kern_time.c revision 1.112 1 1.112 yamt /* $NetBSD: kern_time.c,v 1.112 2006/12/27 12:10:09 yamt Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.88 mycroft * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.72 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 cgd * may be used to endorse or promote products derived from this software
53 1.1 cgd * without specific prior written permission.
54 1.1 cgd *
55 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 cgd * SUCH DAMAGE.
66 1.1 cgd *
67 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 1.1 cgd */
69 1.58 lukem
70 1.58 lukem #include <sys/cdefs.h>
71 1.112 yamt __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.112 2006/12/27 12:10:09 yamt Exp $");
72 1.1 cgd
73 1.5 mycroft #include <sys/param.h>
74 1.5 mycroft #include <sys/resourcevar.h>
75 1.5 mycroft #include <sys/kernel.h>
76 1.8 cgd #include <sys/systm.h>
77 1.5 mycroft #include <sys/proc.h>
78 1.63 thorpej #include <sys/sa.h>
79 1.63 thorpej #include <sys/savar.h>
80 1.8 cgd #include <sys/vnode.h>
81 1.17 christos #include <sys/signalvar.h>
82 1.25 perry #include <sys/syslog.h>
83 1.101 kardel #ifdef __HAVE_TIMECOUNTER
84 1.101 kardel #include <sys/timetc.h>
85 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
86 1.95 cube #include <sys/timevar.h>
87 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
88 1.99 elad #include <sys/kauth.h>
89 1.1 cgd
90 1.11 cgd #include <sys/mount.h>
91 1.11 cgd #include <sys/syscallargs.h>
92 1.19 christos
93 1.37 thorpej #include <uvm/uvm_extern.h>
94 1.37 thorpej
95 1.5 mycroft #include <machine/cpu.h>
96 1.23 cgd
97 1.97 simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
98 1.97 simonb &pool_allocator_nointr);
99 1.97 simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
100 1.97 simonb &pool_allocator_nointr);
101 1.97 simonb
102 1.63 thorpej static void timerupcall(struct lwp *, void *);
103 1.101 kardel #ifdef __HAVE_TIMECOUNTER
104 1.101 kardel static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
105 1.101 kardel #endif /* __HAVE_TIMECOUNTER */
106 1.63 thorpej
107 1.63 thorpej /* Time of day and interval timer support.
108 1.1 cgd *
109 1.1 cgd * These routines provide the kernel entry points to get and set
110 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
111 1.1 cgd * here provide support for adding and subtracting timeval structures
112 1.1 cgd * and decrementing interval timers, optionally reloading the interval
113 1.1 cgd * timers when they expire.
114 1.1 cgd */
115 1.1 cgd
116 1.22 jtc /* This function is used by clock_settime and settimeofday */
117 1.39 tron int
118 1.98 christos settime(struct proc *p, struct timespec *ts)
119 1.22 jtc {
120 1.98 christos struct timeval delta, tv;
121 1.101 kardel #ifdef __HAVE_TIMECOUNTER
122 1.101 kardel struct timeval now;
123 1.101 kardel struct timespec ts1;
124 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
125 1.47 thorpej struct cpu_info *ci;
126 1.22 jtc int s;
127 1.22 jtc
128 1.98 christos /*
129 1.98 christos * Don't allow the time to be set forward so far it will wrap
130 1.98 christos * and become negative, thus allowing an attacker to bypass
131 1.98 christos * the next check below. The cutoff is 1 year before rollover
132 1.98 christos * occurs, so even if the attacker uses adjtime(2) to move
133 1.98 christos * the time past the cutoff, it will take a very long time
134 1.98 christos * to get to the wrap point.
135 1.98 christos *
136 1.98 christos * XXX: we check against INT_MAX since on 64-bit
137 1.98 christos * platforms, sizeof(int) != sizeof(long) and
138 1.98 christos * time_t is 32 bits even when atv.tv_sec is 64 bits.
139 1.98 christos */
140 1.98 christos if (ts->tv_sec > INT_MAX - 365*24*60*60) {
141 1.98 christos struct proc *pp = p->p_pptr;
142 1.98 christos log(LOG_WARNING, "pid %d (%s) "
143 1.98 christos "invoked by uid %d ppid %d (%s) "
144 1.98 christos "tried to set clock forward to %ld\n",
145 1.99 elad p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
146 1.98 christos pp->p_pid, pp->p_comm, (long)ts->tv_sec);
147 1.98 christos return (EPERM);
148 1.98 christos }
149 1.98 christos TIMESPEC_TO_TIMEVAL(&tv, ts);
150 1.98 christos
151 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
152 1.22 jtc s = splclock();
153 1.101 kardel #ifdef __HAVE_TIMECOUNTER
154 1.101 kardel microtime(&now);
155 1.101 kardel timersub(&tv, &now, &delta);
156 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
157 1.98 christos timersub(&tv, &time, &delta);
158 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
159 1.106 elad if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
160 1.106 elad kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
161 1.106 elad KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
162 1.55 tron splx(s);
163 1.29 tls return (EPERM);
164 1.55 tron }
165 1.29 tls #ifdef notyet
166 1.109 elad if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
167 1.55 tron splx(s);
168 1.29 tls return (EPERM);
169 1.55 tron }
170 1.29 tls #endif
171 1.103 kardel
172 1.101 kardel #ifdef __HAVE_TIMECOUNTER
173 1.103 kardel TIMEVAL_TO_TIMESPEC(&tv, &ts1);
174 1.101 kardel tc_setclock(&ts1);
175 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
176 1.98 christos time = tv;
177 1.103 kardel #endif /* !__HAVE_TIMECOUNTER */
178 1.103 kardel
179 1.38 thorpej (void) spllowersoftclock();
180 1.103 kardel
181 1.22 jtc timeradd(&boottime, &delta, &boottime);
182 1.103 kardel
183 1.47 thorpej /*
184 1.47 thorpej * XXXSMP
185 1.47 thorpej * This is wrong. We should traverse a list of all
186 1.47 thorpej * CPUs and add the delta to the runtime of those
187 1.47 thorpej * CPUs which have a process on them.
