kern_time.c revision 1.103 1 1.102 kardel /* $NetBSD: kern_time.c,v 1.103 2006/07/14 22:45:20 kardel Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.88 mycroft * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.72 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 cgd * may be used to endorse or promote products derived from this software
53 1.1 cgd * without specific prior written permission.
54 1.1 cgd *
55 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 cgd * SUCH DAMAGE.
66 1.1 cgd *
67 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 1.1 cgd */
69 1.58 lukem
70 1.58 lukem #include <sys/cdefs.h>
71 1.102 kardel __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.103 2006/07/14 22:45:20 kardel Exp $");
72 1.31 thorpej
73 1.31 thorpej #include "fs_nfs.h"
74 1.54 bjh21 #include "opt_nfs.h"
75 1.34 thorpej #include "opt_nfsserver.h"
76 1.1 cgd
77 1.5 mycroft #include <sys/param.h>
78 1.5 mycroft #include <sys/resourcevar.h>
79 1.5 mycroft #include <sys/kernel.h>
80 1.8 cgd #include <sys/systm.h>
81 1.5 mycroft #include <sys/proc.h>
82 1.63 thorpej #include <sys/sa.h>
83 1.63 thorpej #include <sys/savar.h>
84 1.8 cgd #include <sys/vnode.h>
85 1.17 christos #include <sys/signalvar.h>
86 1.25 perry #include <sys/syslog.h>
87 1.101 kardel #ifdef __HAVE_TIMECOUNTER
88 1.101 kardel #include <sys/timetc.h>
89 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
90 1.95 cube #include <sys/timevar.h>
91 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
92 1.99 elad #include <sys/kauth.h>
93 1.1 cgd
94 1.11 cgd #include <sys/mount.h>
95 1.11 cgd #include <sys/syscallargs.h>
96 1.19 christos
97 1.37 thorpej #include <uvm/uvm_extern.h>
98 1.37 thorpej
99 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
100 1.20 fvdl #include <nfs/rpcv2.h>
101 1.20 fvdl #include <nfs/nfsproto.h>
102 1.93 jmmv #include <nfs/nfs.h>
103 1.19 christos #include <nfs/nfs_var.h>
104 1.19 christos #endif
105 1.17 christos
106 1.5 mycroft #include <machine/cpu.h>
107 1.23 cgd
108 1.97 simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
109 1.97 simonb &pool_allocator_nointr);
110 1.97 simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
111 1.97 simonb &pool_allocator_nointr);
112 1.97 simonb
113 1.63 thorpej static void timerupcall(struct lwp *, void *);
114 1.101 kardel #ifdef __HAVE_TIMECOUNTER
115 1.101 kardel static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
116 1.101 kardel #endif /* __HAVE_TIMECOUNTER */
117 1.63 thorpej
118 1.63 thorpej /* Time of day and interval timer support.
119 1.1 cgd *
120 1.1 cgd * These routines provide the kernel entry points to get and set
121 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
122 1.1 cgd * here provide support for adding and subtracting timeval structures
123 1.1 cgd * and decrementing interval timers, optionally reloading the interval
124 1.1 cgd * timers when they expire.
125 1.1 cgd */
126 1.1 cgd
127 1.22 jtc /* This function is used by clock_settime and settimeofday */
128 1.39 tron int
129 1.98 christos settime(struct proc *p, struct timespec *ts)
130 1.22 jtc {
131 1.98 christos struct timeval delta, tv;
132 1.101 kardel #ifdef __HAVE_TIMECOUNTER
133 1.101 kardel struct timeval now;
134 1.101 kardel struct timespec ts1;
135 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
136 1.47 thorpej struct cpu_info *ci;
137 1.22 jtc int s;
138 1.22 jtc
139 1.98 christos /*
140 1.98 christos * Don't allow the time to be set forward so far it will wrap
141 1.98 christos * and become negative, thus allowing an attacker to bypass
142 1.98 christos * the next check below. The cutoff is 1 year before rollover
143 1.98 christos * occurs, so even if the attacker uses adjtime(2) to move
144 1.98 christos * the time past the cutoff, it will take a very long time
145 1.98 christos * to get to the wrap point.
146 1.98 christos *
147 1.98 christos * XXX: we check against INT_MAX since on 64-bit
148 1.98 christos * platforms, sizeof(int) != sizeof(long) and
149 1.98 christos * time_t is 32 bits even when atv.tv_sec is 64 bits.
150 1.98 christos */
151 1.98 christos if (ts->tv_sec > INT_MAX - 365*24*60*60) {
152 1.98 christos struct proc *pp = p->p_pptr;
153 1.98 christos log(LOG_WARNING, "pid %d (%s) "
154 1.98 christos "invoked by uid %d ppid %d (%s) "
155 1.98 christos "tried to set clock forward to %ld\n",
156 1.99 elad p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
157 1.98 christos pp->p_pid, pp->p_comm, (long)ts->tv_sec);
158 1.98 christos return (EPERM);
159 1.98 christos }
160 1.98 christos TIMESPEC_TO_TIMEVAL(&tv, ts);
161 1.98 christos
162 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
163 1.22 jtc s = splclock();
164 1.101 kardel #ifdef __HAVE_TIMECOUNTER
165 1.101 kardel microtime(&now);
166 1.101 kardel timersub(&tv, &now, &delta);
167 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
168 1.98 christos timersub(&tv, &time, &delta);
169 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
170 1.55 tron if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
171 1.55 tron splx(s);
172 1.29 tls return (EPERM);
173 1.55 tron }
174 1.29 tls #ifdef notyet
175 1.55 tron if ((delta.tv_sec < 86400) && securelevel > 0) {
176 1.55 tron splx(s);
177 1.29 tls return (EPERM);
178 1.55 tron }
179 1.29 tls #endif
180 1.103 kardel
181 1.101 kardel #ifdef __HAVE_TIMECOUNTER
182 1.103 kardel TIMEVAL_TO_TIMESPEC(&tv, &ts1);
183 1.101 kardel tc_setclock(&ts1);
184 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
185 1.98 christos time = tv;
186 1.103 kardel #endif /* !__HAVE_TIMECOUNTER */
187 1.103 kardel
188 1.38 thorpej (void) spllowersoftclock();
189 1.103 kardel
190 1.22 jtc timeradd(&boottime, &delta, &boottime);
191 1.103 kardel
192 1.47 thorpej /*
193 1.47 thorpej * XXXSMP
194 1.47 thorpej * This is wrong. We should traverse a list of all
195 1.47 thorpej * CPUs and add the delta to the runtime of those
196 1.47 thorpej * CPUs which have a process on them.
