kern_time.c revision 1.108 1 1.108 christos /* $NetBSD: kern_time.c,v 1.108 2006/10/12 01:32:17 christos Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.88 mycroft * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.72 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 cgd * may be used to endorse or promote products derived from this software
53 1.1 cgd * without specific prior written permission.
54 1.1 cgd *
55 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 cgd * SUCH DAMAGE.
66 1.1 cgd *
67 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 1.1 cgd */
69 1.58 lukem
70 1.58 lukem #include <sys/cdefs.h>
71 1.108 christos __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.108 2006/10/12 01:32:17 christos Exp $");
72 1.31 thorpej
73 1.31 thorpej #include "fs_nfs.h"
74 1.54 bjh21 #include "opt_nfs.h"
75 1.34 thorpej #include "opt_nfsserver.h"
76 1.1 cgd
77 1.5 mycroft #include <sys/param.h>
78 1.5 mycroft #include <sys/resourcevar.h>
79 1.5 mycroft #include <sys/kernel.h>
80 1.8 cgd #include <sys/systm.h>
81 1.5 mycroft #include <sys/proc.h>
82 1.63 thorpej #include <sys/sa.h>
83 1.63 thorpej #include <sys/savar.h>
84 1.8 cgd #include <sys/vnode.h>
85 1.17 christos #include <sys/signalvar.h>
86 1.25 perry #include <sys/syslog.h>
87 1.101 kardel #ifdef __HAVE_TIMECOUNTER
88 1.101 kardel #include <sys/timetc.h>
89 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
90 1.95 cube #include <sys/timevar.h>
91 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
92 1.99 elad #include <sys/kauth.h>
93 1.1 cgd
94 1.11 cgd #include <sys/mount.h>
95 1.11 cgd #include <sys/syscallargs.h>
96 1.19 christos
97 1.37 thorpej #include <uvm/uvm_extern.h>
98 1.37 thorpej
99 1.26 thorpej #if defined(NFS) || defined(NFSSERVER)
100 1.20 fvdl #include <nfs/rpcv2.h>
101 1.20 fvdl #include <nfs/nfsproto.h>
102 1.93 jmmv #include <nfs/nfs.h>
103 1.19 christos #include <nfs/nfs_var.h>
104 1.19 christos #endif
105 1.17 christos
106 1.5 mycroft #include <machine/cpu.h>
107 1.23 cgd
108 1.97 simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
109 1.97 simonb &pool_allocator_nointr);
110 1.97 simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
111 1.97 simonb &pool_allocator_nointr);
112 1.97 simonb
113 1.63 thorpej static void timerupcall(struct lwp *, void *);
114 1.101 kardel #ifdef __HAVE_TIMECOUNTER
115 1.101 kardel static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
116 1.101 kardel #endif /* __HAVE_TIMECOUNTER */
117 1.63 thorpej
118 1.63 thorpej /* Time of day and interval timer support.
119 1.1 cgd *
120 1.1 cgd * These routines provide the kernel entry points to get and set
121 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
122 1.1 cgd * here provide support for adding and subtracting timeval structures
123 1.1 cgd * and decrementing interval timers, optionally reloading the interval
124 1.1 cgd * timers when they expire.
125 1.1 cgd */
126 1.1 cgd
127 1.22 jtc /* This function is used by clock_settime and settimeofday */
128 1.39 tron int
129 1.98 christos settime(struct proc *p, struct timespec *ts)
130 1.22 jtc {
131 1.98 christos struct timeval delta, tv;
132 1.101 kardel #ifdef __HAVE_TIMECOUNTER
133 1.101 kardel struct timeval now;
134 1.101 kardel struct timespec ts1;
135 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
136 1.47 thorpej struct cpu_info *ci;
137 1.22 jtc int s;
138 1.22 jtc
139 1.98 christos /*
140 1.98 christos * Don't allow the time to be set forward so far it will wrap
141 1.98 christos * and become negative, thus allowing an attacker to bypass
142 1.98 christos * the next check below. The cutoff is 1 year before rollover
143 1.98 christos * occurs, so even if the attacker uses adjtime(2) to move
144 1.98 christos * the time past the cutoff, it will take a very long time
145 1.98 christos * to get to the wrap point.
146 1.98 christos *
147 1.98 christos * XXX: we check against INT_MAX since on 64-bit
148 1.98 christos * platforms, sizeof(int) != sizeof(long) and
149 1.98 christos * time_t is 32 bits even when atv.tv_sec is 64 bits.
150 1.98 christos */
151 1.98 christos if (ts->tv_sec > INT_MAX - 365*24*60*60) {
152 1.98 christos struct proc *pp = p->p_pptr;
153 1.98 christos log(LOG_WARNING, "pid %d (%s) "
154 1.98 christos "invoked by uid %d ppid %d (%s) "
155 1.98 christos "tried to set clock forward to %ld\n",
156 1.99 elad p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
157 1.98 christos pp->p_pid, pp->p_comm, (long)ts->tv_sec);
158 1.98 christos return (EPERM);
159 1.98 christos }
160 1.98 christos TIMESPEC_TO_TIMEVAL(&tv, ts);
161 1.98 christos
162 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
163 1.22 jtc s = splclock();
164 1.101 kardel #ifdef __HAVE_TIMECOUNTER
165 1.101 kardel microtime(&now);
166 1.101 kardel timersub(&tv, &now, &delta);
167 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
168 1.98 christos timersub(&tv, &time, &delta);
169 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
170 1.106 elad if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
171 1.106 elad kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
172 1.106 elad KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
173 1.55 tron splx(s);
174 1.29 tls return (EPERM);
175 1.55 tron }
176 1.29 tls #ifdef notyet
177 1.55 tron if ((delta.tv_sec < 86400) && securelevel > 0) {
178 1.55 tron splx(s);
179 1.29 tls return (EPERM);
180 1.55 tron }
181 1.29 tls #endif
182 1.103 kardel
183 1.101 kardel #ifdef __HAVE_TIMECOUNTER
184 1.103 kardel TIMEVAL_TO_TIMESPEC(&tv, &ts1);
185 1.101 kardel tc_setclock(&ts1);
186 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
187 1.98 christos time = tv;
188 1.103 kardel #endif /* !__HAVE_TIMECOUNTER */
189 1.103 kardel
190 1.38 thorpej (void) spllowersoftclock();
191 1.103 kardel
192 1.22 jtc timeradd(&boottime, &delta, &boottime);
193 1.103 kardel
194 1.47 thorpej /*
195 1.47 thorpej * XXXSMP
196 1.47 thorpej * This is wrong. We should traverse a list of all
197 1.47 thorpej * CPUs and add the delta to the runtime of those
198 1.47 thorpej * CPUs which have a process on them.
