Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.104
      1  1.102    kardel /*	$NetBSD: kern_time.c,v 1.104 2006/07/16 19:23:11 kardel Exp $	*/
      2   1.42       cgd 
      3   1.42       cgd /*-
      4   1.88   mycroft  * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
      5   1.42       cgd  * All rights reserved.
      6   1.42       cgd  *
      7   1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8   1.42       cgd  * by Christopher G. Demetriou.
      9   1.42       cgd  *
     10   1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11   1.42       cgd  * modification, are permitted provided that the following conditions
     12   1.42       cgd  * are met:
     13   1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14   1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15   1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17   1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18   1.42       cgd  * 3. All advertising materials mentioning features or use of this software
     19   1.42       cgd  *    must display the following acknowledgement:
     20   1.42       cgd  *	This product includes software developed by the NetBSD
     21   1.42       cgd  *	Foundation, Inc. and its contributors.
     22   1.42       cgd  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.42       cgd  *    contributors may be used to endorse or promote products derived
     24   1.42       cgd  *    from this software without specific prior written permission.
     25   1.42       cgd  *
     26   1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     37   1.42       cgd  */
     38    1.9       cgd 
     39    1.1       cgd /*
     40    1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     41    1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     42    1.1       cgd  *
     43    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     44    1.1       cgd  * modification, are permitted provided that the following conditions
     45    1.1       cgd  * are met:
     46    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     47    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     48    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     49    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     50    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     51   1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     52    1.1       cgd  *    may be used to endorse or promote products derived from this software
     53    1.1       cgd  *    without specific prior written permission.
     54    1.1       cgd  *
     55    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65    1.1       cgd  * SUCH DAMAGE.
     66    1.1       cgd  *
     67   1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68    1.1       cgd  */
     69   1.58     lukem 
     70   1.58     lukem #include <sys/cdefs.h>
     71  1.102    kardel __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.104 2006/07/16 19:23:11 kardel Exp $");
     72   1.31   thorpej 
     73   1.31   thorpej #include "fs_nfs.h"
     74   1.54     bjh21 #include "opt_nfs.h"
     75   1.34   thorpej #include "opt_nfsserver.h"
     76    1.1       cgd 
     77    1.5   mycroft #include <sys/param.h>
     78    1.5   mycroft #include <sys/resourcevar.h>
     79    1.5   mycroft #include <sys/kernel.h>
     80    1.8       cgd #include <sys/systm.h>
     81    1.5   mycroft #include <sys/proc.h>
     82   1.63   thorpej #include <sys/sa.h>
     83   1.63   thorpej #include <sys/savar.h>
     84    1.8       cgd #include <sys/vnode.h>
     85   1.17  christos #include <sys/signalvar.h>
     86   1.25     perry #include <sys/syslog.h>
     87  1.101    kardel #ifdef __HAVE_TIMECOUNTER
     88  1.101    kardel #include <sys/timetc.h>
     89  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
     90   1.95      cube #include <sys/timevar.h>
     91  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
     92   1.99      elad #include <sys/kauth.h>
     93    1.1       cgd 
     94   1.11       cgd #include <sys/mount.h>
     95   1.11       cgd #include <sys/syscallargs.h>
     96   1.19  christos 
     97   1.37   thorpej #include <uvm/uvm_extern.h>
     98   1.37   thorpej 
     99   1.26   thorpej #if defined(NFS) || defined(NFSSERVER)
    100   1.20      fvdl #include <nfs/rpcv2.h>
    101   1.20      fvdl #include <nfs/nfsproto.h>
    102   1.93      jmmv #include <nfs/nfs.h>
    103   1.19  christos #include <nfs/nfs_var.h>
    104   1.19  christos #endif
    105   1.17  christos 
    106    1.5   mycroft #include <machine/cpu.h>
    107   1.23       cgd 
    108   1.97    simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    109   1.97    simonb     &pool_allocator_nointr);
    110   1.97    simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    111   1.97    simonb     &pool_allocator_nointr);
    112   1.97    simonb 
    113   1.63   thorpej static void timerupcall(struct lwp *, void *);
    114  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    115  1.101    kardel static int itimespecfix(struct timespec *);		/* XXX move itimerfix to timespecs */
    116  1.101    kardel #endif /* __HAVE_TIMECOUNTER */
    117   1.63   thorpej 
    118   1.63   thorpej /* Time of day and interval timer support.
    119    1.1       cgd  *
    120    1.1       cgd  * These routines provide the kernel entry points to get and set
    121    1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    122    1.1       cgd  * here provide support for adding and subtracting timeval structures
    123    1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    124    1.1       cgd  * timers when they expire.
    125    1.1       cgd  */
    126    1.1       cgd 
    127   1.22       jtc /* This function is used by clock_settime and settimeofday */
    128   1.39      tron int
    129   1.98  christos settime(struct proc *p, struct timespec *ts)
    130   1.22       jtc {
    131   1.98  christos 	struct timeval delta, tv;
    132  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    133  1.101    kardel 	struct timeval now;
    134  1.101    kardel 	struct timespec ts1;
    135  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    136   1.47   thorpej 	struct cpu_info *ci;
    137   1.22       jtc 	int s;
    138   1.22       jtc 
    139   1.98  christos 	/*
    140   1.98  christos 	 * Don't allow the time to be set forward so far it will wrap
    141   1.98  christos 	 * and become negative, thus allowing an attacker to bypass
    142   1.98  christos 	 * the next check below.  The cutoff is 1 year before rollover
    143   1.98  christos 	 * occurs, so even if the attacker uses adjtime(2) to move
    144   1.98  christos 	 * the time past the cutoff, it will take a very long time
    145   1.98  christos 	 * to get to the wrap point.
    146   1.98  christos 	 *
    147   1.98  christos 	 * XXX: we check against INT_MAX since on 64-bit
    148   1.98  christos 	 *	platforms, sizeof(int) != sizeof(long) and
    149   1.98  christos 	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
    150   1.98  christos 	 */
    151   1.98  christos 	if (ts->tv_sec > INT_MAX - 365*24*60*60) {
    152   1.98  christos 		struct proc *pp = p->p_pptr;
    153   1.98  christos 		log(LOG_WARNING, "pid %d (%s) "
    154   1.98  christos 		    "invoked by uid %d ppid %d (%s) "
    155   1.98  christos 		    "tried to set clock forward to %ld\n",
    156   1.99      elad 		    p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
    157   1.98  christos 		    pp->p_pid, pp->p_comm, (long)ts->tv_sec);
    158   1.98  christos 		return (EPERM);
    159   1.98  christos 	}
    160   1.98  christos 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    161   1.98  christos 
    162   1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    163   1.22       jtc 	s = splclock();
    164  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    165  1.101    kardel 	microtime(&now);
    166  1.101    kardel 	timersub(&tv, &now, &delta);
    167  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    168   1.98  christos 	timersub(&tv, &time, &delta);
    169  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    170   1.55      tron 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
    171   1.55      tron 		splx(s);
    172   1.29       tls 		return (EPERM);
    173   1.55      tron 	}
    174   1.29       tls #ifdef notyet
    175   1.55      tron 	if ((delta.tv_sec < 86400) && securelevel > 0) {
    176   1.55      tron 		splx(s);
    177   1.29       tls 		return (EPERM);
    178   1.55      tron 	}
    179   1.29       tls #endif
    180  1.103    kardel 
    181  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    182  1.103    kardel 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    183  1.101    kardel 	tc_setclock(&ts1);
    184  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    185   1.98  christos 	time = tv;
    186  1.103    kardel #endif /* !__HAVE_TIMECOUNTER */
    187  1.103    kardel 
    188   1.38   thorpej 	(void) spllowersoftclock();
    189  1.103    kardel 
    190   1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    191  1.103    kardel 
    192   1.47   thorpej 	/*
    193   1.47   thorpej 	 * XXXSMP
    194   1.47   thorpej 	 * This is wrong.  We should traverse a list of all
    195   1.47   thorpej 	 * CPUs and add the delta to the runtime of those
    196   1.47   thorpej 	 * CPUs which have a process on them.