188 1.47 thorpej */
189 1.47 thorpej ci = curcpu();
190 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
191 1.47 thorpej &ci->ci_schedstate.spc_runtime);
192 1.22 jtc splx(s);
193 1.22 jtc resettodr();
194 1.29 tls return (0);
195 1.22 jtc }
196 1.22 jtc
197 1.22 jtc /* ARGSUSED */
198 1.22 jtc int
199 1.110 yamt sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
200 1.22 jtc {
201 1.45 augustss struct sys_clock_gettime_args /* {
202 1.22 jtc syscallarg(clockid_t) clock_id;
203 1.23 cgd syscallarg(struct timespec *) tp;
204 1.23 cgd } */ *uap = v;
205 1.22 jtc clockid_t clock_id;
206 1.22 jtc struct timespec ats;
207 1.22 jtc
208 1.22 jtc clock_id = SCARG(uap, clock_id);
209 1.61 simonb switch (clock_id) {
210 1.61 simonb case CLOCK_REALTIME:
211 1.96 simonb nanotime(&ats);
212 1.61 simonb break;
213 1.61 simonb case CLOCK_MONOTONIC:
214 1.101 kardel #ifdef __HAVE_TIMECOUNTER
215 1.101 kardel nanouptime(&ats);
216 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
217 1.101 kardel {
218 1.101 kardel int s;
219 1.101 kardel
220 1.61 simonb /* XXX "hz" granularity */
221 1.63 thorpej s = splclock();
222 1.101 kardel TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
223 1.61 simonb splx(s);
224 1.101 kardel }
225 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
226 1.61 simonb break;
227 1.61 simonb default:
228 1.22 jtc return (EINVAL);
229 1.61 simonb }
230 1.22 jtc
231 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
232 1.22 jtc }
233 1.22 jtc
234 1.22 jtc /* ARGSUSED */
235 1.22 jtc int
236 1.110 yamt sys_clock_settime(struct lwp *l, void *v, register_t *retval)
237 1.22 jtc {
238 1.45 augustss struct sys_clock_settime_args /* {
239 1.22 jtc syscallarg(clockid_t) clock_id;
240 1.23 cgd syscallarg(const struct timespec *) tp;
241 1.23 cgd } */ *uap = v;
242 1.22 jtc int error;
243 1.22 jtc
244 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
245 1.106 elad KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
246 1.22 jtc return (error);
247 1.22 jtc
248 1.105 ad return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
249 1.56 manu }
250 1.56 manu
251 1.56 manu
252 1.56 manu int
253 1.98 christos clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
254 1.56 manu {
255 1.60 manu struct timespec ats;
256 1.56 manu int error;
257 1.56 manu
258 1.60 manu if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
259 1.60 manu return (error);
260 1.60 manu
261 1.61 simonb switch (clock_id) {
262 1.61 simonb case CLOCK_REALTIME:
263 1.98 christos if ((error = settime(p, &ats)) != 0)
264 1.61 simonb return (error);
265 1.61 simonb break;
266 1.61 simonb case CLOCK_MONOTONIC:
267 1.61 simonb return (EINVAL); /* read-only clock */
268 1.61 simonb default:
269 1.56 manu return (EINVAL);
270 1.61 simonb }
271 1.22 jtc
272 1.22 jtc return 0;
273 1.22 jtc }
274 1.22 jtc
275 1.22 jtc int
276 1.110 yamt sys_clock_getres(struct lwp *l, void *v, register_t *retval)
277 1.22 jtc {
278 1.45 augustss struct sys_clock_getres_args /* {
279 1.22 jtc syscallarg(clockid_t) clock_id;
280 1.23 cgd syscallarg(struct timespec *) tp;
281 1.23 cgd } */ *uap = v;
282 1.22 jtc clockid_t clock_id;
283 1.22 jtc struct timespec ts;
284 1.22 jtc int error = 0;
285 1.22 jtc
286 1.22 jtc clock_id = SCARG(uap, clock_id);
287 1.61 simonb switch (clock_id) {
288 1.61 simonb case CLOCK_REALTIME:
289 1.61 simonb case CLOCK_MONOTONIC:
290 1.22 jtc ts.tv_sec = 0;
291 1.102 kardel #ifdef __HAVE_TIMECOUNTER
292 1.102 kardel if (tc_getfrequency() > 1000000000)
293 1.102 kardel ts.tv_nsec = 1;
294 1.102 kardel else
295 1.102 kardel ts.tv_nsec = 1000000000 / tc_getfrequency();
296 1.102 kardel #else /* !__HAVE_TIMECOUNTER */
297 1.22 jtc ts.tv_nsec = 1000000000 / hz;
298 1.102 kardel #endif /* !__HAVE_TIMECOUNTER */
299 1.61 simonb break;
300 1.61 simonb default:
301 1.61 simonb return (EINVAL);
302 1.61 simonb }
303 1.22 jtc
304 1.61 simonb if (SCARG(uap, tp))
305 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
306 1.22 jtc
307 1.22 jtc return error;
308 1.22 jtc }
309 1.22 jtc
310 1.27 jtc /* ARGSUSED */
311 1.27 jtc int
312 1.110 yamt sys_nanosleep(struct lwp *l, void *v, register_t *retval)
313 1.27 jtc {
314 1.101 kardel #ifdef __HAVE_TIMECOUNTER
315 1.101 kardel static int nanowait;
316 1.101 kardel struct sys_nanosleep_args/* {
317 1.101 kardel syscallarg(struct timespec *) rqtp;
318 1.101 kardel syscallarg(struct timespec *) rmtp;
319 1.101 kardel } */ *uap = v;
320 1.101 kardel struct timespec rmt, rqt;
321 1.101 kardel int error, timo;
322 1.101 kardel
323 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
324 1.101 kardel if (error)
325 1.101 kardel return (error);
326 1.101 kardel
327 1.101 kardel if (itimespecfix(&rqt))
328 1.101 kardel return (EINVAL);
329 1.101 kardel
330 1.101 kardel timo = tstohz(&rqt);
331 1.101 kardel /*
332 1.101 kardel * Avoid inadvertantly sleeping forever
333 1.101 kardel */
334 1.101 kardel if (timo == 0)
335 1.101 kardel timo = 1;
336 1.101 kardel
337 1.104 kardel getnanouptime(&rmt);
338 1.104 kardel
339 1.101 kardel error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
340 1.101 kardel if (error == ERESTART)
341 1.101 kardel error = EINTR;
342 1.101 kardel if (error == EWOULDBLOCK)
343 1.101 kardel error = 0;
344 1.101 kardel
345 1.101 kardel if (SCARG(uap, rmtp)) {
346 1.101 kardel int error1;
347 1.104 kardel struct timespec rmtend;
348 1.101 kardel
349 1.104 kardel getnanouptime(&rmtend);
350 1.101 kardel
351 1.104 kardel timespecsub(&rmtend, &rmt, &rmt);
352 1.101 kardel timespecsub(&rqt, &rmt, &rmt);
353 1.101 kardel if (rmt.tv_sec < 0)
354 1.101 kardel timespecclear(&rmt);
355 1.101 kardel
356 1.101 kardel error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
357 1.101 kardel sizeof(rmt));
358 1.101 kardel if (error1)
359 1.101 kardel return (error1);
360 1.101 kardel }
361 1.101 kardel
362 1.101 kardel return error;
363 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
364 1.27 jtc static int nanowait;
365 1.45 augustss struct sys_nanosleep_args/* {
366 1.27 jtc syscallarg(struct timespec *) rqtp;
367 1.27 jtc syscallarg(struct timespec *) rmtp;
368 1.27 jtc } */ *uap = v;
369 1.27 jtc struct timespec rqt;
370 1.27 jtc struct timespec rmt;
371 1.27 jtc struct timeval atv, utv;
372 1.27 jtc int error, s, timo;
373 1.27 jtc
374 1.89 christos error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
375 1.27 jtc if (error)
376 1.27 jtc return (error);
377 1.27 jtc
378 1.85 atatat TIMESPEC_TO_TIMEVAL(&atv,&rqt);
379 1.80 christos if (itimerfix(&atv))
380 1.27 jtc return (EINVAL);
381 1.27 jtc
382 1.27 jtc s = splclock();
383 1.27 jtc timeradd(&atv,&time,&atv);
384 1.27 jtc timo = hzto(&atv);
385 1.63 thorpej /*
386 1.27 jtc * Avoid inadvertantly sleeping forever
387 1.27 jtc */
388 1.27 jtc if (timo == 0)
389 1.27 jtc timo = 1;
390 1.27 jtc splx(s);
391 1.27 jtc
392 1.27 jtc error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
393 1.27 jtc if (error == ERESTART)
394 1.27 jtc error = EINTR;
395 1.27 jtc if (error == EWOULDBLOCK)
396 1.27 jtc error = 0;
397 1.27 jtc
398 1.27 jtc if (SCARG(uap, rmtp)) {
399 1.89 christos int error1;
400 1.28 jtc
401 1.27 jtc s = splclock();
402 1.27 jtc utv = time;
403 1.27 jtc splx(s);
404 1.27 jtc
405 1.27 jtc timersub(&atv, &utv, &utv);
406 1.27 jtc if (utv.tv_sec < 0)
407 1.27 jtc timerclear(&utv);
408 1.27 jtc
409 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
410 1.89 christos error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
411 1.28 jtc sizeof(rmt));
412 1.89 christos if (error1)
413 1.89 christos return (error1);
414 1.27 jtc }
415 1.27 jtc
416 1.27 jtc return error;
417 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
418 1.27 jtc }
419 1.22 jtc
420 1.1 cgd /* ARGSUSED */
421 1.3 andrew int
422 1.110 yamt sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
423 1.15 thorpej {
424 1.45 augustss struct sys_gettimeofday_args /* {
425 1.11 cgd syscallarg(struct timeval *) tp;
426 1.84 simonb syscallarg(void *) tzp; really "struct timezone *"
427 1.15 thorpej } */ *uap = v;
428 1.1 cgd struct timeval atv;
429 1.1 cgd int error = 0;
430 1.25 perry struct timezone tzfake;
431 1.1 cgd
432 1.11 cgd if (SCARG(uap, tp)) {
433 1.1 cgd microtime(&atv);
434 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
435 1.17 christos if (error)
436 1.1 cgd return (error);
437 1.1 cgd }
438 1.25 perry if (SCARG(uap, tzp)) {
439 1.25 perry /*
440 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
441 1.25 perry * fake up a timezone struct and return it if demanded.
