kern_time.c revision 1.113 1 1.113 ad /* $NetBSD: kern_time.c,v 1.113 2007/02/09 21:55:31 ad Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.88 mycroft * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.72 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 cgd * may be used to endorse or promote products derived from this software
53 1.1 cgd * without specific prior written permission.
54 1.1 cgd *
55 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 cgd * SUCH DAMAGE.
66 1.1 cgd *
67 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 1.1 cgd */
69 1.58 lukem
70 1.58 lukem #include <sys/cdefs.h>
71 1.113 ad __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.113 2007/02/09 21:55:31 ad Exp $");
72 1.1 cgd
73 1.5 mycroft #include <sys/param.h>
74 1.5 mycroft #include <sys/resourcevar.h>
75 1.5 mycroft #include <sys/kernel.h>
76 1.8 cgd #include <sys/systm.h>
77 1.5 mycroft #include <sys/proc.h>
78 1.8 cgd #include <sys/vnode.h>
79 1.17 christos #include <sys/signalvar.h>
80 1.25 perry #include <sys/syslog.h>
81 1.101 kardel #ifdef __HAVE_TIMECOUNTER
82 1.101 kardel #include <sys/timetc.h>
83 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
84 1.95 cube #include <sys/timevar.h>
85 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
86 1.99 elad #include <sys/kauth.h>
87 1.1 cgd
88 1.11 cgd #include <sys/mount.h>
89 1.11 cgd #include <sys/syscallargs.h>
90 1.19 christos
91 1.37 thorpej #include <uvm/uvm_extern.h>
92 1.37 thorpej
93 1.5 mycroft #include <machine/cpu.h>
94 1.23 cgd
95 1.97 simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
96 1.97 simonb &pool_allocator_nointr);
97 1.97 simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
98 1.97 simonb &pool_allocator_nointr);
99 1.97 simonb
100 1.101 kardel #ifdef __HAVE_TIMECOUNTER
101 1.101 kardel static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
102 1.101 kardel #endif /* __HAVE_TIMECOUNTER */
103 1.63 thorpej
104 1.63 thorpej /* Time of day and interval timer support.
105 1.1 cgd *
106 1.1 cgd * These routines provide the kernel entry points to get and set
107 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
108 1.1 cgd * here provide support for adding and subtracting timeval structures
109 1.1 cgd * and decrementing interval timers, optionally reloading the interval
110 1.1 cgd * timers when they expire.
111 1.1 cgd */
112 1.1 cgd
113 1.22 jtc /* This function is used by clock_settime and settimeofday */
114 1.39 tron int
115 1.98 christos settime(struct proc *p, struct timespec *ts)
116 1.22 jtc {
117 1.98 christos struct timeval delta, tv;
118 1.101 kardel #ifdef __HAVE_TIMECOUNTER
119 1.101 kardel struct timeval now;
120 1.101 kardel struct timespec ts1;
121 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
122 1.47 thorpej struct cpu_info *ci;
123 1.22 jtc int s;
124 1.22 jtc
125 1.98 christos /*
126 1.98 christos * Don't allow the time to be set forward so far it will wrap
127 1.98 christos * and become negative, thus allowing an attacker to bypass
128 1.98 christos * the next check below. The cutoff is 1 year before rollover
129 1.98 christos * occurs, so even if the attacker uses adjtime(2) to move
130 1.98 christos * the time past the cutoff, it will take a very long time
131 1.98 christos * to get to the wrap point.
132 1.98 christos *
133 1.98 christos * XXX: we check against INT_MAX since on 64-bit
134 1.98 christos * platforms, sizeof(int) != sizeof(long) and
135 1.98 christos * time_t is 32 bits even when atv.tv_sec is 64 bits.