    197   1.47   thorpej 	 */
    198   1.47   thorpej 	ci = curcpu();
    199   1.47   thorpej 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    200   1.47   thorpej 	    &ci->ci_schedstate.spc_runtime);
    201  1.101    kardel #if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    202  1.101    kardel 	nqnfs_lease_updatetime(delta.tv_sec);
    203  1.101    kardel #endif
    204   1.22       jtc 	splx(s);
    205   1.22       jtc 	resettodr();
    206   1.29       tls 	return (0);
    207   1.22       jtc }
    208   1.22       jtc 
    209   1.22       jtc /* ARGSUSED */
    210   1.22       jtc int
    211   1.63   thorpej sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    212   1.22       jtc {
    213   1.45  augustss 	struct sys_clock_gettime_args /* {
    214   1.22       jtc 		syscallarg(clockid_t) clock_id;
    215   1.23       cgd 		syscallarg(struct timespec *) tp;
    216   1.23       cgd 	} */ *uap = v;
    217   1.22       jtc 	clockid_t clock_id;
    218   1.22       jtc 	struct timespec ats;
    219   1.22       jtc 
    220   1.22       jtc 	clock_id = SCARG(uap, clock_id);
    221   1.61    simonb 	switch (clock_id) {
    222   1.61    simonb 	case CLOCK_REALTIME:
    223   1.96    simonb 		nanotime(&ats);
    224   1.61    simonb 		break;
    225   1.61    simonb 	case CLOCK_MONOTONIC:
    226  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    227  1.101    kardel 		nanouptime(&ats);
    228  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    229  1.101    kardel 		{
    230  1.101    kardel 		int s;
    231  1.101    kardel 
    232   1.61    simonb 		/* XXX "hz" granularity */
    233   1.63   thorpej 		s = splclock();
    234  1.101    kardel 		TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
    235   1.61    simonb 		splx(s);
    236  1.101    kardel 		}
    237  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    238   1.61    simonb 		break;
    239   1.61    simonb 	default:
    240   1.22       jtc 		return (EINVAL);
    241   1.61    simonb 	}
    242   1.22       jtc 
    243   1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    244   1.22       jtc }
    245   1.22       jtc 
    246   1.22       jtc /* ARGSUSED */
    247   1.22       jtc int
    248   1.90   thorpej sys_clock_settime(struct lwp *l, void *v, register_t *retval)
    249   1.22       jtc {
    250   1.45  augustss 	struct sys_clock_settime_args /* {
    251   1.22       jtc 		syscallarg(clockid_t) clock_id;
    252   1.23       cgd 		syscallarg(const struct timespec *) tp;
    253   1.23       cgd 	} */ *uap = v;
    254   1.63   thorpej 	struct proc *p = l->l_proc;
    255   1.22       jtc 	int error;
    256   1.22       jtc 
    257   1.99      elad 	if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
    258   1.99      elad 				       &p->p_acflag)) != 0)
    259   1.22       jtc 		return (error);
    260   1.22       jtc 
    261   1.98  christos 	return (clock_settime1(p, SCARG(uap, clock_id), SCARG(uap, tp)));
    262   1.56      manu }
    263   1.56      manu 
    264   1.56      manu 
    265   1.56      manu int
    266   1.98  christos clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
    267   1.56      manu {
    268   1.60      manu 	struct timespec ats;
    269   1.56      manu 	int error;
    270   1.56      manu 
    271   1.60      manu 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    272   1.60      manu 		return (error);
    273   1.60      manu 
    274   1.61    simonb 	switch (clock_id) {
    275   1.61    simonb 	case CLOCK_REALTIME:
    276   1.98  christos 		if ((error = settime(p, &ats)) != 0)
    277   1.61    simonb 			return (error);
    278   1.61    simonb 		break;
    279   1.61    simonb 	case CLOCK_MONOTONIC:
    280   1.61    simonb 		return (EINVAL);	/* read-only clock */
    281   1.61    simonb 	default:
    282   1.56      manu 		return (EINVAL);
    283   1.61    simonb 	}
    284   1.22       jtc 
    285   1.22       jtc 	return 0;
    286   1.22       jtc }
    287   1.22       jtc 
    288   1.22       jtc int
    289   1.63   thorpej sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    290   1.22       jtc {
    291   1.45  augustss 	struct sys_clock_getres_args /* {
    292   1.22       jtc 		syscallarg(clockid_t) clock_id;
    293   1.23       cgd 		syscallarg(struct timespec *) tp;
    294   1.23       cgd 	} */ *uap = v;
    295   1.22       jtc 	clockid_t clock_id;
    296   1.22       jtc 	struct timespec ts;
    297   1.22       jtc 	int error = 0;
    298   1.22       jtc 
    299   1.22       jtc 	clock_id = SCARG(uap, clock_id);
    300   1.61    simonb 	switch (clock_id) {
    301   1.61    simonb 	case CLOCK_REALTIME:
    302   1.61    simonb 	case CLOCK_MONOTONIC:
    303   1.22       jtc 		ts.tv_sec = 0;
    304  1.102    kardel #ifdef __HAVE_TIMECOUNTER
    305  1.102    kardel 		if (tc_getfrequency() > 1000000000)
    306  1.102    kardel 			ts.tv_nsec = 1;
    307  1.102    kardel 		else
    308  1.102    kardel 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    309  1.102    kardel #else /* !__HAVE_TIMECOUNTER */
    310   1.22       jtc 		ts.tv_nsec = 1000000000 / hz;
    311  1.102    kardel #endif /* !__HAVE_TIMECOUNTER */
    312   1.61    simonb 		break;
    313   1.61    simonb 	default:
    314   1.61    simonb 		return (EINVAL);
    315   1.61    simonb 	}
    316   1.22       jtc 
    317   1.61    simonb 	if (SCARG(uap, tp))
    318   1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    319   1.22       jtc 
    320   1.22       jtc 	return error;
    321   1.22       jtc }
    322   1.22       jtc 
    323   1.27       jtc /* ARGSUSED */
    324   1.27       jtc int
    325   1.63   thorpej sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    326   1.27       jtc {
    327  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    328  1.101    kardel 	static int nanowait;
    329  1.101    kardel 	struct sys_nanosleep_args/* {
    330  1.101    kardel 		syscallarg(struct timespec *) rqtp;
    331  1.101    kardel 		syscallarg(struct timespec *) rmtp;
    332  1.101    kardel 	} */ *uap = v;
    333  1.101    kardel 	struct timespec rmt, rqt;
    334  1.101    kardel 	int error, timo;
    335  1.101    kardel 
    336  1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    337  1.101    kardel 	if (error)
    338  1.101    kardel 		return (error);
    339  1.101    kardel 
    340  1.101    kardel 	if (itimespecfix(&rqt))
    341  1.101    kardel 		return (EINVAL);
    342  1.101    kardel 
    343  1.101    kardel 	timo = tstohz(&rqt);
    344  1.101    kardel 	/*
    345  1.101    kardel 	 * Avoid inadvertantly sleeping forever
    346  1.101    kardel 	 */
    347  1.101    kardel 	if (timo == 0)
    348  1.101    kardel 		timo = 1;
    349  1.101    kardel 
    350  1.104    kardel 	getnanouptime(&rmt);
    351  1.104    kardel 
    352  1.101    kardel 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    353  1.101    kardel 	if (error == ERESTART)
    354  1.101    kardel 		error = EINTR;
    355  1.101    kardel 	if (error == EWOULDBLOCK)
    356  1.101    kardel 		error = 0;
    357  1.101    kardel 
    358  1.101    kardel 	if (SCARG(uap, rmtp)) {
    359  1.101    kardel 		int error1;
    360  1.104    kardel 		struct timespec rmtend;
    361  1.101    kardel 
    362  1.104    kardel 		getnanouptime(&rmtend);
    363  1.101    kardel 
    364  1.104    kardel 		timespecsub(&rmtend, &rmt, &rmt);
    365  1.101    kardel 		timespecsub(&rqt, &rmt, &rmt);
    366  1.101    kardel 		if (rmt.tv_sec < 0)
    367  1.101    kardel 			timespecclear(&rmt);
    368  1.101    kardel 
    369  1.101    kardel 		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    370  1.101    kardel 			sizeof(rmt));
    371  1.101    kardel 		if (error1)
    372  1.101    kardel 			return (error1);
    373  1.101    kardel 	}
    374  1.101    kardel 
    375  1.101    kardel 	return error;
    376  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    377   1.27       jtc 	static int nanowait;
    378   1.45  augustss 	struct sys_nanosleep_args/* {
    379   1.27       jtc 		syscallarg(struct timespec *) rqtp;
    380   1.27       jtc 		syscallarg(struct timespec *) rmtp;
    381   1.27       jtc 	} */ *uap = v;
    382   1.27       jtc 	struct timespec rqt;
    383   1.27       jtc 	struct timespec rmt;
    384   1.27       jtc 	struct timeval atv, utv;
    385   1.27       jtc 	int error, s, timo;
    386   1.27       jtc 
    387   1.89  christos 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    388   1.27       jtc 	if (error)
    389   1.27       jtc 		return (error);
    390   1.27       jtc 
    391   1.85    atatat 	TIMESPEC_TO_TIMEVAL(&atv,&rqt);
    392   1.80  christos 	if (itimerfix(&atv))
    393   1.27       jtc 		return (EINVAL);
    394   1.27       jtc 
    395   1.27       jtc 	s = splclock();
    396   1.27       jtc 	timeradd(&atv,&time,&atv);
    397   1.27       jtc 	timo = hzto(&atv);
    398   1.63   thorpej 	/*
    399   1.27       jtc 	 * Avoid inadvertantly sleeping forever
    400   1.27       jtc 	 */
    401   1.27       jtc 	if (timo == 0)
    402   1.27       jtc 		timo = 1;
    403   1.27       jtc 	splx(s);
    404   1.27       jtc 
    405   1.27       jtc 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    406   1.27       jtc 	if (error == ERESTART)
    407   1.27       jtc 		error = EINTR;
    408   1.27       jtc 	if (error == EWOULDBLOCK)
    409   1.27       jtc 		error = 0;
    410   1.27       jtc 
    411   1.27       jtc 	if (SCARG(uap, rmtp)) {
    412   1.89  christos 		int error1;
    413   1.28       jtc 
    414   1.27       jtc 		s = splclock();
    415   1.27       jtc 		utv = time;
    416   1.27       jtc 		splx(s);
    417   1.27       jtc 
    418   1.27       jtc 		timersub(&atv, &utv, &utv);
    419   1.27       jtc 		if (utv.tv_sec < 0)
    420   1.27       jtc 			timerclear(&utv);
    421   1.27       jtc 
    422   1.27       jtc 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    423   1.89  christos 		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    424   1.28       jtc 			sizeof(rmt));
    425   1.89  christos 		if (error1)
    426   1.89  christos 			return (error1);
    427   1.27       jtc 	}
    428   1.27       jtc 
    429   1.27       jtc 	return error;
    430  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    431   1.27       jtc }
    432   1.22       jtc 
    433    1.1       cgd /* ARGSUSED */
    434    1.3    andrew int
    435   1.63   thorpej sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    436   1.15   thorpej {
    437   1.45  augustss 	struct sys_gettimeofday_args /* {
    438   1.11       cgd 		syscallarg(struct timeval *) tp;
    439   1.84    simonb 		syscallarg(void *) tzp;		really "struct timezone *"
    440   1.15   thorpej 	} */ *uap = v;
    441    1.1       cgd 	struct timeval atv;
    442    1.1       cgd 	int error = 0;
    443   1.25     perry 	struct timezone tzfake;
    444    1.1       cgd 
    445   1.11       cgd 	if (SCARG(uap, tp)) {
    446    1.1       cgd 		microtime(&atv);
    447   1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    448   1.17  christos 		if (error)
    449    1.1       cgd 			return (error);
    450    1.1       cgd 	}
    451   1.25     perry 	if (SCARG(uap, tzp)) {
    452   1.25     perry 		/*
    453   1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    454   1.25     perry 		 * fake up a timezone struct and return it if demanded.