197 1.47 thorpej */
198 1.47 thorpej ci = curcpu();
199 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
200 1.47 thorpej &ci->ci_schedstate.spc_runtime);
201 1.101 kardel #if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
202 1.101 kardel nqnfs_lease_updatetime(delta.tv_sec);
203 1.101 kardel #endif
204 1.22 jtc splx(s);
205 1.22 jtc resettodr();
206 1.29 tls return (0);
207 1.22 jtc }
208 1.22 jtc
209 1.22 jtc /* ARGSUSED */
210 1.22 jtc int
211 1.63 thorpej sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
212 1.22 jtc {
213 1.45 augustss struct sys_clock_gettime_args /* {
214 1.22 jtc syscallarg(clockid_t) clock_id;
215 1.23 cgd syscallarg(struct timespec *) tp;
216 1.23 cgd } */ *uap = v;
217 1.22 jtc clockid_t clock_id;
218 1.22 jtc struct timespec ats;
219 1.22 jtc
220 1.22 jtc clock_id = SCARG(uap, clock_id);
221 1.61 simonb switch (clock_id) {
222 1.61 simonb case CLOCK_REALTIME:
223 1.96 simonb nanotime(&ats);
224 1.61 simonb break;
225 1.61 simonb case CLOCK_MONOTONIC:
226 1.101 kardel #ifdef __HAVE_TIMECOUNTER
227 1.101 kardel nanouptime(&ats);
228 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
229 1.101 kardel {
230 1.101 kardel int s;
231 1.101 kardel
232 1.61 simonb /* XXX "hz" granularity */
233 1.63 thorpej s = splclock();
234 1.101 kardel TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
235 1.61 simonb splx(s);
236 1.101 kardel }
237 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
238 1.61 simonb break;
239 1.61 simonb default:
240 1.22 jtc return (EINVAL);
241 1.61 simonb }
242 1.22 jtc
243 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
244 1.22 jtc }
245 1.22 jtc
246 1.22 jtc /* ARGSUSED */
247 1.22 jtc int
248 1.90 thorpej sys_clock_settime(struct lwp *l, void *v, register_t *retval)
249 1.22 jtc {
250 1.45 augustss struct sys_clock_settime_args /* {
251 1.22 jtc syscallarg(clockid_t) clock_id;
252 1.23 cgd syscallarg(const struct timespec *) tp;
253 1.23 cgd } */ *uap = v;
254 1.63 thorpej struct proc *p = l->l_proc;
255 1.22 jtc int error;
256 1.22 jtc
257 1.99 elad if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
258 1.99 elad &p->p_acflag)) != 0)
259 1.22 jtc return (error);
260 1.22 jtc
261 1.98 christos return (clock_settime1(p, SCARG(uap, clock_id), SCARG(uap, tp)));
262 1.56 manu }
263 1.56 manu
264 1.56 manu
265 1.56 manu int
266 1.98 christos clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
267 1.56 manu {
268 1.60 manu struct timespec ats;
269 1.56 manu int error;
270 1.56 manu
271 1.60 manu if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
272 1.60 manu return (error);
273 1.60 manu
274 1.61 simonb switch (clock_id) {
275 1.61 simonb case CLOCK_REALTIME:
276 1.98 christos if ((error = settime(p, &ats)) != 0)
277 1.61 simonb return (error);
278 1.61 simonb break;
279 1.61 simonb case CLOCK_MONOTONIC:
280 1.61 simonb return (EINVAL); /* read-only clock */
281 1.61 simonb default:
282 1.56 manu return (EINVAL);
283 1.61 simonb }
284 1.22 jtc
285 1.22 jtc return 0;
286 1.22 jtc }
287 1.22 jtc
288 1.22 jtc int
289 1.63 thorpej sys_clock_getres(struct lwp *l, void *v, register_t *retval)
290 1.22 jtc {
291 1.45 augustss struct sys_clock_getres_args /* {
292 1.22 jtc syscallarg(clockid_t) clock_id;
293 1.23 cgd syscallarg(struct timespec *) tp;
294 1.23 cgd } */ *uap = v;
295 1.22 jtc clockid_t clock_id;
296 1.22 jtc struct timespec ts;
297 1.22 jtc int error = 0;
298 1.22 jtc
299 1.22 jtc clock_id = SCARG(uap, clock_id);
300 1.61 simonb switch (clock_id) {
301 1.61 simonb case CLOCK_REALTIME:
302 1.61 simonb case CLOCK_MONOTONIC:
303 1.22 jtc ts.tv_sec = 0;
304 1.102 kardel #ifdef __HAVE_TIMECOUNTER
305 1.102 kardel if (tc_getfrequency() > 1000000000)
306 1.102 kardel ts.tv_nsec = 1;
307 1.102 kardel else
308 1.102 kardel ts.tv_nsec = 1000000000 / tc_getfrequency();
309 1.102 kardel #else /* !__HAVE_TIMECOUNTER */
310 1.22 jtc ts.tv_nsec = 1000000000 / hz;
311 1.102 kardel #endif /* !__HAVE_TIMECOUNTER */
312 1.61 simonb break;
313 1.61 simonb default:
314 1.61 simonb return (EINVAL);
315 1.61 simonb }
316 1.22 jtc
317 1.61 simonb if (SCARG(uap, tp))
318 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
319 1.22 jtc
320 1.22 jtc return error;
321 1.22 jtc }
322 1.22 jtc
323 1.27 jtc /* ARGSUSED */
324 1.27 jtc int
325 1.63 thorpej sys_nanosleep(struct lwp *l, void *v, register_t *retval)
326 1.27 jtc {
327 1.101 kardel #ifdef __HAVE_TIMECOUNTER
328 1.101 kardel static int nanowait;
329 1.101 kardel struct sys_nanosleep_args/* {
330 1.101 kardel syscallarg(struct timespec *) rqtp;
331 1.101 kardel syscallarg(struct timespec *) rmtp;
332 1.101 kardel } */ *uap = v;
333 1.101 kardel struct timespec rmt, rqt;
334 1.101 kardel int error, timo;
335 1.101 kardel
336 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
337 1.101 kardel if (error)
338 1.101 kardel return (error);
339 1.101 kardel
340 1.101 kardel if (itimespecfix(&rqt))
341 1.101 kardel return (EINVAL);
342 1.101 kardel
343 1.101 kardel timo = tstohz(&rqt);
344 1.101 kardel /*
345 1.101 kardel * Avoid inadvertantly sleeping forever
346 1.101 kardel */
347 1.101 kardel if (timo == 0)
348 1.101 kardel timo = 1;
349 1.101 kardel
350 1.101 kardel error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
351 1.101 kardel if (error == ERESTART)
352 1.101 kardel error = EINTR;
353 1.101 kardel if (error == EWOULDBLOCK)
354 1.101 kardel error = 0;
355 1.101 kardel
356 1.101 kardel if (SCARG(uap, rmtp)) {
357 1.101 kardel int error1;
358 1.101 kardel
359 1.101 kardel getnanotime(&rmt);
360 1.101 kardel
361 1.101 kardel timespecsub(&rqt, &rmt, &rmt);
362 1.101 kardel if (rmt.tv_sec < 0)
363 1.101 kardel timespecclear(&rmt);
364 1.101 kardel
365 1.101 kardel error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
366 1.101 kardel sizeof(rmt));
367 1.101 kardel if (error1)
368 1.101 kardel return (error1);
369 1.101 kardel }
370 1.101 kardel
371 1.101 kardel return error;
372 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
373 1.27 jtc static int nanowait;
374 1.45 augustss struct sys_nanosleep_args/* {
375 1.27 jtc syscallarg(struct timespec *) rqtp;
376 1.27 jtc syscallarg(struct timespec *) rmtp;
377 1.27 jtc } */ *uap = v;
378 1.27 jtc struct timespec rqt;
379 1.27 jtc struct timespec rmt;
380 1.27 jtc struct timeval atv, utv;
381 1.27 jtc int error, s, timo;
382 1.27 jtc
383 1.89 christos error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
384 1.27 jtc if (error)
385 1.27 jtc return (error);
386 1.27 jtc
387 1.85 atatat TIMESPEC_TO_TIMEVAL(&atv,&rqt);
388 1.80 christos if (itimerfix(&atv))
389 1.27 jtc return (EINVAL);
390 1.27 jtc
391 1.27 jtc s = splclock();
392 1.27 jtc timeradd(&atv,&time,&atv);
393 1.27 jtc timo = hzto(&atv);
394 1.63 thorpej /*
395 1.27 jtc * Avoid inadvertantly sleeping forever
396 1.27 jtc */
397 1.27 jtc if (timo == 0)
398 1.27 jtc timo = 1;
399 1.27 jtc splx(s);
400 1.27 jtc
401 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
402 1.27 jtc if (error == ERESTART)
403 1.27 jtc error = EINTR;
404 1.27 jtc if (error == EWOULDBLOCK)
405 1.27 jtc error = 0;
406 1.27 jtc
407 1.27 jtc if (SCARG(uap, rmtp)) {
408 1.89 christos int error1;
409 1.28 jtc
410 1.27 jtc s = splclock();
411 1.27 jtc utv = time;
412 1.27 jtc splx(s);
413 1.27 jtc
414 1.27 jtc timersub(&atv, &utv, &utv);
415 1.27 jtc if (utv.tv_sec < 0)
416 1.27 jtc timerclear(&utv);
417 1.27 jtc
418 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
419 1.89 christos error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
420 1.28 jtc sizeof(rmt));
421 1.89 christos if (error1)
422 1.89 christos return (error1);
423 1.27 jtc }
424 1.27 jtc
425 1.27 jtc return error;
426 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
427 1.27 jtc }
428 1.22 jtc
429 1.1 cgd /* ARGSUSED */
430 1.3 andrew int
431 1.63 thorpej sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
432 1.15 thorpej {
433 1.45 augustss struct sys_gettimeofday_args /* {
434 1.11 cgd syscallarg(struct timeval *) tp;
435 1.84 simonb syscallarg(void *) tzp; really "struct timezone *"
436 1.15 thorpej } */ *uap = v;
437 1.1 cgd struct timeval atv;
438 1.1 cgd int error = 0;
439 1.25 perry struct timezone tzfake;
440 1.1 cgd
441 1.11 cgd if (SCARG(uap, tp)) {
442 1.1 cgd microtime(&atv);
443 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
444 1.17 christos if (error)
445 1.1 cgd return (error);
446 1.1 cgd }
447 1.25 perry if (SCARG(uap, tzp)) {
448 1.25 perry /*
449 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
450 1.25 perry * fake up a timezone struct and return it if demanded.
