kern_time.c revision 1.1.1.3 1 1.1 cgd /*
2 1.1.1.2 fvdl * Copyright (c) 1982, 1986, 1989, 1993
3 1.1.1.2 fvdl * The Regents of the University of California. All rights reserved.
4 1.1 cgd *
5 1.1 cgd * Redistribution and use in source and binary forms, with or without
6 1.1 cgd * modification, are permitted provided that the following conditions
7 1.1 cgd * are met:
8 1.1 cgd * 1. Redistributions of source code must retain the above copyright
9 1.1 cgd * notice, this list of conditions and the following disclaimer.
10 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer in the
12 1.1 cgd * documentation and/or other materials provided with the distribution.
13 1.1 cgd * 3. All advertising materials mentioning features or use of this software
14 1.1 cgd * must display the following acknowledgement:
15 1.1 cgd * This product includes software developed by the University of
16 1.1 cgd * California, Berkeley and its contributors.
17 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
18 1.1 cgd * may be used to endorse or promote products derived from this software
19 1.1 cgd * without specific prior written permission.
20 1.1 cgd *
21 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 1.1 cgd * SUCH DAMAGE.
32 1.1 cgd *
33 1.1.1.3 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
34 1.1 cgd */
35 1.1 cgd
36 1.1.1.2 fvdl #include <sys/param.h>
37 1.1.1.2 fvdl #include <sys/resourcevar.h>
38 1.1.1.2 fvdl #include <sys/kernel.h>
39 1.1.1.2 fvdl #include <sys/systm.h>
40 1.1.1.2 fvdl #include <sys/proc.h>
41 1.1.1.2 fvdl #include <sys/vnode.h>
42 1.1 cgd
43 1.1.1.3 fvdl #include <sys/mount.h>
44 1.1.1.3 fvdl #include <sys/syscallargs.h>
45 1.1.1.3 fvdl
46 1.1.1.2 fvdl #include <machine/cpu.h>
47 1.1 cgd
48 1.1 cgd /*
49 1.1 cgd * Time of day and interval timer support.
50 1.1 cgd *
51 1.1 cgd * These routines provide the kernel entry points to get and set
52 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
53 1.1 cgd * here provide support for adding and subtracting timeval structures
54 1.1 cgd * and decrementing interval timers, optionally reloading the interval
55 1.1 cgd * timers when they expire.
56 1.1 cgd */
57 1.1 cgd
58 1.1 cgd /* ARGSUSED */
59 1.1.1.3 fvdl int
60 1.1 cgd gettimeofday(p, uap, retval)
61 1.1 cgd struct proc *p;
62 1.1.1.3 fvdl register struct gettimeofday_args /* {
63 1.1.1.3 fvdl syscallarg(struct timeval *) tp;
64 1.1.1.3 fvdl syscallarg(struct timezone *) tzp;
65 1.1.1.3 fvdl } */ *uap;
66 1.1.1.3 fvdl register_t *retval;
67 1.1 cgd {
68 1.1 cgd struct timeval atv;
69 1.1 cgd int error = 0;
70 1.1 cgd
71 1.1.1.3 fvdl if (SCARG(uap, tp)) {
72 1.1 cgd microtime(&atv);
73 1.1.1.3 fvdl if (error = copyout((caddr_t)&atv, (caddr_t)SCARG(uap, tp),
74 1.1 cgd sizeof (atv)))
75 1.1 cgd return (error);
76 1.1 cgd }
77 1.1.1.3 fvdl if (SCARG(uap, tzp))
78 1.1.1.3 fvdl error = copyout((caddr_t)&tz, (caddr_t)SCARG(uap, tzp),
79 1.1 cgd sizeof (tz));
80 1.1 cgd return (error);
81 1.1 cgd }
82 1.1 cgd
83 1.1 cgd /* ARGSUSED */
84 1.1.1.3 fvdl int
85 1.1 cgd settimeofday(p, uap, retval)
86 1.1 cgd struct proc *p;
87 1.1.1.3 fvdl struct settimeofday_args /* {
88 1.1.1.3 fvdl syscallarg(struct timeval *) tv;
89 1.1.1.3 fvdl syscallarg(struct timezone *) tzp;
90 1.1.1.3 fvdl } */ *uap;
91 1.1.1.3 fvdl register_t *retval;
92 1.1 cgd {
93 1.1.1.2 fvdl struct timeval atv, delta;
94 1.1 cgd struct timezone atz;
95 1.1 cgd int error, s;
96 1.1 cgd
97 1.1 cgd if (error = suser(p->p_ucred, &p->p_acflag))
98 1.1 cgd return (error);
99 1.1.1.2 fvdl /* Verify all parameters before changing time. */
100 1.1.1.3 fvdl if (SCARG(uap, tv) && (error = copyin((caddr_t)SCARG(uap, tv),
101 1.1.1.3 fvdl (caddr_t)&atv, sizeof(atv))))
102 1.1.1.2 fvdl return (error);
103 1.1.1.3 fvdl if (SCARG(uap, tzp) && (error = copyin((caddr_t)SCARG(uap, tzp),
104 1.1.1.3 fvdl (caddr_t)&atz, sizeof(atz))))
105 1.1.1.2 fvdl return (error);
106 1.1.1.3 fvdl if (SCARG(uap, tv)) {
107 1.1.1.3 fvdl /*
108 1.1.1.3 fvdl * If the system is secure, we do not allow the time to be
109 1.1.1.3 fvdl * set to an earlier value (it may be slowed using adjtime,
110 1.1.1.3 fvdl * but not set back). This feature prevent interlopers from
111 1.1.1.3 fvdl * setting arbitrary time stamps on files.