    455   1.25     perry 		 */
    456   1.25     perry 		tzfake.tz_minuteswest = 0;
    457   1.25     perry 		tzfake.tz_dsttime = 0;
    458   1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    459   1.25     perry 	}
    460    1.1       cgd 	return (error);
    461    1.1       cgd }
    462    1.1       cgd 
    463    1.1       cgd /* ARGSUSED */
    464    1.3    andrew int
    465   1.63   thorpej sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    466   1.15   thorpej {
    467   1.16   mycroft 	struct sys_settimeofday_args /* {
    468   1.24       cgd 		syscallarg(const struct timeval *) tv;
    469   1.84    simonb 		syscallarg(const void *) tzp;	really "const struct timezone *"
    470   1.15   thorpej 	} */ *uap = v;
    471   1.63   thorpej 	struct proc *p = l->l_proc;
    472   1.60      manu 	int error;
    473   1.60      manu 
    474   1.99      elad 	if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
    475   1.99      elad 				       &p->p_acflag)) != 0)
    476   1.60      manu 		return (error);
    477   1.60      manu 
    478   1.60      manu 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
    479   1.60      manu }
    480   1.60      manu 
    481   1.60      manu int
    482   1.90   thorpej settimeofday1(const struct timeval *utv, const struct timezone *utzp,
    483   1.90   thorpej     struct proc *p)
    484   1.60      manu {
    485   1.22       jtc 	struct timeval atv;
    486   1.98  christos 	struct timespec ts;
    487   1.22       jtc 	int error;
    488    1.1       cgd 
    489    1.8       cgd 	/* Verify all parameters before changing time. */
    490   1.25     perry 	/*
    491   1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    492   1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    493   1.25     perry 	 */
    494   1.98  christos 	if (utzp)
    495   1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    496   1.63   thorpej 		    "(obsolete) kernel time zone\n", p->p_pid);
    497   1.98  christos 
    498   1.98  christos 	if (utv == NULL)
    499   1.98  christos 		return 0;
    500   1.98  christos 
    501   1.98  christos 	if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    502   1.98  christos 		return error;
    503   1.98  christos 	TIMEVAL_TO_TIMESPEC(&atv, &ts);
    504   1.98  christos 	return settime(p, &ts);
    505    1.1       cgd }
    506    1.1       cgd 
    507  1.101    kardel #ifndef __HAVE_TIMECOUNTER
    508    1.1       cgd int	tickdelta;			/* current clock skew, us. per tick */
    509    1.1       cgd long	timedelta;			/* unapplied time correction, us. */
    510    1.1       cgd long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    511  1.101    kardel #endif
    512  1.101    kardel 
    513   1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    514    1.1       cgd 
    515    1.1       cgd /* ARGSUSED */
    516    1.3    andrew int
    517   1.63   thorpej sys_adjtime(struct lwp *l, void *v, register_t *retval)
    518   1.15   thorpej {
    519   1.45  augustss 	struct sys_adjtime_args /* {
    520   1.24       cgd 		syscallarg(const struct timeval *) delta;
    521   1.11       cgd 		syscallarg(struct timeval *) olddelta;
    522   1.15   thorpej 	} */ *uap = v;
    523   1.63   thorpej 	struct proc *p = l->l_proc;
    524   1.56      manu 	int error;
    525    1.1       cgd 
    526   1.99      elad 	if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
    527   1.99      elad 				       &p->p_acflag)) != 0)
    528    1.1       cgd 		return (error);
    529   1.17  christos 
    530   1.60      manu 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
    531   1.56      manu }
    532   1.56      manu 
    533   1.56      manu int
    534   1.90   thorpej adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    535   1.56      manu {
    536   1.60      manu 	struct timeval atv;
    537  1.101    kardel 	int error = 0;
    538  1.101    kardel 
    539  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    540  1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    541  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    542   1.56      manu 	long ndelta, ntickdelta, odelta;
    543   1.56      manu 	int s;
    544  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    545  1.101    kardel 
    546  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    547  1.101    kardel 	if (olddelta) {
    548  1.101    kardel 		atv.tv_sec = time_adjtime / 1000000;
    549  1.101    kardel 		atv.tv_usec = time_adjtime % 1000000;
    550  1.101    kardel 		if (atv.tv_usec < 0) {
    551  1.101    kardel 			atv.tv_usec += 1000000;
    552  1.101    kardel 			atv.tv_sec--;
    553  1.101    kardel 		}
    554  1.101    kardel 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    555  1.101    kardel 		if (error)
    556  1.101    kardel 			return (error);
    557  1.101    kardel 	}
    558  1.101    kardel 
    559  1.101    kardel 	if (delta) {
    560  1.101    kardel 		error = copyin(delta, &atv, sizeof(struct timeval));
    561  1.101    kardel 		if (error)
    562  1.101    kardel 			return (error);
    563  1.101    kardel 
    564  1.101    kardel 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    565  1.101    kardel 			atv.tv_usec;
    566    1.8       cgd 
    567  1.101    kardel 		if (time_adjtime)
    568  1.101    kardel 			/* We need to save the system time during shutdown */
    569  1.101    kardel 			time_adjusted |= 1;
    570  1.101    kardel 	}
    571  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    572   1.60      manu 	error = copyin(delta, &atv, sizeof(struct timeval));
    573   1.60      manu 	if (error)
    574   1.60      manu 		return (error);
    575   1.60      manu 
    576    1.8       cgd 	/*
    577    1.8       cgd 	 * Compute the total correction and the rate at which to apply it.
    578    1.8       cgd 	 * Round the adjustment down to a whole multiple of the per-tick
    579    1.8       cgd 	 * delta, so that after some number of incremental changes in
    580    1.8       cgd 	 * hardclock(), tickdelta will become zero, lest the correction
    581    1.8       cgd 	 * overshoot and start taking us away from the desired final time.
    582    1.8       cgd 	 */
    583   1.60      manu 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    584   1.41       hwr 	if (ndelta > bigadj || ndelta < -bigadj)
    585    1.8       cgd 		ntickdelta = 10 * tickadj;
    586    1.8       cgd 	else
    587    1.8       cgd 		ntickdelta = tickadj;
    588    1.8       cgd 	if (ndelta % ntickdelta)
    589    1.8       cgd 		ndelta = ndelta / ntickdelta * ntickdelta;
    590    1.8       cgd 
    591    1.8       cgd 	/*
    592    1.8       cgd 	 * To make hardclock()'s job easier, make the per-tick delta negative
    593    1.8       cgd 	 * if we want time to run slower; then hardclock can simply compute
    594    1.8       cgd 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    595    1.8       cgd 	 */
    596    1.8       cgd 	if (ndelta < 0)
    597    1.8       cgd 		ntickdelta = -ntickdelta;
    598   1.68       dsl 	if (ndelta != 0)
    599   1.68       dsl 		/* We need to save the system clock time during shutdown */
    600   1.68       dsl 		time_adjusted |= 1;
    601    1.1       cgd 	s = splclock();
    602    1.8       cgd 	odelta = timedelta;
    603    1.1       cgd 	timedelta = ndelta;
    604    1.8       cgd 	tickdelta = ntickdelta;
    605    1.1       cgd 	splx(s);
    606    1.1       cgd 
    607   1.56      manu 	if (olddelta) {
    608   1.60      manu 		atv.tv_sec = odelta / 1000000;
    609   1.60      manu 		atv.tv_usec = odelta % 1000000;
    610   1.79       chs 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    611    1.8       cgd 	}
    612  1.101    kardel #endif /* __HAVE_TIMECOUNTER */
    613  1.101    kardel 
    614   1.79       chs 	return error;
    615    1.1       cgd }
    616    1.1       cgd 
    617    1.1       cgd /*
    618   1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    619   1.63   thorpej  * timer_*() family of routines are supported.