451 1.25 perry */
452 1.25 perry tzfake.tz_minuteswest = 0;
453 1.25 perry tzfake.tz_dsttime = 0;
454 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
455 1.25 perry }
456 1.1 cgd return (error);
457 1.1 cgd }
458 1.1 cgd
459 1.1 cgd /* ARGSUSED */
460 1.3 andrew int
461 1.63 thorpej sys_settimeofday(struct lwp *l, void *v, register_t *retval)
462 1.15 thorpej {
463 1.16 mycroft struct sys_settimeofday_args /* {
464 1.24 cgd syscallarg(const struct timeval *) tv;
465 1.84 simonb syscallarg(const void *) tzp; really "const struct timezone *"
466 1.15 thorpej } */ *uap = v;
467 1.63 thorpej struct proc *p = l->l_proc;
468 1.60 manu int error;
469 1.60 manu
470 1.99 elad if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
471 1.99 elad &p->p_acflag)) != 0)
472 1.60 manu return (error);
473 1.60 manu
474 1.60 manu return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
475 1.60 manu }
476 1.60 manu
477 1.60 manu int
478 1.90 thorpej settimeofday1(const struct timeval *utv, const struct timezone *utzp,
479 1.90 thorpej struct proc *p)
480 1.60 manu {
481 1.22 jtc struct timeval atv;
482 1.98 christos struct timespec ts;
483 1.22 jtc int error;
484 1.1 cgd
485 1.8 cgd /* Verify all parameters before changing time. */
486 1.25 perry /*
487 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
488 1.25 perry * obsolete program would try to set it, so we log a warning.
489 1.25 perry */
490 1.98 christos if (utzp)
491 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
492 1.63 thorpej "(obsolete) kernel time zone\n", p->p_pid);
493 1.98 christos
494 1.98 christos if (utv == NULL)
495 1.98 christos return 0;
496 1.98 christos
497 1.98 christos if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
498 1.98 christos return error;
499 1.98 christos TIMEVAL_TO_TIMESPEC(&atv, &ts);
500 1.98 christos return settime(p, &ts);
501 1.1 cgd }
502 1.1 cgd
503 1.101 kardel #ifndef __HAVE_TIMECOUNTER
504 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
505 1.1 cgd long timedelta; /* unapplied time correction, us. */
506 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
507 1.101 kardel #endif
508 1.101 kardel
509 1.68 dsl int time_adjusted; /* set if an adjustment is made */
510 1.1 cgd
511 1.1 cgd /* ARGSUSED */
512 1.3 andrew int
513 1.63 thorpej sys_adjtime(struct lwp *l, void *v, register_t *retval)
514 1.15 thorpej {
515 1.45 augustss struct sys_adjtime_args /* {
516 1.24 cgd syscallarg(const struct timeval *) delta;
517 1.11 cgd syscallarg(struct timeval *) olddelta;
518 1.15 thorpej } */ *uap = v;
519 1.63 thorpej struct proc *p = l->l_proc;
520 1.56 manu int error;
521 1.1 cgd
522 1.99 elad if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
523 1.99 elad &p->p_acflag)) != 0)
524 1.1 cgd return (error);
525 1.17 christos
526 1.60 manu return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
527 1.56 manu }
528 1.56 manu
529 1.56 manu int
530 1.90 thorpej adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
531 1.56 manu {
532 1.60 manu struct timeval atv;
533 1.101 kardel int error = 0;
534 1.101 kardel
535 1.101 kardel #ifdef __HAVE_TIMECOUNTER
536 1.101 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
537 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
538 1.56 manu long ndelta, ntickdelta, odelta;
539 1.56 manu int s;
540 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
541 1.101 kardel
542 1.101 kardel #ifdef __HAVE_TIMECOUNTER
543 1.101 kardel if (olddelta) {
544 1.101 kardel atv.tv_sec = time_adjtime / 1000000;
545 1.101 kardel atv.tv_usec = time_adjtime % 1000000;
546 1.101 kardel if (atv.tv_usec < 0) {
547 1.101 kardel atv.tv_usec += 1000000;
548 1.101 kardel atv.tv_sec--;
549 1.101 kardel }
550 1.101 kardel error = copyout(&atv, olddelta, sizeof(struct timeval));
551 1.101 kardel if (error)
552 1.101 kardel return (error);
553 1.101 kardel }
554 1.101 kardel
555 1.101 kardel if (delta) {
556 1.101 kardel error = copyin(delta, &atv, sizeof(struct timeval));
557 1.101 kardel if (error)
558 1.101 kardel return (error);
559 1.101 kardel
560 1.101 kardel time_adjtime = (int64_t)atv.tv_sec * 1000000 +
561 1.101 kardel atv.tv_usec;
562 1.8 cgd
563 1.101 kardel if (time_adjtime)
564 1.101 kardel /* We need to save the system time during shutdown */
565 1.101 kardel time_adjusted |= 1;
566 1.101 kardel }
567 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
568 1.60 manu error = copyin(delta, &atv, sizeof(struct timeval));
569 1.60 manu if (error)
570 1.60 manu return (error);
571 1.60 manu
572 1.8 cgd /*
573 1.8 cgd * Compute the total correction and the rate at which to apply it.
574 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
575 1.8 cgd * delta, so that after some number of incremental changes in
576 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
577 1.8 cgd * overshoot and start taking us away from the desired final time.
578 1.8 cgd */
579 1.60 manu ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
580 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
581 1.8 cgd ntickdelta = 10 * tickadj;
582 1.8 cgd else
583 1.8 cgd ntickdelta = tickadj;
584 1.8 cgd if (ndelta % ntickdelta)
585 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
586 1.8 cgd
587 1.8 cgd /*
588 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
589 1.8 cgd * if we want time to run slower; then hardclock can simply compute
590 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
591 1.8 cgd */
592 1.8 cgd if (ndelta < 0)
593 1.8 cgd ntickdelta = -ntickdelta;
594 1.68 dsl if (ndelta != 0)
595 1.68 dsl /* We need to save the system clock time during shutdown */
596 1.68 dsl time_adjusted |= 1;
597 1.1 cgd s = splclock();
598 1.8 cgd odelta = timedelta;
599 1.1 cgd timedelta = ndelta;
600 1.8 cgd tickdelta = ntickdelta;
601 1.1 cgd splx(s);
602 1.1 cgd
603 1.56 manu if (olddelta) {
604 1.60 manu atv.tv_sec = odelta / 1000000;
605 1.60 manu atv.tv_usec = odelta % 1000000;
606 1.79 chs error = copyout(&atv, olddelta, sizeof(struct timeval));
607 1.8 cgd }
608 1.101 kardel #endif /* __HAVE_TIMECOUNTER */
609 1.101 kardel
610 1.79 chs return error;
611 1.1 cgd }
612 1.1 cgd
613 1.1 cgd /*
614 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
615 1.63 thorpej * timer_*() family of routines are supported.
616 1.1 cgd *
617 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
618 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
619 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
620 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
621 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
622 1.63 thorpej * syscall.