136 1.98 christos */
137 1.98 christos if (ts->tv_sec > INT_MAX - 365*24*60*60) {
138 1.113 ad struct proc *pp;
139 1.113 ad
140 1.113 ad rw_enter(&proclist_lock, RW_READER);
141 1.113 ad pp = p->p_pptr;
142 1.113 ad mutex_enter(&pp->p_mutex);
143 1.98 christos log(LOG_WARNING, "pid %d (%s) "
144 1.98 christos "invoked by uid %d ppid %d (%s) "
145 1.98 christos "tried to set clock forward to %ld\n",
146 1.99 elad p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
147 1.98 christos pp->p_pid, pp->p_comm, (long)ts->tv_sec);
148 1.113 ad mutex_exit(&pp->p_mutex);
149 1.113 ad rw_exit(&proclist_lock);
150 1.98 christos return (EPERM);
151 1.98 christos }
152 1.98 christos TIMESPEC_TO_TIMEVAL(&tv, ts);
153 1.98 christos
154 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
155 1.22 jtc s = splclock();
156 1.101 kardel #ifdef __HAVE_TIMECOUNTER
157 1.101 kardel microtime(&now);
158 1.101 kardel timersub(&tv, &now, &delta);
159 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
160 1.98 christos timersub(&tv, &time, &delta);
161 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
162 1.106 elad if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
163 1.106 elad kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
164 1.106 elad KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
165 1.55 tron splx(s);
166 1.29 tls return (EPERM);
167 1.55 tron }
168 1.29 tls #ifdef notyet
169 1.109 elad if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
170 1.55 tron splx(s);
171 1.29 tls return (EPERM);
172 1.55 tron }
173 1.29 tls #endif
174 1.103 kardel
175 1.101 kardel #ifdef __HAVE_TIMECOUNTER
176 1.103 kardel TIMEVAL_TO_TIMESPEC(&tv, &ts1);
177 1.101 kardel tc_setclock(&ts1);
178 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
179 1.98 christos time = tv;
180 1.103 kardel #endif /* !__HAVE_TIMECOUNTER */
181 1.103 kardel
182 1.38 thorpej (void) spllowersoftclock();
183 1.103 kardel
184 1.22 jtc timeradd(&boottime, &delta, &boottime);
185 1.103 kardel
186 1.47 thorpej /*
187 1.47 thorpej * XXXSMP
188 1.47 thorpej * This is wrong. We should traverse a list of all
189 1.47 thorpej * CPUs and add the delta to the runtime of those
190 1.47 thorpej * CPUs which have a process on them.
191 1.47 thorpej */
192 1.47 thorpej ci = curcpu();
193 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
194 1.47 thorpej &ci->ci_schedstate.spc_runtime);
195 1.22 jtc splx(s);
196 1.22 jtc resettodr();
197 1.29 tls return (0);
198 1.22 jtc }
199 1.22 jtc
200 1.22 jtc /* ARGSUSED */
201 1.22 jtc int
202 1.110 yamt sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
203 1.22 jtc {
204 1.45 augustss struct sys_clock_gettime_args /* {
205 1.22 jtc syscallarg(clockid_t) clock_id;
206 1.23 cgd syscallarg(struct timespec *) tp;
207 1.23 cgd } */ *uap = v;
208 1.22 jtc clockid_t clock_id;
209 1.22 jtc struct timespec ats;
210 1.22 jtc
211 1.22 jtc clock_id = SCARG(uap, clock_id);
212 1.61 simonb switch (clock_id) {
213 1.61 simonb case CLOCK_REALTIME:
214 1.96 simonb nanotime(&ats);
215 1.61 simonb break;
216 1.61 simonb case CLOCK_MONOTONIC:
217 1.101 kardel #ifdef __HAVE_TIMECOUNTER
218 1.101 kardel nanouptime(&ats);
219 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
220 1.101 kardel {
221 1.101 kardel int s;
222 1.101 kardel
223 1.61 simonb /* XXX "hz" granularity */
224 1.63 thorpej s = splclock();
225 1.101 kardel TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
226 1.61 simonb splx(s);
227 1.101 kardel }
228 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
229 1.61 simonb break;
230 1.61 simonb default:
231 1.22 jtc return (EINVAL);
232 1.61 simonb }
233 1.22 jtc
234 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
235 1.22 jtc }
236 1.22 jtc
237 1.22 jtc /* ARGSUSED */
238 1.22 jtc int
239 1.110 yamt sys_clock_settime(struct lwp *l, void *v, register_t *retval)
240 1.22 jtc {
241 1.45 augustss struct sys_clock_settime_args /* {
242 1.22 jtc syscallarg(clockid_t) clock_id;
243 1.23 cgd syscallarg(const struct timespec *) tp;