    620    1.1       cgd  *
    621   1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    622   1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    623   1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    624   1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    625   1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    626   1.63   thorpej  * syscall.
    627    1.1       cgd  *
    628   1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    629   1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    630    1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    631   1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    632   1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    633   1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    634   1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    635   1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    636   1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    637   1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    638   1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    639   1.63   thorpej 
    640   1.63   thorpej /* Allocate a POSIX realtime timer. */
    641   1.63   thorpej int
    642   1.63   thorpej sys_timer_create(struct lwp *l, void *v, register_t *retval)
    643   1.63   thorpej {
    644   1.63   thorpej 	struct sys_timer_create_args /* {
    645   1.63   thorpej 		syscallarg(clockid_t) clock_id;
    646   1.63   thorpej 		syscallarg(struct sigevent *) evp;
    647   1.63   thorpej 		syscallarg(timer_t *) timerid;
    648   1.63   thorpej 	} */ *uap = v;
    649   1.92      cube 
    650   1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    651   1.92      cube 	    SCARG(uap, evp), copyin, l->l_proc);
    652   1.92      cube }
    653   1.92      cube 
    654   1.92      cube int
    655   1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    656   1.95      cube     copyin_t fetch_event, struct proc *p)
    657   1.92      cube {
    658   1.92      cube 	int error;
    659   1.92      cube 	timer_t timerid;
    660   1.63   thorpej 	struct ptimer *pt;
    661   1.63   thorpej 
    662   1.63   thorpej 	if (id < CLOCK_REALTIME ||
    663   1.63   thorpej 	    id > CLOCK_PROF)
    664   1.63   thorpej 		return (EINVAL);
    665   1.63   thorpej 
    666   1.63   thorpej 	if (p->p_timers == NULL)
    667   1.63   thorpej 		timers_alloc(p);
    668   1.63   thorpej 
    669   1.63   thorpej 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    670   1.63   thorpej 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    671   1.63   thorpej 		if (p->p_timers->pts_timers[timerid] == NULL)
    672   1.63   thorpej 			break;
    673   1.63   thorpej 
    674   1.63   thorpej 	if (timerid == TIMER_MAX)
    675   1.63   thorpej 		return EAGAIN;
    676   1.63   thorpej 
    677   1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    678   1.63   thorpej 	if (evp) {
    679   1.63   thorpej 		if (((error =
    680   1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    681   1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    682   1.63   thorpej 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    683   1.63   thorpej 			pool_put(&ptimer_pool, pt);
    684   1.63   thorpej 			return (error ? error : EINVAL);
    685   1.63   thorpej 		}
    686   1.63   thorpej 	} else {
    687   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    688   1.63   thorpej 		switch (id) {
    689   1.63   thorpej 		case CLOCK_REALTIME:
    690   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    691   1.63   thorpej 			break;
    692   1.63   thorpej 		case CLOCK_VIRTUAL:
    693   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    694   1.63   thorpej 			break;
    695   1.63   thorpej 		case CLOCK_PROF:
    696   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    697   1.63   thorpej 			break;
    698   1.63   thorpej 		}
    699   1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    700   1.63   thorpej 	}
    701   1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    702   1.73  christos 	pt->pt_info.ksi_errno = 0;
    703   1.73  christos 	pt->pt_info.ksi_code = 0;
    704   1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    705   1.99      elad 	pt->pt_info.ksi_uid = kauth_cred_getuid(p->p_cred);
    706   1.73  christos 	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
    707   1.63   thorpej 
    708   1.63   thorpej 	pt->pt_type = id;
    709   1.63   thorpej 	pt->pt_proc = p;
    710   1.63   thorpej 	pt->pt_overruns = 0;
    711   1.63   thorpej 	pt->pt_poverruns = 0;
    712   1.64   nathanw 	pt->pt_entry = timerid;
    713   1.63   thorpej 	timerclear(&pt->pt_time.it_value);
    714   1.63   thorpej 	if (id == CLOCK_REALTIME)
    715   1.63   thorpej 		callout_init(&pt->pt_ch);
    716   1.63   thorpej 	else
    717   1.63   thorpej 		pt->pt_active = 0;
    718   1.63   thorpej 
    719   1.63   thorpej 	p->p_timers->pts_timers[timerid] = pt;
    720   1.63   thorpej 
    721   1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    722   1.63   thorpej }
    723   1.63   thorpej 
    724   1.63   thorpej /* Delete a POSIX realtime timer */
    725    1.3    andrew int
    726   1.63   thorpej sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    727   1.15   thorpej {
    728   1.63   thorpej 	struct sys_timer_delete_args /*  {
    729   1.63   thorpej 		syscallarg(timer_t) timerid;
    730   1.15   thorpej 	} */ *uap = v;
    731   1.63   thorpej 	struct proc *p = l->l_proc;
    732   1.65  jdolecek 	timer_t timerid;
    733   1.63   thorpej 	struct ptimer *pt, *ptn;
    734    1.1       cgd 	int s;
    735    1.1       cgd 
    736   1.63   thorpej 	timerid = SCARG(uap, timerid);
    737   1.63   thorpej 
    738   1.63   thorpej 	if ((p->p_timers == NULL) ||
    739   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    740   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    741    1.1       cgd 		return (EINVAL);
    742   1.63   thorpej 
    743   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME)
    744   1.63   thorpej 		callout_stop(&pt->pt_ch);
    745   1.63   thorpej 	else if (pt->pt_active) {
    746   1.63   thorpej 		s = splclock();
    747   1.63   thorpej 		ptn = LIST_NEXT(pt, pt_list);
    748   1.63   thorpej 		LIST_REMOVE(pt, pt_list);
    749   1.63   thorpej 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    750   1.63   thorpej 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    751   1.63   thorpej 			    &ptn->pt_time.it_value);
    752   1.63   thorpej 		splx(s);
    753   1.63   thorpej 	}
    754   1.63   thorpej 
    755   1.63   thorpej 	p->p_timers->pts_timers[timerid] = NULL;
    756   1.63   thorpej 	pool_put(&ptimer_pool, pt);
    757   1.63   thorpej 
    758   1.63   thorpej 	return (0);
    759   1.63   thorpej }
    760   1.63   thorpej 
    761   1.63   thorpej /*
    762   1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    763   1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    764   1.67   nathanw  * time for virtual timers.
    765   1.63   thorpej  * Must be called at splclock().
    766   1.63   thorpej  */
    767   1.63   thorpej void
    768   1.63   thorpej timer_settime(struct ptimer *pt)
    769   1.63   thorpej {
    770   1.63   thorpej 	struct ptimer *ptn, *pptn;
    771   1.63   thorpej 	struct ptlist *ptl;
    772   1.63   thorpej 
    773   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    774   1.63   thorpej 		callout_stop(&pt->pt_ch);
    775   1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    776   1.63   thorpej 			/*
    777   1.63   thorpej 			 * Don't need to check hzto() return value, here.
    778   1.63   thorpej 			 * callout_reset() does it for us.
    779   1.63   thorpej 			 */
    780   1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    781   1.63   thorpej 			    realtimerexpire, pt);
    782   1.63   thorpej 		}
    783   1.63   thorpej 	} else {
    784   1.63   thorpej 		if (pt->pt_active) {
    785   1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    786   1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    787   1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    788   1.63   thorpej 				timeradd(&pt->pt_time.it_value,
    789   1.63   thorpej 				    &ptn->pt_time.it_value,
    790   1.63   thorpej 				    &ptn->pt_time.it_value);
    791   1.63   thorpej 		}
    792   1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    793   1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    794   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    795   1.63   thorpej 			else
    796   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    797   1.63   thorpej 
    798   1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    799   1.63   thorpej 			     ptn && timercmp(&pt->pt_time.it_value,
    800   1.63   thorpej 				 &ptn->pt_time.it_value, >);
    801   1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    802   1.63   thorpej 				timersub(&pt->pt_time.it_value,
    803   1.63   thorpej 				    &ptn->pt_time.it_value,
    804   1.63   thorpej 				    &pt->pt_time.it_value);
    805   1.63   thorpej 
    806   1.63   thorpej 			if (pptn)
    807   1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    808   1.63   thorpej 			else
    809   1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    810   1.63   thorpej 
    811   1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    812   1.63   thorpej 				timersub(&ptn->pt_time.it_value,
    813   1.63   thorpej 				    &pt->pt_time.it_value,
    814   1.63   thorpej 				    &ptn->pt_time.it_value);
    815   1.63   thorpej 
    816   1.63   thorpej 			pt->pt_active = 1;
    817   1.63   thorpej 		} else
    818   1.63   thorpej 			pt->pt_active = 0;
    819   1.63   thorpej 	}
    820   1.63   thorpej }
    821   1.63   thorpej 
    822   1.63   thorpej void
    823   1.63   thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    824   1.63   thorpej {
    825  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    826  1.101    kardel 	struct timeval now;
    827  1.101    kardel #endif
    828   1.63   thorpej 	struct ptimer *ptn;
    829   1.63   thorpej 
    830   1.63   thorpej 	*aitv = pt->pt_time;
    831   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    832    1.1       cgd 		/*
    833   1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    834   1.63   thorpej 		 * part of real time timer.  If time for real time
    835   1.63   thorpej 		 * timer has passed return 0, else return difference
    836   1.63   thorpej 		 * between current time and time for the timer to go
    837   1.63   thorpej 		 * off.