199 1.47 thorpej */
200 1.47 thorpej ci = curcpu();
201 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
202 1.47 thorpej &ci->ci_schedstate.spc_runtime);
203 1.101 kardel #if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
204 1.101 kardel nqnfs_lease_updatetime(delta.tv_sec);
205 1.101 kardel #endif
206 1.22 jtc splx(s);
207 1.22 jtc resettodr();
208 1.29 tls return (0);
209 1.22 jtc }
210 1.22 jtc
211 1.22 jtc /* ARGSUSED */
212 1.22 jtc int
213 1.108 christos sys_clock_gettime(struct lwp *l __unused, void *v, register_t *retval __unused)
214 1.22 jtc {
215 1.45 augustss struct sys_clock_gettime_args /* {
216 1.22 jtc syscallarg(clockid_t) clock_id;
217 1.23 cgd syscallarg(struct timespec *) tp;
218 1.23 cgd } */ *uap = v;
219 1.22 jtc clockid_t clock_id;
220 1.22 jtc struct timespec ats;
221 1.22 jtc
222 1.22 jtc clock_id = SCARG(uap, clock_id);
223 1.61 simonb switch (clock_id) {
224 1.61 simonb case CLOCK_REALTIME:
225 1.96 simonb nanotime(&ats);
226 1.61 simonb break;
227 1.61 simonb case CLOCK_MONOTONIC:
228 1.101 kardel #ifdef __HAVE_TIMECOUNTER
229 1.101 kardel nanouptime(&ats);
230 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
231 1.101 kardel {
232 1.101 kardel int s;
233 1.101 kardel
234 1.61 simonb /* XXX "hz" granularity */
235 1.63 thorpej s = splclock();
236 1.101 kardel TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
237 1.61 simonb splx(s);
238 1.101 kardel }
239 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
240 1.61 simonb break;
241 1.61 simonb default:
242 1.22 jtc return (EINVAL);
243 1.61 simonb }
244 1.22 jtc
245 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
246 1.22 jtc }
247 1.22 jtc
248 1.22 jtc /* ARGSUSED */
249 1.22 jtc int
250 1.108 christos sys_clock_settime(struct lwp *l, void *v, register_t *retval __unused)
251 1.22 jtc {
252 1.45 augustss struct sys_clock_settime_args /* {
253 1.22 jtc syscallarg(clockid_t) clock_id;
254 1.23 cgd syscallarg(const struct timespec *) tp;
255 1.23 cgd } */ *uap = v;
256 1.22 jtc int error;
257 1.22 jtc
258 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
259 1.106 elad KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
260 1.22 jtc return (error);
261 1.22 jtc
262 1.105 ad return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
263 1.56 manu }
264 1.56 manu
265 1.56 manu
266 1.56 manu int
267 1.98 christos clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
268 1.56 manu {
269 1.60 manu struct timespec ats;
270 1.56 manu int error;
271 1.56 manu
272 1.60 manu if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
273 1.60 manu return (error);
274 1.60 manu
275 1.61 simonb switch (clock_id) {
276 1.61 simonb case CLOCK_REALTIME:
277 1.98 christos if ((error = settime(p, &ats)) != 0)
278 1.61 simonb return (error);
279 1.61 simonb break;
280 1.61 simonb case CLOCK_MONOTONIC:
281 1.61 simonb return (EINVAL); /* read-only clock */
282 1.61 simonb default:
283 1.56 manu return (EINVAL);
284 1.61 simonb }
285 1.22 jtc
286 1.22 jtc return 0;
287 1.22 jtc }
288 1.22 jtc
289 1.22 jtc int
290 1.108 christos sys_clock_getres(struct lwp *l __unused, void *v, register_t *retval __unused)
291 1.22 jtc {
292 1.45 augustss struct sys_clock_getres_args /* {
293 1.22 jtc syscallarg(clockid_t) clock_id;
294 1.23 cgd syscallarg(struct timespec *) tp;
295 1.23 cgd } */ *uap = v;
296 1.22 jtc clockid_t clock_id;
297 1.22 jtc struct timespec ts;
298 1.22 jtc int error = 0;
299 1.22 jtc
300 1.22 jtc clock_id = SCARG(uap, clock_id);
301 1.61 simonb switch (clock_id) {
302 1.61 simonb case CLOCK_REALTIME:
303 1.61 simonb case CLOCK_MONOTONIC:
304 1.22 jtc ts.tv_sec = 0;
305 1.102 kardel #ifdef __HAVE_TIMECOUNTER
306 1.102 kardel if (tc_getfrequency() > 1000000000)
307 1.102 kardel ts.tv_nsec = 1;
308 1.102 kardel else
309 1.102 kardel ts.tv_nsec = 1000000000 / tc_getfrequency();
310 1.102 kardel #else /* !__HAVE_TIMECOUNTER */
311 1.22 jtc ts.tv_nsec = 1000000000 / hz;
312 1.102 kardel #endif /* !__HAVE_TIMECOUNTER */
313 1.61 simonb break;
314 1.61 simonb default:
315 1.61 simonb return (EINVAL);
316 1.61 simonb }
317 1.22 jtc
318 1.61 simonb if (SCARG(uap, tp))
319 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
320 1.22 jtc
321 1.22 jtc return error;
322 1.22 jtc }
323 1.22 jtc
324 1.27 jtc /* ARGSUSED */
325 1.27 jtc int
326 1.108 christos sys_nanosleep(struct lwp *l __unused, void *v, register_t *retval __unused)
327 1.27 jtc {
328 1.101 kardel #ifdef __HAVE_TIMECOUNTER
329 1.101 kardel static int nanowait;
330 1.101 kardel struct sys_nanosleep_args/* {
331 1.101 kardel syscallarg(struct timespec *) rqtp;
332 1.101 kardel syscallarg(struct timespec *) rmtp;
333 1.101 kardel } */ *uap = v;
334 1.101 kardel struct timespec rmt, rqt;
335 1.101 kardel int error, timo;
336 1.101 kardel
337 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
338 1.101 kardel if (error)
339 1.101 kardel return (error);
340 1.101 kardel
341 1.101 kardel if (itimespecfix(&rqt))
342 1.101 kardel return (EINVAL);
343 1.101 kardel
344 1.101 kardel timo = tstohz(&rqt);
345 1.101 kardel /*
346 1.101 kardel * Avoid inadvertantly sleeping forever
347 1.101 kardel */
348 1.101 kardel if (timo == 0)
349 1.101 kardel timo = 1;
350 1.101 kardel
351 1.104 kardel getnanouptime(&rmt);
352 1.104 kardel
353 1.101 kardel error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
354 1.101 kardel if (error == ERESTART)
355 1.101 kardel error = EINTR;
356 1.101 kardel if (error == EWOULDBLOCK)
357 1.101 kardel error = 0;
358 1.101 kardel
359 1.101 kardel if (SCARG(uap, rmtp)) {
360 1.101 kardel int error1;
361 1.104 kardel struct timespec rmtend;
362 1.101 kardel
363 1.104 kardel getnanouptime(&rmtend);
364 1.101 kardel
365 1.104 kardel timespecsub(&rmtend, &rmt, &rmt);
366 1.101 kardel timespecsub(&rqt, &rmt, &rmt);
367 1.101 kardel if (rmt.tv_sec < 0)
368 1.101 kardel timespecclear(&rmt);
369 1.101 kardel
370 1.101 kardel error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
371 1.101 kardel sizeof(rmt));
372 1.101 kardel if (error1)
373 1.101 kardel return (error1);
374 1.101 kardel }
375 1.101 kardel
376 1.101 kardel return error;
377 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
378 1.27 jtc static int nanowait;
379 1.45 augustss struct sys_nanosleep_args/* {
380 1.27 jtc syscallarg(struct timespec *) rqtp;
381 1.27 jtc syscallarg(struct timespec *) rmtp;
382 1.27 jtc } */ *uap = v;
383 1.27 jtc struct timespec rqt;
384 1.27 jtc struct timespec rmt;
385 1.27 jtc struct timeval atv, utv;
386 1.27 jtc int error, s, timo;
387 1.27 jtc
388 1.89 christos error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
389 1.27 jtc if (error)
390 1.27 jtc return (error);
391 1.27 jtc
392 1.85 atatat TIMESPEC_TO_TIMEVAL(&atv,&rqt);
393 1.80 christos if (itimerfix(&atv))
394 1.27 jtc return (EINVAL);
395 1.27 jtc
396 1.27 jtc s = splclock();
397 1.27 jtc timeradd(&atv,&time,&atv);
398 1.27 jtc timo = hzto(&atv);
399 1.63 thorpej /*
400 1.27 jtc * Avoid inadvertantly sleeping forever
401 1.27 jtc */
402 1.27 jtc if (timo == 0)
403 1.27 jtc timo = 1;
404 1.27 jtc splx(s);
405 1.27 jtc
406 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
407 1.27 jtc if (error == ERESTART)
408 1.27 jtc error = EINTR;
409 1.27 jtc if (error == EWOULDBLOCK)
410 1.27 jtc error = 0;
411 1.27 jtc
412 1.27 jtc if (SCARG(uap, rmtp)) {
413 1.89 christos int error1;
414 1.28 jtc
415 1.27 jtc s = splclock();
416 1.27 jtc utv = time;
417 1.27 jtc splx(s);
418 1.27 jtc
419 1.27 jtc timersub(&atv, &utv, &utv);
420 1.27 jtc if (utv.tv_sec < 0)
421 1.27 jtc timerclear(&utv);
422 1.27 jtc
423 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
424 1.89 christos error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
425 1.28 jtc sizeof(rmt));
426 1.89 christos if (error1)
427 1.89 christos return (error1);
428 1.27 jtc }
429 1.27 jtc
430 1.27 jtc return error;
431 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
432 1.27 jtc }
433 1.22 jtc
434 1.1 cgd /* ARGSUSED */
435 1.3 andrew int
436 1.108 christos sys_gettimeofday(struct lwp *l __unused, void *v, register_t *retval __unused)
437 1.15 thorpej {
438 1.45 augustss struct sys_gettimeofday_args /* {
439 1.11 cgd syscallarg(struct timeval *) tp;
440 1.84 simonb syscallarg(void *) tzp; really "struct timezone *"
441 1.15 thorpej } */ *uap = v;
442 1.1 cgd struct timeval atv;
443 1.1 cgd int error = 0;
444 1.25 perry struct timezone tzfake;
445 1.1 cgd
446 1.11 cgd if (SCARG(uap, tp)) {
447 1.1 cgd microtime(&atv);
448 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
449 1.17 christos if (error)
450 1.1 cgd return (error);
451 1.1 cgd }
452 1.25 perry if (SCARG(uap, tzp)) {
453 1.25 perry /*
454 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
455 1.25 perry * fake up a timezone struct and return it if demanded.