623 1.1 cgd *
624 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
625 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
626 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
627 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
628 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
629 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
630 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
631 1.63 thorpej * given below), to be delayed in real time past when it is supposed
632 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
633 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
634 1.63 thorpej * compute the next time in absolute time the timer should go off. */
635 1.63 thorpej
636 1.63 thorpej /* Allocate a POSIX realtime timer. */
637 1.63 thorpej int
638 1.63 thorpej sys_timer_create(struct lwp *l, void *v, register_t *retval)
639 1.63 thorpej {
640 1.63 thorpej struct sys_timer_create_args /* {
641 1.63 thorpej syscallarg(clockid_t) clock_id;
642 1.63 thorpej syscallarg(struct sigevent *) evp;
643 1.63 thorpej syscallarg(timer_t *) timerid;
644 1.63 thorpej } */ *uap = v;
645 1.92 cube
646 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
647 1.92 cube SCARG(uap, evp), copyin, l->l_proc);
648 1.92 cube }
649 1.92 cube
650 1.92 cube int
651 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
652 1.95 cube copyin_t fetch_event, struct proc *p)
653 1.92 cube {
654 1.92 cube int error;
655 1.92 cube timer_t timerid;
656 1.63 thorpej struct ptimer *pt;
657 1.63 thorpej
658 1.63 thorpej if (id < CLOCK_REALTIME ||
659 1.63 thorpej id > CLOCK_PROF)
660 1.63 thorpej return (EINVAL);
661 1.63 thorpej
662 1.63 thorpej if (p->p_timers == NULL)
663 1.63 thorpej timers_alloc(p);
664 1.63 thorpej
665 1.63 thorpej /* Find a free timer slot, skipping those reserved for setitimer(). */
666 1.63 thorpej for (timerid = 3; timerid < TIMER_MAX; timerid++)
667 1.63 thorpej if (p->p_timers->pts_timers[timerid] == NULL)
668 1.63 thorpej break;
669 1.63 thorpej
670 1.63 thorpej if (timerid == TIMER_MAX)
671 1.63 thorpej return EAGAIN;
672 1.63 thorpej
673 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
674 1.63 thorpej if (evp) {
675 1.63 thorpej if (((error =
676 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
677 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
678 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
679 1.63 thorpej pool_put(&ptimer_pool, pt);
680 1.63 thorpej return (error ? error : EINVAL);
681 1.63 thorpej }
682 1.63 thorpej } else {
683 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
684 1.63 thorpej switch (id) {
685 1.63 thorpej case CLOCK_REALTIME:
686 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
687 1.63 thorpej break;
688 1.63 thorpej case CLOCK_VIRTUAL:
689 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
690 1.63 thorpej break;
691 1.63 thorpej case CLOCK_PROF:
692 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
693 1.63 thorpej break;
694 1.63 thorpej }
695 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
696 1.63 thorpej }
697 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
698 1.73 christos pt->pt_info.ksi_errno = 0;
699 1.73 christos pt->pt_info.ksi_code = 0;
700 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
701 1.99 elad pt->pt_info.ksi_uid = kauth_cred_getuid(p->p_cred);
702 1.73 christos pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
703 1.63 thorpej
704 1.63 thorpej pt->pt_type = id;
705 1.63 thorpej pt->pt_proc = p;
706 1.63 thorpej pt->pt_overruns = 0;
707 1.63 thorpej pt->pt_poverruns = 0;
708 1.64 nathanw pt->pt_entry = timerid;
709 1.63 thorpej timerclear(&pt->pt_time.it_value);
710 1.63 thorpej if (id == CLOCK_REALTIME)
711 1.63 thorpej callout_init(&pt->pt_ch);
712 1.63 thorpej else
713 1.63 thorpej pt->pt_active = 0;
714 1.63 thorpej
715 1.63 thorpej p->p_timers->pts_timers[timerid] = pt;
716 1.63 thorpej
717 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
718 1.63 thorpej }
719 1.63 thorpej
720 1.63 thorpej /* Delete a POSIX realtime timer */
721 1.3 andrew int
722 1.63 thorpej sys_timer_delete(struct lwp *l, void *v, register_t *retval)
723 1.15 thorpej {
724 1.63 thorpej struct sys_timer_delete_args /* {
725 1.63 thorpej syscallarg(timer_t) timerid;
726 1.15 thorpej } */ *uap = v;
727 1.63 thorpej struct proc *p = l->l_proc;
728 1.65 jdolecek timer_t timerid;
729 1.63 thorpej struct ptimer *pt, *ptn;
730 1.1 cgd int s;
731 1.1 cgd
732 1.63 thorpej timerid = SCARG(uap, timerid);
733 1.63 thorpej
734 1.63 thorpej if ((p->p_timers == NULL) ||
735 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
736 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
737 1.1 cgd return (EINVAL);
738 1.63 thorpej
739 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
740 1.63 thorpej callout_stop(&pt->pt_ch);
741 1.63 thorpej else if (pt->pt_active) {
742 1.63 thorpej s = splclock();
743 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
744 1.63 thorpej LIST_REMOVE(pt, pt_list);
745 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
746 1.63 thorpej timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
747 1.63 thorpej &ptn->pt_time.it_value);
748 1.63 thorpej splx(s);
749 1.63 thorpej }
750 1.63 thorpej
751 1.63 thorpej p->p_timers->pts_timers[timerid] = NULL;
752 1.63 thorpej pool_put(&ptimer_pool, pt);
753 1.63 thorpej
754 1.63 thorpej return (0);
755 1.63 thorpej }
756 1.63 thorpej
757 1.63 thorpej /*
758 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
759 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
760 1.67 nathanw * time for virtual timers.
761 1.63 thorpej * Must be called at splclock().
762 1.63 thorpej */
763 1.63 thorpej void
764 1.63 thorpej timer_settime(struct ptimer *pt)
765 1.63 thorpej {
766 1.63 thorpej struct ptimer *ptn, *pptn;
767 1.63 thorpej struct ptlist *ptl;
768 1.63 thorpej
769 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
770 1.63 thorpej callout_stop(&pt->pt_ch);
771 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
772 1.63 thorpej /*
773 1.63 thorpej * Don't need to check hzto() return value, here.
774 1.63 thorpej * callout_reset() does it for us.
775 1.63 thorpej */
776 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
777 1.63 thorpej realtimerexpire, pt);
778 1.63 thorpej }
779 1.63 thorpej } else {
780 1.63 thorpej if (pt->pt_active) {
781 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
782 1.63 thorpej LIST_REMOVE(pt, pt_list);
783 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
784 1.63 thorpej timeradd(&pt->pt_time.it_value,
785 1.63 thorpej &ptn->pt_time.it_value,
786 1.63 thorpej &ptn->pt_time.it_value);
787 1.63 thorpej }
788 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
789 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
790 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
791 1.63 thorpej else
792 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
793 1.63 thorpej
794 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
795 1.63 thorpej ptn && timercmp(&pt->pt_time.it_value,
796 1.63 thorpej &ptn->pt_time.it_value, >);
797 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
798 1.63 thorpej timersub(&pt->pt_time.it_value,
799 1.63 thorpej &ptn->pt_time.it_value,
800 1.63 thorpej &pt->pt_time.it_value);
801 1.63 thorpej
802 1.63 thorpej if (pptn)
803 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
804 1.63 thorpej else
805 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
806 1.63 thorpej
807 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
808 1.63 thorpej timersub(&ptn->pt_time.it_value,
809 1.63 thorpej &pt->pt_time.it_value,
810 1.63 thorpej &ptn->pt_time.it_value);
811 1.63 thorpej
812 1.63 thorpej pt->pt_active = 1;
813 1.63 thorpej } else
814 1.63 thorpej pt->pt_active = 0;
815 1.63 thorpej }
816 1.63 thorpej }
817 1.63 thorpej
818 1.63 thorpej void
819 1.63 thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
820 1.63 thorpej {
821 1.101 kardel #ifdef __HAVE_TIMECOUNTER
822 1.101 kardel struct timeval now;
823 1.101 kardel #endif
824 1.63 thorpej struct ptimer *ptn;
825 1.63 thorpej
826 1.63 thorpej *aitv = pt->pt_time;
827 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
828 1.1 cgd /*
829 1.12 mycroft * Convert from absolute to relative time in .it_value
830 1.63 thorpej * part of real time timer. If time for real time
831 1.63 thorpej * timer has passed return 0, else return difference
832 1.63 thorpej * between current time and time for the timer to go
833 1.63 thorpej * off.
