Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.11
      1  1.11      cgd /*	$NetBSD: kern_time.c,v 1.11 1994/10/20 04:22:59 cgd Exp $	*/
      2   1.9      cgd 
      3   1.1      cgd /*
      4   1.8      cgd  * Copyright (c) 1982, 1986, 1989, 1993
      5   1.8      cgd  *	The Regents of the University of California.  All rights reserved.
      6   1.1      cgd  *
      7   1.1      cgd  * Redistribution and use in source and binary forms, with or without
      8   1.1      cgd  * modification, are permitted provided that the following conditions
      9   1.1      cgd  * are met:
     10   1.1      cgd  * 1. Redistributions of source code must retain the above copyright
     11   1.1      cgd  *    notice, this list of conditions and the following disclaimer.
     12   1.1      cgd  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1      cgd  *    notice, this list of conditions and the following disclaimer in the
     14   1.1      cgd  *    documentation and/or other materials provided with the distribution.
     15   1.1      cgd  * 3. All advertising materials mentioning features or use of this software
     16   1.1      cgd  *    must display the following acknowledgement:
     17   1.1      cgd  *	This product includes software developed by the University of
     18   1.1      cgd  *	California, Berkeley and its contributors.
     19   1.1      cgd  * 4. Neither the name of the University nor the names of its contributors
     20   1.1      cgd  *    may be used to endorse or promote products derived from this software
     21   1.1      cgd  *    without specific prior written permission.
     22   1.1      cgd  *
     23   1.1      cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24   1.1      cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25   1.1      cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26   1.1      cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27   1.1      cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28   1.1      cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29   1.1      cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30   1.1      cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31   1.1      cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32   1.1      cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33   1.1      cgd  * SUCH DAMAGE.
     34   1.1      cgd  *
     35   1.9      cgd  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
     36   1.1      cgd  */
     37   1.1      cgd 
     38   1.5  mycroft #include <sys/param.h>
     39   1.5  mycroft #include <sys/resourcevar.h>
     40   1.5  mycroft #include <sys/kernel.h>
     41   1.8      cgd #include <sys/systm.h>
     42   1.5  mycroft #include <sys/proc.h>
     43   1.8      cgd #include <sys/vnode.h>
     44   1.1      cgd 
     45  1.11      cgd #include <sys/mount.h>
     46  1.11      cgd #include <sys/syscallargs.h>
     47  1.11      cgd 
     48   1.5  mycroft #include <machine/cpu.h>
     49   1.1      cgd 
     50   1.1      cgd /*
     51   1.1      cgd  * Time of day and interval timer support.
     52   1.1      cgd  *
     53   1.1      cgd  * These routines provide the kernel entry points to get and set
     54   1.1      cgd  * the time-of-day and per-process interval timers.  Subroutines
     55   1.1      cgd  * here provide support for adding and subtracting timeval structures
     56   1.1      cgd  * and decrementing interval timers, optionally reloading the interval
     57   1.1      cgd  * timers when they expire.