456 1.25 perry */
457 1.25 perry tzfake.tz_minuteswest = 0;
458 1.25 perry tzfake.tz_dsttime = 0;
459 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
460 1.25 perry }
461 1.1 cgd return (error);
462 1.1 cgd }
463 1.1 cgd
464 1.1 cgd /* ARGSUSED */
465 1.3 andrew int
466 1.108 christos sys_settimeofday(struct lwp *l, void *v, register_t *retval __unused)
467 1.15 thorpej {
468 1.16 mycroft struct sys_settimeofday_args /* {
469 1.24 cgd syscallarg(const struct timeval *) tv;
470 1.84 simonb syscallarg(const void *) tzp; really "const struct timezone *"
471 1.15 thorpej } */ *uap = v;
472 1.60 manu int error;
473 1.60 manu
474 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
475 1.106 elad KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
476 1.60 manu return (error);
477 1.60 manu
478 1.105 ad return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), l->l_proc);
479 1.60 manu }
480 1.60 manu
481 1.60 manu int
482 1.90 thorpej settimeofday1(const struct timeval *utv, const struct timezone *utzp,
483 1.90 thorpej struct proc *p)
484 1.60 manu {
485 1.22 jtc struct timeval atv;
486 1.98 christos struct timespec ts;
487 1.22 jtc int error;
488 1.1 cgd
489 1.8 cgd /* Verify all parameters before changing time. */
490 1.25 perry /*
491 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
492 1.25 perry * obsolete program would try to set it, so we log a warning.
493 1.25 perry */
494 1.98 christos if (utzp)
495 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
496 1.63 thorpej "(obsolete) kernel time zone\n", p->p_pid);
497 1.98 christos
498 1.98 christos if (utv == NULL)
499 1.98 christos return 0;
500 1.98 christos
501 1.98 christos if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
502 1.98 christos return error;
503 1.98 christos TIMEVAL_TO_TIMESPEC(&atv, &ts);
504 1.98 christos return settime(p, &ts);
505 1.1 cgd }
506 1.1 cgd
507 1.101 kardel #ifndef __HAVE_TIMECOUNTER
508 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
509 1.1 cgd long timedelta; /* unapplied time correction, us. */
510 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
511 1.101 kardel #endif
512 1.101 kardel
513 1.68 dsl int time_adjusted; /* set if an adjustment is made */
514 1.1 cgd
515 1.1 cgd /* ARGSUSED */
516 1.3 andrew int
517 1.108 christos sys_adjtime(struct lwp *l, void *v, register_t *retval __unused)
518 1.15 thorpej {
519 1.45 augustss struct sys_adjtime_args /* {
520 1.24 cgd syscallarg(const struct timeval *) delta;
521 1.11 cgd syscallarg(struct timeval *) olddelta;
522 1.15 thorpej } */ *uap = v;
523 1.56 manu int error;
524 1.1 cgd
525 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
526 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
527 1.1 cgd return (error);
528 1.17 christos
529 1.105 ad return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
530 1.56 manu }
531 1.56 manu
532 1.56 manu int
533 1.108 christos adjtime1(const struct timeval *delta, struct timeval *olddelta,
534 1.108 christos struct proc *p __unused)
535 1.56 manu {
536 1.60 manu struct timeval atv;
537 1.101 kardel int error = 0;
538 1.101 kardel
539 1.101 kardel #ifdef __HAVE_TIMECOUNTER
540 1.101 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
541 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
542 1.56 manu long ndelta, ntickdelta, odelta;
543 1.56 manu int s;
544 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
545 1.101 kardel
546 1.101 kardel #ifdef __HAVE_TIMECOUNTER
547 1.101 kardel if (olddelta) {
548 1.101 kardel atv.tv_sec = time_adjtime / 1000000;
549 1.101 kardel atv.tv_usec = time_adjtime % 1000000;
550 1.101 kardel if (atv.tv_usec < 0) {
551 1.101 kardel atv.tv_usec += 1000000;
552 1.101 kardel atv.tv_sec--;
553 1.101 kardel }
554 1.101 kardel error = copyout(&atv, olddelta, sizeof(struct timeval));
555 1.101 kardel if (error)
556 1.101 kardel return (error);
557 1.101 kardel }
558 1.101 kardel
559 1.101 kardel if (delta) {
560 1.101 kardel error = copyin(delta, &atv, sizeof(struct timeval));
561 1.101 kardel if (error)
562 1.101 kardel return (error);
563 1.101 kardel
564 1.101 kardel time_adjtime = (int64_t)atv.tv_sec * 1000000 +
565 1.101 kardel atv.tv_usec;
566 1.8 cgd
567 1.101 kardel if (time_adjtime)
568 1.101 kardel /* We need to save the system time during shutdown */
569 1.101 kardel time_adjusted |= 1;
570 1.101 kardel }
571 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
572 1.60 manu error = copyin(delta, &atv, sizeof(struct timeval));
573 1.60 manu if (error)
574 1.60 manu return (error);
575 1.60 manu
576 1.8 cgd /*
577 1.8 cgd * Compute the total correction and the rate at which to apply it.
578 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
579 1.8 cgd * delta, so that after some number of incremental changes in
580 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
581 1.8 cgd * overshoot and start taking us away from the desired final time.
582 1.8 cgd */
583 1.60 manu ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
584 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
585 1.8 cgd ntickdelta = 10 * tickadj;
586 1.8 cgd else
587 1.8 cgd ntickdelta = tickadj;
588 1.8 cgd if (ndelta % ntickdelta)
589 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
590 1.8 cgd
591 1.8 cgd /*
592 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
593 1.8 cgd * if we want time to run slower; then hardclock can simply compute
594 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
595 1.8 cgd */
596 1.8 cgd if (ndelta < 0)
597 1.8 cgd ntickdelta = -ntickdelta;
598 1.68 dsl if (ndelta != 0)
599 1.68 dsl /* We need to save the system clock time during shutdown */
600 1.68 dsl time_adjusted |= 1;
601 1.1 cgd s = splclock();
602 1.8 cgd odelta = timedelta;
603 1.1 cgd timedelta = ndelta;
604 1.8 cgd tickdelta = ntickdelta;
605 1.1 cgd splx(s);
606 1.1 cgd
607 1.56 manu if (olddelta) {
608 1.60 manu atv.tv_sec = odelta / 1000000;
609 1.60 manu atv.tv_usec = odelta % 1000000;
610 1.79 chs error = copyout(&atv, olddelta, sizeof(struct timeval));
611 1.8 cgd }
612 1.101 kardel #endif /* __HAVE_TIMECOUNTER */
613 1.101 kardel
614 1.79 chs return error;
615 1.1 cgd }
616 1.1 cgd
617 1.1 cgd /*
618 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
619 1.63 thorpej * timer_*() family of routines are supported.
620 1.1 cgd *
621 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
622 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
623 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
624 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
625 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
626 1.63 thorpej * syscall.