244 1.23 cgd } */ *uap = v;
245 1.22 jtc int error;
246 1.22 jtc
247 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
248 1.106 elad KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
249 1.22 jtc return (error);
250 1.22 jtc
251 1.105 ad return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
252 1.56 manu }
253 1.56 manu
254 1.56 manu
255 1.56 manu int
256 1.98 christos clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
257 1.56 manu {
258 1.60 manu struct timespec ats;
259 1.56 manu int error;
260 1.56 manu
261 1.60 manu if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
262 1.60 manu return (error);
263 1.60 manu
264 1.61 simonb switch (clock_id) {
265 1.61 simonb case CLOCK_REALTIME:
266 1.98 christos if ((error = settime(p, &ats)) != 0)
267 1.61 simonb return (error);
268 1.61 simonb break;
269 1.61 simonb case CLOCK_MONOTONIC:
270 1.61 simonb return (EINVAL); /* read-only clock */
271 1.61 simonb default:
272 1.56 manu return (EINVAL);
273 1.61 simonb }
274 1.22 jtc
275 1.22 jtc return 0;
276 1.22 jtc }
277 1.22 jtc
278 1.22 jtc int
279 1.110 yamt sys_clock_getres(struct lwp *l, void *v, register_t *retval)
280 1.22 jtc {
281 1.45 augustss struct sys_clock_getres_args /* {
282 1.22 jtc syscallarg(clockid_t) clock_id;
283 1.23 cgd syscallarg(struct timespec *) tp;
284 1.23 cgd } */ *uap = v;
285 1.22 jtc clockid_t clock_id;
286 1.22 jtc struct timespec ts;
287 1.22 jtc int error = 0;
288 1.22 jtc
289 1.22 jtc clock_id = SCARG(uap, clock_id);
290 1.61 simonb switch (clock_id) {
291 1.61 simonb case CLOCK_REALTIME:
292 1.61 simonb case CLOCK_MONOTONIC:
293 1.22 jtc ts.tv_sec = 0;
294 1.102 kardel #ifdef __HAVE_TIMECOUNTER
295 1.102 kardel if (tc_getfrequency() > 1000000000)
296 1.102 kardel ts.tv_nsec = 1;
297 1.102 kardel else
298 1.102 kardel ts.tv_nsec = 1000000000 / tc_getfrequency();
299 1.102 kardel #else /* !__HAVE_TIMECOUNTER */
300 1.22 jtc ts.tv_nsec = 1000000000 / hz;
301 1.102 kardel #endif /* !__HAVE_TIMECOUNTER */
302 1.61 simonb break;
303 1.61 simonb default:
304 1.61 simonb return (EINVAL);
305 1.61 simonb }
306 1.22 jtc
307 1.61 simonb if (SCARG(uap, tp))
308 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
309 1.22 jtc
310 1.22 jtc return error;
311 1.22 jtc }
312 1.22 jtc
313 1.27 jtc /* ARGSUSED */
314 1.27 jtc int
315 1.110 yamt sys_nanosleep(struct lwp *l, void *v, register_t *retval)
316 1.27 jtc {
317 1.101 kardel #ifdef __HAVE_TIMECOUNTER
318 1.101 kardel struct sys_nanosleep_args/* {
319 1.101 kardel syscallarg(struct timespec *) rqtp;
320 1.101 kardel syscallarg(struct timespec *) rmtp;
321 1.101 kardel } */ *uap = v;
322 1.101 kardel struct timespec rmt, rqt;
323 1.101 kardel int error, timo;
324 1.101 kardel
325 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
326 1.101 kardel if (error)
327 1.101 kardel return (error);
328 1.101 kardel
329 1.101 kardel if (itimespecfix(&rqt))
330 1.101 kardel return (EINVAL);
331 1.101 kardel
332 1.101 kardel timo = tstohz(&rqt);
333 1.101 kardel /*
334 1.101 kardel * Avoid inadvertantly sleeping forever
335 1.101 kardel */
336 1.101 kardel if (timo == 0)
337 1.101 kardel timo = 1;
338 1.101 kardel
339 1.104 kardel getnanouptime(&rmt);
340 1.104 kardel
341 1.113 ad error = kpause("nanoslp", TRUE, timo, NULL);
342 1.101 kardel if (error == ERESTART)
343 1.101 kardel error = EINTR;
344 1.101 kardel if (error == EWOULDBLOCK)
345 1.101 kardel error = 0;
346 1.101 kardel
347 1.101 kardel if (SCARG(uap, rmtp)) {
348 1.101 kardel int error1;
349 1.104 kardel struct timespec rmtend;
350 1.101 kardel
351 1.104 kardel getnanouptime(&rmtend);
352 1.101 kardel
353 1.104 kardel timespecsub(&rmtend, &rmt, &rmt);
354 1.101 kardel timespecsub(&rqt, &rmt, &rmt);
355 1.101 kardel if (rmt.tv_sec < 0)
356 1.101 kardel timespecclear(&rmt);
357 1.101 kardel
358 1.101 kardel error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
359 1.101 kardel sizeof(rmt));
360 1.101 kardel if (error1)
361 1.101 kardel return (error1);
362 1.101 kardel }
363 1.101 kardel
