Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.105.4.4
      1  1.105.4.4        ad /*	$NetBSD: kern_time.c,v 1.105.4.4 2006/11/18 21:39:22 ad Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4       1.88   mycroft  * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8       1.42       cgd  * by Christopher G. Demetriou.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  * 3. All advertising materials mentioning features or use of this software
     19       1.42       cgd  *    must display the following acknowledgement:
     20       1.42       cgd  *	This product includes software developed by the NetBSD
     21       1.42       cgd  *	Foundation, Inc. and its contributors.
     22       1.42       cgd  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23       1.42       cgd  *    contributors may be used to endorse or promote products derived
     24       1.42       cgd  *    from this software without specific prior written permission.
     25       1.42       cgd  *
     26       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     37       1.42       cgd  */
     38        1.9       cgd 
     39        1.1       cgd /*
     40        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     41        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     42        1.1       cgd  *
     43        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     44        1.1       cgd  * modification, are permitted provided that the following conditions
     45        1.1       cgd  * are met:
     46        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     47        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     48        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     49        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     50        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     51       1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     52        1.1       cgd  *    may be used to endorse or promote products derived from this software
     53        1.1       cgd  *    without specific prior written permission.
     54        1.1       cgd  *
     55        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65        1.1       cgd  * SUCH DAMAGE.
     66        1.1       cgd  *
     67       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68        1.1       cgd  */
     69       1.58     lukem 
     70       1.58     lukem #include <sys/cdefs.h>
     71  1.105.4.4        ad __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.105.4.4 2006/11/18 21:39:22 ad Exp $");
     72       1.31   thorpej 
     73       1.31   thorpej #include "fs_nfs.h"
     74       1.54     bjh21 #include "opt_nfs.h"
     75       1.34   thorpej #include "opt_nfsserver.h"
     76        1.1       cgd 
     77        1.5   mycroft #include <sys/param.h>
     78        1.5   mycroft #include <sys/resourcevar.h>
     79        1.5   mycroft #include <sys/kernel.h>
     80        1.8       cgd #include <sys/systm.h>
     81        1.5   mycroft #include <sys/proc.h>
     82       1.63   thorpej #include <sys/sa.h>
     83       1.63   thorpej #include <sys/savar.h>
     84        1.8       cgd #include <sys/vnode.h>
     85       1.17  christos #include <sys/signalvar.h>
     86       1.25     perry #include <sys/syslog.h>
     87      1.101    kardel #ifdef __HAVE_TIMECOUNTER
     88      1.101    kardel #include <sys/timetc.h>
     89      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
     90       1.95      cube #include <sys/timevar.h>
     91      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
     92       1.99      elad #include <sys/kauth.h>
     93        1.1       cgd 
     94       1.11       cgd #include <sys/mount.h>
     95       1.11       cgd #include <sys/syscallargs.h>
     96       1.19  christos 
     97       1.37   thorpej #include <uvm/uvm_extern.h>
     98       1.37   thorpej 
     99       1.26   thorpej #if defined(NFS) || defined(NFSSERVER)
    100       1.20      fvdl #include <nfs/rpcv2.h>
    101       1.20      fvdl #include <nfs/nfsproto.h>
    102       1.93      jmmv #include <nfs/nfs.h>
    103       1.19  christos #include <nfs/nfs_var.h>
    104       1.19  christos #endif
    105       1.17  christos 
    106        1.5   mycroft #include <machine/cpu.h>
    107       1.23       cgd 
    108       1.97    simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    109       1.97    simonb     &pool_allocator_nointr);
    110       1.97    simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    111       1.97    simonb     &pool_allocator_nointr);
    112       1.97    simonb 
    113       1.63   thorpej static void timerupcall(struct lwp *, void *);
    114      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    115      1.101    kardel static int itimespecfix(struct timespec *);		/* XXX move itimerfix to timespecs */
    116      1.101    kardel #endif /* __HAVE_TIMECOUNTER */
    117       1.63   thorpej 
    118       1.63   thorpej /* Time of day and interval timer support.
    119        1.1       cgd  *
    120        1.1       cgd  * These routines provide the kernel entry points to get and set
    121        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    122        1.1       cgd  * here provide support for adding and subtracting timeval structures
    123        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    124        1.1       cgd  * timers when they expire.
    125        1.1       cgd  */
    126        1.1       cgd 
    127       1.22       jtc /* This function is used by clock_settime and settimeofday */
    128       1.39      tron int
    129       1.98  christos settime(struct proc *p, struct timespec *ts)
    130       1.22       jtc {
    131       1.98  christos 	struct timeval delta, tv;
    132      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    133      1.101    kardel 	struct timeval now;
    134      1.101    kardel 	struct timespec ts1;
    135      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    136       1.47   thorpej 	struct cpu_info *ci;
    137       1.22       jtc 	int s;
    138       1.22       jtc 
    139       1.98  christos 	/*
    140       1.98  christos 	 * Don't allow the time to be set forward so far it will wrap
    141       1.98  christos 	 * and become negative, thus allowing an attacker to bypass
    142       1.98  christos 	 * the next check below.  The cutoff is 1 year before rollover
    143       1.98  christos 	 * occurs, so even if the attacker uses adjtime(2) to move
    144       1.98  christos 	 * the time past the cutoff, it will take a very long time
    145       1.98  christos 	 * to get to the wrap point.
    146       1.98  christos 	 *
    147       1.98  christos 	 * XXX: we check against INT_MAX since on 64-bit
    148       1.98  christos 	 *	platforms, sizeof(int) != sizeof(long) and
    149       1.98  christos 	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
    150       1.98  christos 	 */
    151       1.98  christos 	if (ts->tv_sec > INT_MAX - 365*24*60*60) {
    152  1.105.4.1        ad 		struct proc *pp;
    153  1.105.4.1        ad 
    154  1.105.4.1        ad 		rw_enter(&proclist_lock, RW_READER);
    155  1.105.4.1        ad 		pp = p->p_pptr;
    156  1.105.4.3        ad 		mutex_enter(&pp->p_mutex);
    157       1.98  christos 		log(LOG_WARNING, "pid %d (%s) "
    158       1.98  christos 		    "invoked by uid %d ppid %d (%s) "
    159       1.98  christos 		    "tried to set clock forward to %ld\n",
    160       1.99      elad 		    p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
    161       1.98  christos 		    pp->p_pid, pp->p_comm, (long)ts->tv_sec);
    162  1.105.4.3        ad 		mutex_exit(&pp->p_mutex);
    163  1.105.4.1        ad 		rw_exit(&proclist_lock);
    164       1.98  christos 		return (EPERM);
    165       1.98  christos 	}
    166       1.98  christos 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    167       1.98  christos 
    168       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    169       1.22       jtc 	s = splclock();
    170      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    171      1.101    kardel 	microtime(&now);
    172      1.101    kardel 	timersub(&tv, &now, &delta);
    173      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    174       1.98  christos 	timersub(&tv, &time, &delta);
    175      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    176  1.105.4.4        ad 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
    177  1.105.4.4        ad 	    kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
    178  1.105.4.4        ad 	    KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
    179       1.55      tron 		splx(s);
    180       1.29       tls 		return (EPERM);
    181       1.55      tron 	}
    182       1.29       tls #ifdef notyet
    183  1.105.4.4        ad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    184       1.55      tron 		splx(s);
    185       1.29       tls 		return (EPERM);
    186       1.55      tron 	}
    187       1.29       tls #endif
    188      1.103    kardel 
    189      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    190      1.103    kardel 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    191      1.101    kardel 	tc_setclock(&ts1);
    192      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    193       1.98  christos 	time = tv;
    194      1.103    kardel #endif /* !__HAVE_TIMECOUNTER */
    195      1.103    kardel 
    196       1.38   thorpej 	(void) spllowersoftclock();
    197      1.103    kardel 
    198       1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    199      1.103    kardel 
    200       1.47   thorpej 	/*
    201       1.47   thorpej 	 * XXXSMP
    202       1.47   thorpej 	 * This is wrong.  We should traverse a list of all
    203       1.47   thorpej 	 * CPUs and add the delta to the runtime of those
    204       1.47   thorpej 	 * CPUs which have a process on them.