    838    1.1       cgd 		 */
    839   1.63   thorpej 		if (timerisset(&aitv->it_value)) {
    840  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    841  1.101    kardel 			getmicrotime(&now);
    842  1.101    kardel 			if (timercmp(&aitv->it_value, &now, <))
    843  1.101    kardel 				timerclear(&aitv->it_value);
    844  1.101    kardel 			else
    845  1.101    kardel 				timersub(&aitv->it_value, &now,
    846  1.101    kardel 				    &aitv->it_value);
    847  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    848   1.63   thorpej 			if (timercmp(&aitv->it_value, &time, <))
    849   1.63   thorpej 				timerclear(&aitv->it_value);
    850    1.1       cgd 			else
    851   1.63   thorpej 				timersub(&aitv->it_value, &time,
    852   1.63   thorpej 				    &aitv->it_value);
    853  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    854   1.36   thorpej 		}
    855   1.63   thorpej 	} else if (pt->pt_active) {
    856   1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    857   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    858   1.63   thorpej 		else
    859   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    860   1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    861   1.63   thorpej 			timeradd(&aitv->it_value,
    862   1.63   thorpej 			    &ptn->pt_time.it_value, &aitv->it_value);
    863   1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    864    1.1       cgd 	} else
    865   1.63   thorpej 		timerclear(&aitv->it_value);
    866   1.63   thorpej }
    867   1.63   thorpej 
    868   1.63   thorpej 
    869   1.63   thorpej 
    870   1.63   thorpej /* Set and arm a POSIX realtime timer */
    871   1.63   thorpej int
    872   1.63   thorpej sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    873   1.63   thorpej {
    874   1.63   thorpej 	struct sys_timer_settime_args /* {
    875   1.63   thorpej 		syscallarg(timer_t) timerid;
    876   1.63   thorpej 		syscallarg(int) flags;
    877   1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    878   1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    879   1.63   thorpej 	} */ *uap = v;
    880   1.92      cube 	int error;
    881   1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    882   1.92      cube 
    883   1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    884   1.92      cube 	    sizeof(struct itimerspec))) != 0)
    885   1.92      cube 		return (error);
    886   1.92      cube 
    887   1.92      cube 	if (SCARG(uap, ovalue))
    888   1.92      cube 		ovp = &ovalue;
    889   1.92      cube 
    890   1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    891   1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    892   1.92      cube 		return error;
    893   1.92      cube 
    894   1.92      cube 	if (ovp)
    895   1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    896   1.92      cube 		    sizeof(struct itimerspec));
    897   1.92      cube 	return 0;
    898   1.92      cube }
    899   1.92      cube 
    900   1.92      cube int
    901   1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    902   1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    903   1.92      cube {
    904  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    905  1.101    kardel 	struct timeval now;
    906  1.101    kardel #endif
    907   1.63   thorpej 	struct itimerval val, oval;
    908   1.63   thorpej 	struct ptimer *pt;
    909  1.101    kardel 	int s;
    910   1.63   thorpej 
    911   1.63   thorpej 	if ((p->p_timers == NULL) ||
    912   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    913   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    914   1.63   thorpej 		return (EINVAL);
    915   1.63   thorpej 
    916   1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    917   1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    918   1.63   thorpej 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    919   1.63   thorpej 		return (EINVAL);
    920   1.63   thorpej 
    921   1.63   thorpej 	oval = pt->pt_time;
    922   1.63   thorpej 	pt->pt_time = val;
    923   1.63   thorpej 
    924   1.63   thorpej 	s = splclock();
    925   1.67   nathanw 	/*
    926   1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    927   1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    928   1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    929   1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    930   1.67   nathanw 	 * negative, which would confuse the comparison tests.
    931   1.67   nathanw 	 */
    932   1.67   nathanw 	if (timerisset(&pt->pt_time.it_value)) {
    933   1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    934  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    935  1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    936  1.101    kardel 				getmicrotime(&now);
    937  1.101    kardel 				timeradd(&pt->pt_time.it_value, &now,
    938  1.101    kardel 				    &pt->pt_time.it_value);
    939  1.101    kardel 			}
    940  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    941   1.92      cube 			if ((flags & TIMER_ABSTIME) == 0)
    942   1.67   nathanw 				timeradd(&pt->pt_time.it_value, &time,
    943   1.67   nathanw 				    &pt->pt_time.it_value);
    944  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    945   1.67   nathanw 		} else {
    946   1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    947  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    948  1.101    kardel 				getmicrotime(&now);
    949  1.101    kardel 				timersub(&pt->pt_time.it_value, &now,
    950  1.101    kardel 				    &pt->pt_time.it_value);
    951  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    952   1.67   nathanw 				timersub(&pt->pt_time.it_value, &time,
    953   1.67   nathanw 				    &pt->pt_time.it_value);
    954  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    955   1.67   nathanw 				if (!timerisset(&pt->pt_time.it_value) ||
    956   1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    957   1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    958   1.67   nathanw 					pt->pt_time.it_value.tv_usec = 1;
    959   1.67   nathanw 				}
    960   1.67   nathanw 			}
    961   1.67   nathanw 		}
    962   1.67   nathanw 	}
    963   1.67   nathanw 
    964   1.63   thorpej 	timer_settime(pt);
    965   1.63   thorpej 	splx(s);
    966   1.63   thorpej 
    967   1.92      cube 	if (ovalue) {
    968   1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    969   1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    970   1.63   thorpej 	}
    971   1.63   thorpej 
    972   1.63   thorpej 	return (0);
    973   1.63   thorpej }
    974   1.63   thorpej 
    975   1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    976   1.63   thorpej int
    977   1.63   thorpej sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    978   1.63   thorpej {
    979   1.63   thorpej 	struct sys_timer_gettime_args /* {
    980   1.63   thorpej 		syscallarg(timer_t) timerid;
    981   1.63   thorpej 		syscallarg(struct itimerspec *) value;
    982   1.63   thorpej 	} */ *uap = v;
    983   1.63   thorpej 	struct itimerspec its;
    984   1.92      cube 	int error;
    985   1.92      cube 
    986   1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    987   1.92      cube 	    &its)) != 0)
    988   1.92      cube 		return error;
    989   1.92      cube 
    990   1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    991   1.92      cube }
    992   1.92      cube 
    993   1.92      cube int
    994   1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    995   1.92      cube {
    996   1.92      cube 	int s;
    997   1.63   thorpej 	struct ptimer *pt;
    998   1.92      cube 	struct itimerval aitv;
    999   1.63   thorpej 
   1000   1.63   thorpej 	if ((p->p_timers == NULL) ||
   1001   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
   1002   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
   1003   1.63   thorpej 		return (EINVAL);
   1004   1.63   thorpej 
   1005   1.63   thorpej 	s = splclock();
   1006   1.63   thorpej 	timer_gettime(pt, &aitv);
   1007    1.1       cgd 	splx(s);
   1008   1.63   thorpej 
   1009   1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
   1010   1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
   1011   1.63   thorpej 
   1012   1.92      cube 	return 0;
   1013   1.63   thorpej }
   1014   1.63   thorpej 
   1015   1.63   thorpej /*
   1016   1.63   thorpej  * Return the count of the number of times a periodic timer expired
   1017   1.63   thorpej  * while a notification was already pending. The counter is reset when
   1018   1.63   thorpej  * a timer expires and a notification can be posted.