     58   1.1      cgd  */
     59   1.1      cgd 
     60   1.1      cgd /* ARGSUSED */
     61   1.3   andrew int
     62   1.1      cgd gettimeofday(p, uap, retval)
     63   1.1      cgd 	struct proc *p;
     64  1.11      cgd 	register struct gettimeofday_args /* {
     65  1.11      cgd 		syscallarg(struct timeval *) tp;
     66  1.11      cgd 		syscallarg(struct timezone *) tzp;
     67  1.11      cgd 	} */ *uap;
     68  1.11      cgd 	register_t *retval;
     69   1.1      cgd {
     70   1.1      cgd 	struct timeval atv;
     71   1.1      cgd 	int error = 0;
     72   1.1      cgd 
     73  1.11      cgd 	if (SCARG(uap, tp)) {
     74   1.1      cgd 		microtime(&atv);
     75  1.11      cgd 		if (error = copyout((caddr_t)&atv, (caddr_t)SCARG(uap, tp),
     76   1.1      cgd 		    sizeof (atv)))
     77   1.1      cgd 			return (error);
     78   1.1      cgd 	}
     79  1.11      cgd 	if (SCARG(uap, tzp))
     80  1.11      cgd 		error = copyout((caddr_t)&tz, (caddr_t)SCARG(uap, tzp),
     81   1.1      cgd 		    sizeof (tz));
     82   1.1      cgd 	return (error);
     83   1.1      cgd }
     84   1.1      cgd 
     85   1.1      cgd /* ARGSUSED */
     86   1.3   andrew int
     87   1.1      cgd settimeofday(p, uap, retval)
     88   1.1      cgd 	struct proc *p;
     89  1.11      cgd 	struct settimeofday_args /* {
     90  1.11      cgd 		syscallarg(struct timeval *) tv;
     91  1.11      cgd 		syscallarg(struct timezone *) tzp;
     92  1.11      cgd 	} */ *uap;
     93  1.11      cgd 	register_t *retval;
     94   1.1      cgd {
     95   1.8      cgd 	struct timeval atv, delta;
     96   1.1      cgd 	struct timezone atz;
     97   1.1      cgd 	int error, s;
     98   1.1      cgd 
     99   1.1      cgd 	if (error = suser(p->p_ucred, &p->p_acflag))
    100   1.1      cgd 		return (error);
    101   1.8      cgd 	/* Verify all parameters before changing time. */
    102  1.11      cgd 	if (SCARG(uap, tv) && (error = copyin((caddr_t)SCARG(uap, tv),
    103  1.11      cgd 	    (caddr_t)&atv, sizeof(atv))))
    104   1.8      cgd 		return (error);
    105  1.11      cgd 	if (SCARG(uap, tzp) && (error = copyin((caddr_t)SCARG(uap, tzp),
    106  1.11      cgd 	    (caddr_t)&atz, sizeof(atz))))
    107   1.8      cgd 		return (error);
    108  1.11      cgd 	if (SCARG(uap, tv)) {
    109   1.1      cgd 		/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    110   1.8      cgd 		s = splclock();
    111   1.8      cgd 		/* nb. delta.tv_usec may be < 0, but this is OK here */
    112   1.8      cgd 		delta.tv_sec = atv.tv_sec - time.tv_sec;
    113   1.8      cgd 		delta.tv_usec = atv.tv_usec - time.tv_usec;
    114   1.8      cgd 		time = atv;
    115   1.8      cgd 		(void) splsoftclock();
    116   1.8      cgd 		timevaladd(&boottime, &delta);
    117   1.8      cgd 		timevalfix(&boottime);
    118   1.8      cgd 		timevaladd(&runtime, &delta);
    119   1.8      cgd 		timevalfix(&runtime);
    120   1.8      cgd 		LEASE_UPDATETIME(delta.tv_sec);
    121   1.8      cgd 		splx(s);
    122   1.1      cgd 		resettodr();
    123   1.1      cgd 	}
    124  1.11      cgd 	if (SCARG(uap, tzp))
    125   1.1      cgd 		tz = atz;
    126   1.8      cgd 	return (0);
    127   1.1      cgd }
    128   1.1      cgd 
    129   1.1      cgd int	tickdelta;			/* current clock skew, us. per tick */
    130   1.1      cgd long	timedelta;			/* unapplied time correction, us. */
    131   1.1      cgd long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    132   1.1      cgd 
    133   1.1      cgd /* ARGSUSED */
    134   1.3   andrew int
    135   1.1      cgd adjtime(p, uap, retval)
    136   1.1      cgd 	struct proc *p;
    137  1.11      cgd 	register struct adjtime_args /* {
    138  1.11      cgd 		syscallarg(struct timeval *) delta;
    139  1.11      cgd 		syscallarg(struct timeval *) olddelta;
    140  1.11      cgd 	} */ *uap;
    141  1.11      cgd 	register_t *retval;
    142   1.1      cgd {
    143   1.8      cgd 	struct timeval atv;
    144   1.8      cgd 	register long ndelta, ntickdelta, odelta;
    145   1.1      cgd 	int s, error;
    146   1.1      cgd 
    147   1.1      cgd 	if (error = suser(p->p_ucred, &p->p_acflag))
    148   1.1      cgd 		return (error);
    149  1.11      cgd 	if (error = copyin((caddr_t)SCARG(uap, delta), (caddr_t)&atv,
    150  1.11      cgd 	    sizeof(struct timeval)))
    151   1.1      cgd 		return (error);
    152   1.8      cgd 
    153   1.8      cgd 	/*
    154   1.8      cgd 	 * Compute the total correction and the rate at which to apply it.