    205       1.47   thorpej 	 */
    206       1.47   thorpej 	ci = curcpu();
    207       1.47   thorpej 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    208       1.47   thorpej 	    &ci->ci_schedstate.spc_runtime);
    209      1.101    kardel #if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
    210      1.101    kardel 	nqnfs_lease_updatetime(delta.tv_sec);
    211      1.101    kardel #endif
    212       1.22       jtc 	splx(s);
    213       1.22       jtc 	resettodr();
    214       1.29       tls 	return (0);
    215       1.22       jtc }
    216       1.22       jtc 
    217       1.22       jtc /* ARGSUSED */
    218       1.22       jtc int
    219       1.63   thorpej sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    220       1.22       jtc {
    221       1.45  augustss 	struct sys_clock_gettime_args /* {
    222       1.22       jtc 		syscallarg(clockid_t) clock_id;
    223       1.23       cgd 		syscallarg(struct timespec *) tp;
    224       1.23       cgd 	} */ *uap = v;
    225       1.22       jtc 	clockid_t clock_id;
    226       1.22       jtc 	struct timespec ats;
    227       1.22       jtc 
    228       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    229       1.61    simonb 	switch (clock_id) {
    230       1.61    simonb 	case CLOCK_REALTIME:
    231       1.96    simonb 		nanotime(&ats);
    232       1.61    simonb 		break;
    233       1.61    simonb 	case CLOCK_MONOTONIC:
    234      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    235      1.101    kardel 		nanouptime(&ats);
    236      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    237      1.101    kardel 		{
    238      1.101    kardel 		int s;
    239      1.101    kardel 
    240       1.61    simonb 		/* XXX "hz" granularity */
    241       1.63   thorpej 		s = splclock();
    242      1.101    kardel 		TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
    243       1.61    simonb 		splx(s);
    244      1.101    kardel 		}
    245      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    246       1.61    simonb 		break;
    247       1.61    simonb 	default:
    248       1.22       jtc 		return (EINVAL);
    249       1.61    simonb 	}
    250       1.22       jtc 
    251       1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    252       1.22       jtc }
    253       1.22       jtc 
    254       1.22       jtc /* ARGSUSED */
    255       1.22       jtc int
    256       1.90   thorpej sys_clock_settime(struct lwp *l, void *v, register_t *retval)
    257       1.22       jtc {
    258       1.45  augustss 	struct sys_clock_settime_args /* {
    259       1.22       jtc 		syscallarg(clockid_t) clock_id;
    260       1.23       cgd 		syscallarg(const struct timespec *) tp;
    261       1.23       cgd 	} */ *uap = v;
    262       1.22       jtc 	int error;
    263       1.22       jtc 
    264  1.105.4.4        ad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    265  1.105.4.4        ad 	    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
    266       1.22       jtc 		return (error);
    267       1.22       jtc 
    268      1.105        ad 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
    269       1.56      manu }
    270       1.56      manu 
    271       1.56      manu 
    272       1.56      manu int
    273       1.98  christos clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
    274       1.56      manu {
    275       1.60      manu 	struct timespec ats;
    276       1.56      manu 	int error;
    277       1.56      manu 
    278       1.60      manu 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    279       1.60      manu 		return (error);
    280       1.60      manu 
    281       1.61    simonb 	switch (clock_id) {
    282       1.61    simonb 	case CLOCK_REALTIME:
    283       1.98  christos 		if ((error = settime(p, &ats)) != 0)
    284       1.61    simonb 			return (error);
    285       1.61    simonb 		break;
    286       1.61    simonb 	case CLOCK_MONOTONIC:
    287       1.61    simonb 		return (EINVAL);	/* read-only clock */
    288       1.61    simonb 	default:
    289       1.56      manu 		return (EINVAL);
    290       1.61    simonb 	}
    291       1.22       jtc 
    292       1.22       jtc 	return 0;
    293       1.22       jtc }
    294       1.22       jtc 
    295       1.22       jtc int
    296       1.63   thorpej sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    297       1.22       jtc {
    298       1.45  augustss 	struct sys_clock_getres_args /* {
    299       1.22       jtc 		syscallarg(clockid_t) clock_id;
    300       1.23       cgd 		syscallarg(struct timespec *) tp;
    301       1.23       cgd 	} */ *uap = v;
    302       1.22       jtc 	clockid_t clock_id;
    303       1.22       jtc 	struct timespec ts;
    304       1.22       jtc 	int error = 0;
    305       1.22       jtc 
    306       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    307       1.61    simonb 	switch (clock_id) {
    308       1.61    simonb 	case CLOCK_REALTIME:
    309       1.61    simonb 	case CLOCK_MONOTONIC:
    310       1.22       jtc 		ts.tv_sec = 0;
    311      1.102    kardel #ifdef __HAVE_TIMECOUNTER
    312      1.102    kardel 		if (tc_getfrequency() > 1000000000)
    313      1.102    kardel 			ts.tv_nsec = 1;
    314      1.102    kardel 		else
    315      1.102    kardel 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    316      1.102    kardel #else /* !__HAVE_TIMECOUNTER */
    317       1.22       jtc 		ts.tv_nsec = 1000000000 / hz;
    318      1.102    kardel #endif /* !__HAVE_TIMECOUNTER */
    319       1.61    simonb 		break;
    320       1.61    simonb 	default:
    321       1.61    simonb 		return (EINVAL);
    322       1.61    simonb 	}
    323       1.22       jtc 
    324       1.61    simonb 	if (SCARG(uap, tp))
    325       1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    326       1.22       jtc 
    327       1.22       jtc 	return error;
    328       1.22       jtc }
    329       1.22       jtc 
    330       1.27       jtc /* ARGSUSED */
    331       1.27       jtc int
    332       1.63   thorpej sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    333       1.27       jtc {
    334      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    335      1.101    kardel 	static int nanowait;
    336      1.101    kardel 	struct sys_nanosleep_args/* {
    337      1.101    kardel 		syscallarg(struct timespec *) rqtp;
    338      1.101    kardel 		syscallarg(struct timespec *) rmtp;
    339      1.101    kardel 	} */ *uap = v;
    340      1.101    kardel 	struct timespec rmt, rqt;
    341      1.101    kardel 	int error, timo;
    342      1.101    kardel 
    343      1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    344      1.101    kardel 	if (error)
    345      1.101    kardel 		return (error);
    346      1.101    kardel 
    347      1.101    kardel 	if (itimespecfix(&rqt))
    348      1.101    kardel 		return (EINVAL);
    349      1.101    kardel 
    350      1.101    kardel 	timo = tstohz(&rqt);
    351      1.101    kardel 	/*
    352      1.101    kardel 	 * Avoid inadvertantly sleeping forever
    353      1.101    kardel 	 */
    354      1.101    kardel 	if (timo == 0)
    355      1.101    kardel 		timo = 1;
    356      1.101    kardel 
    357      1.104    kardel 	getnanouptime(&rmt);
    358      1.104    kardel 
    359      1.101    kardel 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    360      1.101    kardel 	if (error == ERESTART)
    361      1.101    kardel 		error = EINTR;
    362      1.101    kardel 	if (error == EWOULDBLOCK)
    363      1.101    kardel 		error = 0;
    364      1.101    kardel 
    365      1.101    kardel 	if (SCARG(uap, rmtp)) {
    366      1.101    kardel 		int error1;
    367      1.104    kardel 		struct timespec rmtend;
    368      1.101    kardel 
    369      1.104    kardel 		getnanouptime(&rmtend);
    370      1.101    kardel 
    371      1.104    kardel 		timespecsub(&rmtend, &rmt, &rmt);
    372      1.101    kardel 		timespecsub(&rqt, &rmt, &rmt);
    373      1.101    kardel 		if (rmt.tv_sec < 0)
    374      1.101    kardel 			timespecclear(&rmt);
    375      1.101    kardel 
    376      1.101    kardel 		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    377      1.101    kardel 			sizeof(rmt));
    378      1.101    kardel 		if (error1)
    379      1.101    kardel 			return (error1);
    380      1.101    kardel 	}
    381      1.101    kardel 
    382      1.101    kardel 	return error;
    383      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    384       1.27       jtc 	static int nanowait;
    385       1.45  augustss 	struct sys_nanosleep_args/* {
    386       1.27       jtc 		syscallarg(struct timespec *) rqtp;
    387       1.27       jtc 		syscallarg(struct timespec *) rmtp;
    388       1.27       jtc 	} */ *uap = v;
    389       1.27       jtc 	struct timespec rqt;
    390       1.27       jtc 	struct timespec rmt;
    391       1.27       jtc 	struct timeval atv, utv;
    392       1.27       jtc 	int error, s, timo;
    393       1.27       jtc 
    394       1.89  christos 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    395       1.27       jtc 	if (error)
    396       1.27       jtc 		return (error);
    397       1.27       jtc 
    398       1.85    atatat 	TIMESPEC_TO_TIMEVAL(&atv,&rqt);
    399       1.80  christos 	if (itimerfix(&atv))
    400       1.27       jtc 		return (EINVAL);
    401       1.27       jtc 
    402       1.27       jtc 	s = splclock();
    403       1.27       jtc 	timeradd(&atv,&time,&atv);
    404       1.27       jtc 	timo = hzto(&atv);
    405       1.63   thorpej 	/*
    406       1.27       jtc 	 * Avoid inadvertantly sleeping forever
    407       1.27       jtc 	 */
    408       1.27       jtc 	if (timo == 0)
    409       1.27       jtc 		timo = 1;
    410       1.27       jtc 	splx(s);
    411       1.27       jtc 
    412       1.27       jtc 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    413       1.27       jtc 	if (error == ERESTART)
    414       1.27       jtc 		error = EINTR;
    415       1.27       jtc 	if (error == EWOULDBLOCK)
    416       1.27       jtc 		error = 0;
    417       1.27       jtc 
    418       1.27       jtc 	if (SCARG(uap, rmtp)) {
    419       1.89  christos 		int error1;
    420       1.28       jtc 
    421       1.27       jtc 		s = splclock();
    422       1.27       jtc 		utv = time;
    423       1.27       jtc 		splx(s);
    424       1.27       jtc 
    425       1.27       jtc 		timersub(&atv, &utv, &utv);
    426       1.27       jtc 		if (utv.tv_sec < 0)
    427       1.27       jtc 			timerclear(&utv);