   1019   1.63   thorpej  */
   1020   1.63   thorpej int
   1021   1.63   thorpej sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
   1022   1.63   thorpej {
   1023   1.63   thorpej 	struct sys_timer_getoverrun_args /* {
   1024   1.63   thorpej 		syscallarg(timer_t) timerid;
   1025   1.63   thorpej 	} */ *uap = v;
   1026   1.63   thorpej 	struct proc *p = l->l_proc;
   1027   1.63   thorpej 	int timerid;
   1028   1.63   thorpej 	struct ptimer *pt;
   1029   1.63   thorpej 
   1030   1.63   thorpej 	timerid = SCARG(uap, timerid);
   1031   1.63   thorpej 
   1032   1.63   thorpej 	if ((p->p_timers == NULL) ||
   1033   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
   1034   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
   1035   1.63   thorpej 		return (EINVAL);
   1036   1.63   thorpej 
   1037   1.63   thorpej 	*retval = pt->pt_poverruns;
   1038   1.63   thorpej 
   1039   1.63   thorpej 	return (0);
   1040   1.63   thorpej }
   1041   1.63   thorpej 
   1042   1.63   thorpej /* Glue function that triggers an upcall; called from userret(). */
   1043   1.63   thorpej static void
   1044   1.63   thorpej timerupcall(struct lwp *l, void *arg)
   1045   1.63   thorpej {
   1046   1.64   nathanw 	struct ptimers *pt = (struct ptimers *)arg;
   1047   1.64   nathanw 	unsigned int i, fired, done;
   1048   1.74        cl 
   1049   1.81        cl 	KDASSERT(l->l_proc->p_sa);
   1050   1.81        cl 	/* Bail out if we do not own the virtual processor */
   1051   1.82        cl 	if (l->l_savp->savp_lwp != l)
   1052   1.81        cl 		return ;
   1053   1.87     perry 
   1054   1.63   thorpej 	KERNEL_PROC_LOCK(l);
   1055   1.71      fvdl 
   1056   1.64   nathanw 	fired = pt->pts_fired;
   1057   1.64   nathanw 	done = 0;
   1058   1.64   nathanw 	while ((i = ffs(fired)) != 0) {
   1059   1.74        cl 		siginfo_t *si;
   1060   1.73  christos 		int mask = 1 << --i;
   1061   1.74        cl 		int f;
   1062   1.73  christos 
   1063   1.74        cl 		f = l->l_flag & L_SA;
   1064   1.74        cl 		l->l_flag &= ~L_SA;
   1065   1.94       chs 		si = siginfo_alloc(PR_WAITOK);
   1066   1.77   thorpej 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
   1067   1.64   nathanw 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
   1068   1.94       chs 		    sizeof(*si), si, siginfo_free) != 0) {
   1069   1.94       chs 			siginfo_free(si);
   1070   1.86   mycroft 			/* XXX What do we do here?? */
   1071   1.86   mycroft 		} else
   1072   1.73  christos 			done |= mask;
   1073   1.73  christos 		fired &= ~mask;
   1074   1.74        cl 		l->l_flag |= f;
   1075   1.64   nathanw 	}
   1076   1.64   nathanw 	pt->pts_fired &= ~done;
   1077   1.64   nathanw 	if (pt->pts_fired == 0)
   1078   1.63   thorpej 		l->l_proc->p_userret = NULL;
   1079   1.63   thorpej 
   1080   1.63   thorpej 	KERNEL_PROC_UNLOCK(l);
   1081   1.63   thorpej }
   1082   1.63   thorpej 
   1083   1.63   thorpej /*
   1084   1.63   thorpej  * Real interval timer expired:
   1085   1.63   thorpej  * send process whose timer expired an alarm signal.
   1086   1.63   thorpej  * If time is not set up to reload, then just return.
   1087   1.63   thorpej  * Else compute next time timer should go off which is > current time.
   1088   1.63   thorpej  * This is where delay in processing this timeout causes multiple
   1089   1.63   thorpej  * SIGALRM calls to be compressed into one.
   1090   1.63   thorpej  */
   1091   1.63   thorpej void
   1092   1.63   thorpej realtimerexpire(void *arg)
   1093   1.63   thorpej {
   1094  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1095  1.101    kardel 	struct timeval now;
   1096  1.101    kardel #endif
   1097   1.63   thorpej 	struct ptimer *pt;
   1098   1.63   thorpej 	int s;
   1099   1.63   thorpej 
   1100   1.63   thorpej 	pt = (struct ptimer *)arg;
   1101   1.63   thorpej 
   1102   1.63   thorpej 	itimerfire(pt);
   1103   1.63   thorpej 
   1104   1.63   thorpej 	if (!timerisset(&pt->pt_time.it_interval)) {
   1105   1.63   thorpej 		timerclear(&pt->pt_time.it_value);
   1106   1.63   thorpej 		return;
   1107   1.63   thorpej 	}
   1108  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1109  1.101    kardel 	for (;;) {
   1110  1.101    kardel 		s = splclock();	/* XXX need spl now? */
   1111  1.101    kardel 		timeradd(&pt->pt_time.it_value,
   1112  1.101    kardel 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1113  1.101    kardel 		getmicrotime(&now);
   1114  1.101    kardel 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
   1115  1.101    kardel 			/*
   1116  1.101    kardel 			 * Don't need to check hzto() return value, here.
   1117  1.101    kardel 			 * callout_reset() does it for us.
   1118  1.101    kardel 			 */
   1119  1.101    kardel 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1120  1.101    kardel 			    realtimerexpire, pt);
   1121  1.101    kardel 			splx(s);
   1122  1.101    kardel 			return;
   1123  1.101    kardel 		}
   1124  1.101    kardel 		splx(s);
   1125  1.101    kardel 		pt->pt_overruns++;
   1126  1.101    kardel 	}
   1127  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1128   1.63   thorpej 	for (;;) {
   1129   1.63   thorpej 		s = splclock();
   1130   1.63   thorpej 		timeradd(&pt->pt_time.it_value,
   1131   1.63   thorpej 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1132   1.63   thorpej 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
   1133   1.63   thorpej 			/*
   1134   1.63   thorpej 			 * Don't need to check hzto() return value, here.
   1135   1.63   thorpej 			 * callout_reset() does it for us.
   1136   1.63   thorpej 			 */
   1137   1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1138   1.63   thorpej 			    realtimerexpire, pt);
   1139   1.63   thorpej 			splx(s);
   1140   1.63   thorpej 			return;
   1141   1.63   thorpej 		}
   1142   1.63   thorpej 		splx(s);
   1143   1.63   thorpej 		pt->pt_overruns++;
   1144   1.63   thorpej 	}
   1145  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1146   1.63   thorpej }
   1147   1.63   thorpej 
   1148   1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1149   1.63   thorpej /* ARGSUSED */
   1150   1.63   thorpej int
   1151   1.63   thorpej sys_getitimer(struct lwp *l, void *v, register_t *retval)
   1152   1.63   thorpej {
   1153   1.63   thorpej 	struct sys_getitimer_args /* {
   1154   1.63   thorpej 		syscallarg(int) which;
   1155   1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1156   1.63   thorpej 	} */ *uap = v;
   1157   1.63   thorpej 	struct proc *p = l->l_proc;
   1158   1.63   thorpej 	struct itimerval aitv;
   1159   1.91      cube 	int error;
   1160   1.91      cube 
   1161   1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1162   1.91      cube 	if (error)
   1163   1.91      cube 		return error;
   1164   1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1165   1.91      cube }
   1166   1.63   thorpej 
   1167   1.91      cube int
   1168   1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1169   1.91      cube {
   1170   1.91      cube 	int s;
   1171   1.63   thorpej 
   1172   1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
   1173   1.63   thorpej 		return (EINVAL);
   1174   1.63   thorpej 
   1175   1.63   thorpej 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
   1176   1.91      cube 		timerclear(&itvp->it_value);
   1177   1.91      cube 		timerclear(&itvp->it_interval);
   1178   1.63   thorpej 	} else {
   1179   1.63   thorpej 		s = splclock();
   1180   1.91      cube 		timer_gettime(p->p_timers->pts_timers[which], itvp);
   1181   1.63   thorpej 		splx(s);
   1182   1.63   thorpej 	}
   1183   1.63   thorpej 
   1184   1.91      cube 	return 0;
   1185    1.1       cgd }
   1186    1.1       cgd 
   1187   1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1188    1.1       cgd /* ARGSUSED */
   1189    1.3    andrew int
   1190   1.63   thorpej sys_setitimer(struct lwp *l, void *v, register_t *retval)
   1191   1.15   thorpej {
   1192   1.45  augustss 	struct sys_setitimer_args /* {
   1193   1.30   mycroft 		syscallarg(int) which;
   1194   1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1195   1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1196   1.15   thorpej 	} */ *uap = v;
   1197   1.63   thorpej 	struct proc *p = l->l_proc;
   1198   1.30   mycroft 	int which = SCARG(uap, which);
   1199   1.21       cgd 	struct sys_getitimer_args getargs;
   1200   1.91      cube 	const struct itimerval *itvp;
   1201    1.1       cgd 	struct itimerval aitv;
   1202   1.91      cube 	int error;
   1203    1.1       cgd 
   1204   1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1205    1.1       cgd 		return (EINVAL);
   1206   1.11       cgd 	itvp = SCARG(uap, itv);
   1207   1.63   thorpej 	if (itvp &&
   1208   1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1209    1.1       cgd 		return (error);
   1210   1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1211   1.30   mycroft 		SCARG(&getargs, which) = which;
   1212   1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1213   1.63   thorpej 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1214   1.21       cgd 			return (error);
   1215   1.21       cgd 	}
   1216    1.1       cgd 	if (itvp == 0)
   1217    1.1       cgd 		return (0);
   1218   1.91      cube 
   1219   1.91      cube 	return dosetitimer(p, which, &aitv);
   1220   1.91      cube }
   1221   1.91      cube 
   1222   1.91      cube int
   1223   1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1224   1.91      cube {
   1225  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1226  1.101    kardel 	struct timeval now;
   1227  1.101    kardel #endif
   1228   1.91      cube 	struct ptimer *pt;
   1229   1.91      cube 	int s;
   1230   1.91      cube 
   1231   1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1232    1.1       cgd 		return (EINVAL);
   1233   1.63   thorpej 
   1234   1.63   thorpej 	/*
   1235   1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1236   1.63   thorpej 	 * wants to clear the timer.