627 1.1 cgd *
628 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
629 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
630 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
631 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
632 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
633 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
634 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
635 1.63 thorpej * given below), to be delayed in real time past when it is supposed
636 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
637 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
638 1.63 thorpej * compute the next time in absolute time the timer should go off. */
639 1.63 thorpej
640 1.63 thorpej /* Allocate a POSIX realtime timer. */
641 1.63 thorpej int
642 1.108 christos sys_timer_create(struct lwp *l, void *v, register_t *retval __unused)
643 1.63 thorpej {
644 1.63 thorpej struct sys_timer_create_args /* {
645 1.63 thorpej syscallarg(clockid_t) clock_id;
646 1.63 thorpej syscallarg(struct sigevent *) evp;
647 1.63 thorpej syscallarg(timer_t *) timerid;
648 1.63 thorpej } */ *uap = v;
649 1.92 cube
650 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
651 1.105 ad SCARG(uap, evp), copyin, l);
652 1.92 cube }
653 1.92 cube
654 1.92 cube int
655 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
656 1.105 ad copyin_t fetch_event, struct lwp *l)
657 1.92 cube {
658 1.92 cube int error;
659 1.92 cube timer_t timerid;
660 1.63 thorpej struct ptimer *pt;
661 1.105 ad struct proc *p;
662 1.105 ad
663 1.105 ad p = l->l_proc;
664 1.63 thorpej
665 1.63 thorpej if (id < CLOCK_REALTIME ||
666 1.63 thorpej id > CLOCK_PROF)
667 1.63 thorpej return (EINVAL);
668 1.63 thorpej
669 1.63 thorpej if (p->p_timers == NULL)
670 1.63 thorpej timers_alloc(p);
671 1.63 thorpej
672 1.63 thorpej /* Find a free timer slot, skipping those reserved for setitimer(). */
673 1.63 thorpej for (timerid = 3; timerid < TIMER_MAX; timerid++)
674 1.63 thorpej if (p->p_timers->pts_timers[timerid] == NULL)
675 1.63 thorpej break;
676 1.63 thorpej
677 1.63 thorpej if (timerid == TIMER_MAX)
678 1.63 thorpej return EAGAIN;
679 1.63 thorpej
680 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
681 1.63 thorpej if (evp) {
682 1.63 thorpej if (((error =
683 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
684 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
685 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
686 1.63 thorpej pool_put(&ptimer_pool, pt);
687 1.63 thorpej return (error ? error : EINVAL);
688 1.63 thorpej }
689 1.63 thorpej } else {
690 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
691 1.63 thorpej switch (id) {
692 1.63 thorpej case CLOCK_REALTIME:
693 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
694 1.63 thorpej break;
695 1.63 thorpej case CLOCK_VIRTUAL:
696 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
697 1.63 thorpej break;
698 1.63 thorpej case CLOCK_PROF:
699 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
700 1.63 thorpej break;
701 1.63 thorpej }
702 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
703 1.63 thorpej }
704 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
705 1.73 christos pt->pt_info.ksi_errno = 0;
706 1.73 christos pt->pt_info.ksi_code = 0;
707 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
708 1.105 ad pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
709 1.73 christos pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
710 1.63 thorpej
711 1.63 thorpej pt->pt_type = id;
712 1.63 thorpej pt->pt_proc = p;
713 1.63 thorpej pt->pt_overruns = 0;
714 1.63 thorpej pt->pt_poverruns = 0;
715 1.64 nathanw pt->pt_entry = timerid;
716 1.63 thorpej timerclear(&pt->pt_time.it_value);
717 1.63 thorpej if (id == CLOCK_REALTIME)
718 1.63 thorpej callout_init(&pt->pt_ch);
719 1.63 thorpej else
720 1.63 thorpej pt->pt_active = 0;
721 1.63 thorpej
722 1.63 thorpej p->p_timers->pts_timers[timerid] = pt;
723 1.63 thorpej
724 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
725 1.63 thorpej }
726 1.63 thorpej
727 1.63 thorpej /* Delete a POSIX realtime timer */
728 1.3 andrew int
729 1.108 christos sys_timer_delete(struct lwp *l, void *v, register_t *retval __unused)
730 1.15 thorpej {
731 1.63 thorpej struct sys_timer_delete_args /* {
732 1.63 thorpej syscallarg(timer_t) timerid;
733 1.15 thorpej } */ *uap = v;
734 1.63 thorpej struct proc *p = l->l_proc;
735 1.65 jdolecek timer_t timerid;
736 1.63 thorpej struct ptimer *pt, *ptn;
737 1.1 cgd int s;
738 1.1 cgd
739 1.63 thorpej timerid = SCARG(uap, timerid);
740 1.63 thorpej
741 1.63 thorpej if ((p->p_timers == NULL) ||
742 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
743 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
744 1.1 cgd return (EINVAL);
745 1.63 thorpej
746 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
747 1.63 thorpej callout_stop(&pt->pt_ch);
748 1.63 thorpej else if (pt->pt_active) {
749 1.63 thorpej s = splclock();
750 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
751 1.63 thorpej LIST_REMOVE(pt, pt_list);
752 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
753 1.63 thorpej timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
754 1.63 thorpej &ptn->pt_time.it_value);
755 1.63 thorpej splx(s);
756 1.63 thorpej }
757 1.63 thorpej
758 1.63 thorpej p->p_timers->pts_timers[timerid] = NULL;
759 1.63 thorpej pool_put(&ptimer_pool, pt);
760 1.63 thorpej
761 1.63 thorpej return (0);
762 1.63 thorpej }
763 1.63 thorpej
764 1.63 thorpej /*
765 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
766 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
767 1.67 nathanw * time for virtual timers.
768 1.63 thorpej * Must be called at splclock().
769 1.63 thorpej */
770 1.63 thorpej void
771 1.63 thorpej timer_settime(struct ptimer *pt)
772 1.63 thorpej {
773 1.63 thorpej struct ptimer *ptn, *pptn;
774 1.63 thorpej struct ptlist *ptl;
775 1.63 thorpej
776 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
777 1.63 thorpej callout_stop(&pt->pt_ch);
778 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
779 1.63 thorpej /*
780 1.63 thorpej * Don't need to check hzto() return value, here.
781 1.63 thorpej * callout_reset() does it for us.
782 1.63 thorpej */
783 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
784 1.63 thorpej realtimerexpire, pt);
785 1.63 thorpej }
786 1.63 thorpej } else {
787 1.63 thorpej if (pt->pt_active) {
788 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
789 1.63 thorpej LIST_REMOVE(pt, pt_list);
790 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
791 1.63 thorpej timeradd(&pt->pt_time.it_value,
792 1.63 thorpej &ptn->pt_time.it_value,
793 1.63 thorpej &ptn->pt_time.it_value);
794 1.63 thorpej }
795 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
796 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
797 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
798 1.63 thorpej else
799 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
800 1.63 thorpej
801 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
802 1.63 thorpej ptn && timercmp(&pt->pt_time.it_value,
803 1.63 thorpej &ptn->pt_time.it_value, >);
804 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
805 1.63 thorpej timersub(&pt->pt_time.it_value,
806 1.63 thorpej &ptn->pt_time.it_value,
807 1.63 thorpej &pt->pt_time.it_value);
808 1.63 thorpej
809 1.63 thorpej if (pptn)
810 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
811 1.63 thorpej else
812 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
813 1.63 thorpej
814 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
815 1.63 thorpej timersub(&ptn->pt_time.it_value,
816 1.63 thorpej &pt->pt_time.it_value,
817 1.63 thorpej &ptn->pt_time.it_value);
818 1.63 thorpej
819 1.63 thorpej pt->pt_active = 1;
820 1.63 thorpej } else
821 1.63 thorpej pt->pt_active = 0;
822 1.63 thorpej }
823 1.63 thorpej }
824 1.63 thorpej
825 1.63 thorpej void
826 1.63 thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
827 1.63 thorpej {
828 1.101 kardel #ifdef __HAVE_TIMECOUNTER
829 1.101 kardel struct timeval now;
830 1.101 kardel #endif
831 1.63 thorpej struct ptimer *ptn;
832 1.63 thorpej
833 1.63 thorpej *aitv = pt->pt_time;
834 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
835 1.1 cgd /*
836 1.12 mycroft * Convert from absolute to relative time in .it_value
837 1.63 thorpej * part of real time timer. If time for real time
838 1.63 thorpej * timer has passed return 0, else return difference
839 1.63 thorpej * between current time and time for the timer to go
840 1.63 thorpej * off.