442 1.25 perry */
443 1.25 perry tzfake.tz_minuteswest = 0;
444 1.25 perry tzfake.tz_dsttime = 0;
445 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
446 1.25 perry }
447 1.1 cgd return (error);
448 1.1 cgd }
449 1.1 cgd
450 1.1 cgd /* ARGSUSED */
451 1.3 andrew int
452 1.110 yamt sys_settimeofday(struct lwp *l, void *v, register_t *retval)
453 1.15 thorpej {
454 1.16 mycroft struct sys_settimeofday_args /* {
455 1.24 cgd syscallarg(const struct timeval *) tv;
456 1.84 simonb syscallarg(const void *) tzp; really "const struct timezone *"
457 1.15 thorpej } */ *uap = v;
458 1.60 manu int error;
459 1.60 manu
460 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
461 1.106 elad KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
462 1.60 manu return (error);
463 1.60 manu
464 1.105 ad return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), l->l_proc);
465 1.60 manu }
466 1.60 manu
467 1.60 manu int
468 1.90 thorpej settimeofday1(const struct timeval *utv, const struct timezone *utzp,
469 1.90 thorpej struct proc *p)
470 1.60 manu {
471 1.22 jtc struct timeval atv;
472 1.98 christos struct timespec ts;
473 1.22 jtc int error;
474 1.1 cgd
475 1.8 cgd /* Verify all parameters before changing time. */
476 1.25 perry /*
477 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
478 1.25 perry * obsolete program would try to set it, so we log a warning.
479 1.25 perry */
480 1.98 christos if (utzp)
481 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
482 1.63 thorpej "(obsolete) kernel time zone\n", p->p_pid);
483 1.98 christos
484 1.98 christos if (utv == NULL)
485 1.98 christos return 0;
486 1.98 christos
487 1.98 christos if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
488 1.98 christos return error;
489 1.98 christos TIMEVAL_TO_TIMESPEC(&atv, &ts);
490 1.98 christos return settime(p, &ts);
491 1.1 cgd }
492 1.1 cgd
493 1.101 kardel #ifndef __HAVE_TIMECOUNTER
494 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
495 1.1 cgd long timedelta; /* unapplied time correction, us. */
496 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
497 1.101 kardel #endif
498 1.101 kardel
499 1.68 dsl int time_adjusted; /* set if an adjustment is made */
500 1.1 cgd
501 1.1 cgd /* ARGSUSED */
502 1.3 andrew int
503 1.110 yamt sys_adjtime(struct lwp *l, void *v, register_t *retval)
504 1.15 thorpej {
505 1.45 augustss struct sys_adjtime_args /* {
506 1.24 cgd syscallarg(const struct timeval *) delta;
507 1.11 cgd syscallarg(struct timeval *) olddelta;
508 1.15 thorpej } */ *uap = v;
509 1.56 manu int error;
510 1.1 cgd
511 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
512 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
513 1.1 cgd return (error);
514 1.17 christos
515 1.105 ad return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
516 1.56 manu }
517 1.56 manu
518 1.56 manu int
519 1.110 yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
520 1.56 manu {
521 1.60 manu struct timeval atv;
522 1.101 kardel int error = 0;
523 1.101 kardel
524 1.101 kardel #ifdef __HAVE_TIMECOUNTER
525 1.101 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
526 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
527 1.56 manu long ndelta, ntickdelta, odelta;
528 1.56 manu int s;
529 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
530 1.101 kardel
531 1.101 kardel #ifdef __HAVE_TIMECOUNTER
532 1.101 kardel if (olddelta) {
533 1.101 kardel atv.tv_sec = time_adjtime / 1000000;
534 1.101 kardel atv.tv_usec = time_adjtime % 1000000;
535 1.101 kardel if (atv.tv_usec < 0) {
536 1.101 kardel atv.tv_usec += 1000000;
537 1.101 kardel atv.tv_sec--;
538 1.101 kardel }
539 1.101 kardel error = copyout(&atv, olddelta, sizeof(struct timeval));
540 1.101 kardel if (error)
541 1.101 kardel return (error);
542 1.101 kardel }
543 1.101 kardel
544 1.101 kardel if (delta) {
545 1.101 kardel error = copyin(delta, &atv, sizeof(struct timeval));
546 1.101 kardel if (error)
547 1.101 kardel return (error);
548 1.101 kardel
549 1.101 kardel time_adjtime = (int64_t)atv.tv_sec * 1000000 +
550 1.101 kardel atv.tv_usec;
551 1.8 cgd
552 1.101 kardel if (time_adjtime)
553 1.101 kardel /* We need to save the system time during shutdown */
554 1.101 kardel time_adjusted |= 1;
555 1.101 kardel }
556 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
557 1.60 manu error = copyin(delta, &atv, sizeof(struct timeval));
558 1.60 manu if (error)
559 1.60 manu return (error);
560 1.60 manu
561 1.8 cgd /*
562 1.8 cgd * Compute the total correction and the rate at which to apply it.
563 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
564 1.8 cgd * delta, so that after some number of incremental changes in
565 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
566 1.8 cgd * overshoot and start taking us away from the desired final time.
567 1.8 cgd */
568 1.60 manu ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
569 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
570 1.8 cgd ntickdelta = 10 * tickadj;
571 1.8 cgd else
572 1.8 cgd ntickdelta = tickadj;
573 1.8 cgd if (ndelta % ntickdelta)
574 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
575 1.8 cgd
576 1.8 cgd /*
577 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
578 1.8 cgd * if we want time to run slower; then hardclock can simply compute
579 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
580 1.8 cgd */
581 1.8 cgd if (ndelta < 0)
582 1.8 cgd ntickdelta = -ntickdelta;
583 1.68 dsl if (ndelta != 0)
584 1.68 dsl /* We need to save the system clock time during shutdown */
585 1.68 dsl time_adjusted |= 1;
586 1.1 cgd s = splclock();
587 1.8 cgd odelta = timedelta;
588 1.1 cgd timedelta = ndelta;
589 1.8 cgd tickdelta = ntickdelta;
590 1.1 cgd splx(s);
591 1.1 cgd
592 1.56 manu if (olddelta) {
593 1.60 manu atv.tv_sec = odelta / 1000000;
594 1.60 manu atv.tv_usec = odelta % 1000000;
595 1.79 chs error = copyout(&atv, olddelta, sizeof(struct timeval));
596 1.8 cgd }
597 1.101 kardel #endif /* __HAVE_TIMECOUNTER */
598 1.101 kardel
599 1.79 chs return error;
600 1.1 cgd }
601 1.1 cgd
602 1.1 cgd /*
603 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
604 1.63 thorpej * timer_*() family of routines are supported.
605 1.1 cgd *
606 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
607 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
608 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
609 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
610 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
611 1.63 thorpej * syscall.
