl  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
     34      1.1   cgd  */
     35      1.1   cgd 
     36  1.1.1.2  fvdl #include <sys/param.h>
     37  1.1.1.2  fvdl #include <sys/resourcevar.h>
     38  1.1.1.2  fvdl #include <sys/kernel.h>
     39  1.1.1.2  fvdl #include <sys/systm.h>
     40  1.1.1.2  fvdl #include <sys/proc.h>
     41  1.1.1.2  fvdl #include <sys/vnode.h>
     42      1.1   cgd 
     43  1.1.1.2  fvdl #include <machine/cpu.h>
     44      1.1   cgd 
     45      1.1   cgd /*
     46      1.1   cgd  * Time of day and interval timer support.
     47      1.1   cgd  *
     48      1.1   cgd  * These routines provide the kernel entry points to get and set
     49      1.1   cgd  * the time-of-day and per-process interval timers.  Subroutines
     50      1.1   cgd  * here provide support for adding and subtracting timeval structures
     51      1.1   cgd  * and decrementing interval timers, optionally reloading the interval
     52      1.1   cgd  * timers when they expire.
     53      1.1   cgd  */
     54      1.1   cgd 
     55  1.1.1.2  fvdl struct gettimeofday_args {
     56  1.1.1.2  fvdl 	struct	timeval *tp;
     57  1.1.1.2  fvdl 	struct	timezone *tzp;
     58  1.1.1.2  fvdl };
     59      1.1   cgd /* ARGSUSED */
     60      1.1   cgd gettimeofday(p, uap, retval)
     61      1.1   cgd 	struct proc *p;
     62  1.1.1.2  fvdl 	register struct gettimeofday_args *uap;
     63      1.1   cgd 	int *retval;
     64      1.1   cgd {
     65      1.1   cgd 	struct timeval atv;
     66      1.1   cgd 	int error = 0;
     67      1.1   cgd 
     68      1.1   cgd 	if (uap->tp) {
     69      1.1   cgd 		microtime(&atv);
     70      1.1   cgd 		if (error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
     71      1.1   cgd 		    sizeof (atv)))
     72      1.1   cgd 			return (error);
     73      1.1   cgd 	}
     74      1.1   cgd 	if (uap->tzp)
     75      1.1   cgd 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
     76      1.1   cgd 		    sizeof (tz));
     77      1.1   cgd 	return (error);
     78      1.1   cgd }
     79      1.1   cgd 
     80  1.1.1.2  fvdl struct settimeofday_args {
     81  1.1.1.2  fvdl 	struct	timeval *tv;
     82  1.1.1.2  fvdl 	struct	timezone *tzp;
     83  1.1.1.2  fvdl };
     84      1.1   cgd /* ARGSUSED */
     85      1.1   cgd settimeofday(p, uap, retval)
     86      1.1   cgd 	struct proc *p;
     87  1.1.1.2  fvdl 	struct settimeofday_args *uap;
     88      1.1   cgd 	int *retval;
     89      1.1   cgd {
     90  1.1.1.2  fvdl 	struct timeval atv, delta;
     91      1.1   cgd 	struct timezone atz;
     92      1.1   cgd 	int error, s;
     93      1.1   cgd 
     94      1.1   cgd 	if (error = suser(p->p_ucred, &p->p_acflag))
     95      1.1   cgd 		return (error);
     96  1.1.1.2  fvdl 	/* Verify all parameters before changing time. */
     97  1.1.1.2  fvdl 	if (uap->tv &&
     98  1.1.1.2  fvdl 	    (error = copyin((caddr_t)uap->tv, (caddr_t)&atv, sizeof(atv))))
     99  1.1.1.2  fvdl 		return (error);
    100  1.1.1.2  fvdl 	if (uap->tzp &&
    101  1.1.1.2  fvdl 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
    102  1.1.1.2  fvdl 		return (error);
    103      1.1   cgd 	if (uap->tv) {
    104      1.1   cgd 		/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    105  1.1.1.2  fvdl 		s = splclock();
    106  1.1.1.2  fvdl 		/* nb. delta.tv_usec may be < 0, but this is OK here */
    107  1.1.1.2  fvdl 		delta.tv_sec = atv.tv_sec - time.tv_sec;
    108  1.1.1.2  fvdl 		delta.tv_usec = atv.tv_usec - time.tv_usec;
    109  1.1.1.2  fvdl 		time = atv;
    110  1.1.1.2  fvdl 		(void) splsoftclock();
    111  1.1.1.2  fvdl 		timevaladd(&boottime, &delta);
    112  1.1.1.2  fvdl 		timevalfix(&boottime);
    113  1.1.1.2  fvdl 		timevaladd(&runtime, &delta);
    114  1.1.1.2  fvdl 		timevalfix(&runtime);