112 1.1.1.3 fvdl */
113 1.1.1.3 fvdl if (securelevel > 0 && timercmp(&atv, &time, <))
114 1.1.1.3 fvdl return (EPERM);
115 1.1 cgd /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
116 1.1.1.2 fvdl s = splclock();
117 1.1.1.2 fvdl /* nb. delta.tv_usec may be < 0, but this is OK here */
118 1.1.1.2 fvdl delta.tv_sec = atv.tv_sec - time.tv_sec;
119 1.1.1.2 fvdl delta.tv_usec = atv.tv_usec - time.tv_usec;
120 1.1.1.2 fvdl time = atv;
121 1.1.1.2 fvdl (void) splsoftclock();
122 1.1.1.2 fvdl timevaladd(&boottime, &delta);
123 1.1.1.2 fvdl timevalfix(&boottime);
124 1.1.1.2 fvdl timevaladd(&runtime, &delta);
125 1.1.1.2 fvdl timevalfix(&runtime);
126 1.1.1.3 fvdl # ifdef NFS
127 1.1.1.3 fvdl lease_updatetime(delta.tv_sec);
128 1.1.1.3 fvdl # endif
129 1.1.1.2 fvdl splx(s);
130 1.1 cgd resettodr();
131 1.1 cgd }
132 1.1.1.3 fvdl if (SCARG(uap, tzp))
133 1.1 cgd tz = atz;
134 1.1.1.2 fvdl return (0);
135 1.1 cgd }
136 1.1 cgd
137 1.1 cgd extern int tickadj; /* "standard" clock skew, us./tick */
138 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
139 1.1 cgd long timedelta; /* unapplied time correction, us. */
140 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
141 1.1 cgd
142 1.1 cgd /* ARGSUSED */
143 1.1.1.3 fvdl int
144 1.1 cgd adjtime(p, uap, retval)
145 1.1 cgd struct proc *p;
146 1.1.1.3 fvdl register struct adjtime_args /* {
147 1.1.1.3 fvdl syscallarg(struct timeval *) delta;
148 1.1.1.3 fvdl syscallarg(struct timeval *) olddelta;
149 1.1.1.3 fvdl } */ *uap;
150 1.1.1.3 fvdl register_t *retval;
151 1.1 cgd {
152 1.1.1.2 fvdl struct timeval atv;
153 1.1.1.2 fvdl register long ndelta, ntickdelta, odelta;
154 1.1 cgd int s, error;
155 1.1 cgd
156 1.1 cgd if (error = suser(p->p_ucred, &p->p_acflag))
157 1.1 cgd return (error);
158 1.1.1.3 fvdl if (error = copyin((caddr_t)SCARG(uap, delta), (caddr_t)&atv,
159 1.1.1.3 fvdl sizeof(struct timeval)))
160 1.1 cgd return (error);
161 1.1 cgd
162 1.1.1.2 fvdl /*
163 1.1.1.2 fvdl * Compute the total correction and the rate at which to apply it.
164 1.1.1.2 fvdl * Round the adjustment down to a whole multiple of the per-tick
165 1.1.1.2 fvdl * delta, so that after some number of incremental changes in
166 1.1.1.2 fvdl * hardclock(), tickdelta will become zero, lest the correction
167 1.1.1.2 fvdl * overshoot and start taking us away from the desired final time.