834 1.1 cgd */
835 1.63 thorpej if (timerisset(&aitv->it_value)) {
836 1.101 kardel #ifdef __HAVE_TIMECOUNTER
837 1.101 kardel getmicrotime(&now);
838 1.101 kardel if (timercmp(&aitv->it_value, &now, <))
839 1.101 kardel timerclear(&aitv->it_value);
840 1.101 kardel else
841 1.101 kardel timersub(&aitv->it_value, &now,
842 1.101 kardel &aitv->it_value);
843 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
844 1.63 thorpej if (timercmp(&aitv->it_value, &time, <))
845 1.63 thorpej timerclear(&aitv->it_value);
846 1.1 cgd else
847 1.63 thorpej timersub(&aitv->it_value, &time,
848 1.63 thorpej &aitv->it_value);
849 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
850 1.36 thorpej }
851 1.63 thorpej } else if (pt->pt_active) {
852 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
853 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
854 1.63 thorpej else
855 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
856 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
857 1.63 thorpej timeradd(&aitv->it_value,
858 1.63 thorpej &ptn->pt_time.it_value, &aitv->it_value);
859 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
860 1.1 cgd } else
861 1.63 thorpej timerclear(&aitv->it_value);
862 1.63 thorpej }
863 1.63 thorpej
864 1.63 thorpej
865 1.63 thorpej
866 1.63 thorpej /* Set and arm a POSIX realtime timer */
867 1.63 thorpej int
868 1.63 thorpej sys_timer_settime(struct lwp *l, void *v, register_t *retval)
869 1.63 thorpej {
870 1.63 thorpej struct sys_timer_settime_args /* {
871 1.63 thorpej syscallarg(timer_t) timerid;
872 1.63 thorpej syscallarg(int) flags;
873 1.63 thorpej syscallarg(const struct itimerspec *) value;
874 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
875 1.63 thorpej } */ *uap = v;
876 1.92 cube int error;
877 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
878 1.92 cube
879 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
880 1.92 cube sizeof(struct itimerspec))) != 0)
881 1.92 cube return (error);
882 1.92 cube
883 1.92 cube if (SCARG(uap, ovalue))
884 1.92 cube ovp = &ovalue;
885 1.92 cube
886 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
887 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
888 1.92 cube return error;
889 1.92 cube
890 1.92 cube if (ovp)
891 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
892 1.92 cube sizeof(struct itimerspec));
893 1.92 cube return 0;
894 1.92 cube }
895 1.92 cube
896 1.92 cube int
897 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
898 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
899 1.92 cube {
900 1.101 kardel #ifdef __HAVE_TIMECOUNTER
901 1.101 kardel struct timeval now;
902 1.101 kardel #endif
903 1.63 thorpej struct itimerval val, oval;
904 1.63 thorpej struct ptimer *pt;
905 1.101 kardel int s;
906 1.63 thorpej
907 1.63 thorpej if ((p->p_timers == NULL) ||
908 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
909 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
910 1.63 thorpej return (EINVAL);
911 1.63 thorpej
912 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
913 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
914 1.63 thorpej if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
915 1.63 thorpej return (EINVAL);
916 1.63 thorpej
917 1.63 thorpej oval = pt->pt_time;
918 1.63 thorpej pt->pt_time = val;
919 1.63 thorpej
920 1.63 thorpej s = splclock();
921 1.67 nathanw /*
922 1.67 nathanw * If we've been passed a relative time for a realtime timer,
923 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
924 1.67 nathanw * timer, convert it to relative and make sure we don't set it
925 1.67 nathanw * to zero, which would cancel the timer, or let it go
926 1.67 nathanw * negative, which would confuse the comparison tests.
927 1.67 nathanw */
928 1.67 nathanw if (timerisset(&pt->pt_time.it_value)) {
929 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
930 1.101 kardel #ifdef __HAVE_TIMECOUNTER
931 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
932 1.101 kardel getmicrotime(&now);
933 1.101 kardel timeradd(&pt->pt_time.it_value, &now,
934 1.101 kardel &pt->pt_time.it_value);
935 1.101 kardel }
936 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
937 1.92 cube if ((flags & TIMER_ABSTIME) == 0)
938 1.67 nathanw timeradd(&pt->pt_time.it_value, &time,
939 1.67 nathanw &pt->pt_time.it_value);
940 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
941 1.67 nathanw } else {
942 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
943 1.101 kardel #ifdef __HAVE_TIMECOUNTER
944 1.101 kardel getmicrotime(&now);
945 1.101 kardel timersub(&pt->pt_time.it_value, &now,
946 1.101 kardel &pt->pt_time.it_value);
947 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
948 1.67 nathanw timersub(&pt->pt_time.it_value, &time,
949 1.67 nathanw &pt->pt_time.it_value);
950 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
951 1.67 nathanw if (!timerisset(&pt->pt_time.it_value) ||
952 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
953 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
954 1.67 nathanw pt->pt_time.it_value.tv_usec = 1;
955 1.67 nathanw }
956 1.67 nathanw }
957 1.67 nathanw }
958 1.67 nathanw }
959 1.67 nathanw
960 1.63 thorpej timer_settime(pt);
961 1.63 thorpej splx(s);
962 1.63 thorpej
963 1.92 cube if (ovalue) {
964 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
965 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
966 1.63 thorpej }
967 1.63 thorpej
968 1.63 thorpej return (0);
969 1.63 thorpej }
970 1.63 thorpej
971 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
972 1.63 thorpej int
973 1.63 thorpej sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
974 1.63 thorpej {
975 1.63 thorpej struct sys_timer_gettime_args /* {
976 1.63 thorpej syscallarg(timer_t) timerid;
977 1.63 thorpej syscallarg(struct itimerspec *) value;
978 1.63 thorpej } */ *uap = v;
979 1.63 thorpej struct itimerspec its;
980 1.92 cube int error;
981 1.92 cube
982 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
983 1.92 cube &its)) != 0)
984 1.92 cube return error;
985 1.92 cube
986 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
987 1.92 cube }
988 1.92 cube
989 1.92 cube int
990 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
991 1.92 cube {
992 1.92 cube int s;
993 1.63 thorpej struct ptimer *pt;
994 1.92 cube struct itimerval aitv;
995 1.63 thorpej
996 1.63 thorpej if ((p->p_timers == NULL) ||
997 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
998 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
999 1.63 thorpej return (EINVAL);
1000 1.63 thorpej
1001 1.63 thorpej s = splclock();
1002 1.63 thorpej timer_gettime(pt, &aitv);
1003 1.1 cgd splx(s);
1004 1.63 thorpej
1005 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
1006 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
1007 1.63 thorpej
1008 1.92 cube return 0;
1009 1.63 thorpej }
1010 1.63 thorpej
1011 1.63 thorpej /*
1012 1.63 thorpej * Return the count of the number of times a periodic timer expired
1013 1.63 thorpej * while a notification was already pending. The counter is reset when
1014 1.63 thorpej * a timer expires and a notification can be posted.