    115  1.1.1.2  fvdl 		LEASE_UPDATETIME(delta.tv_sec);
    116  1.1.1.2  fvdl 		splx(s);
    117      1.1   cgd 		resettodr();
    118      1.1   cgd 	}
    119  1.1.1.2  fvdl 	if (uap->tzp)
    120      1.1   cgd 		tz = atz;
    121  1.1.1.2  fvdl 	return (0);
    122      1.1   cgd }
    123      1.1   cgd 
    124      1.1   cgd extern	int tickadj;			/* "standard" clock skew, us./tick */
    125      1.1   cgd int	tickdelta;			/* current clock skew, us. per tick */
    126      1.1   cgd long	timedelta;			/* unapplied time correction, us. */
    127      1.1   cgd long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    128      1.1   cgd 
    129  1.1.1.2  fvdl struct adjtime_args {
    130  1.1.1.2  fvdl 	struct timeval *delta;
    131  1.1.1.2  fvdl 	struct timeval *olddelta;
    132  1.1.1.2  fvdl };
    133      1.1   cgd /* ARGSUSED */
    134      1.1   cgd adjtime(p, uap, retval)
    135      1.1   cgd 	struct proc *p;
    136  1.1.1.2  fvdl 	register struct adjtime_args *uap;
    137      1.1   cgd 	int *retval;
    138      1.1   cgd {
    139  1.1.1.2  fvdl 	struct timeval atv;
    140  1.1.1.2  fvdl 	register long ndelta, ntickdelta, odelta;
    141      1.1   cgd 	int s, error;
    142      1.1   cgd 
    143      1.1   cgd 	if (error = suser(p->p_ucred, &p->p_acflag))
    144      1.1   cgd 		return (error);
    145      1.1   cgd 	if (error =
    146  1.1.1.2  fvdl 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval)))
    147      1.1   cgd 		return (error);
    148      1.1   cgd 
    149  1.1.1.2  fvdl 	/*
    150  1.1.1.2  fvdl 	 * Compute the total correction and the rate at which to apply it.
    151  1.1.1.2  fvdl 	 * Round the adjustment down to a whole multiple of the per-tick
    152  1.1.1.2  fvdl 	 * delta, so that after some number of incremental changes in
    153  1.1.1.2  fvdl 	 * hardclock(), tickdelta will become zero, lest the correction
    154  1.1.1.2  fvdl 	 * overshoot and start taking us away from the desired final time.
    155  1.1.1.2  fvdl 	 */
    156  1.1.1.2  fvdl 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    157  1.1.1.2  fvdl 	if (ndelta > bigadj)
    158  1.1.1.2  fvdl 		ntickdelta = 10 * tickadj;
    159  1.1.1.2  fvdl 	else
    160  1.1.1.2  fvdl 		ntickdelta = tickadj;
    161  1.1.1.2  fvdl 	if (ndelta % ntickdelta)
    162  1.1.1.2  fvdl 		ndelta = ndelta / ntickdelta * ntickdelta;
    163  1.1.1.2  fvdl 
    164  1.1.1.2  fvdl 	/*
    165  1.1.1.2  fvdl 	 * To make hardclock()'s job easier, make the per-tick delta negative
    166  1.1.1.2  fvdl 	 * if we want time to run slower; then hardclock can simply compute
    167  1.1.1.2  fvdl 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    168  1.1.1.2  fvdl 	 */
    169  1.1.1.2  fvdl 	if (ndelta < 0)
    170  1.1.1.2  fvdl 		ntickdelta = -ntickdelta;
    171      1.1   cgd 	s = splclock();
    172  1.1.1.2  fvdl 	odelta = timedelta;
    173      1.1   cgd 	timedelta = ndelta;
    174  1.1.1.2  fvdl 	tickdelta = ntickdelta;
    175      1.1   cgd 	splx(s);
    176      1.1   cgd 
    177  1.1.1.2  fvdl 	if (uap->olddelta) {
    178  1.1.1.2  fvdl 		atv.tv_sec = odelta / 1000000;
    179  1.1.1.2  fvdl 		atv.tv_usec = odelta % 1000000;
    180  1.1.1.2  fvdl 		(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
    181  1.1.1.2  fvdl 		    sizeof(struct timeval));
    182  1.1.1.2  fvdl 	}
    183      1.1   cgd 	return (0);
    184      1.1   cgd }
    185      1.1   cgd 
    186      1.1   cgd /*
    187      1.1   cgd  * Get value of an interval timer.  The process virtual and
    188      1.1   cgd  * profiling virtual time timers are kept in the p_stats area, since
    189      1.1   cgd  * they can be swapped out.  These are kept internally in the
    190      1.1   cgd  * way they are specified externally: in time until they expire.