    155   1.8      cgd 	 * Round the adjustment down to a whole multiple of the per-tick
    156   1.8      cgd 	 * delta, so that after some number of incremental changes in
    157   1.8      cgd 	 * hardclock(), tickdelta will become zero, lest the correction
    158   1.8      cgd 	 * overshoot and start taking us away from the desired final time.
    159   1.8      cgd 	 */
    160   1.1      cgd 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    161   1.8      cgd 	if (ndelta > bigadj)
    162   1.8      cgd 		ntickdelta = 10 * tickadj;
    163   1.8      cgd 	else
    164   1.8      cgd 		ntickdelta = tickadj;
    165   1.8      cgd 	if (ndelta % ntickdelta)
    166   1.8      cgd 		ndelta = ndelta / ntickdelta * ntickdelta;
    167   1.8      cgd 
    168   1.8      cgd 	/*
    169   1.8      cgd 	 * To make hardclock()'s job easier, make the per-tick delta negative
    170   1.8      cgd 	 * if we want time to run slower; then hardclock can simply compute
    171   1.8      cgd 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    172   1.8      cgd 	 */
    173   1.8      cgd 	if (ndelta < 0)
    174   1.8      cgd 		ntickdelta = -ntickdelta;
    175   1.1      cgd 	s = splclock();
    176   1.8      cgd 	odelta = timedelta;
    177   1.1      cgd 	timedelta = ndelta;
    178   1.8      cgd 	tickdelta = ntickdelta;
    179   1.1      cgd 	splx(s);
    180   1.1      cgd 
    181  1.11      cgd 	if (SCARG(uap, olddelta)) {
    182   1.8      cgd 		atv.tv_sec = odelta / 1000000;
    183   1.8      cgd 		atv.tv_usec = odelta % 1000000;
    184  1.11      cgd 		(void) copyout((caddr_t)&atv, (caddr_t)SCARG(uap, olddelta),
    185   1.8      cgd 		    sizeof(struct timeval));
    186   1.8      cgd 	}
    187   1.1      cgd 	return (0);
    188   1.1      cgd }
    189   1.1      cgd 
    190   1.1      cgd /*
    191   1.1      cgd  * Get value of an interval timer.  The process virtual and
    192   1.1      cgd  * profiling virtual time timers are kept in the p_stats area, since
    193   1.1      cgd  * they can be swapped out.  These are kept internally in the
    194   1.1      cgd  * way they are specified externally: in time until they expire.
    195   1.1      cgd  *
    196   1.1      cgd  * The real time interval timer is kept in the process table slot
    197   1.1      cgd  * for the process, and its value (it_value) is kept as an
    198   1.1      cgd  * absolute time rather than as a delta, so that it is easy to keep
    199   1.1      cgd  * periodic real-time signals from drifting.
    200   1.1      cgd  *
    201   1.1      cgd  * Virtual time timers are processed in the hardclock() routine of
    202   1.1      cgd  * kern_clock.c.  The real time timer is processed by a timeout
    203   1.1      cgd  * routine, called from the softclock() routine.  Since a callout
    204   1.1      cgd  * may be delayed in real time due to interrupt processing in the system,
    205   1.1      cgd  * it is possible for the real time timeout routine (realitexpire, given below),
    206   1.1      cgd  * to be delayed in real time past when it is supposed to occur.  It
    207   1.1      cgd  * does not suffice, therefore, to reload the real timer .it_value from the
    208   1.1      cgd  * real time timers .it_interval.  Rather, we compute the next time in
    209   1.1      cgd  * absolute time the timer should go off.