1015 1.63 thorpej */
1016 1.63 thorpej int
1017 1.63 thorpej sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
1018 1.63 thorpej {
1019 1.63 thorpej struct sys_timer_getoverrun_args /* {
1020 1.63 thorpej syscallarg(timer_t) timerid;
1021 1.63 thorpej } */ *uap = v;
1022 1.63 thorpej struct proc *p = l->l_proc;
1023 1.63 thorpej int timerid;
1024 1.63 thorpej struct ptimer *pt;
1025 1.63 thorpej
1026 1.63 thorpej timerid = SCARG(uap, timerid);
1027 1.63 thorpej
1028 1.63 thorpej if ((p->p_timers == NULL) ||
1029 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
1030 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1031 1.63 thorpej return (EINVAL);
1032 1.63 thorpej
1033 1.63 thorpej *retval = pt->pt_poverruns;
1034 1.63 thorpej
1035 1.63 thorpej return (0);
1036 1.63 thorpej }
1037 1.63 thorpej
1038 1.63 thorpej /* Glue function that triggers an upcall; called from userret(). */
1039 1.63 thorpej static void
1040 1.63 thorpej timerupcall(struct lwp *l, void *arg)
1041 1.63 thorpej {
1042 1.64 nathanw struct ptimers *pt = (struct ptimers *)arg;
1043 1.64 nathanw unsigned int i, fired, done;
1044 1.74 cl
1045 1.81 cl KDASSERT(l->l_proc->p_sa);
1046 1.81 cl /* Bail out if we do not own the virtual processor */
1047 1.82 cl if (l->l_savp->savp_lwp != l)
1048 1.81 cl return ;
1049 1.87 perry
1050 1.63 thorpej KERNEL_PROC_LOCK(l);
1051 1.71 fvdl
1052 1.64 nathanw fired = pt->pts_fired;
1053 1.64 nathanw done = 0;
1054 1.64 nathanw while ((i = ffs(fired)) != 0) {
1055 1.74 cl siginfo_t *si;
1056 1.73 christos int mask = 1 << --i;
1057 1.74 cl int f;
1058 1.73 christos
1059 1.74 cl f = l->l_flag & L_SA;
1060 1.74 cl l->l_flag &= ~L_SA;
1061 1.94 chs si = siginfo_alloc(PR_WAITOK);
1062 1.77 thorpej si->_info = pt->pts_timers[i]->pt_info.ksi_info;
1063 1.64 nathanw if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
1064 1.94 chs sizeof(*si), si, siginfo_free) != 0) {
1065 1.94 chs siginfo_free(si);
1066 1.86 mycroft /* XXX What do we do here?? */
1067 1.86 mycroft } else
1068 1.73 christos done |= mask;
1069 1.73 christos fired &= ~mask;
1070 1.74 cl l->l_flag |= f;
1071 1.64 nathanw }
1072 1.64 nathanw pt->pts_fired &= ~done;
1073 1.64 nathanw if (pt->pts_fired == 0)
1074 1.63 thorpej l->l_proc->p_userret = NULL;
1075 1.63 thorpej
1076 1.63 thorpej KERNEL_PROC_UNLOCK(l);
1077 1.63 thorpej }
1078 1.63 thorpej
1079 1.63 thorpej /*
1080 1.63 thorpej * Real interval timer expired:
1081 1.63 thorpej * send process whose timer expired an alarm signal.
1082 1.63 thorpej * If time is not set up to reload, then just return.
1083 1.63 thorpej * Else compute next time timer should go off which is > current time.
1084 1.63 thorpej * This is where delay in processing this timeout causes multiple
1085 1.63 thorpej * SIGALRM calls to be compressed into one.
1086 1.63 thorpej */
1087 1.63 thorpej void
1088 1.63 thorpej realtimerexpire(void *arg)
1089 1.63 thorpej {
1090 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1091 1.101 kardel struct timeval now;
1092 1.101 kardel #endif
1093 1.63 thorpej struct ptimer *pt;
1094 1.63 thorpej int s;
1095 1.63 thorpej
1096 1.63 thorpej pt = (struct ptimer *)arg;
1097 1.63 thorpej
1098 1.63 thorpej itimerfire(pt);
1099 1.63 thorpej
1100 1.63 thorpej if (!timerisset(&pt->pt_time.it_interval)) {
1101 1.63 thorpej timerclear(&pt->pt_time.it_value);
1102 1.63 thorpej return;
1103 1.63 thorpej }
1104 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1105 1.101 kardel for (;;) {
1106 1.101 kardel s = splclock(); /* XXX need spl now? */
1107 1.101 kardel timeradd(&pt->pt_time.it_value,
1108 1.101 kardel &pt->pt_time.it_interval, &pt->pt_time.it_value);
1109 1.101 kardel getmicrotime(&now);
1110 1.101 kardel if (timercmp(&pt->pt_time.it_value, &now, >)) {
1111 1.101 kardel /*
1112 1.101 kardel * Don't need to check hzto() return value, here.
1113 1.101 kardel * callout_reset() does it for us.
1114 1.101 kardel */
1115 1.101 kardel callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1116 1.101 kardel realtimerexpire, pt);
1117 1.101 kardel splx(s);
1118 1.101 kardel return;
1119 1.101 kardel }
1120 1.101 kardel splx(s);
1121 1.101 kardel pt->pt_overruns++;
1122 1.101 kardel }
1123 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1124 1.63 thorpej for (;;) {
1125 1.63 thorpej s = splclock();
1126 1.63 thorpej timeradd(&pt->pt_time.it_value,
1127 1.63 thorpej &pt->pt_time.it_interval, &pt->pt_time.it_value);
1128 1.63 thorpej if (timercmp(&pt->pt_time.it_value, &time, >)) {
1129 1.63 thorpej /*
1130 1.63 thorpej * Don't need to check hzto() return value, here.
1131 1.63 thorpej * callout_reset() does it for us.
1132 1.63 thorpej */
1133 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1134 1.63 thorpej realtimerexpire, pt);
1135 1.63 thorpej splx(s);
1136 1.63 thorpej return;
1137 1.63 thorpej }
1138 1.63 thorpej splx(s);
1139 1.63 thorpej pt->pt_overruns++;
1140 1.63 thorpej }
1141 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1142 1.63 thorpej }
1143 1.63 thorpej
1144 1.63 thorpej /* BSD routine to get the value of an interval timer. */
1145 1.63 thorpej /* ARGSUSED */
1146 1.63 thorpej int
1147 1.63 thorpej sys_getitimer(struct lwp *l, void *v, register_t *retval)
1148 1.63 thorpej {
1149 1.63 thorpej struct sys_getitimer_args /* {
1150 1.63 thorpej syscallarg(int) which;
1151 1.63 thorpej syscallarg(struct itimerval *) itv;
1152 1.63 thorpej } */ *uap = v;
1153 1.63 thorpej struct proc *p = l->l_proc;
1154 1.63 thorpej struct itimerval aitv;
1155 1.91 cube int error;
1156 1.91 cube
1157 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
1158 1.91 cube if (error)
1159 1.91 cube return error;
1160 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1161 1.91 cube }
1162 1.63 thorpej
1163 1.91 cube int
1164 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1165 1.91 cube {
1166 1.91 cube int s;
1167 1.63 thorpej
1168 1.63 thorpej if ((u_int)which > ITIMER_PROF)
1169 1.63 thorpej return (EINVAL);
1170 1.63 thorpej
1171 1.63 thorpej if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1172 1.91 cube timerclear(&itvp->it_value);
1173 1.91 cube timerclear(&itvp->it_interval);
1174 1.63 thorpej } else {
1175 1.63 thorpej s = splclock();
1176 1.91 cube timer_gettime(p->p_timers->pts_timers[which], itvp);
1177 1.63 thorpej splx(s);
1178 1.63 thorpej }
1179 1.63 thorpej
1180 1.91 cube return 0;
1181 1.1 cgd }
1182 1.1 cgd
1183 1.63 thorpej /* BSD routine to set/arm an interval timer. */
1184 1.1 cgd /* ARGSUSED */
1185 1.3 andrew int
1186 1.63 thorpej sys_setitimer(struct lwp *l, void *v, register_t *retval)
1187 1.15 thorpej {
1188 1.45 augustss struct sys_setitimer_args /* {
1189 1.30 mycroft syscallarg(int) which;
1190 1.24 cgd syscallarg(const struct itimerval *) itv;
1191 1.11 cgd syscallarg(struct itimerval *) oitv;
1192 1.15 thorpej } */ *uap = v;
1193 1.63 thorpej struct proc *p = l->l_proc;
1194 1.30 mycroft int which = SCARG(uap, which);
1195 1.21 cgd struct sys_getitimer_args getargs;
1196 1.91 cube const struct itimerval *itvp;
1197 1.1 cgd struct itimerval aitv;
1198 1.91 cube int error;
1199 1.1 cgd
1200 1.30 mycroft if ((u_int)which > ITIMER_PROF)
1201 1.1 cgd return (EINVAL);
1202 1.11 cgd itvp = SCARG(uap, itv);
1203 1.63 thorpej if (itvp &&
1204 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1205 1.1 cgd return (error);
1206 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1207 1.30 mycroft SCARG(&getargs, which) = which;
1208 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1209 1.63 thorpej if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1210 1.21 cgd return (error);
1211 1.21 cgd }
1212 1.1 cgd if (itvp == 0)
1213 1.1 cgd return (0);
1214 1.91 cube
1215 1.91 cube return dosetitimer(p, which, &aitv);
1216 1.91 cube }
1217 1.91 cube
1218 1.91 cube int
1219 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1220 1.91 cube {
1221 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1222 1.101 kardel struct timeval now;
1223 1.101 kardel #endif
1224 1.91 cube struct ptimer *pt;
1225 1.91 cube int s;
1226 1.91 cube
1227 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1228 1.1 cgd return (EINVAL);
1229 1.63 thorpej
1230 1.63 thorpej /*
1231 1.63 thorpej * Don't bother allocating data structures if the process just
1232 1.63 thorpej * wants to clear the timer.