   1237   1.63   thorpej 	 */
   1238   1.91      cube 	if (!timerisset(&itvp->it_value) &&
   1239   1.63   thorpej 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1240   1.63   thorpej 		return (0);
   1241   1.63   thorpej 
   1242   1.63   thorpej 	if (p->p_timers == NULL)
   1243   1.63   thorpej 		timers_alloc(p);
   1244   1.63   thorpej 	if (p->p_timers->pts_timers[which] == NULL) {
   1245   1.63   thorpej 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1246   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1247   1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1248   1.63   thorpej 		pt->pt_overruns = 0;
   1249   1.63   thorpej 		pt->pt_proc = p;
   1250   1.63   thorpej 		pt->pt_type = which;
   1251   1.64   nathanw 		pt->pt_entry = which;
   1252   1.63   thorpej 		switch (which) {
   1253   1.63   thorpej 		case ITIMER_REAL:
   1254   1.63   thorpej 			callout_init(&pt->pt_ch);
   1255   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1256   1.63   thorpej 			break;
   1257   1.63   thorpej 		case ITIMER_VIRTUAL:
   1258   1.63   thorpej 			pt->pt_active = 0;
   1259   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1260   1.63   thorpej 			break;
   1261   1.63   thorpej 		case ITIMER_PROF:
   1262   1.63   thorpej 			pt->pt_active = 0;
   1263   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1264   1.63   thorpej 			break;
   1265    1.1       cgd 		}
   1266    1.1       cgd 	} else
   1267   1.63   thorpej 		pt = p->p_timers->pts_timers[which];
   1268   1.63   thorpej 
   1269   1.91      cube 	pt->pt_time = *itvp;
   1270   1.63   thorpej 	p->p_timers->pts_timers[which] = pt;
   1271   1.63   thorpej 
   1272   1.63   thorpej 	s = splclock();
   1273   1.67   nathanw 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1274   1.67   nathanw 		/* Convert to absolute time */
   1275  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1276  1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1277  1.101    kardel 		getmicrotime(&now);
   1278  1.101    kardel 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1279  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1280   1.67   nathanw 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
   1281  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1282   1.67   nathanw 	}
   1283   1.63   thorpej 	timer_settime(pt);
   1284    1.1       cgd 	splx(s);
   1285   1.63   thorpej 
   1286    1.1       cgd 	return (0);
   1287    1.1       cgd }
   1288    1.1       cgd 
   1289   1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1290   1.63   thorpej void
   1291   1.63   thorpej timers_alloc(struct proc *p)
   1292   1.63   thorpej {
   1293   1.63   thorpej 	int i;
   1294   1.63   thorpej 	struct ptimers *pts;
   1295   1.63   thorpej 
   1296  1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1297   1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1298   1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1299   1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1300   1.63   thorpej 		pts->pts_timers[i] = NULL;
   1301   1.64   nathanw 	pts->pts_fired = 0;
   1302   1.63   thorpej 	p->p_timers = pts;
   1303   1.63   thorpej }
   1304   1.63   thorpej 
   1305    1.1       cgd /*
   1306   1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1307   1.63   thorpej  * then clean up all timers and free all the data structures. If
   1308   1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1309   1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1310   1.63   thorpej  * structure if none of those remain.
   1311    1.1       cgd  */
   1312    1.3    andrew void
   1313   1.63   thorpej timers_free(struct proc *p, int which)
   1314    1.6       cgd {
   1315   1.63   thorpej 	int i, s;
   1316   1.63   thorpej 	struct ptimers *pts;
   1317   1.63   thorpej 	struct ptimer *pt, *ptn;
   1318   1.63   thorpej 	struct timeval tv;
   1319   1.63   thorpej 
   1320   1.63   thorpej 	if (p->p_timers) {
   1321   1.63   thorpej 		pts = p->p_timers;
   1322   1.63   thorpej 		if (which == TIMERS_ALL)
   1323   1.63   thorpej 			i = 0;
   1324   1.63   thorpej 		else {
   1325   1.63   thorpej 			s = splclock();
   1326   1.63   thorpej 			timerclear(&tv);
   1327   1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1328   1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1329   1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1330   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1331   1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1332   1.63   thorpej 			if (ptn) {
   1333   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1334   1.63   thorpej 				    &ptn->pt_time.it_value);
   1335   1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1336   1.63   thorpej 				    ptn, pt_list);
   1337   1.63   thorpej 			}
   1338   1.63   thorpej 
   1339   1.63   thorpej 			timerclear(&tv);
   1340   1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1341   1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1342   1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1343   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1344   1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1345   1.63   thorpej 			if (ptn) {
   1346   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1347   1.63   thorpej 				    &ptn->pt_time.it_value);
   1348   1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1349   1.63   thorpej 				    pt_list);
   1350   1.63   thorpej 			}
   1351    1.1       cgd 			splx(s);
   1352   1.63   thorpej 			i = 3;
   1353   1.63   thorpej 		}
   1354   1.63   thorpej 		for ( ; i < TIMER_MAX; i++)
   1355   1.63   thorpej 			if ((pt = pts->pts_timers[i]) != NULL) {
   1356   1.63   thorpej 				if (pt->pt_type == CLOCK_REALTIME)
   1357   1.63   thorpej 					callout_stop(&pt->pt_ch);
   1358   1.63   thorpej 				pts->pts_timers[i] = NULL;
   1359   1.63   thorpej 				pool_put(&ptimer_pool, pt);
   1360   1.63   thorpej 			}
   1361   1.63   thorpej 		if ((pts->pts_timers[0] == NULL) &&
   1362   1.63   thorpej 		    (pts->pts_timers[1] == NULL) &&
   1363   1.63   thorpej 		    (pts->pts_timers[2] == NULL)) {
   1364   1.63   thorpej 			p->p_timers = NULL;
   1365   1.97    simonb 			pool_put(&ptimers_pool, pts);
   1366    1.1       cgd 		}
   1367    1.1       cgd 	}
   1368    1.1       cgd }
   1369    1.1       cgd 
   1370    1.1       cgd /*
   1371    1.1       cgd  * Check that a proposed value to load into the .it_value or
   1372    1.1       cgd  * .it_interval part of an interval timer is acceptable, and
   1373    1.1       cgd  * fix it to have at least minimal value (i.e. if it is less
   1374    1.1       cgd  * than the resolution of the clock, round it up.)
   1375    1.1       cgd  */
   1376    1.3    andrew int
   1377   1.63   thorpej itimerfix(struct timeval *tv)
   1378    1.1       cgd {
   1379    1.1       cgd 
   1380   1.59  christos 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
   1381    1.1       cgd 		return (EINVAL);
   1382    1.1       cgd 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
   1383    1.1       cgd 		tv->tv_usec = tick;
   1384    1.1       cgd 	return (0);
   1385    1.1       cgd }
   1386    1.1       cgd 
   1387  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1388  1.101    kardel int
   1389  1.101    kardel itimespecfix(struct timespec *ts)
   1390  1.101    kardel {
   1391  1.101    kardel 
   1392  1.101    kardel 	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
   1393  1.101    kardel 		return (EINVAL);
   1394  1.101    kardel 	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
   1395  1.101    kardel 		ts->tv_nsec = tick * 1000;
   1396  1.101    kardel 	return (0);
   1397  1.101    kardel }
   1398  1.101    kardel #endif /* __HAVE_TIMECOUNTER */
   1399  1.101    kardel 
   1400    1.1       cgd /*
   1401    1.1       cgd  * Decrement an interval timer by a specified number
   1402    1.1       cgd  * of microseconds, which must be less than a second,
   1403    1.1       cgd  * i.e. < 1000000.  If the timer expires, then reload
   1404    1.1       cgd  * it.  In this case, carry over (usec - old value) to
   1405    1.8       cgd  * reduce the value reloaded into the timer so that
   1406    1.1       cgd  * the timer does not drift.  This routine assumes
   1407    1.1       cgd  * that it is called in a context where the timers
   1408    1.1       cgd  * on which it is operating cannot change in value.
   1409    1.1       cgd  */
   1410    1.3    andrew int
   1411   1.63   thorpej itimerdecr(struct ptimer *pt, int usec)
   1412   1.63   thorpej {
   1413   1.45  augustss 	struct itimerval *itp;
   1414    1.1       cgd 
   1415   1.63   thorpej 	itp = &pt->pt_time;
   1416    1.1       cgd 	if (itp->it_value.tv_usec < usec) {
   1417    1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1418    1.1       cgd 			/* expired, and already in next interval */
   1419    1.1       cgd 			usec -= itp->it_value.tv_usec;
   1420    1.1       cgd 			goto expire;
   1421    1.1       cgd 		}
   1422    1.1       cgd 		itp->it_value.tv_usec += 1000000;
   1423    1.1       cgd 		itp->it_value.tv_sec--;
   1424    1.1       cgd 	}
   1425    1.1       cgd 	itp->it_value.tv_usec -= usec;
   1426    1.1       cgd 	usec = 0;
   1427    1.1       cgd 	if (timerisset(&itp->it_value))
   1428    1.1       cgd 		return (1);
   1429    1.1       cgd 	/* expired, exactly at end of interval */
   1430    1.1       cgd expire:
   1431    1.1       cgd 	if (timerisset(&itp->it_interval)) {
   1432    1.1       cgd 		itp->it_value = itp->it_interval;
   1433    1.1       cgd 		itp->it_value.tv_usec -= usec;
   1434    1.1       cgd 		if (itp->it_value.tv_usec < 0) {
   1435    1.1       cgd 			itp->it_value.tv_usec += 1000000;
   1436    1.1       cgd 			itp->it_value.tv_sec--;
   1437    1.1       cgd 		}
   1438   1.63   thorpej 		timer_settime(pt);
   1439    1.1       cgd 	} else
   1440    1.1       cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1441    1.1       cgd 	return (0);
   1442   1.42       cgd }
   1443   1.42       cgd 
   1444   1.63   thorpej void
   1445   1.63   thorpej itimerfire(struct ptimer *pt)
   1446   1.63   thorpej {
   1447   1.63   thorpej 	struct proc *p = pt->pt_proc;
   1448   1.82        cl 	struct sadata_vp *vp;
   1449   1.64   nathanw 	int s;
   1450   1.82        cl 	unsigned int i;
   1451   1.78        cl 
   1452   1.63   thorpej 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1453   1.63   thorpej 		/*
   1454   1.63   thorpej 		 * No RT signal infrastructure exists at this time;
   1455   1.63   thorpej 		 * just post the signal number and throw away the
   1456   1.63   thorpej 		 * value.