612 1.1 cgd *
613 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
614 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
615 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
616 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
617 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
618 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
619 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
620 1.63 thorpej * given below), to be delayed in real time past when it is supposed
621 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
622 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
623 1.63 thorpej * compute the next time in absolute time the timer should go off. */
624 1.63 thorpej
625 1.63 thorpej /* Allocate a POSIX realtime timer. */
626 1.63 thorpej int
627 1.110 yamt sys_timer_create(struct lwp *l, void *v, register_t *retval)
628 1.63 thorpej {
629 1.63 thorpej struct sys_timer_create_args /* {
630 1.63 thorpej syscallarg(clockid_t) clock_id;
631 1.63 thorpej syscallarg(struct sigevent *) evp;
632 1.63 thorpej syscallarg(timer_t *) timerid;
633 1.63 thorpej } */ *uap = v;
634 1.92 cube
635 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
636 1.105 ad SCARG(uap, evp), copyin, l);
637 1.92 cube }
638 1.92 cube
639 1.92 cube int
640 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
641 1.105 ad copyin_t fetch_event, struct lwp *l)
642 1.92 cube {
643 1.92 cube int error;
644 1.92 cube timer_t timerid;
645 1.63 thorpej struct ptimer *pt;
646 1.105 ad struct proc *p;
647 1.105 ad
648 1.105 ad p = l->l_proc;
649 1.63 thorpej
650 1.63 thorpej if (id < CLOCK_REALTIME ||
651 1.63 thorpej id > CLOCK_PROF)
652 1.63 thorpej return (EINVAL);
653 1.63 thorpej
654 1.63 thorpej if (p->p_timers == NULL)
655 1.63 thorpej timers_alloc(p);
656 1.63 thorpej
657 1.63 thorpej /* Find a free timer slot, skipping those reserved for setitimer(). */
658 1.63 thorpej for (timerid = 3; timerid < TIMER_MAX; timerid++)
659 1.63 thorpej if (p->p_timers->pts_timers[timerid] == NULL)
660 1.63 thorpej break;
661 1.63 thorpej
662 1.63 thorpej if (timerid == TIMER_MAX)
663 1.63 thorpej return EAGAIN;
664 1.63 thorpej
665 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
666 1.63 thorpej if (evp) {
667 1.63 thorpej if (((error =
668 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
669 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
670 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
671 1.63 thorpej pool_put(&ptimer_pool, pt);
672 1.63 thorpej return (error ? error : EINVAL);
673 1.63 thorpej }
674 1.63 thorpej } else {
675 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
676 1.63 thorpej switch (id) {
677 1.63 thorpej case CLOCK_REALTIME:
678 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
679 1.63 thorpej break;
680 1.63 thorpej case CLOCK_VIRTUAL:
681 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
682 1.63 thorpej break;
683 1.63 thorpej case CLOCK_PROF:
684 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
685 1.63 thorpej break;
686 1.63 thorpej }
687 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
688 1.63 thorpej }
689 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
690 1.73 christos pt->pt_info.ksi_errno = 0;
691 1.73 christos pt->pt_info.ksi_code = 0;
692 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
693 1.105 ad pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
694 1.73 christos pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
695 1.63 thorpej
696 1.63 thorpej pt->pt_type = id;
697 1.63 thorpej pt->pt_proc = p;
698 1.63 thorpej pt->pt_overruns = 0;
699 1.63 thorpej pt->pt_poverruns = 0;
700 1.64 nathanw pt->pt_entry = timerid;
701 1.63 thorpej timerclear(&pt->pt_time.it_value);
702 1.63 thorpej if (id == CLOCK_REALTIME)
703 1.63 thorpej callout_init(&pt->pt_ch);
704 1.63 thorpej else
705 1.63 thorpej pt->pt_active = 0;
706 1.63 thorpej
707 1.63 thorpej p->p_timers->pts_timers[timerid] = pt;
708 1.63 thorpej
709 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
710 1.63 thorpej }
711 1.63 thorpej
712 1.63 thorpej /* Delete a POSIX realtime timer */
713 1.3 andrew int
714 1.110 yamt sys_timer_delete(struct lwp *l, void *v, register_t *retval)
715 1.15 thorpej {
716 1.63 thorpej struct sys_timer_delete_args /* {
717 1.63 thorpej syscallarg(timer_t) timerid;
718 1.15 thorpej } */ *uap = v;
719 1.63 thorpej struct proc *p = l->l_proc;
720 1.65 jdolecek timer_t timerid;
721 1.63 thorpej struct ptimer *pt, *ptn;
722 1.1 cgd int s;
723 1.1 cgd
724 1.63 thorpej timerid = SCARG(uap, timerid);
725 1.63 thorpej
726 1.63 thorpej if ((p->p_timers == NULL) ||
727 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
728 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
729 1.1 cgd return (EINVAL);
730 1.63 thorpej
731 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
732 1.63 thorpej callout_stop(&pt->pt_ch);
733 1.63 thorpej else if (pt->pt_active) {
734 1.63 thorpej s = splclock();
735 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
736 1.63 thorpej LIST_REMOVE(pt, pt_list);
737 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
738 1.63 thorpej timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
739 1.63 thorpej &ptn->pt_time.it_value);
740 1.63 thorpej splx(s);
741 1.63 thorpej }
742 1.63 thorpej
743 1.63 thorpej p->p_timers->pts_timers[timerid] = NULL;
744 1.63 thorpej pool_put(&ptimer_pool, pt);
745 1.63 thorpej
746 1.63 thorpej return (0);
747 1.63 thorpej }
748 1.63 thorpej
749 1.63 thorpej /*
750 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
751 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
752 1.67 nathanw * time for virtual timers.
753 1.63 thorpej * Must be called at splclock().
754 1.63 thorpej */
755 1.63 thorpej void
756 1.63 thorpej timer_settime(struct ptimer *pt)
757 1.63 thorpej {
758 1.63 thorpej struct ptimer *ptn, *pptn;
759 1.63 thorpej struct ptlist *ptl;
760 1.63 thorpej
761 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
762 1.63 thorpej callout_stop(&pt->pt_ch);
763 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
764 1.63 thorpej /*
765 1.63 thorpej * Don't need to check hzto() return value, here.
766 1.63 thorpej * callout_reset() does it for us.
767 1.63 thorpej */
768 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
769 1.63 thorpej realtimerexpire, pt);
770 1.63 thorpej }
771 1.63 thorpej } else {
772 1.63 thorpej if (pt->pt_active) {
773 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
774 1.63 thorpej LIST_REMOVE(pt, pt_list);
775 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
776 1.63 thorpej timeradd(&pt->pt_time.it_value,
777 1.63 thorpej &ptn->pt_time.it_value,
778 1.63 thorpej &ptn->pt_time.it_value);
779 1.63 thorpej }
780 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
781 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
782 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
783 1.63 thorpej else
784 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
785 1.63 thorpej
786 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
787 1.63 thorpej ptn && timercmp(&pt->pt_time.it_value,
788 1.63 thorpej &ptn->pt_time.it_value, >);
789 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
790 1.63 thorpej timersub(&pt->pt_time.it_value,
791 1.63 thorpej &ptn->pt_time.it_value,
792 1.63 thorpej &pt->pt_time.it_value);
793 1.63 thorpej
794 1.63 thorpej if (pptn)
795 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
796 1.63 thorpej else
797 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
798 1.63 thorpej
799 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
800 1.63 thorpej timersub(&ptn->pt_time.it_value,
801 1.63 thorpej &pt->pt_time.it_value,
802 1.63 thorpej &ptn->pt_time.it_value);
803 1.63 thorpej
804 1.63 thorpej pt->pt_active = 1;
805 1.63 thorpej } else
806 1.63 thorpej pt->pt_active = 0;
807 1.63 thorpej }
808 1.63 thorpej }
809 1.63 thorpej
810 1.63 thorpej void
811 1.63 thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
812 1.63 thorpej {
813 1.101 kardel #ifdef __HAVE_TIMECOUNTER
814 1.101 kardel struct timeval now;
815 1.101 kardel #endif
816 1.63 thorpej struct ptimer *ptn;
817 1.63 thorpej
818 1.63 thorpej *aitv = pt->pt_time;
819 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
820 1.1 cgd /*
821 1.12 mycroft * Convert from absolute to relative time in .it_value
822 1.63 thorpej * part of real time timer. If time for real time
823 1.63 thorpej * timer has passed return 0, else return difference
824 1.63 thorpej * between current time and time for the timer to go
825 1.63 thorpej * off.