841 1.1 cgd */
842 1.63 thorpej if (timerisset(&aitv->it_value)) {
843 1.101 kardel #ifdef __HAVE_TIMECOUNTER
844 1.101 kardel getmicrotime(&now);
845 1.101 kardel if (timercmp(&aitv->it_value, &now, <))
846 1.101 kardel timerclear(&aitv->it_value);
847 1.101 kardel else
848 1.101 kardel timersub(&aitv->it_value, &now,
849 1.101 kardel &aitv->it_value);
850 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
851 1.63 thorpej if (timercmp(&aitv->it_value, &time, <))
852 1.63 thorpej timerclear(&aitv->it_value);
853 1.1 cgd else
854 1.63 thorpej timersub(&aitv->it_value, &time,
855 1.63 thorpej &aitv->it_value);
856 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
857 1.36 thorpej }
858 1.63 thorpej } else if (pt->pt_active) {
859 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
860 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
861 1.63 thorpej else
862 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
863 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
864 1.63 thorpej timeradd(&aitv->it_value,
865 1.63 thorpej &ptn->pt_time.it_value, &aitv->it_value);
866 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
867 1.1 cgd } else
868 1.63 thorpej timerclear(&aitv->it_value);
869 1.63 thorpej }
870 1.63 thorpej
871 1.63 thorpej
872 1.63 thorpej
873 1.63 thorpej /* Set and arm a POSIX realtime timer */
874 1.63 thorpej int
875 1.108 christos sys_timer_settime(struct lwp *l, void *v, register_t *retval __unused)
876 1.63 thorpej {
877 1.63 thorpej struct sys_timer_settime_args /* {
878 1.63 thorpej syscallarg(timer_t) timerid;
879 1.63 thorpej syscallarg(int) flags;
880 1.63 thorpej syscallarg(const struct itimerspec *) value;
881 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
882 1.63 thorpej } */ *uap = v;
883 1.92 cube int error;
884 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
885 1.92 cube
886 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
887 1.92 cube sizeof(struct itimerspec))) != 0)
888 1.92 cube return (error);
889 1.92 cube
890 1.92 cube if (SCARG(uap, ovalue))
891 1.92 cube ovp = &ovalue;
892 1.92 cube
893 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
894 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
895 1.92 cube return error;
896 1.92 cube
897 1.92 cube if (ovp)
898 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
899 1.92 cube sizeof(struct itimerspec));
900 1.92 cube return 0;
901 1.92 cube }
902 1.92 cube
903 1.92 cube int
904 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
905 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
906 1.92 cube {
907 1.101 kardel #ifdef __HAVE_TIMECOUNTER
908 1.101 kardel struct timeval now;
909 1.101 kardel #endif
910 1.63 thorpej struct itimerval val, oval;
911 1.63 thorpej struct ptimer *pt;
912 1.101 kardel int s;
913 1.63 thorpej
914 1.63 thorpej if ((p->p_timers == NULL) ||
915 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
916 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
917 1.63 thorpej return (EINVAL);
918 1.63 thorpej
919 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
920 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
921 1.63 thorpej if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
922 1.63 thorpej return (EINVAL);
923 1.63 thorpej
924 1.63 thorpej oval = pt->pt_time;
925 1.63 thorpej pt->pt_time = val;
926 1.63 thorpej
927 1.63 thorpej s = splclock();
928 1.67 nathanw /*
929 1.67 nathanw * If we've been passed a relative time for a realtime timer,
930 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
931 1.67 nathanw * timer, convert it to relative and make sure we don't set it
932 1.67 nathanw * to zero, which would cancel the timer, or let it go
933 1.67 nathanw * negative, which would confuse the comparison tests.
934 1.67 nathanw */
935 1.67 nathanw if (timerisset(&pt->pt_time.it_value)) {
936 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
937 1.101 kardel #ifdef __HAVE_TIMECOUNTER
938 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
939 1.101 kardel getmicrotime(&now);
940 1.101 kardel timeradd(&pt->pt_time.it_value, &now,
941 1.101 kardel &pt->pt_time.it_value);
942 1.101 kardel }
943 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
944 1.92 cube if ((flags & TIMER_ABSTIME) == 0)
945 1.67 nathanw timeradd(&pt->pt_time.it_value, &time,
946 1.67 nathanw &pt->pt_time.it_value);
947 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
948 1.67 nathanw } else {
949 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
950 1.101 kardel #ifdef __HAVE_TIMECOUNTER
951 1.101 kardel getmicrotime(&now);
952 1.101 kardel timersub(&pt->pt_time.it_value, &now,
953 1.101 kardel &pt->pt_time.it_value);
954 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
955 1.67 nathanw timersub(&pt->pt_time.it_value, &time,
956 1.67 nathanw &pt->pt_time.it_value);
957 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
958 1.67 nathanw if (!timerisset(&pt->pt_time.it_value) ||
959 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
960 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
961 1.67 nathanw pt->pt_time.it_value.tv_usec = 1;
962 1.67 nathanw }
963 1.67 nathanw }
964 1.67 nathanw }
965 1.67 nathanw }
966 1.67 nathanw
967 1.63 thorpej timer_settime(pt);
968 1.63 thorpej splx(s);
969 1.63 thorpej
970 1.92 cube if (ovalue) {
971 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
972 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
973 1.63 thorpej }
974 1.63 thorpej
975 1.63 thorpej return (0);
976 1.63 thorpej }
977 1.63 thorpej
978 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
979 1.63 thorpej int
980 1.108 christos sys_timer_gettime(struct lwp *l, void *v, register_t *retval __unused)
981 1.63 thorpej {
982 1.63 thorpej struct sys_timer_gettime_args /* {
983 1.63 thorpej syscallarg(timer_t) timerid;
984 1.63 thorpej syscallarg(struct itimerspec *) value;
985 1.63 thorpej } */ *uap = v;
986 1.63 thorpej struct itimerspec its;
987 1.92 cube int error;
988 1.92 cube
989 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
990 1.92 cube &its)) != 0)
991 1.92 cube return error;
992 1.92 cube
993 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
994 1.92 cube }
995 1.92 cube
996 1.92 cube int
997 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
998 1.92 cube {
999 1.92 cube int s;
1000 1.63 thorpej struct ptimer *pt;
1001 1.92 cube struct itimerval aitv;
1002 1.63 thorpej
1003 1.63 thorpej if ((p->p_timers == NULL) ||
1004 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
1005 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1006 1.63 thorpej return (EINVAL);
1007 1.63 thorpej
1008 1.63 thorpej s = splclock();
1009 1.63 thorpej timer_gettime(pt, &aitv);
1010 1.1 cgd splx(s);
1011 1.63 thorpej
1012 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
1013 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
1014 1.63 thorpej
1015 1.92 cube return 0;
1016 1.63 thorpej }
1017 1.63 thorpej
1018 1.63 thorpej /*
1019 1.63 thorpej * Return the count of the number of times a periodic timer expired
1020 1.63 thorpej * while a notification was already pending. The counter is reset when
1021 1.63 thorpej * a timer expires and a notification can be posted.