1233 1.63 thorpej */
1234 1.91 cube if (!timerisset(&itvp->it_value) &&
1235 1.63 thorpej ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1236 1.63 thorpej return (0);
1237 1.63 thorpej
1238 1.63 thorpej if (p->p_timers == NULL)
1239 1.63 thorpej timers_alloc(p);
1240 1.63 thorpej if (p->p_timers->pts_timers[which] == NULL) {
1241 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
1242 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1243 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1244 1.63 thorpej pt->pt_overruns = 0;
1245 1.63 thorpej pt->pt_proc = p;
1246 1.63 thorpej pt->pt_type = which;
1247 1.64 nathanw pt->pt_entry = which;
1248 1.63 thorpej switch (which) {
1249 1.63 thorpej case ITIMER_REAL:
1250 1.63 thorpej callout_init(&pt->pt_ch);
1251 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1252 1.63 thorpej break;
1253 1.63 thorpej case ITIMER_VIRTUAL:
1254 1.63 thorpej pt->pt_active = 0;
1255 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1256 1.63 thorpej break;
1257 1.63 thorpej case ITIMER_PROF:
1258 1.63 thorpej pt->pt_active = 0;
1259 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1260 1.63 thorpej break;
1261 1.1 cgd }
1262 1.1 cgd } else
1263 1.63 thorpej pt = p->p_timers->pts_timers[which];
1264 1.63 thorpej
1265 1.91 cube pt->pt_time = *itvp;
1266 1.63 thorpej p->p_timers->pts_timers[which] = pt;
1267 1.63 thorpej
1268 1.63 thorpej s = splclock();
1269 1.67 nathanw if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1270 1.67 nathanw /* Convert to absolute time */
1271 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1272 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1273 1.101 kardel getmicrotime(&now);
1274 1.101 kardel timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1275 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1276 1.67 nathanw timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1277 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1278 1.67 nathanw }
1279 1.63 thorpej timer_settime(pt);
1280 1.1 cgd splx(s);
1281 1.63 thorpej
1282 1.1 cgd return (0);
1283 1.1 cgd }
1284 1.1 cgd
1285 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1286 1.63 thorpej void
1287 1.63 thorpej timers_alloc(struct proc *p)
1288 1.63 thorpej {
1289 1.63 thorpej int i;
1290 1.63 thorpej struct ptimers *pts;
1291 1.63 thorpej
1292 1.100 yamt pts = pool_get(&ptimers_pool, PR_WAITOK);
1293 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1294 1.63 thorpej LIST_INIT(&pts->pts_prof);
1295 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1296 1.63 thorpej pts->pts_timers[i] = NULL;
1297 1.64 nathanw pts->pts_fired = 0;
1298 1.63 thorpej p->p_timers = pts;
1299 1.63 thorpej }
1300 1.63 thorpej
1301 1.1 cgd /*
1302 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1303 1.63 thorpej * then clean up all timers and free all the data structures. If
1304 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1305 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1306 1.63 thorpej * structure if none of those remain.
1307 1.1 cgd */
1308 1.3 andrew void
1309 1.63 thorpej timers_free(struct proc *p, int which)
1310 1.6 cgd {
1311 1.63 thorpej int i, s;
1312 1.63 thorpej struct ptimers *pts;
1313 1.63 thorpej struct ptimer *pt, *ptn;
1314 1.63 thorpej struct timeval tv;
1315 1.63 thorpej
1316 1.63 thorpej if (p->p_timers) {
1317 1.63 thorpej pts = p->p_timers;
1318 1.63 thorpej if (which == TIMERS_ALL)
1319 1.63 thorpej i = 0;
1320 1.63 thorpej else {
1321 1.63 thorpej s = splclock();
1322 1.63 thorpej timerclear(&tv);
1323 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1324 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1325 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1326 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1327 1.63 thorpej LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1328 1.63 thorpej if (ptn) {
1329 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1330 1.63 thorpej &ptn->pt_time.it_value);
1331 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1332 1.63 thorpej ptn, pt_list);
1333 1.63 thorpej }
1334 1.63 thorpej
1335 1.63 thorpej timerclear(&tv);
1336 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1337 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_PROF];
1338 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1339 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1340 1.63 thorpej LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1341 1.63 thorpej if (ptn) {
1342 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1343 1.63 thorpej &ptn->pt_time.it_value);
1344 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1345 1.63 thorpej pt_list);
1346 1.63 thorpej }
1347 1.1 cgd splx(s);
1348 1.63 thorpej i = 3;
1349 1.63 thorpej }
1350 1.63 thorpej for ( ; i < TIMER_MAX; i++)
1351 1.63 thorpej if ((pt = pts->pts_timers[i]) != NULL) {
1352 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
1353 1.63 thorpej callout_stop(&pt->pt_ch);
1354 1.63 thorpej pts->pts_timers[i] = NULL;
1355 1.63 thorpej pool_put(&ptimer_pool, pt);
1356 1.63 thorpej }
1357 1.63 thorpej if ((pts->pts_timers[0] == NULL) &&
1358 1.63 thorpej (pts->pts_timers[1] == NULL) &&
1359 1.63 thorpej (pts->pts_timers[2] == NULL)) {
1360 1.63 thorpej p->p_timers = NULL;
1361 1.97 simonb pool_put(&ptimers_pool, pts);
1362 1.1 cgd }
1363 1.1 cgd }
1364 1.1 cgd }
1365 1.1 cgd
1366 1.1 cgd /*
1367 1.1 cgd * Check that a proposed value to load into the .it_value or
1368 1.1 cgd * .it_interval part of an interval timer is acceptable, and
1369 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
1370 1.1 cgd * than the resolution of the clock, round it up.)
1371 1.1 cgd */
1372 1.3 andrew int
1373 1.63 thorpej itimerfix(struct timeval *tv)
1374 1.1 cgd {
1375 1.1 cgd
1376 1.59 christos if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1377 1.1 cgd return (EINVAL);
1378 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1379 1.1 cgd tv->tv_usec = tick;
1380 1.1 cgd return (0);
1381 1.1 cgd }
1382 1.1 cgd
1383 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1384 1.101 kardel int
1385 1.101 kardel itimespecfix(struct timespec *ts)
1386 1.101 kardel {
1387 1.101 kardel
1388 1.101 kardel if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1389 1.101 kardel return (EINVAL);
1390 1.101 kardel if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1391 1.101 kardel ts->tv_nsec = tick * 1000;
1392 1.101 kardel return (0);
1393 1.101 kardel }
1394 1.101 kardel #endif /* __HAVE_TIMECOUNTER */
1395 1.101 kardel
1396 1.1 cgd /*
1397 1.1 cgd * Decrement an interval timer by a specified number
1398 1.1 cgd * of microseconds, which must be less than a second,
1399 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1400 1.1 cgd * it. In this case, carry over (usec - old value) to
1401 1.8 cgd * reduce the value reloaded into the timer so that
1402 1.1 cgd * the timer does not drift. This routine assumes
1403 1.1 cgd * that it is called in a context where the timers
1404 1.1 cgd * on which it is operating cannot change in value.