    428       1.27       jtc 
    429       1.27       jtc 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    430       1.89  christos 		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
    431       1.28       jtc 			sizeof(rmt));
    432       1.89  christos 		if (error1)
    433       1.89  christos 			return (error1);
    434       1.27       jtc 	}
    435       1.27       jtc 
    436       1.27       jtc 	return error;
    437      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    438       1.27       jtc }
    439       1.22       jtc 
    440        1.1       cgd /* ARGSUSED */
    441        1.3    andrew int
    442       1.63   thorpej sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    443       1.15   thorpej {
    444       1.45  augustss 	struct sys_gettimeofday_args /* {
    445       1.11       cgd 		syscallarg(struct timeval *) tp;
    446       1.84    simonb 		syscallarg(void *) tzp;		really "struct timezone *"
    447       1.15   thorpej 	} */ *uap = v;
    448        1.1       cgd 	struct timeval atv;
    449        1.1       cgd 	int error = 0;
    450       1.25     perry 	struct timezone tzfake;
    451        1.1       cgd 
    452       1.11       cgd 	if (SCARG(uap, tp)) {
    453        1.1       cgd 		microtime(&atv);
    454       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    455       1.17  christos 		if (error)
    456        1.1       cgd 			return (error);
    457        1.1       cgd 	}
    458       1.25     perry 	if (SCARG(uap, tzp)) {
    459       1.25     perry 		/*
    460       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    461       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    462       1.25     perry 		 */
    463       1.25     perry 		tzfake.tz_minuteswest = 0;
    464       1.25     perry 		tzfake.tz_dsttime = 0;
    465       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    466       1.25     perry 	}
    467        1.1       cgd 	return (error);
    468        1.1       cgd }
    469        1.1       cgd 
    470        1.1       cgd /* ARGSUSED */
    471        1.3    andrew int
    472       1.63   thorpej sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    473       1.15   thorpej {
    474       1.16   mycroft 	struct sys_settimeofday_args /* {
    475       1.24       cgd 		syscallarg(const struct timeval *) tv;
    476       1.84    simonb 		syscallarg(const void *) tzp;	really "const struct timezone *"
    477       1.15   thorpej 	} */ *uap = v;
    478       1.60      manu 	int error;
    479       1.60      manu 
    480  1.105.4.4        ad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    481  1.105.4.4        ad 	    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
    482       1.60      manu 		return (error);
    483       1.60      manu 
    484      1.105        ad 	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), l->l_proc);
    485       1.60      manu }
    486       1.60      manu 
    487       1.60      manu int
    488       1.90   thorpej settimeofday1(const struct timeval *utv, const struct timezone *utzp,
    489       1.90   thorpej     struct proc *p)
    490       1.60      manu {
    491       1.22       jtc 	struct timeval atv;
    492       1.98  christos 	struct timespec ts;
    493       1.22       jtc 	int error;
    494        1.1       cgd 
    495        1.8       cgd 	/* Verify all parameters before changing time. */
    496       1.25     perry 	/*
    497       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    498       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    499       1.25     perry 	 */
    500       1.98  christos 	if (utzp)
    501       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    502       1.63   thorpej 		    "(obsolete) kernel time zone\n", p->p_pid);
    503       1.98  christos 
    504       1.98  christos 	if (utv == NULL)
    505       1.98  christos 		return 0;
    506       1.98  christos 
    507       1.98  christos 	if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    508       1.98  christos 		return error;
    509       1.98  christos 	TIMEVAL_TO_TIMESPEC(&atv, &ts);
    510       1.98  christos 	return settime(p, &ts);
    511        1.1       cgd }
    512        1.1       cgd 
    513      1.101    kardel #ifndef __HAVE_TIMECOUNTER
    514        1.1       cgd int	tickdelta;			/* current clock skew, us. per tick */
    515        1.1       cgd long	timedelta;			/* unapplied time correction, us. */
    516        1.1       cgd long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    517      1.101    kardel #endif
    518      1.101    kardel 
    519       1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    520        1.1       cgd 
    521        1.1       cgd /* ARGSUSED */
    522        1.3    andrew int
    523       1.63   thorpej sys_adjtime(struct lwp *l, void *v, register_t *retval)
    524       1.15   thorpej {
    525       1.45  augustss 	struct sys_adjtime_args /* {
    526       1.24       cgd 		syscallarg(const struct timeval *) delta;
    527       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    528       1.15   thorpej 	} */ *uap = v;
    529       1.56      manu 	int error;
    530        1.1       cgd 
    531  1.105.4.4        ad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    532  1.105.4.4        ad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    533        1.1       cgd 		return (error);
    534       1.17  christos 
    535      1.105        ad 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    536       1.56      manu }
    537       1.56      manu 
    538       1.56      manu int
    539       1.90   thorpej adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    540       1.56      manu {
    541       1.60      manu 	struct timeval atv;
    542      1.101    kardel 	int error = 0;
    543      1.101    kardel 
    544      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    545      1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    546      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    547       1.56      manu 	long ndelta, ntickdelta, odelta;
    548       1.56      manu 	int s;
    549      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    550      1.101    kardel 
    551      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    552      1.101    kardel 	if (olddelta) {
    553      1.101    kardel 		atv.tv_sec = time_adjtime / 1000000;
    554      1.101    kardel 		atv.tv_usec = time_adjtime % 1000000;
    555      1.101    kardel 		if (atv.tv_usec < 0) {
    556      1.101    kardel 			atv.tv_usec += 1000000;
    557      1.101    kardel 			atv.tv_sec--;
    558      1.101    kardel 		}
    559      1.101    kardel 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    560      1.101    kardel 		if (error)
    561      1.101    kardel 			return (error);
    562      1.101    kardel 	}
    563      1.101    kardel 
    564      1.101    kardel 	if (delta) {
    565      1.101    kardel 		error = copyin(delta, &atv, sizeof(struct timeval));
    566      1.101    kardel 		if (error)
    567      1.101    kardel 			return (error);
    568      1.101    kardel 
    569      1.101    kardel 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    570      1.101    kardel 			atv.tv_usec;
    571        1.8       cgd 
    572      1.101    kardel 		if (time_adjtime)
    573      1.101    kardel 			/* We need to save the system time during shutdown */
    574      1.101    kardel 			time_adjusted |= 1;
    575      1.101    kardel 	}
    576      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    577       1.60      manu 	error = copyin(delta, &atv, sizeof(struct timeval));
    578       1.60      manu 	if (error)
    579       1.60      manu 		return (error);
    580       1.60      manu 
    581        1.8       cgd 	/*
    582        1.8       cgd 	 * Compute the total correction and the rate at which to apply it.
    583        1.8       cgd 	 * Round the adjustment down to a whole multiple of the per-tick
    584        1.8       cgd 	 * delta, so that after some number of incremental changes in
    585        1.8       cgd 	 * hardclock(), tickdelta will become zero, lest the correction
    586        1.8       cgd 	 * overshoot and start taking us away from the desired final time.
    587        1.8       cgd 	 */
    588       1.60      manu 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    589       1.41       hwr 	if (ndelta > bigadj || ndelta < -bigadj)
    590        1.8       cgd 		ntickdelta = 10 * tickadj;
    591        1.8       cgd 	else
    592        1.8       cgd 		ntickdelta = tickadj;
    593        1.8       cgd 	if (ndelta % ntickdelta)
    594        1.8       cgd 		ndelta = ndelta / ntickdelta * ntickdelta;
    595        1.8       cgd 
    596        1.8       cgd 	/*
    597        1.8       cgd 	 * To make hardclock()'s job easier, make the per-tick delta negative
    598        1.8       cgd 	 * if we want time to run slower; then hardclock can simply compute
    599        1.8       cgd 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    600        1.8       cgd 	 */
    601        1.8       cgd 	if (ndelta < 0)
    602        1.8       cgd 		ntickdelta = -ntickdelta;
    603       1.68       dsl 	if (ndelta != 0)
    604       1.68       dsl 		/* We need to save the system clock time during shutdown */
    605       1.68       dsl 		time_adjusted |= 1;
    606        1.1       cgd 	s = splclock();
    607        1.8       cgd 	odelta = timedelta;
    608        1.1       cgd 	timedelta = ndelta;
    609        1.8       cgd 	tickdelta = ntickdelta;
    610        1.1       cgd 	splx(s);
    611        1.1       cgd 
    612       1.56      manu 	if (olddelta) {
    613       1.60      manu 		atv.tv_sec = odelta / 1000000;
    614       1.60      manu 		atv.tv_usec = odelta % 1000000;
    615       1.79       chs 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    616        1.8       cgd 	}
    617      1.101    kardel #endif /* __HAVE_TIMECOUNTER */
    618      1.101    kardel 
    619       1.79       chs 	return error;
    620        1.1       cgd }
    621        1.1       cgd 
    622        1.1       cgd /*
    623       1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    624       1.63   thorpej  * timer_*() family of routines are supported.
    625        1.1       cgd  *
    626       1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    627       1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    628       1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    629       1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    630       1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    631       1.63   thorpej  * syscall.