826 1.1 cgd */
827 1.63 thorpej if (timerisset(&aitv->it_value)) {
828 1.101 kardel #ifdef __HAVE_TIMECOUNTER
829 1.101 kardel getmicrotime(&now);
830 1.101 kardel if (timercmp(&aitv->it_value, &now, <))
831 1.101 kardel timerclear(&aitv->it_value);
832 1.101 kardel else
833 1.101 kardel timersub(&aitv->it_value, &now,
834 1.101 kardel &aitv->it_value);
835 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
836 1.63 thorpej if (timercmp(&aitv->it_value, &time, <))
837 1.63 thorpej timerclear(&aitv->it_value);
838 1.1 cgd else
839 1.63 thorpej timersub(&aitv->it_value, &time,
840 1.63 thorpej &aitv->it_value);
841 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
842 1.36 thorpej }
843 1.63 thorpej } else if (pt->pt_active) {
844 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
845 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
846 1.63 thorpej else
847 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
848 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
849 1.63 thorpej timeradd(&aitv->it_value,
850 1.63 thorpej &ptn->pt_time.it_value, &aitv->it_value);
851 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
852 1.1 cgd } else
853 1.63 thorpej timerclear(&aitv->it_value);
854 1.63 thorpej }
855 1.63 thorpej
856 1.63 thorpej
857 1.63 thorpej
858 1.63 thorpej /* Set and arm a POSIX realtime timer */
859 1.63 thorpej int
860 1.110 yamt sys_timer_settime(struct lwp *l, void *v, register_t *retval)
861 1.63 thorpej {
862 1.63 thorpej struct sys_timer_settime_args /* {
863 1.63 thorpej syscallarg(timer_t) timerid;
864 1.63 thorpej syscallarg(int) flags;
865 1.63 thorpej syscallarg(const struct itimerspec *) value;
866 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
867 1.63 thorpej } */ *uap = v;
868 1.92 cube int error;
869 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
870 1.92 cube
871 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
872 1.92 cube sizeof(struct itimerspec))) != 0)
873 1.92 cube return (error);
874 1.92 cube
875 1.92 cube if (SCARG(uap, ovalue))
876 1.92 cube ovp = &ovalue;
877 1.92 cube
878 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
879 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
880 1.92 cube return error;
881 1.92 cube
882 1.92 cube if (ovp)
883 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
884 1.92 cube sizeof(struct itimerspec));
885 1.92 cube return 0;
886 1.92 cube }
887 1.92 cube
888 1.92 cube int
889 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
890 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
891 1.92 cube {
892 1.101 kardel #ifdef __HAVE_TIMECOUNTER
893 1.101 kardel struct timeval now;
894 1.101 kardel #endif
895 1.63 thorpej struct itimerval val, oval;
896 1.63 thorpej struct ptimer *pt;
897 1.101 kardel int s;
898 1.63 thorpej
899 1.63 thorpej if ((p->p_timers == NULL) ||
900 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
901 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
902 1.63 thorpej return (EINVAL);
903 1.63 thorpej
904 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
905 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
906 1.63 thorpej if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
907 1.63 thorpej return (EINVAL);
908 1.63 thorpej
909 1.63 thorpej oval = pt->pt_time;
910 1.63 thorpej pt->pt_time = val;
911 1.63 thorpej
912 1.63 thorpej s = splclock();
913 1.67 nathanw /*
914 1.67 nathanw * If we've been passed a relative time for a realtime timer,
915 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
916 1.67 nathanw * timer, convert it to relative and make sure we don't set it
917 1.67 nathanw * to zero, which would cancel the timer, or let it go
918 1.67 nathanw * negative, which would confuse the comparison tests.
919 1.67 nathanw */
920 1.67 nathanw if (timerisset(&pt->pt_time.it_value)) {
921 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
922 1.101 kardel #ifdef __HAVE_TIMECOUNTER
923 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
924 1.101 kardel getmicrotime(&now);
925 1.101 kardel timeradd(&pt->pt_time.it_value, &now,
926 1.101 kardel &pt->pt_time.it_value);
927 1.101 kardel }
928 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
929 1.92 cube if ((flags & TIMER_ABSTIME) == 0)
930 1.67 nathanw timeradd(&pt->pt_time.it_value, &time,
931 1.67 nathanw &pt->pt_time.it_value);
932 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
933 1.67 nathanw } else {
934 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
935 1.101 kardel #ifdef __HAVE_TIMECOUNTER
936 1.101 kardel getmicrotime(&now);
937 1.101 kardel timersub(&pt->pt_time.it_value, &now,
938 1.101 kardel &pt->pt_time.it_value);
939 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
940 1.67 nathanw timersub(&pt->pt_time.it_value, &time,
941 1.67 nathanw &pt->pt_time.it_value);
942 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
943 1.67 nathanw if (!timerisset(&pt->pt_time.it_value) ||
944 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
945 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
946 1.67 nathanw pt->pt_time.it_value.tv_usec = 1;
947 1.67 nathanw }
948 1.67 nathanw }
949 1.67 nathanw }
950 1.67 nathanw }
951 1.67 nathanw
952 1.63 thorpej timer_settime(pt);
953 1.63 thorpej splx(s);
954 1.63 thorpej
955 1.92 cube if (ovalue) {
956 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
957 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
958 1.63 thorpej }
959 1.63 thorpej
960 1.63 thorpej return (0);
961 1.63 thorpej }
962 1.63 thorpej
963 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
964 1.63 thorpej int
965 1.110 yamt sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
966 1.63 thorpej {
967 1.63 thorpej struct sys_timer_gettime_args /* {
968 1.63 thorpej syscallarg(timer_t) timerid;
969 1.63 thorpej syscallarg(struct itimerspec *) value;
970 1.63 thorpej } */ *uap = v;
971 1.63 thorpej struct itimerspec its;
972 1.92 cube int error;
973 1.92 cube
974 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
975 1.92 cube &its)) != 0)
976 1.92 cube return error;
977 1.92 cube
978 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
979 1.92 cube }
980 1.92 cube
981 1.92 cube int
982 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
983 1.92 cube {
984 1.92 cube int s;
985 1.63 thorpej struct ptimer *pt;
986 1.92 cube struct itimerval aitv;
987 1.63 thorpej
988 1.63 thorpej if ((p->p_timers == NULL) ||
989 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
990 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
991 1.63 thorpej return (EINVAL);
992 1.63 thorpej
993 1.63 thorpej s = splclock();
994 1.63 thorpej timer_gettime(pt, &aitv);
995 1.1 cgd splx(s);
996 1.63 thorpej
997 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
998 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
999 1.63 thorpej
1000 1.92 cube return 0;
1001 1.63 thorpej }
1002 1.63 thorpej
1003 1.63 thorpej /*
1004 1.63 thorpej * Return the count of the number of times a periodic timer expired
1005 1.63 thorpej * while a notification was already pending. The counter is reset when
1006 1.63 thorpej * a timer expires and a notification can be posted.