    210   1.1      cgd  */
    211   1.1      cgd /* ARGSUSED */
    212   1.3   andrew int
    213   1.1      cgd getitimer(p, uap, retval)
    214   1.1      cgd 	struct proc *p;
    215  1.11      cgd 	register struct getitimer_args /* {
    216  1.11      cgd 		syscallarg(u_int) which;
    217  1.11      cgd 		syscallarg(struct itimerval *) itv;
    218  1.11      cgd 	} */ *uap;
    219  1.11      cgd 	register_t *retval;
    220   1.1      cgd {
    221   1.1      cgd 	struct itimerval aitv;
    222   1.1      cgd 	int s;
    223   1.1      cgd 
    224  1.11      cgd 	if (SCARG(uap, which) > ITIMER_PROF)
    225   1.1      cgd 		return (EINVAL);
    226   1.1      cgd 	s = splclock();
    227  1.11      cgd 	if (SCARG(uap, which) == ITIMER_REAL) {
    228   1.1      cgd 		/*
    229   1.1      cgd 		 * Convert from absoulte to relative time in .it_value
    230   1.1      cgd 		 * part of real time timer.  If time for real time timer
    231   1.1      cgd 		 * has passed return 0, else return difference between
    232   1.1      cgd 		 * current time and time for the timer to go off.
    233   1.1      cgd 		 */
    234   1.1      cgd 		aitv = p->p_realtimer;
    235   1.1      cgd 		if (timerisset(&aitv.it_value))
    236   1.1      cgd 			if (timercmp(&aitv.it_value, &time, <))
    237   1.1      cgd 				timerclear(&aitv.it_value);
    238   1.1      cgd 			else
    239   1.6      cgd 				timevalsub(&aitv.it_value,
    240   1.6      cgd 				    (struct timeval *)&time);
    241   1.1      cgd 	} else
    242  1.11      cgd 		aitv = p->p_stats->p_timer[SCARG(uap, which)];
    243   1.1      cgd 	splx(s);
    244  1.11      cgd 	return (copyout((caddr_t)&aitv, (caddr_t)SCARG(uap, itv),
    245   1.1      cgd 	    sizeof (struct itimerval)));
    246   1.1      cgd }
    247   1.1      cgd 
    248   1.1      cgd /* ARGSUSED */
    249   1.3   andrew int
    250   1.1      cgd setitimer(p, uap, retval)
    251   1.1      cgd 	struct proc *p;
    252  1.11      cgd 	register struct setitimer_args /* {
    253  1.11      cgd 		syscallarg(u_int) which;
    254  1.11      cgd 		syscallarg(struct itimerval *) itv;
    255  1.11      cgd 		syscallarg(struct itimerval *) oitv;
    256  1.11      cgd 	} */ *uap;
    257  1.11      cgd 	register_t *retval;
    258   1.1      cgd {
    259   1.1      cgd 	struct itimerval aitv;
    260   1.1      cgd 	register struct itimerval *itvp;
    261   1.1      cgd 	int s, error;
    262   1.1      cgd 
    263  1.11      cgd 	if (SCARG(uap, which) > ITIMER_PROF)
    264   1.1      cgd 		return (EINVAL);
    265  1.11      cgd 	itvp = SCARG(uap, itv);
    266   1.1      cgd 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
    267   1.1      cgd 	    sizeof(struct itimerval))))
    268   1.1      cgd 		return (error);
    269  1.11      cgd 	if ((SCARG(uap, itv) = SCARG(uap, oitv)) &&
    270  1.11      cgd 	    (error = getitimer(p, uap, retval)))
    271   1.1      cgd 		return (error);
    272   1.1      cgd 	if (itvp == 0)
    273   1.1      cgd 		return (0);
    274   1.1      cgd 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    275   1.1      cgd 		return (EINVAL);
    276   1.1      cgd 	s = splclock();
    277  1.11      cgd 	if (SCARG(uap, which) == ITIMER_REAL) {
    278   1.7  mycroft 		untimeout(realitexpire, p);
    279   1.1      cgd 		if (timerisset(&aitv.it_value)) {
    280   1.6      cgd 			timevaladd(&aitv.it_value, (struct timeval *)&time);
    281   1.7  mycroft 			timeout(realitexpire, p, hzto(&aitv.it_value));
    282   1.1      cgd 		}
    283   1.1      cgd 		p->p_realtimer = aitv;
    284   1.1      cgd 	} else
    285  1.11      cgd 		p->p_stats->p_timer[SCARG(uap, which)] = aitv;
    286   1.1      cgd 	splx(s);
    287   1.1      cgd 	return (0);
    288   1.1      cgd }
    289   1.1      cgd 
    290   1.1      cgd /*
    291   1.1      cgd  * Real interval timer expired:
    292   1.1      cgd  * send process whose timer expired an alarm signal.