168 1.1.1.2 fvdl */
169 1.1.1.2 fvdl ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
170 1.1.1.2 fvdl if (ndelta > bigadj)
171 1.1.1.2 fvdl ntickdelta = 10 * tickadj;
172 1.1.1.2 fvdl else
173 1.1.1.2 fvdl ntickdelta = tickadj;
174 1.1.1.2 fvdl if (ndelta % ntickdelta)
175 1.1.1.2 fvdl ndelta = ndelta / ntickdelta * ntickdelta;
176 1.1.1.2 fvdl
177 1.1.1.2 fvdl /*
178 1.1.1.2 fvdl * To make hardclock()'s job easier, make the per-tick delta negative
179 1.1.1.2 fvdl * if we want time to run slower; then hardclock can simply compute
180 1.1.1.2 fvdl * tick + tickdelta, and subtract tickdelta from timedelta.
181 1.1.1.2 fvdl */
182 1.1.1.2 fvdl if (ndelta < 0)
183 1.1.1.2 fvdl ntickdelta = -ntickdelta;
184 1.1 cgd s = splclock();
185 1.1.1.2 fvdl odelta = timedelta;
186 1.1 cgd timedelta = ndelta;
187 1.1.1.2 fvdl tickdelta = ntickdelta;
188 1.1 cgd splx(s);
189 1.1 cgd
190 1.1.1.3 fvdl if (SCARG(uap, olddelta)) {
191 1.1.1.2 fvdl atv.tv_sec = odelta / 1000000;
192 1.1.1.2 fvdl atv.tv_usec = odelta % 1000000;
193 1.1.1.3 fvdl (void) copyout((caddr_t)&atv, (caddr_t)SCARG(uap, olddelta),
194 1.1.1.2 fvdl sizeof(struct timeval));
195 1.1.1.2 fvdl }
196 1.1 cgd return (0);
197 1.1 cgd }
198 1.1 cgd
199 1.1 cgd /*
200 1.1 cgd * Get value of an interval timer. The process virtual and
201 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
202 1.1 cgd * they can be swapped out. These are kept internally in the
203 1.1 cgd * way they are specified externally: in time until they expire.
204 1.1 cgd *
205 1.1 cgd * The real time interval timer is kept in the process table slot
206 1.1 cgd * for the process, and its value (it_value) is kept as an
207 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
208 1.1 cgd * periodic real-time signals from drifting.
209 1.1 cgd *
210 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
211 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
212 1.1 cgd * routine, called from the softclock() routine. Since a callout
213 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
214 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
215 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
216 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
217 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
218 1.1 cgd * absolute time the timer should go off.
219 1.1 cgd */
220 1.1 cgd /* ARGSUSED */
221 1.1.1.3 fvdl int
222 1.1 cgd getitimer(p, uap, retval)
223 1.1 cgd struct proc *p;
224 1.1.1.3 fvdl register struct getitimer_args /* {
225 1.1.1.3 fvdl syscallarg(u_int) which;
226 1.1.1.3 fvdl syscallarg(struct itimerval *) itv;
227 1.1.1.3 fvdl } */ *uap;
228 1.1.1.3 fvdl register_t *retval;
229 1.1 cgd {
230 1.1 cgd struct itimerval aitv;
231 1.1 cgd int s;
232 1.1 cgd
233 1.1.1.3 fvdl if (SCARG(uap, which) > ITIMER_PROF)
234 1.1 cgd return (EINVAL);
235 1.1 cgd s = splclock();
236 1.1.1.3 fvdl if (SCARG(uap, which) == ITIMER_REAL) {
237 1.1 cgd /*
238 1.1.1.3 fvdl * Convert from absolute to relative time in .it_value
239 1.1 cgd * part of real time timer. If time for real time timer
240 1.1 cgd * has passed return 0, else return difference between
241 1.1 cgd * current time and time for the timer to go off.