1007 1.63 thorpej */
1008 1.63 thorpej int
1009 1.63 thorpej sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
1010 1.63 thorpej {
1011 1.63 thorpej struct sys_timer_getoverrun_args /* {
1012 1.63 thorpej syscallarg(timer_t) timerid;
1013 1.63 thorpej } */ *uap = v;
1014 1.63 thorpej struct proc *p = l->l_proc;
1015 1.63 thorpej int timerid;
1016 1.63 thorpej struct ptimer *pt;
1017 1.63 thorpej
1018 1.63 thorpej timerid = SCARG(uap, timerid);
1019 1.63 thorpej
1020 1.63 thorpej if ((p->p_timers == NULL) ||
1021 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
1022 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1023 1.63 thorpej return (EINVAL);
1024 1.63 thorpej
1025 1.63 thorpej *retval = pt->pt_poverruns;
1026 1.63 thorpej
1027 1.63 thorpej return (0);
1028 1.63 thorpej }
1029 1.63 thorpej
1030 1.63 thorpej /* Glue function that triggers an upcall; called from userret(). */
1031 1.63 thorpej static void
1032 1.63 thorpej timerupcall(struct lwp *l, void *arg)
1033 1.63 thorpej {
1034 1.64 nathanw struct ptimers *pt = (struct ptimers *)arg;
1035 1.64 nathanw unsigned int i, fired, done;
1036 1.74 cl
1037 1.81 cl KDASSERT(l->l_proc->p_sa);
1038 1.81 cl /* Bail out if we do not own the virtual processor */
1039 1.82 cl if (l->l_savp->savp_lwp != l)
1040 1.81 cl return ;
1041 1.87 perry
1042 1.63 thorpej KERNEL_PROC_LOCK(l);
1043 1.71 fvdl
1044 1.64 nathanw fired = pt->pts_fired;
1045 1.64 nathanw done = 0;
1046 1.64 nathanw while ((i = ffs(fired)) != 0) {
1047 1.74 cl siginfo_t *si;
1048 1.73 christos int mask = 1 << --i;
1049 1.74 cl int f;
1050 1.73 christos
1051 1.74 cl f = l->l_flag & L_SA;
1052 1.74 cl l->l_flag &= ~L_SA;
1053 1.94 chs si = siginfo_alloc(PR_WAITOK);
1054 1.77 thorpej si->_info = pt->pts_timers[i]->pt_info.ksi_info;
1055 1.64 nathanw if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
1056 1.94 chs sizeof(*si), si, siginfo_free) != 0) {
1057 1.94 chs siginfo_free(si);
1058 1.86 mycroft /* XXX What do we do here?? */
1059 1.86 mycroft } else
1060 1.73 christos done |= mask;
1061 1.73 christos fired &= ~mask;
1062 1.74 cl l->l_flag |= f;
1063 1.64 nathanw }
1064 1.64 nathanw pt->pts_fired &= ~done;
1065 1.64 nathanw if (pt->pts_fired == 0)
1066 1.63 thorpej l->l_proc->p_userret = NULL;
1067 1.63 thorpej
1068 1.63 thorpej KERNEL_PROC_UNLOCK(l);
1069 1.63 thorpej }
1070 1.63 thorpej
1071 1.63 thorpej /*
1072 1.63 thorpej * Real interval timer expired:
1073 1.63 thorpej * send process whose timer expired an alarm signal.
1074 1.63 thorpej * If time is not set up to reload, then just return.
1075 1.63 thorpej * Else compute next time timer should go off which is > current time.
1076 1.63 thorpej * This is where delay in processing this timeout causes multiple
1077 1.63 thorpej * SIGALRM calls to be compressed into one.
1078 1.63 thorpej */
1079 1.63 thorpej void
1080 1.63 thorpej realtimerexpire(void *arg)
1081 1.63 thorpej {
1082 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1083 1.101 kardel struct timeval now;
1084 1.101 kardel #endif
1085 1.63 thorpej struct ptimer *pt;
1086 1.63 thorpej int s;
1087 1.63 thorpej
1088 1.63 thorpej pt = (struct ptimer *)arg;
1089 1.63 thorpej
1090 1.63 thorpej itimerfire(pt);
1091 1.63 thorpej
1092 1.63 thorpej if (!timerisset(&pt->pt_time.it_interval)) {
1093 1.63 thorpej timerclear(&pt->pt_time.it_value);
1094 1.63 thorpej return;
1095 1.63 thorpej }
1096 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1097 1.101 kardel for (;;) {
1098 1.101 kardel s = splclock(); /* XXX need spl now? */
1099 1.101 kardel timeradd(&pt->pt_time.it_value,
1100 1.101 kardel &pt->pt_time.it_interval, &pt->pt_time.it_value);
1101 1.101 kardel getmicrotime(&now);
1102 1.101 kardel if (timercmp(&pt->pt_time.it_value, &now, >)) {
1103 1.101 kardel /*
1104 1.101 kardel * Don't need to check hzto() return value, here.
1105 1.101 kardel * callout_reset() does it for us.
1106 1.101 kardel */
1107 1.101 kardel callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1108 1.101 kardel realtimerexpire, pt);
1109 1.101 kardel splx(s);
1110 1.101 kardel return;
1111 1.101 kardel }
1112 1.101 kardel splx(s);
1113 1.101 kardel pt->pt_overruns++;
1114 1.101 kardel }
1115 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1116 1.63 thorpej for (;;) {
1117 1.63 thorpej s = splclock();
1118 1.63 thorpej timeradd(&pt->pt_time.it_value,
1119 1.63 thorpej &pt->pt_time.it_interval, &pt->pt_time.it_value);
1120 1.63 thorpej if (timercmp(&pt->pt_time.it_value, &time, >)) {
1121 1.63 thorpej /*
1122 1.63 thorpej * Don't need to check hzto() return value, here.
1123 1.63 thorpej * callout_reset() does it for us.
1124 1.63 thorpej */
1125 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1126 1.63 thorpej realtimerexpire, pt);
1127 1.63 thorpej splx(s);
1128 1.63 thorpej return;
1129 1.63 thorpej }
1130 1.63 thorpej splx(s);
1131 1.63 thorpej pt->pt_overruns++;
1132 1.63 thorpej }
1133 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1134 1.63 thorpej }
1135 1.63 thorpej
1136 1.63 thorpej /* BSD routine to get the value of an interval timer. */
1137 1.63 thorpej /* ARGSUSED */
1138 1.63 thorpej int
1139 1.110 yamt sys_getitimer(struct lwp *l, void *v, register_t *retval)
1140 1.63 thorpej {
1141 1.63 thorpej struct sys_getitimer_args /* {
1142 1.63 thorpej syscallarg(int) which;
1143 1.63 thorpej syscallarg(struct itimerval *) itv;
1144 1.63 thorpej } */ *uap = v;
1145 1.63 thorpej struct proc *p = l->l_proc;
1146 1.63 thorpej struct itimerval aitv;
1147 1.91 cube int error;
1148 1.91 cube
1149 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
1150 1.91 cube if (error)
1151 1.91 cube return error;
1152 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1153 1.91 cube }
1154 1.63 thorpej
1155 1.91 cube int
1156 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1157 1.91 cube {
1158 1.91 cube int s;
1159 1.63 thorpej
1160 1.63 thorpej if ((u_int)which > ITIMER_PROF)
1161 1.63 thorpej return (EINVAL);
1162 1.63 thorpej
1163 1.63 thorpej if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1164 1.91 cube timerclear(&itvp->it_value);
1165 1.91 cube timerclear(&itvp->it_interval);
1166 1.63 thorpej } else {
1167 1.63 thorpej s = splclock();
1168 1.91 cube timer_gettime(p->p_timers->pts_timers[which], itvp);
1169 1.63 thorpej splx(s);
1170 1.63 thorpej }
1171 1.63 thorpej
1172 1.91 cube return 0;
1173 1.1 cgd }
1174 1.1 cgd
1175 1.63 thorpej /* BSD routine to set/arm an interval timer. */
1176 1.1 cgd /* ARGSUSED */
1177 1.3 andrew int
1178 1.63 thorpej sys_setitimer(struct lwp *l, void *v, register_t *retval)
1179 1.15 thorpej {
1180 1.45 augustss struct sys_setitimer_args /* {
1181 1.30 mycroft syscallarg(int) which;
1182 1.24 cgd syscallarg(const struct itimerval *) itv;
1183 1.11 cgd syscallarg(struct itimerval *) oitv;
1184 1.15 thorpej } */ *uap = v;
1185 1.63 thorpej struct proc *p = l->l_proc;
1186 1.30 mycroft int which = SCARG(uap, which);
1187 1.21 cgd struct sys_getitimer_args getargs;
1188 1.91 cube const struct itimerval *itvp;
1189 1.1 cgd struct itimerval aitv;
1190 1.91 cube int error;
1191 1.1 cgd
1192 1.30 mycroft if ((u_int)which > ITIMER_PROF)
1193 1.1 cgd return (EINVAL);
1194 1.11 cgd itvp = SCARG(uap, itv);
1195 1.63 thorpej if (itvp &&
1196 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1197 1.1 cgd return (error);
1198 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1199 1.30 mycroft SCARG(&getargs, which) = which;
1200 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1201 1.63 thorpej if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1202 1.21 cgd return (error);
1203 1.21 cgd }
1204 1.1 cgd if (itvp == 0)
1205 1.1 cgd return (0);
1206 1.91 cube
1207 1.91 cube return dosetitimer(p, which, &aitv);
1208 1.91 cube }
1209 1.91 cube
1210 1.91 cube int
1211 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1212 1.91 cube {
1213 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1214 1.101 kardel struct timeval now;
1215 1.101 kardel #endif
1216 1.91 cube struct ptimer *pt;
1217 1.91 cube int s;
1218 1.91 cube
1219 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1220 1.1 cgd return (EINVAL);
1221 1.63 thorpej
1222 1.63 thorpej /*
1223 1.63 thorpej * Don't bother allocating data structures if the process just
1224 1.63 thorpej * wants to clear the timer.