1405 1.1 cgd */
1406 1.3 andrew int
1407 1.63 thorpej itimerdecr(struct ptimer *pt, int usec)
1408 1.63 thorpej {
1409 1.45 augustss struct itimerval *itp;
1410 1.1 cgd
1411 1.63 thorpej itp = &pt->pt_time;
1412 1.1 cgd if (itp->it_value.tv_usec < usec) {
1413 1.1 cgd if (itp->it_value.tv_sec == 0) {
1414 1.1 cgd /* expired, and already in next interval */
1415 1.1 cgd usec -= itp->it_value.tv_usec;
1416 1.1 cgd goto expire;
1417 1.1 cgd }
1418 1.1 cgd itp->it_value.tv_usec += 1000000;
1419 1.1 cgd itp->it_value.tv_sec--;
1420 1.1 cgd }
1421 1.1 cgd itp->it_value.tv_usec -= usec;
1422 1.1 cgd usec = 0;
1423 1.1 cgd if (timerisset(&itp->it_value))
1424 1.1 cgd return (1);
1425 1.1 cgd /* expired, exactly at end of interval */
1426 1.1 cgd expire:
1427 1.1 cgd if (timerisset(&itp->it_interval)) {
1428 1.1 cgd itp->it_value = itp->it_interval;
1429 1.1 cgd itp->it_value.tv_usec -= usec;
1430 1.1 cgd if (itp->it_value.tv_usec < 0) {
1431 1.1 cgd itp->it_value.tv_usec += 1000000;
1432 1.1 cgd itp->it_value.tv_sec--;
1433 1.1 cgd }
1434 1.63 thorpej timer_settime(pt);
1435 1.1 cgd } else
1436 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1437 1.1 cgd return (0);
1438 1.42 cgd }
1439 1.42 cgd
1440 1.63 thorpej void
1441 1.63 thorpej itimerfire(struct ptimer *pt)
1442 1.63 thorpej {
1443 1.63 thorpej struct proc *p = pt->pt_proc;
1444 1.82 cl struct sadata_vp *vp;
1445 1.64 nathanw int s;
1446 1.82 cl unsigned int i;
1447 1.78 cl
1448 1.63 thorpej if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1449 1.63 thorpej /*
1450 1.63 thorpej * No RT signal infrastructure exists at this time;
1451 1.63 thorpej * just post the signal number and throw away the
1452 1.63 thorpej * value.
1453 1.63 thorpej */
1454 1.63 thorpej if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1455 1.63 thorpej pt->pt_overruns++;
1456 1.63 thorpej else {
1457 1.75 christos ksiginfo_t ksi;
1458 1.75 christos (void)memset(&ksi, 0, sizeof(ksi));
1459 1.75 christos ksi.ksi_signo = pt->pt_ev.sigev_signo;
1460 1.75 christos ksi.ksi_code = SI_TIMER;
1461 1.75 christos ksi.ksi_sigval = pt->pt_ev.sigev_value;
1462 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1463 1.63 thorpej pt->pt_overruns = 0;
1464 1.75 christos kpsignal(p, &ksi, NULL);
1465 1.63 thorpej }
1466 1.63 thorpej } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1467 1.63 thorpej /* Cause the process to generate an upcall when it returns. */
1468 1.63 thorpej
1469 1.63 thorpej if (p->p_userret == NULL) {
1470 1.70 nathanw /*
1471 1.70 nathanw * XXX stop signals can be processed inside tsleep,
1472 1.70 nathanw * which can be inside sa_yield's inner loop, which
1473 1.70 nathanw * makes testing for sa_idle alone insuffucent to
1474 1.70 nathanw * determine if we really should call setrunnable.
1475 1.70 nathanw */
1476 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1477 1.63 thorpej pt->pt_overruns = 0;
1478 1.64 nathanw i = 1 << pt->pt_entry;
1479 1.64 nathanw p->p_timers->pts_fired = i;
1480 1.63 thorpej p->p_userret = timerupcall;
1481 1.64 nathanw p->p_userret_arg = p->p_timers;
1482 1.87 perry
1483 1.78 cl SCHED_LOCK(s);
1484 1.82 cl SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1485 1.82 cl if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1486 1.82 cl vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1487 1.82 cl sched_wakeup(vp->savp_lwp);
1488 1.82 cl break;
1489 1.82 cl }
1490 1.78 cl }
1491 1.78 cl SCHED_UNLOCK(s);
1492 1.64 nathanw } else if (p->p_userret == timerupcall) {
1493 1.64 nathanw i = 1 << pt->pt_entry;
1494 1.64 nathanw if ((p->p_timers->pts_fired & i) == 0) {
1495 1.64 nathanw pt->pt_poverruns = pt->pt_overruns;
1496 1.64 nathanw pt->pt_overruns = 0;
1497 1.66 jdolecek p->p_timers->pts_fired |= i;
1498 1.64 nathanw } else
1499 1.64 nathanw pt->pt_overruns++;
1500 1.64 nathanw } else {
1501 1.63 thorpej pt->pt_overruns++;
1502 1.78 cl if ((p->p_flag & P_WEXIT) == 0)
1503 1.78 cl printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1504 1.78 cl p->p_pid, pt->pt_overruns,
1505 1.78 cl pt->pt_ev.sigev_value.sival_int,
1506 1.78 cl p->p_userret);
1507 1.64 nathanw }
1508 1.63 thorpej }
1509 1.63 thorpej
1510 1.63 thorpej }
1511 1.63 thorpej
1512 1.42 cgd /*
1513 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1514 1.42 cgd * for usage and rationale.
1515 1.42 cgd */
1516 1.42 cgd int
1517 1.63 thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1518 1.42 cgd {
1519 1.49 itojun struct timeval tv, delta;
1520 1.101 kardel int rv = 0;
1521 1.101 kardel #ifndef __HAVE_TIMECOUNTER
1522 1.101 kardel int s;
1523 1.101 kardel #endif
1524 1.42 cgd
1525 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1526 1.101 kardel getmicrouptime(&tv);
1527 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1528 1.63 thorpej s = splclock();
1529 1.49 itojun tv = mono_time;
1530 1.49 itojun splx(s);
1531 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1532 1.49 itojun timersub(&tv, lasttime, &delta);
1533 1.42 cgd
1534 1.42 cgd /*
1535 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1536 1.42 cgd * even if interval is huge.
1537 1.42 cgd */
1538 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1539 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1540 1.49 itojun *lasttime = tv;
1541 1.42 cgd rv = 1;
1542 1.42 cgd }
1543 1.50 itojun
1544 1.50 itojun return (rv);
1545 1.50 itojun }
1546 1.50 itojun
1547 1.50 itojun /*
1548 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1549 1.50 itojun */
1550 1.50 itojun int
1551 1.63 thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1552 1.50 itojun {
1553 1.50 itojun struct timeval tv, delta;
1554 1.101 kardel int rv;
1555 1.101 kardel #ifndef __HAVE_TIMECOUNTER
1556 1.101 kardel int s;
1557 1.101 kardel #endif
1558 1.50 itojun
1559 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1560 1.101 kardel getmicrouptime(&tv);
1561 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1562 1.63 thorpej s = splclock();
1563 1.50 itojun tv = mono_time;
1564 1.50 itojun splx(s);
1565 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1566 1.50 itojun timersub(&tv, lasttime, &delta);
1567 1.50 itojun
1568 1.50 itojun /*
1569 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1570 1.50 itojun * if more than one second have passed since the last update of
1571 1.50 itojun * lasttime, reset the counter.
1572 1.50 itojun *
1573 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1574 1.50 itojun * try to use *curpps for stat purposes as well.
1575 1.50 itojun */
1576 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1577 1.50 itojun delta.tv_sec >= 1) {
1578 1.50 itojun *lasttime = tv;
1579 1.50 itojun *curpps = 0;
1580 1.69 dyoung }
1581 1.69 dyoung if (maxpps < 0)
1582 1.53 itojun rv = 1;
1583 1.53 itojun else if (*curpps < maxpps)
1584 1.50 itojun rv = 1;
1585 1.50 itojun else
1586 1.50 itojun rv = 0;
1587 1.50 itojun
1588 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1589 1.50 itojun /* be careful about wrap-around */
1590 1.50 itojun if (*curpps + 1 > *curpps)
1591 1.50 itojun *curpps = *curpps + 1;
1592 1.50 itojun #else
1593 1.50 itojun /*
1594 1.50 itojun * assume that there's not too many calls to this function.
1595 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1596 1.50 itojun * behavior, not the behavior of this function.
1597 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1598 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1599 1.50 itojun */
1600 1.50 itojun *curpps = *curpps + 1;
1601 1.50 itojun #endif
1602 1.42 cgd
1603 1.42 cgd return (rv);
1604 1.1 cgd }
1605