364 1.101 kardel return error;
365 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
366 1.45 augustss struct sys_nanosleep_args/* {
367 1.27 jtc syscallarg(struct timespec *) rqtp;
368 1.27 jtc syscallarg(struct timespec *) rmtp;
369 1.27 jtc } */ *uap = v;
370 1.27 jtc struct timespec rqt;
371 1.27 jtc struct timespec rmt;
372 1.27 jtc struct timeval atv, utv;
373 1.27 jtc int error, s, timo;
374 1.27 jtc
375 1.89 christos error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
376 1.27 jtc if (error)
377 1.27 jtc return (error);
378 1.27 jtc
379 1.85 atatat TIMESPEC_TO_TIMEVAL(&atv,&rqt);
380 1.80 christos if (itimerfix(&atv))
381 1.27 jtc return (EINVAL);
382 1.27 jtc
383 1.27 jtc s = splclock();
384 1.27 jtc timeradd(&atv,&time,&atv);
385 1.27 jtc timo = hzto(&atv);
386 1.63 thorpej /*
387 1.27 jtc * Avoid inadvertantly sleeping forever
388 1.27 jtc */
389 1.27 jtc if (timo == 0)
390 1.27 jtc timo = 1;
391 1.27 jtc splx(s);
392 1.27 jtc
393 1.113 ad error = kpause("nanoslp", TRUE, timo, NULL);
394 1.27 jtc if (error == ERESTART)
395 1.27 jtc error = EINTR;
396 1.27 jtc if (error == EWOULDBLOCK)
397 1.27 jtc error = 0;
398 1.27 jtc
399 1.27 jtc if (SCARG(uap, rmtp)) {
400 1.89 christos int error1;
401 1.28 jtc
402 1.27 jtc s = splclock();
403 1.27 jtc utv = time;
404 1.27 jtc splx(s);
405 1.27 jtc
406 1.27 jtc timersub(&atv, &utv, &utv);
407 1.27 jtc if (utv.tv_sec < 0)
408 1.27 jtc timerclear(&utv);
409 1.27 jtc
410 1.27 jtc TIMEVAL_TO_TIMESPEC(&utv,&rmt);
411 1.89 christos error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
412 1.28 jtc sizeof(rmt));
413 1.89 christos if (error1)
414 1.89 christos return (error1);
415 1.27 jtc }
416 1.27 jtc
417 1.27 jtc return error;
418 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
419 1.27 jtc }
420 1.22 jtc
421 1.1 cgd /* ARGSUSED */
422 1.3 andrew int
423 1.110 yamt sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
424 1.15 thorpej {
425 1.45 augustss struct sys_gettimeofday_args /* {
426 1.11 cgd syscallarg(struct timeval *) tp;
427 1.84 simonb syscallarg(void *) tzp; really "struct timezone *"
428 1.15 thorpej } */ *uap = v;
429 1.1 cgd struct timeval atv;
430 1.1 cgd int error = 0;
431 1.25 perry struct timezone tzfake;
432 1.1 cgd
433 1.11 cgd if (SCARG(uap, tp)) {
434 1.1 cgd microtime(&atv);
435 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
436 1.17 christos if (error)
437 1.1 cgd return (error);
438 1.1 cgd }
439 1.25 perry if (SCARG(uap, tzp)) {
440 1.25 perry /*
441 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
442 1.25 perry * fake up a timezone struct and return it if demanded.
443 1.25 perry */
444 1.25 perry tzfake.tz_minuteswest = 0;
445 1.25 perry tzfake.tz_dsttime = 0;
446 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
447 1.25 perry }
448 1.1 cgd return (error);
449 1.1 cgd }
450 1.1 cgd
451 1.1 cgd /* ARGSUSED */
452 1.3 andrew int
453 1.110 yamt sys_settimeofday(struct lwp *l, void *v, register_t *retval)
454 1.15 thorpej {
455 1.16 mycroft struct sys_settimeofday_args /* {
456 1.24 cgd syscallarg(const struct timeval *) tv;
457 1.84 simonb syscallarg(const void *) tzp; really "const struct timezone *"
458 1.15 thorpej } */ *uap = v;
459 1.60 manu int error;
460 1.60 manu
461 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
462 1.106 elad KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
463 1.60 manu return (error);
464 1.60 manu
465 1.105 ad return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), l->l_proc);
466 1.60 manu }
467 1.60 manu
468 1.60 manu int
469 1.90 thorpej settimeofday1(const struct timeval *utv, const struct timezone *utzp,
470 1.90 thorpej struct proc *p)
471 1.60 manu {
472 1.22 jtc struct timeval atv;
473 1.98 christos struct timespec ts;
474 1.22 jtc int error;
475 1.1 cgd
476 1.8 cgd /* Verify all parameters before changing time. */
477 1.25 perry /*
478 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
479 1.25 perry * obsolete program would try to set it, so we log a warning.