    632        1.1       cgd  *
    633       1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    634       1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    635        1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    636       1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    637       1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    638       1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    639       1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    640       1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    641       1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    642       1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    643       1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    644       1.63   thorpej 
    645       1.63   thorpej /* Allocate a POSIX realtime timer. */
    646       1.63   thorpej int
    647       1.63   thorpej sys_timer_create(struct lwp *l, void *v, register_t *retval)
    648       1.63   thorpej {
    649       1.63   thorpej 	struct sys_timer_create_args /* {
    650       1.63   thorpej 		syscallarg(clockid_t) clock_id;
    651       1.63   thorpej 		syscallarg(struct sigevent *) evp;
    652       1.63   thorpej 		syscallarg(timer_t *) timerid;
    653       1.63   thorpej 	} */ *uap = v;
    654       1.92      cube 
    655       1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    656      1.105        ad 	    SCARG(uap, evp), copyin, l);
    657       1.92      cube }
    658       1.92      cube 
    659       1.92      cube int
    660       1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    661      1.105        ad     copyin_t fetch_event, struct lwp *l)
    662       1.92      cube {
    663       1.92      cube 	int error;
    664       1.92      cube 	timer_t timerid;
    665       1.63   thorpej 	struct ptimer *pt;
    666      1.105        ad 	struct proc *p;
    667      1.105        ad 
    668      1.105        ad 	p = l->l_proc;
    669       1.63   thorpej 
    670       1.63   thorpej 	if (id < CLOCK_REALTIME ||
    671       1.63   thorpej 	    id > CLOCK_PROF)
    672       1.63   thorpej 		return (EINVAL);
    673       1.63   thorpej 
    674       1.63   thorpej 	if (p->p_timers == NULL)
    675       1.63   thorpej 		timers_alloc(p);
    676       1.63   thorpej 
    677       1.63   thorpej 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    678       1.63   thorpej 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    679       1.63   thorpej 		if (p->p_timers->pts_timers[timerid] == NULL)
    680       1.63   thorpej 			break;
    681       1.63   thorpej 
    682       1.63   thorpej 	if (timerid == TIMER_MAX)
    683       1.63   thorpej 		return EAGAIN;
    684       1.63   thorpej 
    685       1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    686       1.63   thorpej 	if (evp) {
    687       1.63   thorpej 		if (((error =
    688       1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    689       1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    690       1.63   thorpej 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    691       1.63   thorpej 			pool_put(&ptimer_pool, pt);
    692       1.63   thorpej 			return (error ? error : EINVAL);
    693       1.63   thorpej 		}
    694       1.63   thorpej 	} else {
    695       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    696       1.63   thorpej 		switch (id) {
    697       1.63   thorpej 		case CLOCK_REALTIME:
    698       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    699       1.63   thorpej 			break;
    700       1.63   thorpej 		case CLOCK_VIRTUAL:
    701       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    702       1.63   thorpej 			break;
    703       1.63   thorpej 		case CLOCK_PROF:
    704       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    705       1.63   thorpej 			break;
    706       1.63   thorpej 		}
    707       1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    708       1.63   thorpej 	}
    709       1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    710       1.73  christos 	pt->pt_info.ksi_errno = 0;
    711       1.73  christos 	pt->pt_info.ksi_code = 0;
    712       1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    713      1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    714       1.73  christos 	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
    715       1.63   thorpej 
    716       1.63   thorpej 	pt->pt_type = id;
    717       1.63   thorpej 	pt->pt_proc = p;
    718       1.63   thorpej 	pt->pt_overruns = 0;
    719       1.63   thorpej 	pt->pt_poverruns = 0;
    720       1.64   nathanw 	pt->pt_entry = timerid;
    721       1.63   thorpej 	timerclear(&pt->pt_time.it_value);
    722       1.63   thorpej 	if (id == CLOCK_REALTIME)
    723       1.63   thorpej 		callout_init(&pt->pt_ch);
    724       1.63   thorpej 	else
    725       1.63   thorpej 		pt->pt_active = 0;
    726       1.63   thorpej 
    727       1.63   thorpej 	p->p_timers->pts_timers[timerid] = pt;
    728       1.63   thorpej 
    729       1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    730       1.63   thorpej }
    731       1.63   thorpej 
    732       1.63   thorpej /* Delete a POSIX realtime timer */
    733        1.3    andrew int
    734       1.63   thorpej sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    735       1.15   thorpej {
    736       1.63   thorpej 	struct sys_timer_delete_args /*  {
    737       1.63   thorpej 		syscallarg(timer_t) timerid;
    738       1.15   thorpej 	} */ *uap = v;
    739       1.63   thorpej 	struct proc *p = l->l_proc;
    740       1.65  jdolecek 	timer_t timerid;
    741       1.63   thorpej 	struct ptimer *pt, *ptn;
    742        1.1       cgd 	int s;
    743        1.1       cgd 
    744       1.63   thorpej 	timerid = SCARG(uap, timerid);
    745       1.63   thorpej 
    746       1.63   thorpej 	if ((p->p_timers == NULL) ||
    747       1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    748       1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    749        1.1       cgd 		return (EINVAL);
    750       1.63   thorpej 
    751       1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME)
    752       1.63   thorpej 		callout_stop(&pt->pt_ch);
    753       1.63   thorpej 	else if (pt->pt_active) {
    754       1.63   thorpej 		s = splclock();
    755       1.63   thorpej 		ptn = LIST_NEXT(pt, pt_list);
    756       1.63   thorpej 		LIST_REMOVE(pt, pt_list);
    757       1.63   thorpej 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    758       1.63   thorpej 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    759       1.63   thorpej 			    &ptn->pt_time.it_value);
    760       1.63   thorpej 		splx(s);
    761       1.63   thorpej 	}
    762       1.63   thorpej 
    763       1.63   thorpej 	p->p_timers->pts_timers[timerid] = NULL;
    764       1.63   thorpej 	pool_put(&ptimer_pool, pt);
    765       1.63   thorpej 
    766       1.63   thorpej 	return (0);
    767       1.63   thorpej }
    768       1.63   thorpej 
    769       1.63   thorpej /*
    770       1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    771       1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    772       1.67   nathanw  * time for virtual timers.
    773       1.63   thorpej  * Must be called at splclock().
    774       1.63   thorpej  */
    775       1.63   thorpej void
    776       1.63   thorpej timer_settime(struct ptimer *pt)
    777       1.63   thorpej {
    778       1.63   thorpej 	struct ptimer *ptn, *pptn;
    779       1.63   thorpej 	struct ptlist *ptl;
    780       1.63   thorpej 
    781       1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    782       1.63   thorpej 		callout_stop(&pt->pt_ch);
    783       1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    784       1.63   thorpej 			/*
    785       1.63   thorpej 			 * Don't need to check hzto() return value, here.
    786       1.63   thorpej 			 * callout_reset() does it for us.
    787       1.63   thorpej 			 */
    788       1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    789       1.63   thorpej 			    realtimerexpire, pt);
    790       1.63   thorpej 		}
    791       1.63   thorpej 	} else {
    792       1.63   thorpej 		if (pt->pt_active) {
    793       1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    794       1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    795       1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    796       1.63   thorpej 				timeradd(&pt->pt_time.it_value,
    797       1.63   thorpej 				    &ptn->pt_time.it_value,
    798       1.63   thorpej 				    &ptn->pt_time.it_value);
    799       1.63   thorpej 		}
    800       1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    801       1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    802       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    803       1.63   thorpej 			else
    804       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    805       1.63   thorpej 
    806       1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    807       1.63   thorpej 			     ptn && timercmp(&pt->pt_time.it_value,
    808       1.63   thorpej 				 &ptn->pt_time.it_value, >);
    809       1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    810       1.63   thorpej 				timersub(&pt->pt_time.it_value,
    811       1.63   thorpej 				    &ptn->pt_time.it_value,
    812       1.63   thorpej 				    &pt->pt_time.it_value);
    813       1.63   thorpej 
    814       1.63   thorpej 			if (pptn)
    815       1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    816       1.63   thorpej 			else
    817       1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    818       1.63   thorpej 
    819       1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    820       1.63   thorpej 				timersub(&ptn->pt_time.it_value,
    821       1.63   thorpej 				    &pt->pt_time.it_value,
    822       1.63   thorpej 				    &ptn->pt_time.it_value);
    823       1.63   thorpej 
    824       1.63   thorpej 			pt->pt_active = 1;
    825       1.63   thorpej 		} else
    826       1.63   thorpej 			pt->pt_active = 0;
    827       1.63   thorpej 	}
    828       1.63   thorpej }
    829       1.63   thorpej 
    830       1.63   thorpej void
    831       1.63   thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    832       1.63   thorpej {
    833      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    834      1.101    kardel 	struct timeval now;
    835      1.101    kardel #endif
    836       1.63   thorpej 	struct ptimer *ptn;
    837       1.63   thorpej 
    838       1.63   thorpej 	*aitv = pt->pt_time;
    839       1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    840        1.1       cgd 		/*
    841       1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    842       1.63   thorpej 		 * part of real time timer.  If time for real time
    843       1.63   thorpej 		 * timer has passed return 0, else return difference
    844       1.63   thorpej 		 * between current time and time for the timer to go
    845       1.63   thorpej 		 * off.