    293   1.1      cgd  * If time is not set up to reload, then just return.
    294   1.1      cgd  * Else compute next time timer should go off which is > current time.
    295   1.1      cgd  * This is where delay in processing this timeout causes multiple
    296   1.1      cgd  * SIGALRM calls to be compressed into one.
    297   1.1      cgd  */
    298   1.3   andrew void
    299   1.6      cgd realitexpire(arg)
    300   1.6      cgd 	void *arg;
    301   1.6      cgd {
    302   1.1      cgd 	register struct proc *p;
    303   1.1      cgd 	int s;
    304   1.1      cgd 
    305   1.6      cgd 	p = (struct proc *)arg;
    306   1.1      cgd 	psignal(p, SIGALRM);
    307   1.1      cgd 	if (!timerisset(&p->p_realtimer.it_interval)) {
    308   1.1      cgd 		timerclear(&p->p_realtimer.it_value);
    309   1.1      cgd 		return;
    310   1.1      cgd 	}
    311   1.1      cgd 	for (;;) {
    312   1.1      cgd 		s = splclock();
    313   1.1      cgd 		timevaladd(&p->p_realtimer.it_value,
    314   1.1      cgd 		    &p->p_realtimer.it_interval);
    315   1.1      cgd 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
    316   1.7  mycroft 			timeout(realitexpire, p,
    317   1.1      cgd 			    hzto(&p->p_realtimer.it_value));
    318   1.1      cgd 			splx(s);
    319   1.1      cgd 			return;
    320   1.1      cgd 		}
    321   1.1      cgd 		splx(s);
    322   1.1      cgd 	}
    323   1.1      cgd }
    324   1.1      cgd 
    325   1.1      cgd /*
    326   1.1      cgd  * Check that a proposed value to load into the .it_value or
    327   1.1      cgd  * .it_interval part of an interval timer is acceptable, and
    328   1.1      cgd  * fix it to have at least minimal value (i.e. if it is less
    329   1.1      cgd  * than the resolution of the clock, round it up.)
    330   1.1      cgd  */
    331   1.3   andrew int
    332   1.1      cgd itimerfix(tv)
    333   1.1      cgd 	struct timeval *tv;
    334   1.1      cgd {
    335   1.1      cgd 
    336   1.1      cgd 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
    337   1.1      cgd 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    338   1.1      cgd 		return (EINVAL);
    339   1.1      cgd 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    340   1.1      cgd 		tv->tv_usec = tick;
    341   1.1      cgd 	return (0);
    342   1.1      cgd }
    343   1.1      cgd 
    344   1.1      cgd /*
    345   1.1      cgd  * Decrement an interval timer by a specified number
    346   1.1      cgd  * of microseconds, which must be less than a second,
    347   1.1      cgd  * i.e. < 1000000.  If the timer expires, then reload
    348   1.1      cgd  * it.  In this case, carry over (usec - old value) to
    349   1.8      cgd  * reduce the value reloaded into the timer so that
    350   1.1      cgd  * the timer does not drift.  This routine assumes
    351   1.1      cgd  * that it is called in a context where the timers
    352   1.1      cgd  * on which it is operating cannot change in value.