1022 1.63 thorpej */
1023 1.63 thorpej int
1024 1.63 thorpej sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
1025 1.63 thorpej {
1026 1.63 thorpej struct sys_timer_getoverrun_args /* {
1027 1.63 thorpej syscallarg(timer_t) timerid;
1028 1.63 thorpej } */ *uap = v;
1029 1.63 thorpej struct proc *p = l->l_proc;
1030 1.63 thorpej int timerid;
1031 1.63 thorpej struct ptimer *pt;
1032 1.63 thorpej
1033 1.63 thorpej timerid = SCARG(uap, timerid);
1034 1.63 thorpej
1035 1.63 thorpej if ((p->p_timers == NULL) ||
1036 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
1037 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1038 1.63 thorpej return (EINVAL);
1039 1.63 thorpej
1040 1.63 thorpej *retval = pt->pt_poverruns;
1041 1.63 thorpej
1042 1.63 thorpej return (0);
1043 1.63 thorpej }
1044 1.63 thorpej
1045 1.63 thorpej /* Glue function that triggers an upcall; called from userret(). */
1046 1.63 thorpej static void
1047 1.63 thorpej timerupcall(struct lwp *l, void *arg)
1048 1.63 thorpej {
1049 1.64 nathanw struct ptimers *pt = (struct ptimers *)arg;
1050 1.64 nathanw unsigned int i, fired, done;
1051 1.74 cl
1052 1.81 cl KDASSERT(l->l_proc->p_sa);
1053 1.81 cl /* Bail out if we do not own the virtual processor */
1054 1.82 cl if (l->l_savp->savp_lwp != l)
1055 1.81 cl return ;
1056 1.87 perry
1057 1.63 thorpej KERNEL_PROC_LOCK(l);
1058 1.71 fvdl
1059 1.64 nathanw fired = pt->pts_fired;
1060 1.64 nathanw done = 0;
1061 1.64 nathanw while ((i = ffs(fired)) != 0) {
1062 1.74 cl siginfo_t *si;
1063 1.73 christos int mask = 1 << --i;
1064 1.74 cl int f;
1065 1.73 christos
1066 1.74 cl f = l->l_flag & L_SA;
1067 1.74 cl l->l_flag &= ~L_SA;
1068 1.94 chs si = siginfo_alloc(PR_WAITOK);
1069 1.77 thorpej si->_info = pt->pts_timers[i]->pt_info.ksi_info;
1070 1.64 nathanw if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
1071 1.94 chs sizeof(*si), si, siginfo_free) != 0) {
1072 1.94 chs siginfo_free(si);
1073 1.86 mycroft /* XXX What do we do here?? */
1074 1.86 mycroft } else
1075 1.73 christos done |= mask;
1076 1.73 christos fired &= ~mask;
1077 1.74 cl l->l_flag |= f;
1078 1.64 nathanw }
1079 1.64 nathanw pt->pts_fired &= ~done;
1080 1.64 nathanw if (pt->pts_fired == 0)
1081 1.63 thorpej l->l_proc->p_userret = NULL;
1082 1.63 thorpej
1083 1.63 thorpej KERNEL_PROC_UNLOCK(l);
1084 1.63 thorpej }
1085 1.63 thorpej
1086 1.63 thorpej /*
1087 1.63 thorpej * Real interval timer expired:
1088 1.63 thorpej * send process whose timer expired an alarm signal.
1089 1.63 thorpej * If time is not set up to reload, then just return.
1090 1.63 thorpej * Else compute next time timer should go off which is > current time.
1091 1.63 thorpej * This is where delay in processing this timeout causes multiple
1092 1.63 thorpej * SIGALRM calls to be compressed into one.
1093 1.63 thorpej */
1094 1.63 thorpej void
1095 1.63 thorpej realtimerexpire(void *arg)
1096 1.63 thorpej {
1097 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1098 1.101 kardel struct timeval now;
1099 1.101 kardel #endif
1100 1.63 thorpej struct ptimer *pt;
1101 1.63 thorpej int s;
1102 1.63 thorpej
1103 1.63 thorpej pt = (struct ptimer *)arg;
1104 1.63 thorpej
1105 1.63 thorpej itimerfire(pt);
1106 1.63 thorpej
1107 1.63 thorpej if (!timerisset(&pt->pt_time.it_interval)) {
1108 1.63 thorpej timerclear(&pt->pt_time.it_value);
1109 1.63 thorpej return;
1110 1.63 thorpej }
1111 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1112 1.101 kardel for (;;) {
1113 1.101 kardel s = splclock(); /* XXX need spl now? */
1114 1.101 kardel timeradd(&pt->pt_time.it_value,
1115 1.101 kardel &pt->pt_time.it_interval, &pt->pt_time.it_value);
1116 1.101 kardel getmicrotime(&now);
1117 1.101 kardel if (timercmp(&pt->pt_time.it_value, &now, >)) {
1118 1.101 kardel /*
1119 1.101 kardel * Don't need to check hzto() return value, here.
1120 1.101 kardel * callout_reset() does it for us.
1121 1.101 kardel */
1122 1.101 kardel callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1123 1.101 kardel realtimerexpire, pt);
1124 1.101 kardel splx(s);
1125 1.101 kardel return;
1126 1.101 kardel }
1127 1.101 kardel splx(s);
1128 1.101 kardel pt->pt_overruns++;
1129 1.101 kardel }
1130 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1131 1.63 thorpej for (;;) {
1132 1.63 thorpej s = splclock();
1133 1.63 thorpej timeradd(&pt->pt_time.it_value,
1134 1.63 thorpej &pt->pt_time.it_interval, &pt->pt_time.it_value);
1135 1.63 thorpej if (timercmp(&pt->pt_time.it_value, &time, >)) {
1136 1.63 thorpej /*
1137 1.63 thorpej * Don't need to check hzto() return value, here.
1138 1.63 thorpej * callout_reset() does it for us.
1139 1.63 thorpej */
1140 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1141 1.63 thorpej realtimerexpire, pt);
1142 1.63 thorpej splx(s);
1143 1.63 thorpej return;
1144 1.63 thorpej }
1145 1.63 thorpej splx(s);
1146 1.63 thorpej pt->pt_overruns++;
1147 1.63 thorpej }
1148 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1149 1.63 thorpej }
1150 1.63 thorpej
1151 1.63 thorpej /* BSD routine to get the value of an interval timer. */
1152 1.63 thorpej /* ARGSUSED */
1153 1.63 thorpej int
1154 1.108 christos sys_getitimer(struct lwp *l, void *v, register_t *retval __unused)
1155 1.63 thorpej {
1156 1.63 thorpej struct sys_getitimer_args /* {
1157 1.63 thorpej syscallarg(int) which;
1158 1.63 thorpej syscallarg(struct itimerval *) itv;
1159 1.63 thorpej } */ *uap = v;
1160 1.63 thorpej struct proc *p = l->l_proc;
1161 1.63 thorpej struct itimerval aitv;
1162 1.91 cube int error;
1163 1.91 cube
1164 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
1165 1.91 cube if (error)
1166 1.91 cube return error;
1167 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1168 1.91 cube }
1169 1.63 thorpej
1170 1.91 cube int
1171 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1172 1.91 cube {
1173 1.91 cube int s;
1174 1.63 thorpej
1175 1.63 thorpej if ((u_int)which > ITIMER_PROF)
1176 1.63 thorpej return (EINVAL);
1177 1.63 thorpej
1178 1.63 thorpej if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1179 1.91 cube timerclear(&itvp->it_value);
1180 1.91 cube timerclear(&itvp->it_interval);
1181 1.63 thorpej } else {
1182 1.63 thorpej s = splclock();
1183 1.91 cube timer_gettime(p->p_timers->pts_timers[which], itvp);
1184 1.63 thorpej splx(s);
1185 1.63 thorpej }
1186 1.63 thorpej
1187 1.91 cube return 0;
1188 1.1 cgd }
1189 1.1 cgd
1190 1.63 thorpej /* BSD routine to set/arm an interval timer. */
1191 1.1 cgd /* ARGSUSED */
1192 1.3 andrew int
1193 1.63 thorpej sys_setitimer(struct lwp *l, void *v, register_t *retval)
1194 1.15 thorpej {
1195 1.45 augustss struct sys_setitimer_args /* {
1196 1.30 mycroft syscallarg(int) which;
1197 1.24 cgd syscallarg(const struct itimerval *) itv;
1198 1.11 cgd syscallarg(struct itimerval *) oitv;
1199 1.15 thorpej } */ *uap = v;
1200 1.63 thorpej struct proc *p = l->l_proc;
1201 1.30 mycroft int which = SCARG(uap, which);
1202 1.21 cgd struct sys_getitimer_args getargs;
1203 1.91 cube const struct itimerval *itvp;
1204 1.1 cgd struct itimerval aitv;
1205 1.91 cube int error;
1206 1.1 cgd
1207 1.30 mycroft if ((u_int)which > ITIMER_PROF)
1208 1.1 cgd return (EINVAL);
1209 1.11 cgd itvp = SCARG(uap, itv);
1210 1.63 thorpej if (itvp &&
1211 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1212 1.1 cgd return (error);
1213 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1214 1.30 mycroft SCARG(&getargs, which) = which;
1215 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1216 1.63 thorpej if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1217 1.21 cgd return (error);
1218 1.21 cgd }
1219 1.1 cgd if (itvp == 0)
1220 1.1 cgd return (0);
1221 1.91 cube
1222 1.91 cube return dosetitimer(p, which, &aitv);
1223 1.91 cube }
1224 1.91 cube
1225 1.91 cube int
1226 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1227 1.91 cube {
1228 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1229 1.101 kardel struct timeval now;
1230 1.101 kardel #endif
1231 1.91 cube struct ptimer *pt;
1232 1.91 cube int s;
1233 1.91 cube
1234 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1235 1.1 cgd return (EINVAL);
1236 1.63 thorpej
1237 1.63 thorpej /*
1238 1.63 thorpej * Don't bother allocating data structures if the process just
1239 1.63 thorpej * wants to clear the timer.