1225 1.63 thorpej */
1226 1.91 cube if (!timerisset(&itvp->it_value) &&
1227 1.63 thorpej ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1228 1.63 thorpej return (0);
1229 1.63 thorpej
1230 1.63 thorpej if (p->p_timers == NULL)
1231 1.63 thorpej timers_alloc(p);
1232 1.63 thorpej if (p->p_timers->pts_timers[which] == NULL) {
1233 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
1234 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1235 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1236 1.63 thorpej pt->pt_overruns = 0;
1237 1.63 thorpej pt->pt_proc = p;
1238 1.63 thorpej pt->pt_type = which;
1239 1.64 nathanw pt->pt_entry = which;
1240 1.63 thorpej switch (which) {
1241 1.63 thorpej case ITIMER_REAL:
1242 1.63 thorpej callout_init(&pt->pt_ch);
1243 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1244 1.63 thorpej break;
1245 1.63 thorpej case ITIMER_VIRTUAL:
1246 1.63 thorpej pt->pt_active = 0;
1247 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1248 1.63 thorpej break;
1249 1.63 thorpej case ITIMER_PROF:
1250 1.63 thorpej pt->pt_active = 0;
1251 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1252 1.63 thorpej break;
1253 1.1 cgd }
1254 1.1 cgd } else
1255 1.63 thorpej pt = p->p_timers->pts_timers[which];
1256 1.63 thorpej
1257 1.91 cube pt->pt_time = *itvp;
1258 1.63 thorpej p->p_timers->pts_timers[which] = pt;
1259 1.63 thorpej
1260 1.63 thorpej s = splclock();
1261 1.67 nathanw if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1262 1.67 nathanw /* Convert to absolute time */
1263 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1264 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1265 1.101 kardel getmicrotime(&now);
1266 1.101 kardel timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1267 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1268 1.67 nathanw timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1269 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1270 1.67 nathanw }
1271 1.63 thorpej timer_settime(pt);
1272 1.1 cgd splx(s);
1273 1.63 thorpej
1274 1.1 cgd return (0);
1275 1.1 cgd }
1276 1.1 cgd
1277 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1278 1.63 thorpej void
1279 1.63 thorpej timers_alloc(struct proc *p)
1280 1.63 thorpej {
1281 1.63 thorpej int i;
1282 1.63 thorpej struct ptimers *pts;
1283 1.63 thorpej
1284 1.100 yamt pts = pool_get(&ptimers_pool, PR_WAITOK);
1285 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1286 1.63 thorpej LIST_INIT(&pts->pts_prof);
1287 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1288 1.63 thorpej pts->pts_timers[i] = NULL;
1289 1.64 nathanw pts->pts_fired = 0;
1290 1.63 thorpej p->p_timers = pts;
1291 1.63 thorpej }
1292 1.63 thorpej
1293 1.1 cgd /*
1294 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1295 1.63 thorpej * then clean up all timers and free all the data structures. If
1296 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1297 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1298 1.63 thorpej * structure if none of those remain.
1299 1.1 cgd */
1300 1.3 andrew void
1301 1.63 thorpej timers_free(struct proc *p, int which)
1302 1.6 cgd {
1303 1.63 thorpej int i, s;
1304 1.63 thorpej struct ptimers *pts;
1305 1.63 thorpej struct ptimer *pt, *ptn;
1306 1.63 thorpej struct timeval tv;
1307 1.63 thorpej
1308 1.63 thorpej if (p->p_timers) {
1309 1.63 thorpej pts = p->p_timers;
1310 1.63 thorpej if (which == TIMERS_ALL)
1311 1.63 thorpej i = 0;
1312 1.63 thorpej else {
1313 1.63 thorpej s = splclock();
1314 1.63 thorpej timerclear(&tv);
1315 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1316 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1317 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1318 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1319 1.63 thorpej LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1320 1.63 thorpej if (ptn) {
1321 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1322 1.63 thorpej &ptn->pt_time.it_value);
1323 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1324 1.63 thorpej ptn, pt_list);
1325 1.63 thorpej }
1326 1.63 thorpej
1327 1.63 thorpej timerclear(&tv);
1328 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1329 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_PROF];
1330 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1331 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1332 1.63 thorpej LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1333 1.63 thorpej if (ptn) {
1334 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1335 1.63 thorpej &ptn->pt_time.it_value);
1336 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1337 1.63 thorpej pt_list);
1338 1.63 thorpej }
1339 1.1 cgd splx(s);
1340 1.63 thorpej i = 3;
1341 1.63 thorpej }
1342 1.63 thorpej for ( ; i < TIMER_MAX; i++)
1343 1.63 thorpej if ((pt = pts->pts_timers[i]) != NULL) {
1344 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
1345 1.63 thorpej callout_stop(&pt->pt_ch);
1346 1.63 thorpej pts->pts_timers[i] = NULL;
1347 1.63 thorpej pool_put(&ptimer_pool, pt);
1348 1.63 thorpej }
1349 1.63 thorpej if ((pts->pts_timers[0] == NULL) &&
1350 1.63 thorpej (pts->pts_timers[1] == NULL) &&
1351 1.63 thorpej (pts->pts_timers[2] == NULL)) {
1352 1.63 thorpej p->p_timers = NULL;
1353 1.97 simonb pool_put(&ptimers_pool, pts);
1354 1.1 cgd }
1355 1.1 cgd }
1356 1.1 cgd }
1357 1.1 cgd
1358 1.1 cgd /*
1359 1.1 cgd * Check that a proposed value to load into the .it_value or
1360 1.1 cgd * .it_interval part of an interval timer is acceptable, and
1361 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
1362 1.1 cgd * than the resolution of the clock, round it up.)
1363 1.1 cgd */
1364 1.3 andrew int
1365 1.63 thorpej itimerfix(struct timeval *tv)
1366 1.1 cgd {
1367 1.1 cgd
1368 1.59 christos if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1369 1.1 cgd return (EINVAL);
1370 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1371 1.1 cgd tv->tv_usec = tick;
1372 1.1 cgd return (0);
1373 1.1 cgd }
1374 1.1 cgd
1375 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1376 1.101 kardel int
1377 1.101 kardel itimespecfix(struct timespec *ts)
1378 1.101 kardel {
1379 1.101 kardel
1380 1.101 kardel if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1381 1.101 kardel return (EINVAL);
1382 1.101 kardel if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1383 1.101 kardel ts->tv_nsec = tick * 1000;
1384 1.101 kardel return (0);
1385 1.101 kardel }
1386 1.101 kardel #endif /* __HAVE_TIMECOUNTER */
1387 1.101 kardel
1388 1.1 cgd /*
1389 1.1 cgd * Decrement an interval timer by a specified number
1390 1.1 cgd * of microseconds, which must be less than a second,
1391 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1392 1.1 cgd * it. In this case, carry over (usec - old value) to
1393 1.8 cgd * reduce the value reloaded into the timer so that
1394 1.1 cgd * the timer does not drift. This routine assumes
1395 1.1 cgd * that it is called in a context where the timers
1396 1.1 cgd * on which it is operating cannot change in value.