480 1.25 perry */
481 1.98 christos if (utzp)
482 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
483 1.63 thorpej "(obsolete) kernel time zone\n", p->p_pid);
484 1.98 christos
485 1.98 christos if (utv == NULL)
486 1.98 christos return 0;
487 1.98 christos
488 1.98 christos if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
489 1.98 christos return error;
490 1.98 christos TIMEVAL_TO_TIMESPEC(&atv, &ts);
491 1.98 christos return settime(p, &ts);
492 1.1 cgd }
493 1.1 cgd
494 1.101 kardel #ifndef __HAVE_TIMECOUNTER
495 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
496 1.1 cgd long timedelta; /* unapplied time correction, us. */
497 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
498 1.101 kardel #endif
499 1.101 kardel
500 1.68 dsl int time_adjusted; /* set if an adjustment is made */
501 1.1 cgd
502 1.1 cgd /* ARGSUSED */
503 1.3 andrew int
504 1.110 yamt sys_adjtime(struct lwp *l, void *v, register_t *retval)
505 1.15 thorpej {
506 1.45 augustss struct sys_adjtime_args /* {
507 1.24 cgd syscallarg(const struct timeval *) delta;
508 1.11 cgd syscallarg(struct timeval *) olddelta;
509 1.15 thorpej } */ *uap = v;
510 1.56 manu int error;
511 1.1 cgd
512 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
513 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
514 1.1 cgd return (error);
515 1.17 christos
516 1.105 ad return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
517 1.56 manu }
518 1.56 manu
519 1.56 manu int
520 1.110 yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
521 1.56 manu {
522 1.60 manu struct timeval atv;
523 1.101 kardel int error = 0;
524 1.101 kardel
525 1.101 kardel #ifdef __HAVE_TIMECOUNTER
526 1.101 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
527 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
528 1.56 manu long ndelta, ntickdelta, odelta;
529 1.56 manu int s;
530 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
531 1.101 kardel
532 1.101 kardel #ifdef __HAVE_TIMECOUNTER
533 1.101 kardel if (olddelta) {
534 1.101 kardel atv.tv_sec = time_adjtime / 1000000;
535 1.101 kardel atv.tv_usec = time_adjtime % 1000000;
536 1.101 kardel if (atv.tv_usec < 0) {
537 1.101 kardel atv.tv_usec += 1000000;
538 1.101 kardel atv.tv_sec--;
539 1.101 kardel }
540 1.101 kardel error = copyout(&atv, olddelta, sizeof(struct timeval));
541 1.101 kardel if (error)
542 1.101 kardel return (error);
543 1.101 kardel }
544 1.101 kardel
545 1.101 kardel if (delta) {
546 1.101 kardel error = copyin(delta, &atv, sizeof(struct timeval));
547 1.101 kardel if (error)
548 1.101 kardel return (error);
549 1.101 kardel
550 1.101 kardel time_adjtime = (int64_t)atv.tv_sec * 1000000 +
551 1.101 kardel atv.tv_usec;
552 1.8 cgd
553 1.101 kardel if (time_adjtime)
554 1.101 kardel /* We need to save the system time during shutdown */
555 1.101 kardel time_adjusted |= 1;
556 1.101 kardel }
557 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
558 1.60 manu error = copyin(delta, &atv, sizeof(struct timeval));
559 1.60 manu if (error)
560 1.60 manu return (error);
561 1.60 manu
562 1.8 cgd /*
563 1.8 cgd * Compute the total correction and the rate at which to apply it.
564 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
565 1.8 cgd * delta, so that after some number of incremental changes in
566 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
567 1.8 cgd * overshoot and start taking us away from the desired final time.
568 1.8 cgd */
569 1.60 manu ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
570 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
571 1.8 cgd ntickdelta = 10 * tickadj;
572 1.8 cgd else
573 1.8 cgd ntickdelta = tickadj;
574 1.8 cgd if (ndelta % ntickdelta)
575 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
576 1.8 cgd
577 1.8 cgd /*
578 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
579 1.8 cgd * if we want time to run slower; then hardclock can simply compute
580 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
581 1.8 cgd */
582 1.8 cgd if (ndelta < 0)
583 1.8 cgd ntickdelta = -ntickdelta;
584 1.68 dsl if (ndelta != 0)
585 1.68 dsl /* We need to save the system clock time during shutdown */
586 1.68 dsl time_adjusted |= 1;
587 1.1 cgd s = splclock();
588 1.8 cgd odelta = timedelta;
589 1.1 cgd timedelta = ndelta;
590 1.8 cgd tickdelta = ntickdelta;
591 1.1 cgd splx(s);
592 1.1 cgd
593 1.56 manu if (olddelta) {
594 1.60 manu atv.tv_sec = odelta / 1000000;
595 1.60 manu atv.tv_usec = odelta % 1000000;
596 1.79 chs error = copyout(&atv, olddelta, sizeof(struct timeval));
597 1.8 cgd }
598 1.101 kardel #endif /* __HAVE_TIMECOUNTER */
599 1.101 kardel
600 1.79 chs return error;
601 1.1 cgd }
602 1.1 cgd
603 1.1 cgd /*
604 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
605 1.63 thorpej * timer_*() family of routines are supported.