    846        1.1       cgd 		 */
    847       1.63   thorpej 		if (timerisset(&aitv->it_value)) {
    848      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    849      1.101    kardel 			getmicrotime(&now);
    850      1.101    kardel 			if (timercmp(&aitv->it_value, &now, <))
    851      1.101    kardel 				timerclear(&aitv->it_value);
    852      1.101    kardel 			else
    853      1.101    kardel 				timersub(&aitv->it_value, &now,
    854      1.101    kardel 				    &aitv->it_value);
    855      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    856       1.63   thorpej 			if (timercmp(&aitv->it_value, &time, <))
    857       1.63   thorpej 				timerclear(&aitv->it_value);
    858        1.1       cgd 			else
    859       1.63   thorpej 				timersub(&aitv->it_value, &time,
    860       1.63   thorpej 				    &aitv->it_value);
    861      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    862       1.36   thorpej 		}
    863       1.63   thorpej 	} else if (pt->pt_active) {
    864       1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    865       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    866       1.63   thorpej 		else
    867       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    868       1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    869       1.63   thorpej 			timeradd(&aitv->it_value,
    870       1.63   thorpej 			    &ptn->pt_time.it_value, &aitv->it_value);
    871       1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    872        1.1       cgd 	} else
    873       1.63   thorpej 		timerclear(&aitv->it_value);
    874       1.63   thorpej }
    875       1.63   thorpej 
    876       1.63   thorpej 
    877       1.63   thorpej 
    878       1.63   thorpej /* Set and arm a POSIX realtime timer */
    879       1.63   thorpej int
    880       1.63   thorpej sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    881       1.63   thorpej {
    882       1.63   thorpej 	struct sys_timer_settime_args /* {
    883       1.63   thorpej 		syscallarg(timer_t) timerid;
    884       1.63   thorpej 		syscallarg(int) flags;
    885       1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    886       1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    887       1.63   thorpej 	} */ *uap = v;
    888       1.92      cube 	int error;
    889       1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    890       1.92      cube 
    891       1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    892       1.92      cube 	    sizeof(struct itimerspec))) != 0)
    893       1.92      cube 		return (error);
    894       1.92      cube 
    895       1.92      cube 	if (SCARG(uap, ovalue))
    896       1.92      cube 		ovp = &ovalue;
    897       1.92      cube 
    898       1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    899       1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    900       1.92      cube 		return error;
    901       1.92      cube 
    902       1.92      cube 	if (ovp)
    903       1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    904       1.92      cube 		    sizeof(struct itimerspec));
    905       1.92      cube 	return 0;
    906       1.92      cube }
    907       1.92      cube 
    908       1.92      cube int
    909       1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    910       1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    911       1.92      cube {
    912      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    913      1.101    kardel 	struct timeval now;
    914      1.101    kardel #endif
    915       1.63   thorpej 	struct itimerval val, oval;
    916       1.63   thorpej 	struct ptimer *pt;
    917      1.101    kardel 	int s;
    918       1.63   thorpej 
    919       1.63   thorpej 	if ((p->p_timers == NULL) ||
    920       1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    921       1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    922       1.63   thorpej 		return (EINVAL);
    923       1.63   thorpej 
    924       1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    925       1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    926       1.63   thorpej 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    927       1.63   thorpej 		return (EINVAL);
    928       1.63   thorpej 
    929       1.63   thorpej 	oval = pt->pt_time;
    930       1.63   thorpej 	pt->pt_time = val;
    931       1.63   thorpej 
    932       1.63   thorpej 	s = splclock();
    933       1.67   nathanw 	/*
    934       1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    935       1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    936       1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    937       1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    938       1.67   nathanw 	 * negative, which would confuse the comparison tests.
    939       1.67   nathanw 	 */
    940       1.67   nathanw 	if (timerisset(&pt->pt_time.it_value)) {
    941       1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    942      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    943      1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    944      1.101    kardel 				getmicrotime(&now);
    945      1.101    kardel 				timeradd(&pt->pt_time.it_value, &now,
    946      1.101    kardel 				    &pt->pt_time.it_value);
    947      1.101    kardel 			}
    948      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    949       1.92      cube 			if ((flags & TIMER_ABSTIME) == 0)
    950       1.67   nathanw 				timeradd(&pt->pt_time.it_value, &time,
    951       1.67   nathanw 				    &pt->pt_time.it_value);
    952      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    953       1.67   nathanw 		} else {
    954       1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    955      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    956      1.101    kardel 				getmicrotime(&now);
    957      1.101    kardel 				timersub(&pt->pt_time.it_value, &now,
    958      1.101    kardel 				    &pt->pt_time.it_value);
    959      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    960       1.67   nathanw 				timersub(&pt->pt_time.it_value, &time,
    961       1.67   nathanw 				    &pt->pt_time.it_value);
    962      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    963       1.67   nathanw 				if (!timerisset(&pt->pt_time.it_value) ||
    964       1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    965       1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    966       1.67   nathanw 					pt->pt_time.it_value.tv_usec = 1;
    967       1.67   nathanw 				}
    968       1.67   nathanw 			}
    969       1.67   nathanw 		}
    970       1.67   nathanw 	}
    971       1.67   nathanw 
    972       1.63   thorpej 	timer_settime(pt);
    973       1.63   thorpej 	splx(s);
    974       1.63   thorpej 
    975       1.92      cube 	if (ovalue) {
    976       1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    977       1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    978       1.63   thorpej 	}
    979       1.63   thorpej 
    980       1.63   thorpej 	return (0);
    981       1.63   thorpej }
    982       1.63   thorpej 
    983       1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    984       1.63   thorpej int
    985       1.63   thorpej sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    986       1.63   thorpej {
    987       1.63   thorpej 	struct sys_timer_gettime_args /* {
    988       1.63   thorpej 		syscallarg(timer_t) timerid;
    989       1.63   thorpej 		syscallarg(struct itimerspec *) value;
    990       1.63   thorpej 	} */ *uap = v;
    991       1.63   thorpej 	struct itimerspec its;
    992       1.92      cube 	int error;
    993       1.92      cube 
    994       1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    995       1.92      cube 	    &its)) != 0)
    996       1.92      cube 		return error;
    997       1.92      cube 
    998       1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    999       1.92      cube }
   1000       1.92      cube 
   1001       1.92      cube int
   1002       1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
   1003       1.92      cube {
   1004       1.92      cube 	int s;
   1005       1.63   thorpej 	struct ptimer *pt;
   1006       1.92      cube 	struct itimerval aitv;
   1007       1.63   thorpej 
   1008       1.63   thorpej 	if ((p->p_timers == NULL) ||
   1009       1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
   1010       1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
   1011       1.63   thorpej 		return (EINVAL);
   1012       1.63   thorpej 
   1013       1.63   thorpej 	s = splclock();
   1014       1.63   thorpej 	timer_gettime(pt, &aitv);
   1015        1.1       cgd 	splx(s);
   1016       1.63   thorpej 
   1017       1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
   1018       1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
   1019       1.63   thorpej 
   1020       1.92      cube 	return 0;
   1021       1.63   thorpej }
   1022       1.63   thorpej 
   1023       1.63   thorpej /*
   1024       1.63   thorpej  * Return the count of the number of times a periodic timer expired
   1025       1.63   thorpej  * while a notification was already pending. The counter is reset when
   1026       1.63   thorpej  * a timer expires and a notification can be posted.
   1027       1.63   thorpej  */
   1028       1.63   thorpej int
   1029       1.63   thorpej sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
   1030       1.63   thorpej {
   1031       1.63   thorpej 	struct sys_timer_getoverrun_args /* {
   1032       1.63   thorpej 		syscallarg(timer_t) timerid;
   1033       1.63   thorpej 	} */ *uap = v;
   1034       1.63   thorpej 	struct proc *p = l->l_proc;
   1035       1.63   thorpej 	int timerid;
   1036       1.63   thorpej 	struct ptimer *pt;
   1037       1.63   thorpej 
   1038       1.63   thorpej 	timerid = SCARG(uap, timerid);
   1039       1.63   thorpej 
   1040       1.63   thorpej 	if ((p->p_timers == NULL) ||
   1041       1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
   1042       1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
   1043       1.63   thorpej 		return (EINVAL);
   1044       1.63   thorpej 
   1045       1.63   thorpej 	*retval = pt->pt_poverruns;
   1046       1.63   thorpej 
   1047       1.63   thorpej 	return (0);
   1048       1.63   thorpej }
   1049       1.63   thorpej 
   1050       1.63   thorpej /* Glue function that triggers an upcall; called from userret(). */
   1051       1.63   thorpej static void
   1052       1.63   thorpej timerupcall(struct lwp *l, void *arg)
   1053       1.63   thorpej {
   1054       1.64   nathanw 	struct ptimers *pt = (struct ptimers *)arg;
   1055       1.64   nathanw 	unsigned int i, fired, done;
   1056       1.74        cl 
   1057       1.81        cl 	KDASSERT(l->l_proc->p_sa);
   1058       1.81        cl 	/* Bail out if we do not own the virtual processor */
   1059       1.82        cl 	if (l->l_savp->savp_lwp != l)
   1060       1.81        cl 		return ;
   1061       1.87     perry 
   1062  1.105.4.3        ad 	KERNEL_LOCK(1, l);
   1063       1.71      fvdl 
   1064       1.64   nathanw 	fired = pt->pts_fired;
   1065       1.64   nathanw 	done = 0;
   1066       1.64   nathanw 	while ((i = ffs(fired)) != 0) {
   1067       1.74        cl 		siginfo_t *si;
   1068       1.73  christos 		int mask = 1 << --i;
   1069       1.74        cl 		int f;
   1070       1.73  christos 
   1071       1.74        cl 		f = l->l_flag & L_SA;
   1072       1.74        cl 		l->l_flag &= ~L_SA;
   1073       1.94       chs 		si = siginfo_alloc(PR_WAITOK);
   1074       1.77   thorpej 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
   1075       1.64   nathanw 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
   1076       1.94       chs 		    sizeof(*si), si, siginfo_free) != 0) {
   1077       1.94       chs 			siginfo_free(si);
   1078       1.86   mycroft 			/* XXX What do we do here?? */
   1079       1.86   mycroft 		} else
   1080       1.73  christos 			done |= mask;
   1081       1.73  christos 		fired &= ~mask;
   1082       1.74        cl 		l->l_flag |= f;
   1083       1.64   nathanw 	}
   1084       1.64   nathanw 	pt->pts_fired &= ~done;
   1085       1.64   nathanw 	if (pt->pts_fired == 0)
   1086       1.63   thorpej 		l->l_proc->p_userret = NULL;
   1087       1.63   thorpej 
   1088  1.105.4.3        ad 	(void)KERNEL_UNLOCK(1, l);
   1089       1.63   thorpej }
   1090       1.63   thorpej 
   1091       1.63   thorpej /*
   1092       1.63   thorpej  * Real interval timer expired:
   1093       1.63   thorpej  * send process whose timer expired an alarm signal.