1397 1.1 cgd */
1398 1.3 andrew int
1399 1.63 thorpej itimerdecr(struct ptimer *pt, int usec)
1400 1.63 thorpej {
1401 1.45 augustss struct itimerval *itp;
1402 1.1 cgd
1403 1.63 thorpej itp = &pt->pt_time;
1404 1.1 cgd if (itp->it_value.tv_usec < usec) {
1405 1.1 cgd if (itp->it_value.tv_sec == 0) {
1406 1.1 cgd /* expired, and already in next interval */
1407 1.1 cgd usec -= itp->it_value.tv_usec;
1408 1.1 cgd goto expire;
1409 1.1 cgd }
1410 1.1 cgd itp->it_value.tv_usec += 1000000;
1411 1.1 cgd itp->it_value.tv_sec--;
1412 1.1 cgd }
1413 1.1 cgd itp->it_value.tv_usec -= usec;
1414 1.1 cgd usec = 0;
1415 1.1 cgd if (timerisset(&itp->it_value))
1416 1.1 cgd return (1);
1417 1.1 cgd /* expired, exactly at end of interval */
1418 1.1 cgd expire:
1419 1.1 cgd if (timerisset(&itp->it_interval)) {
1420 1.1 cgd itp->it_value = itp->it_interval;
1421 1.1 cgd itp->it_value.tv_usec -= usec;
1422 1.1 cgd if (itp->it_value.tv_usec < 0) {
1423 1.1 cgd itp->it_value.tv_usec += 1000000;
1424 1.1 cgd itp->it_value.tv_sec--;
1425 1.1 cgd }
1426 1.63 thorpej timer_settime(pt);
1427 1.1 cgd } else
1428 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1429 1.1 cgd return (0);
1430 1.42 cgd }
1431 1.42 cgd
1432 1.63 thorpej void
1433 1.63 thorpej itimerfire(struct ptimer *pt)
1434 1.63 thorpej {
1435 1.63 thorpej struct proc *p = pt->pt_proc;
1436 1.82 cl struct sadata_vp *vp;
1437 1.64 nathanw int s;
1438 1.82 cl unsigned int i;
1439 1.78 cl
1440 1.63 thorpej if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1441 1.63 thorpej /*
1442 1.63 thorpej * No RT signal infrastructure exists at this time;
1443 1.63 thorpej * just post the signal number and throw away the
1444 1.63 thorpej * value.
1445 1.63 thorpej */
1446 1.63 thorpej if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1447 1.63 thorpej pt->pt_overruns++;
1448 1.63 thorpej else {
1449 1.75 christos ksiginfo_t ksi;
1450 1.111 yamt KSI_INIT(&ksi);
1451 1.75 christos ksi.ksi_signo = pt->pt_ev.sigev_signo;
1452 1.75 christos ksi.ksi_code = SI_TIMER;
1453 1.75 christos ksi.ksi_sigval = pt->pt_ev.sigev_value;
1454 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1455 1.63 thorpej pt->pt_overruns = 0;
1456 1.75 christos kpsignal(p, &ksi, NULL);
1457 1.63 thorpej }
1458 1.63 thorpej } else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1459 1.63 thorpej /* Cause the process to generate an upcall when it returns. */
1460 1.107 christos signotify(p);
1461 1.63 thorpej if (p->p_userret == NULL) {
1462 1.70 nathanw /*
1463 1.70 nathanw * XXX stop signals can be processed inside tsleep,
1464 1.70 nathanw * which can be inside sa_yield's inner loop, which
1465 1.70 nathanw * makes testing for sa_idle alone insuffucent to
1466 1.70 nathanw * determine if we really should call setrunnable.
1467 1.70 nathanw */
1468 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1469 1.63 thorpej pt->pt_overruns = 0;
1470 1.64 nathanw i = 1 << pt->pt_entry;
1471 1.64 nathanw p->p_timers->pts_fired = i;
1472 1.63 thorpej p->p_userret = timerupcall;
1473 1.64 nathanw p->p_userret_arg = p->p_timers;
1474 1.87 perry
1475 1.78 cl SCHED_LOCK(s);
1476 1.82 cl SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1477 1.82 cl if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1478 1.82 cl vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1479 1.82 cl sched_wakeup(vp->savp_lwp);
1480 1.82 cl break;
1481 1.82 cl }
1482 1.78 cl }
1483 1.78 cl SCHED_UNLOCK(s);
1484 1.64 nathanw } else if (p->p_userret == timerupcall) {
1485 1.64 nathanw i = 1 << pt->pt_entry;
1486 1.64 nathanw if ((p->p_timers->pts_fired & i) == 0) {
1487 1.64 nathanw pt->pt_poverruns = pt->pt_overruns;
1488 1.64 nathanw pt->pt_overruns = 0;
1489 1.66 jdolecek p->p_timers->pts_fired |= i;
1490 1.64 nathanw } else
1491 1.64 nathanw pt->pt_overruns++;
1492 1.64 nathanw } else {
1493 1.63 thorpej pt->pt_overruns++;
1494 1.78 cl if ((p->p_flag & P_WEXIT) == 0)
1495 1.78 cl printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1496 1.78 cl p->p_pid, pt->pt_overruns,
1497 1.78 cl pt->pt_ev.sigev_value.sival_int,
1498 1.78 cl p->p_userret);
1499 1.64 nathanw }
1500 1.63 thorpej }
1501 1.63 thorpej
1502 1.63 thorpej }
1503 1.63 thorpej
1504 1.42 cgd /*
1505 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1506 1.42 cgd * for usage and rationale.
1507 1.42 cgd */
1508 1.42 cgd int
1509 1.63 thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1510 1.42 cgd {
1511 1.49 itojun struct timeval tv, delta;
1512 1.101 kardel int rv = 0;
1513 1.101 kardel #ifndef __HAVE_TIMECOUNTER
1514 1.101 kardel int s;
1515 1.101 kardel #endif
1516 1.42 cgd
1517 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1518 1.101 kardel getmicrouptime(&tv);
1519 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1520 1.63 thorpej s = splclock();
1521 1.49 itojun tv = mono_time;
1522 1.49 itojun splx(s);
1523 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1524 1.49 itojun timersub(&tv, lasttime, &delta);
1525 1.42 cgd
1526 1.42 cgd /*
1527 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1528 1.42 cgd * even if interval is huge.
1529 1.42 cgd */
1530 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1531 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1532 1.49 itojun *lasttime = tv;
1533 1.42 cgd rv = 1;
1534 1.42 cgd }
1535 1.50 itojun
1536 1.50 itojun return (rv);
1537 1.50 itojun }
1538 1.50 itojun
1539 1.50 itojun /*
1540 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1541 1.50 itojun */
1542 1.50 itojun int
1543 1.63 thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1544 1.50 itojun {
1545 1.50 itojun struct timeval tv, delta;
1546 1.101 kardel int rv;
1547 1.101 kardel #ifndef __HAVE_TIMECOUNTER
1548 1.101 kardel int s;
1549 1.101 kardel #endif
1550 1.50 itojun
1551 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1552 1.101 kardel getmicrouptime(&tv);
1553 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1554 1.63 thorpej s = splclock();
1555 1.50 itojun tv = mono_time;
1556 1.50 itojun splx(s);
1557 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1558 1.50 itojun timersub(&tv, lasttime, &delta);
1559 1.50 itojun
1560 1.50 itojun /*
1561 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1562 1.50 itojun * if more than one second have passed since the last update of
1563 1.50 itojun * lasttime, reset the counter.
1564 1.50 itojun *
1565 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1566 1.50 itojun * try to use *curpps for stat purposes as well.
1567 1.50 itojun */
1568 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1569 1.50 itojun delta.tv_sec >= 1) {
1570 1.50 itojun *lasttime = tv;
1571 1.50 itojun *curpps = 0;
1572 1.69 dyoung }
1573 1.69 dyoung if (maxpps < 0)
1574 1.53 itojun rv = 1;
1575 1.53 itojun else if (*curpps < maxpps)
1576 1.50 itojun rv = 1;
1577 1.50 itojun else
1578 1.50 itojun rv = 0;
1579 1.50 itojun
1580 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1581 1.50 itojun /* be careful about wrap-around */
1582 1.50 itojun if (*curpps + 1 > *curpps)
1583 1.50 itojun *curpps = *curpps + 1;
1584 1.50 itojun #else
1585 1.50 itojun /*
1586 1.50 itojun * assume that there's not too many calls to this function.
1587 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1588 1.50 itojun * behavior, not the behavior of this function.
1589 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1590 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1591 1.50 itojun */
1592 1.50 itojun *curpps = *curpps + 1;
1593 1.50 itojun #endif
1594 1.42 cgd
1595 1.42 cgd return (rv);
1596 1.1 cgd }
1597