606 1.1 cgd *
607 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
608 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
609 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
610 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
611 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
612 1.63 thorpej * syscall.
613 1.1 cgd *
614 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
615 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
616 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
617 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
618 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
619 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
620 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
621 1.63 thorpej * given below), to be delayed in real time past when it is supposed
622 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
623 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
624 1.63 thorpej * compute the next time in absolute time the timer should go off. */
625 1.63 thorpej
626 1.63 thorpej /* Allocate a POSIX realtime timer. */
627 1.63 thorpej int
628 1.110 yamt sys_timer_create(struct lwp *l, void *v, register_t *retval)
629 1.63 thorpej {
630 1.63 thorpej struct sys_timer_create_args /* {
631 1.63 thorpej syscallarg(clockid_t) clock_id;
632 1.63 thorpej syscallarg(struct sigevent *) evp;
633 1.63 thorpej syscallarg(timer_t *) timerid;
634 1.63 thorpej } */ *uap = v;
635 1.92 cube
636 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
637 1.105 ad SCARG(uap, evp), copyin, l);
638 1.92 cube }
639 1.92 cube
640 1.92 cube int
641 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
642 1.105 ad copyin_t fetch_event, struct lwp *l)
643 1.92 cube {
644 1.92 cube int error;
645 1.92 cube timer_t timerid;
646 1.63 thorpej struct ptimer *pt;
647 1.105 ad struct proc *p;
648 1.105 ad
649 1.105 ad p = l->l_proc;
650 1.63 thorpej
651 1.63 thorpej if (id < CLOCK_REALTIME ||
652 1.63 thorpej id > CLOCK_PROF)
653 1.63 thorpej return (EINVAL);
654 1.63 thorpej
655 1.63 thorpej if (p->p_timers == NULL)
656 1.63 thorpej timers_alloc(p);
657 1.63 thorpej
658 1.63 thorpej /* Find a free timer slot, skipping those reserved for setitimer(). */
659 1.63 thorpej for (timerid = 3; timerid < TIMER_MAX; timerid++)
660 1.63 thorpej if (p->p_timers->pts_timers[timerid] == NULL)
661 1.63 thorpej break;
662 1.63 thorpej
663 1.63 thorpej if (timerid == TIMER_MAX)
664 1.63 thorpej return EAGAIN;
665 1.63 thorpej
666 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
667 1.63 thorpej if (evp) {
668 1.63 thorpej if (((error =
669 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
670 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
671 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
672 1.63 thorpej pool_put(&ptimer_pool, pt);
673 1.63 thorpej return (error ? error : EINVAL);
674 1.63 thorpej }
675 1.63 thorpej } else {
676 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
677 1.63 thorpej switch (id) {
678 1.63 thorpej case CLOCK_REALTIME:
679 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
680 1.63 thorpej break;
681 1.63 thorpej case CLOCK_VIRTUAL:
682 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
683 1.63 thorpej break;
684 1.63 thorpej case CLOCK_PROF:
685 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
686 1.63 thorpej break;
687 1.63 thorpej }
688 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
689 1.63 thorpej }
690 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
691 1.73 christos pt->pt_info.ksi_errno = 0;
692 1.73 christos pt->pt_info.ksi_code = 0;
693 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
694 1.105 ad pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
695 1.73 christos pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
696 1.63 thorpej
697 1.63 thorpej pt->pt_type = id;
698 1.63 thorpej pt->pt_proc = p;
699 1.63 thorpej pt->pt_overruns = 0;
700 1.63 thorpej pt->pt_poverruns = 0;
701 1.64 nathanw pt->pt_entry = timerid;
702 1.63 thorpej timerclear(&pt->pt_time.it_value);
703 1.63 thorpej if (id == CLOCK_REALTIME)
704 1.63 thorpej callout_init(&pt->pt_ch);
705 1.63 thorpej else
706 1.63 thorpej pt->pt_active = 0;
707 1.63 thorpej
708 1.63 thorpej p->p_timers->pts_timers[timerid] = pt;
709 1.63 thorpej
710 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
711 1.63 thorpej }
712 1.63 thorpej
713 1.63 thorpej /* Delete a POSIX realtime timer */