    191      1.1   cgd  *
    192      1.1   cgd  * The real time interval timer is kept in the process table slot
    193      1.1   cgd  * for the process, and its value (it_value) is kept as an
    194      1.1   cgd  * absolute time rather than as a delta, so that it is easy to keep
    195      1.1   cgd  * periodic real-time signals from drifting.
    196      1.1   cgd  *
    197      1.1   cgd  * Virtual time timers are processed in the hardclock() routine of
    198      1.1   cgd  * kern_clock.c.  The real time timer is processed by a timeout
    199      1.1   cgd  * routine, called from the softclock() routine.  Since a callout
    200      1.1   cgd  * may be delayed in real time due to interrupt processing in the system,
    201      1.1   cgd  * it is possible for the real time timeout routine (realitexpire, given below),
    202      1.1   cgd  * to be delayed in real time past when it is supposed to occur.  It
    203      1.1   cgd  * does not suffice, therefore, to reload the real timer .it_value from the
    204      1.1   cgd  * real time timers .it_interval.  Rather, we compute the next time in
    205      1.1   cgd  * absolute time the timer should go off.
    206      1.1   cgd  */
    207  1.1.1.2  fvdl struct getitimer_args {
    208  1.1.1.2  fvdl 	u_int	which;
    209  1.1.1.2  fvdl 	struct	itimerval *itv;
    210  1.1.1.2  fvdl };
    211      1.1   cgd /* ARGSUSED */
    212      1.1   cgd getitimer(p, uap, retval)
    213      1.1   cgd 	struct proc *p;
    214  1.1.1.2  fvdl 	register struct getitimer_args *uap;
    215      1.1   cgd 	int *retval;
    216      1.1   cgd {
    217      1.1   cgd 	struct itimerval aitv;
    218      1.1   cgd 	int s;
    219      1.1   cgd 
    220      1.1   cgd 	if (uap->which > ITIMER_PROF)
    221      1.1   cgd 		return (EINVAL);
    222      1.1   cgd 	s = splclock();
    223      1.1   cgd 	if (uap->which == ITIMER_REAL) {
    224      1.1   cgd 		/*
    225      1.1   cgd 		 * Convert from absoulte to relative time in .it_value
    226      1.1   cgd 		 * part of real time timer.  If time for real time timer
    227      1.1   cgd 		 * has passed return 0, else return difference between
    228      1.1   cgd 		 * current time and time for the timer to go off.
    229      1.1   cgd 		 */
    230      1.1   cgd 		aitv = p->p_realtimer;
    231      1.1   cgd 		if (timerisset(&aitv.it_value))
    232      1.1   cgd 			if (timercmp(&aitv.it_value, &time, <))
    233      1.1   cgd 				timerclear(&aitv.it_value);
    234      1.1   cgd 			else
    235  1.1.1.2  fvdl 				timevalsub(&aitv.it_value,
    236  1.1.1.2  fvdl 				    (struct timeval *)&time);
    237      1.1   cgd 	} else
    238      1.1   cgd 		aitv = p->p_stats->p_timer[uap->which];
    239      1.1   cgd 	splx(s);
    240      1.1   cgd 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
    241      1.1   cgd 	    sizeof (struct itimerval)));
    242      1.1   cgd }
    243      1.1   cgd 
    244  1.1.1.2  fvdl struct setitimer_args {
    245  1.1.1.2  fvdl 	u_int	which;
    246  1.1.1.2  fvdl 	struct	itimerval *itv, *oitv;
    247  1.1.1.2  fvdl };
    248      1.1   cgd /* ARGSUSED */
    249      1.1   cgd setitimer(p, uap, retval)
    250      1.1   cgd 	struct proc *p;
    251  1.1.1.2  fvdl 	register struct setitimer_args *uap;
    252      1.1   cgd 	int *retval;
    253      1.1   cgd {
    254      1.1   cgd 	struct itimerval aitv;