   1457   1.63   thorpej 		 */
   1458   1.63   thorpej 		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
   1459   1.63   thorpej 			pt->pt_overruns++;
   1460   1.63   thorpej 		else {
   1461   1.75  christos 			ksiginfo_t ksi;
   1462   1.75  christos 			(void)memset(&ksi, 0, sizeof(ksi));
   1463   1.75  christos 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1464   1.75  christos 			ksi.ksi_code = SI_TIMER;
   1465   1.75  christos 			ksi.ksi_sigval = pt->pt_ev.sigev_value;
   1466   1.63   thorpej 			pt->pt_poverruns = pt->pt_overruns;
   1467   1.63   thorpej 			pt->pt_overruns = 0;
   1468   1.75  christos 			kpsignal(p, &ksi, NULL);
   1469   1.63   thorpej 		}
   1470   1.63   thorpej 	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
   1471   1.63   thorpej 		/* Cause the process to generate an upcall when it returns. */
   1472   1.63   thorpej 
   1473   1.63   thorpej 		if (p->p_userret == NULL) {
   1474   1.70   nathanw 			/*
   1475   1.70   nathanw 			 * XXX stop signals can be processed inside tsleep,
   1476   1.70   nathanw 			 * which can be inside sa_yield's inner loop, which
   1477   1.70   nathanw 			 * makes testing for sa_idle alone insuffucent to
   1478   1.70   nathanw 			 * determine if we really should call setrunnable.
   1479   1.70   nathanw 			 */
   1480   1.63   thorpej 			pt->pt_poverruns = pt->pt_overruns;
   1481   1.63   thorpej 			pt->pt_overruns = 0;
   1482   1.64   nathanw 			i = 1 << pt->pt_entry;
   1483   1.64   nathanw 			p->p_timers->pts_fired = i;
   1484   1.63   thorpej 			p->p_userret = timerupcall;
   1485   1.64   nathanw 			p->p_userret_arg = p->p_timers;
   1486   1.87     perry 
   1487   1.78        cl 			SCHED_LOCK(s);
   1488   1.82        cl 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1489   1.82        cl 				if (vp->savp_lwp->l_flag & L_SA_IDLE) {
   1490   1.82        cl 					vp->savp_lwp->l_flag &= ~L_SA_IDLE;
   1491   1.82        cl 					sched_wakeup(vp->savp_lwp);
   1492   1.82        cl 					break;
   1493   1.82        cl 				}
   1494   1.78        cl 			}
   1495   1.78        cl 			SCHED_UNLOCK(s);
   1496   1.64   nathanw 		} else if (p->p_userret == timerupcall) {
   1497   1.64   nathanw 			i = 1 << pt->pt_entry;
   1498   1.64   nathanw 			if ((p->p_timers->pts_fired & i) == 0) {
   1499   1.64   nathanw 				pt->pt_poverruns = pt->pt_overruns;
   1500   1.64   nathanw 				pt->pt_overruns = 0;
   1501   1.66  jdolecek 				p->p_timers->pts_fired |= i;
   1502   1.64   nathanw 			} else
   1503   1.64   nathanw 				pt->pt_overruns++;
   1504   1.64   nathanw 		} else {
   1505   1.63   thorpej 			pt->pt_overruns++;
   1506   1.78        cl 			if ((p->p_flag & P_WEXIT) == 0)
   1507   1.78        cl 				printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
   1508   1.78        cl 				    p->p_pid, pt->pt_overruns,
   1509   1.78        cl 				    pt->pt_ev.sigev_value.sival_int,
   1510   1.78        cl 				    p->p_userret);
   1511   1.64   nathanw 		}
   1512   1.63   thorpej 	}
   1513   1.63   thorpej 
   1514   1.63   thorpej }
   1515   1.63   thorpej 
   1516   1.42       cgd /*
   1517   1.42       cgd  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1518   1.42       cgd  * for usage and rationale.
   1519   1.42       cgd  */
   1520   1.42       cgd int
   1521   1.63   thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1522   1.42       cgd {
   1523   1.49    itojun 	struct timeval tv, delta;
   1524  1.101    kardel 	int rv = 0;
   1525  1.101    kardel #ifndef __HAVE_TIMECOUNTER
   1526  1.101    kardel 	int s;
   1527  1.101    kardel #endif
   1528   1.42       cgd 
   1529  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1530  1.101    kardel 	getmicrouptime(&tv);
   1531  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1532   1.63   thorpej 	s = splclock();
   1533   1.49    itojun 	tv = mono_time;
   1534   1.49    itojun 	splx(s);
   1535  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1536   1.49    itojun 	timersub(&tv, lasttime, &delta);
   1537   1.42       cgd 
   1538   1.42       cgd 	/*
   1539   1.42       cgd 	 * check for 0,0 is so that the message will be seen at least once,
   1540   1.42       cgd 	 * even if interval is huge.
   1541   1.42       cgd 	 */
   1542   1.42       cgd 	if (timercmp(&delta, mininterval, >=) ||
   1543   1.42       cgd 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1544   1.49    itojun 		*lasttime = tv;
   1545   1.42       cgd 		rv = 1;
   1546   1.42       cgd 	}
   1547   1.50    itojun 
   1548   1.50    itojun 	return (rv);
   1549   1.50    itojun }
   1550   1.50    itojun 
   1551   1.50    itojun /*
   1552   1.50    itojun  * ppsratecheck(): packets (or events) per second limitation.
   1553   1.50    itojun  */
   1554   1.50    itojun int
   1555   1.63   thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1556   1.50    itojun {
   1557   1.50    itojun 	struct timeval tv, delta;
   1558  1.101    kardel 	int rv;
   1559  1.101    kardel #ifndef __HAVE_TIMECOUNTER
   1560  1.101    kardel 	int s;
   1561  1.101    kardel #endif
   1562   1.50    itojun 
   1563  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1564  1.101    kardel 	getmicrouptime(&tv);
   1565  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1566   1.63   thorpej 	s = splclock();
   1567   1.50    itojun 	tv = mono_time;
   1568   1.50    itojun 	splx(s);
   1569  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1570   1.50    itojun 	timersub(&tv, lasttime, &delta);
   1571   1.50    itojun 
   1572   1.50    itojun 	/*
   1573   1.50    itojun 	 * check for 0,0 is so that the message will be seen at least once.
   1574   1.50    itojun 	 * if more than one second have passed since the last update of
   1575   1.50    itojun 	 * lasttime, reset the counter.
   1576   1.50    itojun 	 *
   1577   1.50    itojun 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1578   1.50    itojun 	 * try to use *curpps for stat purposes as well.
   1579   1.50    itojun 	 */
   1580   1.50    itojun 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1581   1.50    itojun 	    delta.tv_sec >= 1) {
   1582   1.50    itojun 		*lasttime = tv;
   1583   1.50    itojun 		*curpps = 0;
   1584   1.69    dyoung 	}
   1585   1.69    dyoung 	if (maxpps < 0)
   1586   1.53    itojun 		rv = 1;
   1587   1.53    itojun 	else if (*curpps < maxpps)
   1588   1.50    itojun 		rv = 1;
   1589   1.50    itojun 	else
   1590   1.50    itojun 		rv = 0;
   1591   1.50    itojun 
   1592   1.51     jhawk #if 1 /*DIAGNOSTIC?*/
   1593   1.50    itojun 	/* be careful about wrap-around */
   1594   1.50    itojun 	if (*curpps + 1 > *curpps)
   1595   1.50    itojun 		*curpps = *curpps + 1;
   1596   1.50    itojun #else
   1597   1.50    itojun 	/*
   1598   1.50    itojun 	 * assume that there's not too many calls to this function.
   1599   1.50    itojun 	 * not sure if the assumption holds, as it depends on *caller's*
   1600   1.50    itojun 	 * behavior, not the behavior of this function.
   1601   1.50    itojun 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1602   1.51     jhawk 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1603   1.50    itojun 	 */
   1604   1.50    itojun 	*curpps = *curpps + 1;
   1605   1.50    itojun #endif
   1606   1.42       cgd 
   1607   1.42       cgd 	return (rv);
   1608    1.1       cgd }
   1609