714 1.3 andrew int
715 1.110 yamt sys_timer_delete(struct lwp *l, void *v, register_t *retval)
716 1.15 thorpej {
717 1.63 thorpej struct sys_timer_delete_args /* {
718 1.63 thorpej syscallarg(timer_t) timerid;
719 1.15 thorpej } */ *uap = v;
720 1.63 thorpej struct proc *p = l->l_proc;
721 1.65 jdolecek timer_t timerid;
722 1.63 thorpej struct ptimer *pt, *ptn;
723 1.1 cgd int s;
724 1.1 cgd
725 1.63 thorpej timerid = SCARG(uap, timerid);
726 1.63 thorpej
727 1.63 thorpej if ((p->p_timers == NULL) ||
728 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
729 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
730 1.1 cgd return (EINVAL);
731 1.63 thorpej
732 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
733 1.63 thorpej callout_stop(&pt->pt_ch);
734 1.63 thorpej else if (pt->pt_active) {
735 1.63 thorpej s = splclock();
736 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
737 1.63 thorpej LIST_REMOVE(pt, pt_list);
738 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
739 1.63 thorpej timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
740 1.63 thorpej &ptn->pt_time.it_value);
741 1.63 thorpej splx(s);
742 1.63 thorpej }
743 1.63 thorpej
744 1.63 thorpej p->p_timers->pts_timers[timerid] = NULL;
745 1.63 thorpej pool_put(&ptimer_pool, pt);
746 1.63 thorpej
747 1.63 thorpej return (0);
748 1.63 thorpej }
749 1.63 thorpej
750 1.63 thorpej /*
751 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
752 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
753 1.67 nathanw * time for virtual timers.
754 1.63 thorpej * Must be called at splclock().
755 1.63 thorpej */
756 1.63 thorpej void
757 1.63 thorpej timer_settime(struct ptimer *pt)
758 1.63 thorpej {
759 1.63 thorpej struct ptimer *ptn, *pptn;
760 1.63 thorpej struct ptlist *ptl;
761 1.63 thorpej
762 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
763 1.63 thorpej callout_stop(&pt->pt_ch);
764 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
765 1.63 thorpej /*
766 1.63 thorpej * Don't need to check hzto() return value, here.
767 1.63 thorpej * callout_reset() does it for us.
768 1.63 thorpej */
769 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
770 1.63 thorpej realtimerexpire, pt);
771 1.63 thorpej }
772 1.63 thorpej } else {
773 1.63 thorpej if (pt->pt_active) {
774 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
775 1.63 thorpej LIST_REMOVE(pt, pt_list);
776 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
777 1.63 thorpej timeradd(&pt->pt_time.it_value,
778 1.63 thorpej &ptn->pt_time.it_value,
779 1.63 thorpej &ptn->pt_time.it_value);
780 1.63 thorpej }
781 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
782 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
783 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
784 1.63 thorpej else
785 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
786 1.63 thorpej
787 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
788 1.63 thorpej ptn && timercmp(&pt->pt_time.it_value,
789 1.63 thorpej &ptn->pt_time.it_value, >);
790 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
791 1.63 thorpej timersub(&pt->pt_time.it_value,
792 1.63 thorpej &ptn->pt_time.it_value,
793 1.63 thorpej &pt->pt_time.it_value);
794 1.63 thorpej
795 1.63 thorpej if (pptn)
796 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
797 1.63 thorpej else
798 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
799 1.63 thorpej
800 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
801 1.63 thorpej timersub(&ptn->pt_time.it_value,
802 1.63 thorpej &pt->pt_time.it_value,
803 1.63 thorpej &ptn->pt_time.it_value);
804 1.63 thorpej
805 1.63 thorpej pt->pt_active = 1;
806 1.63 thorpej } else
807 1.63 thorpej pt->pt_active = 0;
808 1.63 thorpej }
809 1.63 thorpej }
810 1.63 thorpej
811 1.63 thorpej void
812 1.63 thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
813 1.63 thorpej {
814 1.101 kardel #ifdef __HAVE_TIMECOUNTER
815 1.101 kardel struct timeval now;
816 1.101 kardel #endif
817 1.63 thorpej struct ptimer *ptn;
818 1.63 thorpej
819 1.63 thorpej *aitv = pt->pt_time;
820 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
821 1.1 cgd /*
822 1.12 mycroft * Convert from absolute to relative time in .it_value
823 1.63 thorpej * part of real time timer. If time for real time
824 1.63 thorpej * timer has passed return 0, else return difference
825 1.63 thorpej * between current time and time for the timer to go
826 1.63 thorpej * off.