    255      1.1   cgd 	register struct itimerval *itvp;
    256      1.1   cgd 	int s, error;
    257      1.1   cgd 
    258      1.1   cgd 	if (uap->which > ITIMER_PROF)
    259      1.1   cgd 		return (EINVAL);
    260      1.1   cgd 	itvp = uap->itv;
    261      1.1   cgd 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
    262      1.1   cgd 	    sizeof(struct itimerval))))
    263      1.1   cgd 		return (error);
    264      1.1   cgd 	if ((uap->itv = uap->oitv) && (error = getitimer(p, uap, retval)))
    265      1.1   cgd 		return (error);
    266      1.1   cgd 	if (itvp == 0)
    267      1.1   cgd 		return (0);
    268      1.1   cgd 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    269      1.1   cgd 		return (EINVAL);
    270      1.1   cgd 	s = splclock();
    271      1.1   cgd 	if (uap->which == ITIMER_REAL) {
    272      1.1   cgd 		untimeout(realitexpire, (caddr_t)p);
    273      1.1   cgd 		if (timerisset(&aitv.it_value)) {
    274  1.1.1.2  fvdl 			timevaladd(&aitv.it_value, (struct timeval *)&time);
    275      1.1   cgd 			timeout(realitexpire, (caddr_t)p, hzto(&aitv.it_value));
    276      1.1   cgd 		}
    277      1.1   cgd 		p->p_realtimer = aitv;
    278      1.1   cgd 	} else
    279      1.1   cgd 		p->p_stats->p_timer[uap->which] = aitv;
    280      1.1   cgd 	splx(s);
    281      1.1   cgd 	return (0);
    282      1.1   cgd }
    283      1.1   cgd 
    284      1.1   cgd /*
    285      1.1   cgd  * Real interval timer expired:
    286      1.1   cgd  * send process whose timer expired an alarm signal.
    287      1.1   cgd  * If time is not set up to reload, then just return.
    288      1.1   cgd  * Else compute next time timer should go off which is > current time.
    289      1.1   cgd  * This is where delay in processing this timeout causes multiple
    290      1.1   cgd  * SIGALRM calls to be compressed into one.
    291      1.1   cgd  */
    292  1.1.1.2  fvdl void
    293  1.1.1.2  fvdl realitexpire(arg)
    294  1.1.1.2  fvdl 	void *arg;
    295      1.1   cgd {
    296  1.1.1.2  fvdl 	register struct proc *p;
    297      1.1   cgd 	int s;
    298      1.1   cgd 
    299  1.1.1.2  fvdl 	p = (struct proc *)arg;
    300      1.1   cgd 	psignal(p, SIGALRM);
    301      1.1   cgd 	if (!timerisset(&p->p_realtimer.it_interval)) {
    302      1.1   cgd 		timerclear(&p->p_realtimer.it_value);
    303      1.1   cgd 		return;
    304      1.1   cgd 	}
    305      1.1   cgd 	for (;;) {
    306      1.1   cgd 		s = splclock();
    307      1.1   cgd 		timevaladd(&p->p_realtimer.it_value,
    308      1.1   cgd 		    &p->p_realtimer.it_interval);
    309      1.1   cgd 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    310      1.1   cgd 			timeout(realitexpire, (caddr_t)p,
    311      1.1   cgd 			    hzto(&p->p_realtimer.it_value));
    312      1.1   cgd 			splx(s);
    313      1.1   cgd 			return;
    314      1.1   cgd 		}
    315      1.1   cgd 		splx(s);
    316      1.1   cgd 	}
    317      1.1   cgd }
    318      1.1   cgd 
    319      1.1   cgd /*
    320      1.1   cgd  * Check that a proposed value to load into the .it_value or
    321      1.1   cgd  * .it_interval part of an interval timer is acceptable, and
    322      1.1   cgd  * fix it to have at least minimal value (i.e. if it is less
    323      1.1   cgd  * than the resolution of the clock, round it up.)