   1094       1.63   thorpej  * If time is not set up to reload, then just return.
   1095       1.63   thorpej  * Else compute next time timer should go off which is > current time.
   1096       1.63   thorpej  * This is where delay in processing this timeout causes multiple
   1097       1.63   thorpej  * SIGALRM calls to be compressed into one.
   1098       1.63   thorpej  */
   1099       1.63   thorpej void
   1100       1.63   thorpej realtimerexpire(void *arg)
   1101       1.63   thorpej {
   1102      1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1103      1.101    kardel 	struct timeval now;
   1104      1.101    kardel #endif
   1105       1.63   thorpej 	struct ptimer *pt;
   1106       1.63   thorpej 	int s;
   1107       1.63   thorpej 
   1108       1.63   thorpej 	pt = (struct ptimer *)arg;
   1109       1.63   thorpej 
   1110       1.63   thorpej 	itimerfire(pt);
   1111       1.63   thorpej 
   1112       1.63   thorpej 	if (!timerisset(&pt->pt_time.it_interval)) {
   1113       1.63   thorpej 		timerclear(&pt->pt_time.it_value);
   1114       1.63   thorpej 		return;
   1115       1.63   thorpej 	}
   1116      1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1117      1.101    kardel 	for (;;) {
   1118      1.101    kardel 		s = splclock();	/* XXX need spl now? */
   1119      1.101    kardel 		timeradd(&pt->pt_time.it_value,
   1120      1.101    kardel 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1121      1.101    kardel 		getmicrotime(&now);
   1122      1.101    kardel 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
   1123      1.101    kardel 			/*
   1124      1.101    kardel 			 * Don't need to check hzto() return value, here.
   1125      1.101    kardel 			 * callout_reset() does it for us.
   1126      1.101    kardel 			 */
   1127      1.101    kardel 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1128      1.101    kardel 			    realtimerexpire, pt);
   1129      1.101    kardel 			splx(s);
   1130      1.101    kardel 			return;
   1131      1.101    kardel 		}
   1132      1.101    kardel 		splx(s);
   1133      1.101    kardel 		pt->pt_overruns++;
   1134      1.101    kardel 	}
   1135      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1136       1.63   thorpej 	for (;;) {
   1137       1.63   thorpej 		s = splclock();
   1138       1.63   thorpej 		timeradd(&pt->pt_time.it_value,
   1139       1.63   thorpej 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1140       1.63   thorpej 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
   1141       1.63   thorpej 			/*
   1142       1.63   thorpej 			 * Don't need to check hzto() return value, here.
   1143       1.63   thorpej 			 * callout_reset() does it for us.
   1144       1.63   thorpej 			 */
   1145       1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1146       1.63   thorpej 			    realtimerexpire, pt);
   1147       1.63   thorpej 			splx(s);
   1148       1.63   thorpej 			return;
   1149       1.63   thorpej 		}
   1150       1.63   thorpej 		splx(s);
   1151       1.63   thorpej 		pt->pt_overruns++;
   1152       1.63   thorpej 	}
   1153      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1154       1.63   thorpej }
   1155       1.63   thorpej 
   1156       1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1157       1.63   thorpej /* ARGSUSED */
   1158       1.63   thorpej int
   1159       1.63   thorpej sys_getitimer(struct lwp *l, void *v, register_t *retval)
   1160       1.63   thorpej {
   1161       1.63   thorpej 	struct sys_getitimer_args /* {
   1162       1.63   thorpej 		syscallarg(int) which;
   1163       1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1164       1.63   thorpej 	} */ *uap = v;
   1165       1.63   thorpej 	struct proc *p = l->l_proc;
   1166       1.63   thorpej 	struct itimerval aitv;
   1167       1.91      cube 	int error;
   1168       1.91      cube 
   1169       1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1170       1.91      cube 	if (error)
   1171       1.91      cube 		return error;
   1172       1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1173       1.91      cube }
   1174       1.63   thorpej 
   1175       1.91      cube int
   1176       1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1177       1.91      cube {
   1178       1.91      cube 	int s;
   1179       1.63   thorpej 
   1180       1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
   1181       1.63   thorpej 		return (EINVAL);
   1182       1.63   thorpej 
   1183       1.63   thorpej 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
   1184       1.91      cube 		timerclear(&itvp->it_value);
   1185       1.91      cube 		timerclear(&itvp->it_interval);
   1186       1.63   thorpej 	} else {
   1187       1.63   thorpej 		s = splclock();
   1188       1.91      cube 		timer_gettime(p->p_timers->pts_timers[which], itvp);
   1189       1.63   thorpej 		splx(s);
   1190       1.63   thorpej 	}
   1191       1.63   thorpej 
   1192       1.91      cube 	return 0;
   1193        1.1       cgd }
   1194        1.1       cgd 
   1195       1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1196        1.1       cgd /* ARGSUSED */
   1197        1.3    andrew int
   1198       1.63   thorpej sys_setitimer(struct lwp *l, void *v, register_t *retval)
   1199       1.15   thorpej {
   1200       1.45  augustss 	struct sys_setitimer_args /* {
   1201       1.30   mycroft 		syscallarg(int) which;
   1202       1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1203       1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1204       1.15   thorpej 	} */ *uap = v;
   1205       1.63   thorpej 	struct proc *p = l->l_proc;
   1206       1.30   mycroft 	int which = SCARG(uap, which);
   1207       1.21       cgd 	struct sys_getitimer_args getargs;
   1208       1.91      cube 	const struct itimerval *itvp;
   1209        1.1       cgd 	struct itimerval aitv;
   1210       1.91      cube 	int error;
   1211        1.1       cgd 
   1212       1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1213        1.1       cgd 		return (EINVAL);
   1214       1.11       cgd 	itvp = SCARG(uap, itv);
   1215       1.63   thorpej 	if (itvp &&
   1216       1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1217        1.1       cgd 		return (error);
   1218       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1219       1.30   mycroft 		SCARG(&getargs, which) = which;
   1220       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1221       1.63   thorpej 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1222       1.21       cgd 			return (error);
   1223       1.21       cgd 	}
   1224        1.1       cgd 	if (itvp == 0)
   1225        1.1       cgd 		return (0);
   1226       1.91      cube 
   1227       1.91      cube 	return dosetitimer(p, which, &aitv);
   1228       1.91      cube }
   1229       1.91      cube 
   1230       1.91      cube int
   1231       1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1232       1.91      cube {
   1233      1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1234      1.101    kardel 	struct timeval now;
   1235      1.101    kardel #endif
   1236       1.91      cube 	struct ptimer *pt;
   1237       1.91      cube 	int s;
   1238       1.91      cube 
   1239       1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1240        1.1       cgd 		return (EINVAL);
   1241       1.63   thorpej 
   1242       1.63   thorpej 	/*
   1243       1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1244       1.63   thorpej 	 * wants to clear the timer.