242 1.1 cgd */
243 1.1 cgd aitv = p->p_realtimer;
244 1.1 cgd if (timerisset(&aitv.it_value))
245 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
246 1.1 cgd timerclear(&aitv.it_value);
247 1.1 cgd else
248 1.1.1.2 fvdl timevalsub(&aitv.it_value,
249 1.1.1.2 fvdl (struct timeval *)&time);
250 1.1 cgd } else
251 1.1.1.3 fvdl aitv = p->p_stats->p_timer[SCARG(uap, which)];
252 1.1 cgd splx(s);
253 1.1.1.3 fvdl return (copyout((caddr_t)&aitv, (caddr_t)SCARG(uap, itv),
254 1.1 cgd sizeof (struct itimerval)));
255 1.1 cgd }
256 1.1 cgd
257 1.1 cgd /* ARGSUSED */
258 1.1.1.3 fvdl int
259 1.1 cgd setitimer(p, uap, retval)
260 1.1 cgd struct proc *p;
261 1.1.1.3 fvdl register struct setitimer_args /* {
262 1.1.1.3 fvdl syscallarg(u_int) which;
263 1.1.1.3 fvdl syscallarg(struct itimerval *) itv;
264 1.1.1.3 fvdl syscallarg(struct itimerval *) oitv;
265 1.1.1.3 fvdl } */ *uap;
266 1.1.1.3 fvdl register_t *retval;
267 1.1 cgd {
268 1.1 cgd struct itimerval aitv;
269 1.1 cgd register struct itimerval *itvp;
270 1.1 cgd int s, error;
271 1.1 cgd
272 1.1.1.3 fvdl if (SCARG(uap, which) > ITIMER_PROF)
273 1.1 cgd return (EINVAL);
274 1.1.1.3 fvdl itvp = SCARG(uap, itv);
275 1.1 cgd if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
276 1.1 cgd sizeof(struct itimerval))))
277 1.1 cgd return (error);
278 1.1.1.3 fvdl if ((SCARG(uap, itv) = SCARG(uap, oitv)) &&
279 1.1.1.3 fvdl (error = getitimer(p, uap, retval)))
280 1.1 cgd return (error);
281 1.1 cgd if (itvp == 0)
282 1.1 cgd return (0);
283 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
284 1.1 cgd return (EINVAL);
285 1.1 cgd s = splclock();
286 1.1.1.3 fvdl if (SCARG(uap, which) == ITIMER_REAL) {
287 1.1 cgd untimeout(realitexpire, (caddr_t)p);
288 1.1 cgd if (timerisset(&aitv.it_value)) {
289 1.1.1.2 fvdl timevaladd(&aitv.it_value, (struct timeval *)&time);
290 1.1 cgd timeout(realitexpire, (caddr_t)p, hzto(&aitv.it_value));
291 1.1 cgd }
292 1.1 cgd p->p_realtimer = aitv;
293 1.1 cgd } else
294 1.1.1.3 fvdl p->p_stats->p_timer[SCARG(uap, which)] = aitv;
295 1.1 cgd splx(s);
296 1.1 cgd return (0);
297 1.1 cgd }
298 1.1 cgd
299 1.1 cgd /*
300 1.1 cgd * Real interval timer expired:
301 1.1 cgd * send process whose timer expired an alarm signal.
302 1.1 cgd * If time is not set up to reload, then just return.
303 1.1 cgd * Else compute next time timer should go off which is > current time.
304 1.1 cgd * This is where delay in processing this timeout causes multiple
305 1.1 cgd * SIGALRM calls to be compressed into one.
306 1.1 cgd */
307 1.1.1.2 fvdl void
308 1.1.1.2 fvdl realitexpire(arg)
309 1.1.1.2 fvdl void *arg;
310 1.1 cgd {
311 1.1.1.2 fvdl register struct proc *p;
312 1.1 cgd int s;
313 1.1 cgd
314 1.1.1.2 fvdl p = (struct proc *)arg;
315 1.1 cgd psignal(p, SIGALRM);
316 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
317 1.1 cgd timerclear(&p->p_realtimer.it_value);
318 1.1 cgd return;
319 1.1 cgd }
320 1.1 cgd for (;;) {
321 1.1 cgd s = splclock();
322 1.1 cgd timevaladd(&p->p_realtimer.it_value,
323 1.1 cgd &p->p_realtimer.it_interval);
324 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
325 1.1 cgd timeout(realitexpire, (caddr_t)p,
326 1.1 cgd hzto(&p->p_realtimer.it_value));
327 1.1 cgd splx(s);
328 1.1 cgd return;
329 1.1 cgd }
330 1.1 cgd splx(s);
331 1.1 cgd }
332 1.1 cgd }
333 1.1 cgd
334 1.1 cgd /*
335 1.1 cgd * Check that a proposed value to load into the .it_value or
336 1.1 cgd * .it_interval part of an interval timer is acceptable, and
337 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
338 1.1 cgd * than the resolution of the clock, round it up.)