    353   1.1      cgd  */
    354   1.3   andrew int
    355   1.1      cgd itimerdecr(itp, usec)
    356   1.1      cgd 	register struct itimerval *itp;
    357   1.1      cgd 	int usec;
    358   1.1      cgd {
    359   1.1      cgd 
    360   1.1      cgd 	if (itp->it_value.tv_usec < usec) {
    361   1.1      cgd 		if (itp->it_value.tv_sec == 0) {
    362   1.1      cgd 			/* expired, and already in next interval */
    363   1.1      cgd 			usec -= itp->it_value.tv_usec;
    364   1.1      cgd 			goto expire;
    365   1.1      cgd 		}
    366   1.1      cgd 		itp->it_value.tv_usec += 1000000;
    367   1.1      cgd 		itp->it_value.tv_sec--;
    368   1.1      cgd 	}
    369   1.1      cgd 	itp->it_value.tv_usec -= usec;
    370   1.1      cgd 	usec = 0;
    371   1.1      cgd 	if (timerisset(&itp->it_value))
    372   1.1      cgd 		return (1);
    373   1.1      cgd 	/* expired, exactly at end of interval */
    374   1.1      cgd expire:
    375   1.1      cgd 	if (timerisset(&itp->it_interval)) {
    376   1.1      cgd 		itp->it_value = itp->it_interval;
    377   1.1      cgd 		itp->it_value.tv_usec -= usec;
    378   1.1      cgd 		if (itp->it_value.tv_usec < 0) {
    379   1.1      cgd 			itp->it_value.tv_usec += 1000000;
    380   1.1      cgd 			itp->it_value.tv_sec--;
    381   1.1      cgd 		}
    382   1.1      cgd 	} else
    383   1.1      cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
    384   1.1      cgd 	return (0);
    385   1.1      cgd }
    386   1.1      cgd 
    387   1.1      cgd /*
    388   1.1      cgd  * Add and subtract routines for timevals.
    389   1.1      cgd  * N.B.: subtract routine doesn't deal with
    390   1.1      cgd  * results which are before the beginning,
    391   1.1      cgd  * it just gets very confused in this case.
    392   1.1      cgd  * Caveat emptor.
    393   1.1      cgd  */
    394   1.3   andrew void
    395   1.1      cgd timevaladd(t1, t2)
    396   1.1      cgd 	struct timeval *t1, *t2;
    397   1.1      cgd {
    398   1.1      cgd 
    399   1.1      cgd 	t1->tv_sec += t2->tv_sec;
    400   1.1      cgd 	t1->tv_usec += t2->tv_usec;
    401   1.1      cgd 	timevalfix(t1);
    402   1.1      cgd }
    403   1.1      cgd 
    404   1.3   andrew void
    405   1.1      cgd timevalsub(t1, t2)
    406   1.1      cgd 	struct timeval *t1, *t2;
    407   1.1      cgd {
    408   1.1      cgd 
    409   1.1      cgd 	t1->tv_sec -= t2->tv_sec;
    410   1.1      cgd 	t1->tv_usec -= t2->tv_usec;
    411   1.1      cgd 	timevalfix(t1);
    412   1.1      cgd }
    413   1.1      cgd 
    414   1.3   andrew void
    415   1.1      cgd timevalfix(t1)
    416   1.1      cgd 	struct timeval *t1;
    417   1.1      cgd {
    418   1.1      cgd 
    419   1.1      cgd 	if (t1->tv_usec < 0) {
    420   1.1      cgd 		t1->tv_sec--;
    421   1.1      cgd 		t1->tv_usec += 1000000;
    422   1.1      cgd 	}
    423   1.1      cgd 	if (t1->tv_usec >= 1000000) {
    424   1.1      cgd 		t1->tv_sec++;
    425   1.1      cgd 		t1->tv_usec -= 1000000;
    426   1.1      cgd 	}
    427   1.1      cgd }
    428