   1245       1.63   thorpej 	 */
   1246       1.91      cube 	if (!timerisset(&itvp->it_value) &&
   1247       1.63   thorpej 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1248       1.63   thorpej 		return (0);
   1249       1.63   thorpej 
   1250       1.63   thorpej 	if (p->p_timers == NULL)
   1251       1.63   thorpej 		timers_alloc(p);
   1252       1.63   thorpej 	if (p->p_timers->pts_timers[which] == NULL) {
   1253       1.63   thorpej 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1254       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1255       1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1256       1.63   thorpej 		pt->pt_overruns = 0;
   1257       1.63   thorpej 		pt->pt_proc = p;
   1258       1.63   thorpej 		pt->pt_type = which;
   1259       1.64   nathanw 		pt->pt_entry = which;
   1260       1.63   thorpej 		switch (which) {
   1261       1.63   thorpej 		case ITIMER_REAL:
   1262       1.63   thorpej 			callout_init(&pt->pt_ch);
   1263       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1264       1.63   thorpej 			break;
   1265       1.63   thorpej 		case ITIMER_VIRTUAL:
   1266       1.63   thorpej 			pt->pt_active = 0;
   1267       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1268       1.63   thorpej 			break;
   1269       1.63   thorpej 		case ITIMER_PROF:
   1270       1.63   thorpej 			pt->pt_active = 0;
   1271       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1272       1.63   thorpej 			break;
   1273        1.1       cgd 		}
   1274        1.1       cgd 	} else
   1275       1.63   thorpej 		pt = p->p_timers->pts_timers[which];
   1276       1.63   thorpej 
   1277       1.91      cube 	pt->pt_time = *itvp;
   1278       1.63   thorpej 	p->p_timers->pts_timers[which] = pt;
   1279       1.63   thorpej 
   1280       1.63   thorpej 	s = splclock();
   1281       1.67   nathanw 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1282       1.67   nathanw 		/* Convert to absolute time */
   1283      1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1284      1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1285      1.101    kardel 		getmicrotime(&now);
   1286      1.101    kardel 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1287      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1288       1.67   nathanw 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
   1289      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1290       1.67   nathanw 	}
   1291       1.63   thorpej 	timer_settime(pt);
   1292        1.1       cgd 	splx(s);
   1293       1.63   thorpej 
   1294        1.1       cgd 	return (0);
   1295        1.1       cgd }
   1296        1.1       cgd 
   1297       1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1298       1.63   thorpej void
   1299       1.63   thorpej timers_alloc(struct proc *p)
   1300       1.63   thorpej {
   1301       1.63   thorpej 	int i;
   1302       1.63   thorpej 	struct ptimers *pts;
   1303       1.63   thorpej 
   1304      1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1305       1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1306       1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1307       1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1308       1.63   thorpej 		pts->pts_timers[i] = NULL;
   1309       1.64   nathanw 	pts->pts_fired = 0;
   1310       1.63   thorpej 	p->p_timers = pts;
   1311       1.63   thorpej }
   1312       1.63   thorpej 
   1313        1.1       cgd /*
   1314       1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1315       1.63   thorpej  * then clean up all timers and free all the data structures. If
   1316       1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1317       1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1318       1.63   thorpej  * structure if none of those remain.
   1319        1.1       cgd  */
   1320        1.3    andrew void
   1321       1.63   thorpej timers_free(struct proc *p, int which)
   1322        1.6       cgd {
   1323       1.63   thorpej 	int i, s;
   1324       1.63   thorpej 	struct ptimers *pts;
   1325       1.63   thorpej 	struct ptimer *pt, *ptn;
   1326       1.63   thorpej 	struct timeval tv;
   1327       1.63   thorpej 
   1328       1.63   thorpej 	if (p->p_timers) {
   1329       1.63   thorpej 		pts = p->p_timers;
   1330       1.63   thorpej 		if (which == TIMERS_ALL)
   1331       1.63   thorpej 			i = 0;
   1332       1.63   thorpej 		else {
   1333       1.63   thorpej 			s = splclock();
   1334       1.63   thorpej 			timerclear(&tv);
   1335       1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1336       1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1337       1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1338       1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1339       1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1340       1.63   thorpej 			if (ptn) {
   1341       1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1342       1.63   thorpej 				    &ptn->pt_time.it_value);
   1343       1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1344       1.63   thorpej 				    ptn, pt_list);
   1345       1.63   thorpej 			}
   1346       1.63   thorpej 
   1347       1.63   thorpej 			timerclear(&tv);
   1348       1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1349       1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1350       1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1351       1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1352       1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1353       1.63   thorpej 			if (ptn) {
   1354       1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1355       1.63   thorpej 				    &ptn->pt_time.it_value);
   1356       1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1357       1.63   thorpej 				    pt_list);
   1358       1.63   thorpej 			}
   1359        1.1       cgd 			splx(s);
   1360       1.63   thorpej 			i = 3;
   1361       1.63   thorpej 		}
   1362       1.63   thorpej 		for ( ; i < TIMER_MAX; i++)
   1363       1.63   thorpej 			if ((pt = pts->pts_timers[i]) != NULL) {
   1364       1.63   thorpej 				if (pt->pt_type == CLOCK_REALTIME)
   1365       1.63   thorpej 					callout_stop(&pt->pt_ch);
   1366       1.63   thorpej 				pts->pts_timers[i] = NULL;
   1367       1.63   thorpej 				pool_put(&ptimer_pool, pt);
   1368       1.63   thorpej 			}
   1369       1.63   thorpej 		if ((pts->pts_timers[0] == NULL) &&
   1370       1.63   thorpej 		    (pts->pts_timers[1] == NULL) &&
   1371       1.63   thorpej 		    (pts->pts_timers[2] == NULL)) {
   1372       1.63   thorpej 			p->p_timers = NULL;
   1373       1.97    simonb 			pool_put(&ptimers_pool, pts);
   1374        1.1       cgd 		}
   1375        1.1       cgd 	}
   1376        1.1       cgd }
   1377        1.1       cgd 
   1378        1.1       cgd /*
   1379        1.1       cgd  * Check that a proposed value to load into the .it_value or
   1380        1.1       cgd  * .it_interval part of an interval timer is acceptable, and
   1381        1.1       cgd  * fix it to have at least minimal value (i.e. if it is less
   1382        1.1       cgd  * than the resolution of the clock, round it up.)
   1383        1.1       cgd  */
   1384        1.3    andrew int
   1385       1.63   thorpej itimerfix(struct timeval *tv)
   1386        1.1       cgd {
   1387        1.1       cgd 
   1388       1.59  christos 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
   1389        1.1       cgd 		return (EINVAL);
   1390        1.1       cgd 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
   1391        1.1       cgd 		tv->tv_usec = tick;
   1392        1.1       cgd 	return (0);
   1393        1.1       cgd }
   1394        1.1       cgd 
   1395      1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1396      1.101    kardel int
   1397      1.101    kardel itimespecfix(struct timespec *ts)
   1398      1.101    kardel {
   1399      1.101    kardel 
   1400      1.101    kardel 	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
   1401      1.101    kardel 		return (EINVAL);
   1402      1.101    kardel 	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
   1403      1.101    kardel 		ts->tv_nsec = tick * 1000;
   1404      1.101    kardel 	return (0);
   1405      1.101    kardel }
   1406      1.101    kardel #endif /* __HAVE_TIMECOUNTER */
   1407      1.101    kardel 
   1408        1.1       cgd /*
   1409        1.1       cgd  * Decrement an interval timer by a specified number
   1410        1.1       cgd  * of microseconds, which must be less than a second,
   1411        1.1       cgd  * i.e. < 1000000.  If the timer expires, then reload
   1412        1.1       cgd  * it.  In this case, carry over (usec - old value) to
   1413        1.8       cgd  * reduce the value reloaded into the timer so that
   1414        1.1       cgd  * the timer does not drift.  This routine assumes
   1415        1.1       cgd  * that it is called in a context where the timers
   1416        1.1       cgd  * on which it is operating cannot change in value.
   1417        1.1       cgd  */
   1418        1.3    andrew int
   1419       1.63   thorpej itimerdecr(struct ptimer *pt, int usec)
   1420       1.63   thorpej {
   1421       1.45  augustss 	struct itimerval *itp;
   1422        1.1       cgd 
   1423       1.63   thorpej 	itp = &pt->pt_time;
   1424        1.1       cgd 	if (itp->it_value.tv_usec < usec) {
   1425        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1426        1.1       cgd 			/* expired, and already in next interval */
   1427        1.1       cgd 			usec -= itp->it_value.tv_usec;
   1428        1.1       cgd 			goto expire;
   1429        1.1       cgd 		}
   1430        1.1       cgd 		itp->it_value.tv_usec += 1000000;
   1431        1.1       cgd 		itp->it_value.tv_sec--;
   1432        1.1       cgd 	}
   1433        1.1       cgd 	itp->it_value.tv_usec -= usec;
   1434        1.1       cgd 	usec = 0;
   1435        1.1       cgd 	if (timerisset(&itp->it_value))
   1436        1.1       cgd 		return (1);
   1437        1.1       cgd 	/* expired, exactly at end of interval */
   1438        1.1       cgd expire:
   1439        1.1       cgd 	if (timerisset(&itp->it_interval)) {
   1440        1.1       cgd 		itp->it_value = itp->it_interval;
   1441        1.1       cgd 		itp->it_value.tv_usec -= usec;
   1442        1.1       cgd 		if (itp->it_value.tv_usec < 0) {
   1443        1.1       cgd 			itp->it_value.tv_usec += 1000000;
   1444        1.1       cgd 			itp->it_value.tv_sec--;
   1445        1.1       cgd 		}
   1446       1.63   thorpej 		timer_settime(pt);
   1447        1.1       cgd 	} else
   1448        1.1       cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1449        1.1       cgd 	return (0);
   1450       1.42       cgd }
   1451       1.42       cgd 
   1452       1.63   thorpej void
   1453       1.63   thorpej itimerfire(struct ptimer *pt)
   1454       1.63   thorpej {
   1455       1.63   thorpej 	struct proc *p = pt->pt_proc;
   1456       1.82        cl 	struct sadata_vp *vp;
   1457       1.82        cl 	unsigned int i;
   1458       1.78        cl 
   1459       1.63   thorpej 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1460       1.63   thorpej 		/*
   1461       1.63   thorpej 		 * No RT signal infrastructure exists at this time;
   1462       1.63   thorpej 		 * just post the signal number and throw away the
   1463       1.63   thorpej 		 * value.