    324      1.1   cgd  */
    325      1.1   cgd itimerfix(tv)
    326      1.1   cgd 	struct timeval *tv;
    327      1.1   cgd {
    328      1.1   cgd 
    329      1.1   cgd 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    330      1.1   cgd 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    331      1.1   cgd 		return (EINVAL);
    332      1.1   cgd 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    333      1.1   cgd 		tv->tv_usec = tick;
    334      1.1   cgd 	return (0);
    335      1.1   cgd }
    336      1.1   cgd 
    337      1.1   cgd /*
    338      1.1   cgd  * Decrement an interval timer by a specified number
    339      1.1   cgd  * of microseconds, which must be less than a second,
    340      1.1   cgd  * i.e. < 1000000.  If the timer expires, then reload
    341      1.1   cgd  * it.  In this case, carry over (usec - old value) to
    342  1.1.1.2  fvdl  * reduce the value reloaded into the timer so that
    343      1.1   cgd  * the timer does not drift.  This routine assumes
    344      1.1   cgd  * that it is called in a context where the timers
    345      1.1   cgd  * on which it is operating cannot change in value.
    346      1.1   cgd  */
    347      1.1   cgd itimerdecr(itp, usec)
    348      1.1   cgd 	register struct itimerval *itp;
    349      1.1   cgd 	int usec;
    350      1.1   cgd {
    351      1.1   cgd 
    352      1.1   cgd 	if (itp->it_value.tv_usec < usec) {
    353      1.1   cgd 		if (itp->it_value.tv_sec == 0) {
    354      1.1   cgd 			/* expired, and already in next interval */
    355      1.1   cgd 			usec -= itp->it_value.tv_usec;
    356      1.1   cgd 			goto expire;
    357      1.1   cgd 		}
    358      1.1   cgd 		itp->it_value.tv_usec += 1000000;
    359      1.1   cgd 		itp->it_value.tv_sec--;
    360      1.1   cgd 	}
    361      1.1   cgd 	itp->it_value.tv_usec -= usec;
    362      1.1   cgd 	usec = 0;
    363      1.1   cgd 	if (timerisset(&itp->it_value))
    364      1.1   cgd 		return (1);
    365      1.1   cgd 	/* expired, exactly at end of interval */
    366      1.1   cgd expire:
    367      1.1   cgd 	if (timerisset(&itp->it_interval)) {
    368      1.1   cgd 		itp->it_value = itp->it_interval;
    369      1.1   cgd 		itp->it_value.tv_usec -= usec;
    370      1.1   cgd 		if (itp->it_value.tv_usec < 0) {
    371      1.1   cgd 			itp->it_value.tv_usec += 1000000;
    372      1.1   cgd 			itp->it_value.tv_sec--;
    373      1.1   cgd 		}
    374      1.1   cgd 	} else
    375      1.1   cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    376      1.1   cgd 	return (0);
    377      1.1   cgd }
    378      1.1   cgd 
    379      1.1   cgd /*
    380      1.1   cgd  * Add and subtract routines for timevals.
    381      1.1   cgd  * N.B.: subtract routine doesn't deal with
    382      1.1   cgd  * results which are before the beginning,
    383      1.1   cgd  * it just gets very confused in this case.
    384      1.1   cgd  * Caveat emptor.
    385      1.1   cgd  */
    386      1.1   cgd timevaladd(t1, t2)
    387      1.1   cgd 	struct timeval *t1, *t2;
    388      1.1   cgd {
    389      1.1   cgd 
    390      1.1   cgd 	t1->tv_sec += t2->tv_sec;
    391      1.1   cgd 	t1->tv_usec += t2->tv_usec;
    392      1.1   cgd 	timevalfix(t1);
    393      1.1   cgd }
    394      1.1   cgd 
    395      1.1   cgd timevalsub(t1, t2)
    396      1.1   cgd 	struct timeval *t1, *t2;
    397      1.1   cgd {
    398      1.1   cgd 
    399      1.1   cgd 	t1->tv_sec -= t2->tv_sec;
    400      1.1   cgd 	t1->tv_usec -= t2->tv_usec;
    401      1.1   cgd 	timevalfix(t1);
    402      1.1   cgd }
    403      1.1   cgd 
    404      1.1   cgd timevalfix(t1)
    405      1.1   cgd 	struct timeval *t1;
    406      1.1   cgd {
    407      1.1   cgd 
    408      1.1   cgd 	if (t1->tv_usec < 0) {
    409      1.1   cgd 		t1->tv_sec--;
    410      1.1   cgd 		t1->tv_usec += 1000000;
    411      1.1   cgd 	}
    412      1.1   cgd 	if (t1->tv_usec >= 1000000) {
    413      1.1   cgd 		t1->tv_sec++;
    414      1.1   cgd 		t1->tv_usec -= 1000000;
    415      1.1   cgd 	}
    416      1.1   cgd }
    417