1240 1.63 thorpej */
1241 1.91 cube if (!timerisset(&itvp->it_value) &&
1242 1.63 thorpej ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1243 1.63 thorpej return (0);
1244 1.63 thorpej
1245 1.63 thorpej if (p->p_timers == NULL)
1246 1.63 thorpej timers_alloc(p);
1247 1.63 thorpej if (p->p_timers->pts_timers[which] == NULL) {
1248 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
1249 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1250 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1251 1.63 thorpej pt->pt_overruns = 0;
1252 1.63 thorpej pt->pt_proc = p;
1253 1.63 thorpej pt->pt_type = which;
1254 1.64 nathanw pt->pt_entry = which;
1255 1.63 thorpej switch (which) {
1256 1.63 thorpej case ITIMER_REAL:
1257 1.63 thorpej callout_init(&pt->pt_ch);
1258 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1259 1.63 thorpej break;
1260 1.63 thorpej case ITIMER_VIRTUAL:
1261 1.63 thorpej pt->pt_active = 0;
1262 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1263 1.63 thorpej break;
1264 1.63 thorpej case ITIMER_PROF:
1265 1.63 thorpej pt->pt_active = 0;
1266 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1267 1.63 thorpej break;
1268 1.1 cgd }
1269 1.1 cgd } else
1270 1.63 thorpej pt = p->p_timers->pts_timers[which];
1271 1.63 thorpej
1272 1.91 cube pt->pt_time = *itvp;
1273 1.63 thorpej p->p_timers->pts_timers[which] = pt;
1274 1.63 thorpej
1275 1.63 thorpej s = splclock();
1276 1.67 nathanw if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1277 1.67 nathanw /* Convert to absolute time */
1278 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1279 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1280 1.101 kardel getmicrotime(&now);
1281 1.101 kardel timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1282 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1283 1.67 nathanw timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1284 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1285 1.67 nathanw }
1286 1.63 thorpej timer_settime(pt);
1287 1.1 cgd splx(s);
1288 1.63 thorpej
1289 1.1 cgd return (0);
1290 1.1 cgd }
1291 1.1 cgd
1292 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1293 1.63 thorpej void
1294 1.63 thorpej timers_alloc(struct proc *p)
1295 1.63 thorpej {
1296 1.63 thorpej int i;
1297 1.63 thorpej struct ptimers *pts;
1298 1.63 thorpej
1299 1.100 yamt pts = pool_get(&ptimers_pool, PR_WAITOK);
1300 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1301 1.63 thorpej LIST_INIT(&pts->pts_prof);
1302 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1303 1.63 thorpej pts->pts_timers[i] = NULL;
1304 1.64 nathanw pts->pts_fired = 0;
1305 1.63 thorpej p->p_timers = pts;
1306 1.63 thorpej }
1307 1.63 thorpej
1308 1.1 cgd /*
1309 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1310 1.63 thorpej * then clean up all timers and free all the data structures. If
1311 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1312 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1313 1.63 thorpej * structure if none of those remain.
1314 1.1 cgd */
1315 1.3 andrew void
1316 1.63 thorpej timers_free(struct proc *p, int which)
1317 1.6 cgd {
1318 1.63 thorpej int i, s;
1319 1.63 thorpej struct ptimers *pts;
1320 1.63 thorpej struct ptimer *pt, *ptn;
1321 1.63 thorpej struct timeval tv;
1322 1.63 thorpej
1323 1.63 thorpej if (p->p_timers) {
1324 1.63 thorpej pts = p->p_timers;
1325 1.63 thorpej if (which == TIMERS_ALL)
1326 1.63 thorpej i = 0;
1327 1.63 thorpej else {
1328 1.63 thorpej s = splclock();
1329 1.63 thorpej timerclear(&tv);
1330 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1331 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1332 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1333 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1334 1.63 thorpej LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1335 1.63 thorpej if (ptn) {
1336 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1337 1.63 thorpej &ptn->pt_time.it_value);
1338 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1339 1.63 thorpej ptn, pt_list);
1340 1.63 thorpej }
1341 1.63 thorpej
1342 1.63 thorpej timerclear(&tv);
1343 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1344 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_PROF];
1345 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1346 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1347 1.63 thorpej LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1348 1.63 thorpej if (ptn) {
1349 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1350 1.63 thorpej &ptn->pt_time.it_value);
1351 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1352 1.63 thorpej pt_list);
1353 1.63 thorpej }
1354 1.1 cgd splx(s);
1355 1.63 thorpej i = 3;
1356 1.63 thorpej }
1357 1.63 thorpej for ( ; i < TIMER_MAX; i++)
1358 1.63 thorpej if ((pt = pts->pts_timers[i]) != NULL) {
1359 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
1360 1.63 thorpej callout_stop(&pt->pt_ch);
1361 1.63 thorpej pts->pts_timers[i] = NULL;
1362 1.63 thorpej pool_put(&ptimer_pool, pt);
1363 1.63 thorpej }
1364 1.63 thorpej if ((pts->pts_timers[0] == NULL) &&
1365 1.63 thorpej (pts->pts_timers[1] == NULL) &&
1366 1.63 thorpej (pts->pts_timers[2] == NULL)) {
1367 1.63 thorpej p->p_timers = NULL;
1368 1.97 simonb pool_put(&ptimers_pool, pts);
1369 1.1 cgd }
1370 1.1 cgd }
1371 1.1 cgd }
1372 1.1 cgd
1373 1.1 cgd /*
1374 1.1 cgd * Check that a proposed value to load into the .it_value or
1375 1.1 cgd * .it_interval part of an interval timer is acceptable, and
1376 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
1377 1.1 cgd * than the resolution of the clock, round it up.)
1378 1.1 cgd */
1379 1.3 andrew int
1380 1.63 thorpej itimerfix(struct timeval *tv)
1381 1.1 cgd {
1382 1.1 cgd
1383 1.59 christos if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1384 1.1 cgd return (EINVAL);
1385 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1386 1.1 cgd tv->tv_usec = tick;
1387 1.1 cgd return (0);
1388 1.1 cgd }
1389 1.1 cgd
1390 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1391 1.101 kardel int
1392 1.101 kardel itimespecfix(struct timespec *ts)
1393 1.101 kardel {
1394 1.101 kardel
1395 1.101 kardel if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1396 1.101 kardel return (EINVAL);
1397 1.101 kardel if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1398 1.101 kardel ts->tv_nsec = tick * 1000;
1399 1.101 kardel return (0);
1400 1.101 kardel }
1401 1.101 kardel #endif /* __HAVE_TIMECOUNTER */
1402 1.101 kardel
1403 1.1 cgd /*
1404 1.1 cgd * Decrement an interval timer by a specified number
1405 1.1 cgd * of microseconds, which must be less than a second,
1406 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1407 1.1 cgd * it. In this case, carry over (usec - old value) to
1408 1.8 cgd * reduce the value reloaded into the timer so that
1409 1.1 cgd * the timer does not drift. This routine assumes
1410 1.1 cgd * that it is called in a context where the timers
1411 1.1 cgd * on which it is operating cannot change in value.