   1464       1.63   thorpej 		 */
   1465  1.105.4.2        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1466  1.105.4.3        ad 			/* XXX Timers need to become per-LWP. */
   1467       1.63   thorpej 			pt->pt_overruns++;
   1468  1.105.4.2        ad 		} else {
   1469       1.75  christos 			ksiginfo_t ksi;
   1470       1.75  christos 			(void)memset(&ksi, 0, sizeof(ksi));
   1471       1.75  christos 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1472       1.75  christos 			ksi.ksi_code = SI_TIMER;
   1473       1.75  christos 			ksi.ksi_sigval = pt->pt_ev.sigev_value;
   1474       1.63   thorpej 			pt->pt_poverruns = pt->pt_overruns;
   1475       1.63   thorpej 			pt->pt_overruns = 0;
   1476  1.105.4.2        ad 			mutex_enter(&proclist_mutex);
   1477       1.75  christos 			kpsignal(p, &ksi, NULL);
   1478  1.105.4.2        ad 			mutex_exit(&proclist_mutex);
   1479       1.63   thorpej 		}
   1480  1.105.4.3        ad 	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_sflag & PS_SA)) {
   1481       1.63   thorpej 		/* Cause the process to generate an upcall when it returns. */
   1482  1.105.4.4        ad 		signotify(LIST_FIRST(&p->p_lwps));	/* XXXAD */
   1483       1.63   thorpej 		if (p->p_userret == NULL) {
   1484       1.70   nathanw 			/*
   1485       1.70   nathanw 			 * XXX stop signals can be processed inside tsleep,
   1486       1.70   nathanw 			 * which can be inside sa_yield's inner loop, which
   1487       1.70   nathanw 			 * makes testing for sa_idle alone insuffucent to
   1488       1.70   nathanw 			 * determine if we really should call setrunnable.
   1489       1.70   nathanw 			 */
   1490       1.63   thorpej 			pt->pt_poverruns = pt->pt_overruns;
   1491       1.63   thorpej 			pt->pt_overruns = 0;
   1492       1.64   nathanw 			i = 1 << pt->pt_entry;
   1493       1.64   nathanw 			p->p_timers->pts_fired = i;
   1494       1.63   thorpej 			p->p_userret = timerupcall;
   1495       1.64   nathanw 			p->p_userret_arg = p->p_timers;
   1496       1.87     perry 
   1497  1.105.4.3        ad 			mutex_enter(&p->p_smutex);
   1498       1.82        cl 			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
   1499  1.105.4.4        ad 				lwp_lock(vp->savp_lwp);
   1500       1.82        cl 				if (vp->savp_lwp->l_flag & L_SA_IDLE) {
   1501       1.82        cl 					vp->savp_lwp->l_flag &= ~L_SA_IDLE;
   1502  1.105.4.2        ad 					wakeup(vp->savp_lwp);
   1503  1.105.4.4        ad 					signotify(vp->savp_lwp);
   1504  1.105.4.4        ad 					lwp_unlock(vp->savp_lwp);
   1505       1.82        cl 					break;
   1506       1.82        cl 				}
   1507  1.105.4.4        ad 				lwp_unlock(vp->savp_lwp);
   1508       1.78        cl 			}
   1509  1.105.4.3        ad 			mutex_exit(&p->p_smutex);
   1510       1.64   nathanw 		} else if (p->p_userret == timerupcall) {
   1511       1.64   nathanw 			i = 1 << pt->pt_entry;
   1512       1.64   nathanw 			if ((p->p_timers->pts_fired & i) == 0) {
   1513       1.64   nathanw 				pt->pt_poverruns = pt->pt_overruns;
   1514       1.64   nathanw 				pt->pt_overruns = 0;
   1515       1.66  jdolecek 				p->p_timers->pts_fired |= i;
   1516       1.64   nathanw 			} else
   1517       1.64   nathanw 				pt->pt_overruns++;
   1518       1.64   nathanw 		} else {
   1519       1.63   thorpej 			pt->pt_overruns++;
   1520  1.105.4.3        ad 			if ((p->p_sflag & PS_WEXIT) == 0)
   1521  1.105.4.3        ad 				printf("itimerfire(%d): overrun %d on "
   1522  1.105.4.3        ad 				    "timer %x (userret is %p)\n",
   1523       1.78        cl 				    p->p_pid, pt->pt_overruns,
   1524       1.78        cl 				    pt->pt_ev.sigev_value.sival_int,
   1525       1.78        cl 				    p->p_userret);
   1526       1.64   nathanw 		}
   1527       1.63   thorpej 	}
   1528       1.63   thorpej 
   1529       1.63   thorpej }
   1530       1.63   thorpej 
   1531       1.42       cgd /*
   1532       1.42       cgd  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1533       1.42       cgd  * for usage and rationale.
   1534       1.42       cgd  */
   1535       1.42       cgd int
   1536       1.63   thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1537       1.42       cgd {
   1538       1.49    itojun 	struct timeval tv, delta;
   1539      1.101    kardel 	int rv = 0;
   1540      1.101    kardel #ifndef __HAVE_TIMECOUNTER
   1541      1.101    kardel 	int s;
   1542      1.101    kardel #endif
   1543       1.42       cgd 
   1544      1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1545      1.101    kardel 	getmicrouptime(&tv);
   1546      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1547       1.63   thorpej 	s = splclock();
   1548       1.49    itojun 	tv = mono_time;
   1549       1.49    itojun 	splx(s);
   1550      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1551       1.49    itojun 	timersub(&tv, lasttime, &delta);
   1552       1.42       cgd 
   1553       1.42       cgd 	/*
   1554       1.42       cgd 	 * check for 0,0 is so that the message will be seen at least once,
   1555       1.42       cgd 	 * even if interval is huge.
   1556       1.42       cgd 	 */
   1557       1.42       cgd 	if (timercmp(&delta, mininterval, >=) ||
   1558       1.42       cgd 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1559       1.49    itojun 		*lasttime = tv;
   1560       1.42       cgd 		rv = 1;
   1561       1.42       cgd 	}
   1562       1.50    itojun 
   1563       1.50    itojun 	return (rv);
   1564       1.50    itojun }
   1565       1.50    itojun 
   1566       1.50    itojun /*
   1567       1.50    itojun  * ppsratecheck(): packets (or events) per second limitation.
   1568       1.50    itojun  */
   1569       1.50    itojun int
   1570       1.63   thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1571       1.50    itojun {
   1572       1.50    itojun 	struct timeval tv, delta;
   1573      1.101    kardel 	int rv;
   1574      1.101    kardel #ifndef __HAVE_TIMECOUNTER
   1575      1.101    kardel 	int s;
   1576      1.101    kardel #endif
   1577       1.50    itojun 
   1578      1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1579      1.101    kardel 	getmicrouptime(&tv);
   1580      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1581       1.63   thorpej 	s = splclock();
   1582       1.50    itojun 	tv = mono_time;
   1583       1.50    itojun 	splx(s);
   1584      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1585       1.50    itojun 	timersub(&tv, lasttime, &delta);
   1586       1.50    itojun 
   1587       1.50    itojun 	/*
   1588       1.50    itojun 	 * check for 0,0 is so that the message will be seen at least once.
   1589       1.50    itojun 	 * if more than one second have passed since the last update of
   1590       1.50    itojun 	 * lasttime, reset the counter.
   1591       1.50    itojun 	 *
   1592       1.50    itojun 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1593       1.50    itojun 	 * try to use *curpps for stat purposes as well.
   1594       1.50    itojun 	 */
   1595       1.50    itojun 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1596       1.50    itojun 	    delta.tv_sec >= 1) {
   1597       1.50    itojun 		*lasttime = tv;
   1598       1.50    itojun 		*curpps = 0;
   1599       1.69    dyoung 	}
   1600       1.69    dyoung 	if (maxpps < 0)
   1601       1.53    itojun 		rv = 1;
   1602       1.53    itojun 	else if (*curpps < maxpps)
   1603       1.50    itojun 		rv = 1;
   1604       1.50    itojun 	else
   1605       1.50    itojun 		rv = 0;
   1606       1.50    itojun 
   1607       1.51     jhawk #if 1 /*DIAGNOSTIC?*/
   1608       1.50    itojun 	/* be careful about wrap-around */
   1609       1.50    itojun 	if (*curpps + 1 > *curpps)
   1610       1.50    itojun 		*curpps = *curpps + 1;
   1611       1.50    itojun #else
   1612       1.50    itojun 	/*
   1613       1.50    itojun 	 * assume that there's not too many calls to this function.
   1614       1.50    itojun 	 * not sure if the assumption holds, as it depends on *caller's*
   1615       1.50    itojun 	 * behavior, not the behavior of this function.
   1616       1.50    itojun 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1617       1.51     jhawk 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1618       1.50    itojun 	 */
   1619       1.50    itojun 	*curpps = *curpps + 1;
   1620       1.50    itojun #endif
   1621       1.42       cgd 
   1622       1.42       cgd 	return (rv);
   1623        1.1       cgd }
   1624