339 1.1 cgd */
340 1.1.1.3 fvdl int
341 1.1 cgd itimerfix(tv)
342 1.1 cgd struct timeval *tv;
343 1.1 cgd {
344 1.1 cgd
345 1.1 cgd if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
346 1.1 cgd tv->tv_usec < 0 || tv->tv_usec >= 1000000)
347 1.1 cgd return (EINVAL);
348 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
349 1.1 cgd tv->tv_usec = tick;
350 1.1 cgd return (0);
351 1.1 cgd }
352 1.1 cgd
353 1.1 cgd /*
354 1.1 cgd * Decrement an interval timer by a specified number
355 1.1 cgd * of microseconds, which must be less than a second,
356 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
357 1.1 cgd * it. In this case, carry over (usec - old value) to
358 1.1.1.2 fvdl * reduce the value reloaded into the timer so that
359 1.1 cgd * the timer does not drift. This routine assumes
360 1.1 cgd * that it is called in a context where the timers
361 1.1 cgd * on which it is operating cannot change in value.
362 1.1 cgd */
363 1.1.1.3 fvdl int
364 1.1 cgd itimerdecr(itp, usec)
365 1.1 cgd register struct itimerval *itp;
366 1.1 cgd int usec;
367 1.1 cgd {
368 1.1 cgd
369 1.1 cgd if (itp->it_value.tv_usec < usec) {
370 1.1 cgd if (itp->it_value.tv_sec == 0) {
371 1.1 cgd /* expired, and already in next interval */
372 1.1 cgd usec -= itp->it_value.tv_usec;
373 1.1 cgd goto expire;
374 1.1 cgd }
375 1.1 cgd itp->it_value.tv_usec += 1000000;
376 1.1 cgd itp->it_value.tv_sec--;
377 1.1 cgd }
378 1.1 cgd itp->it_value.tv_usec -= usec;
379 1.1 cgd usec = 0;
380 1.1 cgd if (timerisset(&itp->it_value))
381 1.1 cgd return (1);
382 1.1 cgd /* expired, exactly at end of interval */
383 1.1 cgd expire:
384 1.1 cgd if (timerisset(&itp->it_interval)) {
385 1.1 cgd itp->it_value = itp->it_interval;
386 1.1 cgd itp->it_value.tv_usec -= usec;
387 1.1 cgd if (itp->it_value.tv_usec < 0) {
388 1.1 cgd itp->it_value.tv_usec += 1000000;
389 1.1 cgd itp->it_value.tv_sec--;
390 1.1 cgd }
391 1.1 cgd } else
392 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
393 1.1 cgd return (0);
394 1.1 cgd }
395 1.1 cgd
396 1.1 cgd /*
397 1.1 cgd * Add and subtract routines for timevals.
398 1.1 cgd * N.B.: subtract routine doesn't deal with
399 1.1 cgd * results which are before the beginning,
400 1.1 cgd * it just gets very confused in this case.
401 1.1 cgd * Caveat emptor.
402 1.1 cgd */
403 1.1 cgd timevaladd(t1, t2)
404 1.1 cgd struct timeval *t1, *t2;
405 1.1 cgd {
406 1.1 cgd
407 1.1 cgd t1->tv_sec += t2->tv_sec;
408 1.1 cgd t1->tv_usec += t2->tv_usec;
409 1.1 cgd timevalfix(t1);
410 1.1 cgd }
411 1.1 cgd
412 1.1 cgd timevalsub(t1, t2)
413 1.1 cgd struct timeval *t1, *t2;
414 1.1 cgd {
415 1.1 cgd
416 1.1 cgd t1->tv_sec -= t2->tv_sec;
417 1.1 cgd t1->tv_usec -= t2->tv_usec;
418 1.1 cgd timevalfix(t1);
419 1.1 cgd }
420 1.1 cgd
421 1.1 cgd timevalfix(t1)
422 1.1 cgd struct timeval *t1;
423 1.1 cgd {
424 1.1 cgd
425 1.1 cgd if (t1->tv_usec < 0) {
426 1.1 cgd t1->tv_sec--;
427 1.1 cgd t1->tv_usec += 1000000;
428 1.1 cgd }
429 1.1 cgd if (t1->tv_usec >= 1000000) {
430 1.1 cgd t1->tv_sec++;
431 1.1 cgd t1->tv_usec -= 1000000;
432 1.1 cgd }
433 1.1 cgd }
434