1412 1.1 cgd */
1413 1.3 andrew int
1414 1.63 thorpej itimerdecr(struct ptimer *pt, int usec)
1415 1.63 thorpej {
1416 1.45 augustss struct itimerval *itp;
1417 1.1 cgd
1418 1.63 thorpej itp = &pt->pt_time;
1419 1.1 cgd if (itp->it_value.tv_usec < usec) {
1420 1.1 cgd if (itp->it_value.tv_sec == 0) {
1421 1.1 cgd /* expired, and already in next interval */
1422 1.1 cgd usec -= itp->it_value.tv_usec;
1423 1.1 cgd goto expire;
1424 1.1 cgd }
1425 1.1 cgd itp->it_value.tv_usec += 1000000;
1426 1.1 cgd itp->it_value.tv_sec--;
1427 1.1 cgd }
1428 1.1 cgd itp->it_value.tv_usec -= usec;
1429 1.1 cgd usec = 0;
1430 1.1 cgd if (timerisset(&itp->it_value))
1431 1.1 cgd return (1);
1432 1.1 cgd /* expired, exactly at end of interval */
1433 1.1 cgd expire:
1434 1.1 cgd if (timerisset(&itp->it_interval)) {
1435 1.1 cgd itp->it_value = itp->it_interval;
1436 1.1 cgd itp->it_value.tv_usec -= usec;
1437 1.1 cgd if (itp->it_value.tv_usec < 0) {
1438 1.1 cgd itp->it_value.tv_usec += 1000000;
1439 1.1 cgd itp->it_value.tv_sec--;
1440 1.1 cgd }
1441 1.63 thorpej timer_settime(pt);
1442 1.1 cgd } else
1443 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1444 1.1 cgd return (0);
1445 1.42 cgd }
1446 1.42 cgd
1447 1.63 thorpej void
1448 1.63 thorpej itimerfire(struct ptimer *pt)
1449 1.63 thorpej {
1450 1.63 thorpej struct proc *p = pt->pt_proc;
1451 1.82 cl struct sadata_vp *vp;
1452 1.64 nathanw int s;
1453 1.82 cl unsigned int i;
1454 1.78 cl
1455 1.63 thorpej if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1456 1.63 thorpej /*
1457 1.63 thorpej * No RT signal infrastructure exists at this time;
1458 1.63 thorpej * just post the signal number and throw away the
1459 1.63 thorpej * value.
1460 1.63 thorpej */
1461 1.63 thorpej if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1462 1.63 thorpej pt->pt_overruns++;
1463 1.63 thorpej else {
1464 1.75 christos ksiginfo_t ksi;
1465 1.75 christos (void)memset(&ksi, 0, sizeof(ksi));
1466 1.75 christos ksi.ksi_signo = pt->pt_ev.sigev_signo;
1467 1.75 christos ksi.ksi_code = SI_TIMER;
1468 1.75 christos ksi.ksi_sigval = pt->pt_ev.sigev_value;
1469 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1470 1.63 thorpej pt->pt_overruns = 0;
1471 1.75 christos kpsignal(p, &ksi, NULL);
1472 1.63 thorpej }
1473 1.63 thorpej } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1474 1.63 thorpej /* Cause the process to generate an upcall when it returns. */
1475 1.107 christos signotify(p);
1476 1.63 thorpej if (p->p_userret == NULL) {
1477 1.70 nathanw /*
1478 1.70 nathanw * XXX stop signals can be processed inside tsleep,
1479 1.70 nathanw * which can be inside sa_yield's inner loop, which
1480 1.70 nathanw * makes testing for sa_idle alone insuffucent to
1481 1.70 nathanw * determine if we really should call setrunnable.
1482 1.70 nathanw */
1483 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1484 1.63 thorpej pt->pt_overruns = 0;
1485 1.64 nathanw i = 1 << pt->pt_entry;
1486 1.64 nathanw p->p_timers->pts_fired = i;
1487 1.63 thorpej p->p_userret = timerupcall;
1488 1.64 nathanw p->p_userret_arg = p->p_timers;
1489 1.87 perry
1490 1.78 cl SCHED_LOCK(s);
1491 1.82 cl SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1492 1.82 cl if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1493 1.82 cl vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1494 1.82 cl sched_wakeup(vp->savp_lwp);
1495 1.82 cl break;
1496 1.82 cl }
1497 1.78 cl }
1498 1.78 cl SCHED_UNLOCK(s);
1499 1.64 nathanw } else if (p->p_userret == timerupcall) {
1500 1.64 nathanw i = 1 << pt->pt_entry;
1501 1.64 nathanw if ((p->p_timers->pts_fired & i) == 0) {
1502 1.64 nathanw pt->pt_poverruns = pt->pt_overruns;
1503 1.64 nathanw pt->pt_overruns = 0;
1504 1.66 jdolecek p->p_timers->pts_fired |= i;
1505 1.64 nathanw } else
1506 1.64 nathanw pt->pt_overruns++;
1507 1.64 nathanw } else {
1508 1.63 thorpej pt->pt_overruns++;
1509 1.78 cl if ((p->p_flag & P_WEXIT) == 0)
1510 1.78 cl printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1511 1.78 cl p->p_pid, pt->pt_overruns,
1512 1.78 cl pt->pt_ev.sigev_value.sival_int,
1513 1.78 cl p->p_userret);
1514 1.64 nathanw }
1515 1.63 thorpej }
1516 1.63 thorpej
1517 1.63 thorpej }
1518 1.63 thorpej
1519 1.42 cgd /*
1520 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1521 1.42 cgd * for usage and rationale.
1522 1.42 cgd */
1523 1.42 cgd int
1524 1.63 thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1525 1.42 cgd {
1526 1.49 itojun struct timeval tv, delta;
1527 1.101 kardel int rv = 0;
1528 1.101 kardel #ifndef __HAVE_TIMECOUNTER
1529 1.101 kardel int s;
1530 1.101 kardel #endif
1531 1.42 cgd
1532 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1533 1.101 kardel getmicrouptime(&tv);
1534 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1535 1.63 thorpej s = splclock();
1536 1.49 itojun tv = mono_time;
1537 1.49 itojun splx(s);
1538 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1539 1.49 itojun timersub(&tv, lasttime, &delta);
1540 1.42 cgd
1541 1.42 cgd /*
1542 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1543 1.42 cgd * even if interval is huge.
1544 1.42 cgd */
1545 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1546 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1547 1.49 itojun *lasttime = tv;
1548 1.42 cgd rv = 1;
1549 1.42 cgd }
1550 1.50 itojun
1551 1.50 itojun return (rv);
1552 1.50 itojun }
1553 1.50 itojun
1554 1.50 itojun /*
1555 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1556 1.50 itojun */
1557 1.50 itojun int
1558 1.63 thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1559 1.50 itojun {
1560 1.50 itojun struct timeval tv, delta;
1561 1.101 kardel int rv;
1562 1.101 kardel #ifndef __HAVE_TIMECOUNTER
1563 1.101 kardel int s;
1564 1.101 kardel #endif
1565 1.50 itojun
1566 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1567 1.101 kardel getmicrouptime(&tv);
1568 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1569 1.63 thorpej s = splclock();
1570 1.50 itojun tv = mono_time;
1571 1.50 itojun splx(s);
1572 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1573 1.50 itojun timersub(&tv, lasttime, &delta);
1574 1.50 itojun
1575 1.50 itojun /*
1576 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1577 1.50 itojun * if more than one second have passed since the last update of
1578 1.50 itojun * lasttime, reset the counter.
1579 1.50 itojun *
1580 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1581 1.50 itojun * try to use *curpps for stat purposes as well.
1582 1.50 itojun */
1583 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1584 1.50 itojun delta.tv_sec >= 1) {
1585 1.50 itojun *lasttime = tv;
1586 1.50 itojun *curpps = 0;
1587 1.69 dyoung }
1588 1.69 dyoung if (maxpps < 0)
1589 1.53 itojun rv = 1;
1590 1.53 itojun else if (*curpps < maxpps)
1591 1.50 itojun rv = 1;
1592 1.50 itojun else
1593 1.50 itojun rv = 0;
1594 1.50 itojun
1595 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1596 1.50 itojun /* be careful about wrap-around */
1597 1.50 itojun if (*curpps + 1 > *curpps)
1598 1.50 itojun *curpps = *curpps + 1;
1599 1.50 itojun #else
1600 1.50 itojun /*
1601 1.50 itojun * assume that there's not too many calls to this function.
1602 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1603 1.50 itojun * behavior, not the behavior of this function.
1604 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1605 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1606 1.50 itojun */
1607 1.50 itojun *curpps = *curpps + 1;
1608 1.50 itojun #endif
1609 1.42 cgd
1610 1.42 cgd return (rv);
1611 1.1 cgd }
1612