827 1.1 cgd */
828 1.63 thorpej if (timerisset(&aitv->it_value)) {
829 1.101 kardel #ifdef __HAVE_TIMECOUNTER
830 1.101 kardel getmicrotime(&now);
831 1.101 kardel if (timercmp(&aitv->it_value, &now, <))
832 1.101 kardel timerclear(&aitv->it_value);
833 1.101 kardel else
834 1.101 kardel timersub(&aitv->it_value, &now,
835 1.101 kardel &aitv->it_value);
836 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
837 1.63 thorpej if (timercmp(&aitv->it_value, &time, <))
838 1.63 thorpej timerclear(&aitv->it_value);
839 1.1 cgd else
840 1.63 thorpej timersub(&aitv->it_value, &time,
841 1.63 thorpej &aitv->it_value);
842 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
843 1.36 thorpej }
844 1.63 thorpej } else if (pt->pt_active) {
845 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
846 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
847 1.63 thorpej else
848 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
849 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
850 1.63 thorpej timeradd(&aitv->it_value,
851 1.63 thorpej &ptn->pt_time.it_value, &aitv->it_value);
852 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
853 1.1 cgd } else
854 1.63 thorpej timerclear(&aitv->it_value);
855 1.63 thorpej }
856 1.63 thorpej
857 1.63 thorpej
858 1.63 thorpej
859 1.63 thorpej /* Set and arm a POSIX realtime timer */
860 1.63 thorpej int
861 1.110 yamt sys_timer_settime(struct lwp *l, void *v, register_t *retval)
862 1.63 thorpej {
863 1.63 thorpej struct sys_timer_settime_args /* {
864 1.63 thorpej syscallarg(timer_t) timerid;
865 1.63 thorpej syscallarg(int) flags;
866 1.63 thorpej syscallarg(const struct itimerspec *) value;
867 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
868 1.63 thorpej } */ *uap = v;
869 1.92 cube int error;
870 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
871 1.92 cube
872 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
873 1.92 cube sizeof(struct itimerspec))) != 0)
874 1.92 cube return (error);
875 1.92 cube
876 1.92 cube if (SCARG(uap, ovalue))
877 1.92 cube ovp = &ovalue;
878 1.92 cube
879 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
880 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
881 1.92 cube return error;
882 1.92 cube
883 1.92 cube if (ovp)
884 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
885 1.92 cube sizeof(struct itimerspec));
886 1.92 cube return 0;
887 1.92 cube }
888 1.92 cube
889 1.92 cube int
890 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
891 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
892 1.92 cube {
893 1.101 kardel #ifdef __HAVE_TIMECOUNTER
894 1.101 kardel struct timeval now;
895 1.101 kardel #endif
896 1.63 thorpej struct itimerval val, oval;
897 1.63 thorpej struct ptimer *pt;
898 1.101 kardel int s;
899 1.63 thorpej
900 1.63 thorpej if ((p->p_timers == NULL) ||
901 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
902 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
903 1.63 thorpej return (EINVAL);
904 1.63 thorpej
905 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
906 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
907 1.63 thorpej if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
908 1.63 thorpej return (EINVAL);
909 1.63 thorpej
910 1.63 thorpej oval = pt->pt_time;
911 1.63 thorpej pt->pt_time = val;
912 1.63 thorpej
913 1.63 thorpej s = splclock();
914 1.67 nathanw /*
915 1.67 nathanw * If we've been passed a relative time for a realtime timer,
916 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
917 1.67 nathanw * timer, convert it to relative and make sure we don't set it
918 1.67 nathanw * to zero, which would cancel the timer, or let it go
919 1.67 nathanw * negative, which would confuse the comparison tests.
920 1.67 nathanw */
921 1.67 nathanw if (timerisset(&pt->pt_time.it_value)) {
922 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
923 1.101 kardel #ifdef __HAVE_TIMECOUNTER
924 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
925 1.101 kardel getmicrotime(&now);
926 1.101 kardel timeradd(&pt->pt_time.it_value, &now,
927 1.101 kardel &pt->pt_time.it_value);
928 1.101 kardel }
929 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
930 1.92 cube if ((flags & TIMER_ABSTIME) == 0)
931 1.67 nathanw timeradd(&pt->pt_time.it_value, &time,
932 1.67 nathanw &pt->pt_time.it_value);
933 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
934 1.67 nathanw } else {
935 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
936 1.101 kardel #ifdef __HAVE_TIMECOUNTER
937 1.101 kardel getmicrotime(&now);
938 1.101 kardel timersub(&pt->pt_time.it_value, &now,
939 1.101 kardel &pt->pt_time.it_value);
940 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
941 1.67 nathanw timersub(&pt->pt_time.it_value, &time,
942 1.67 nathanw &pt->pt_time.it_value);
943 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
944 1.67 nathanw if (!timerisset(&pt->pt_time.it_value) ||
945 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
946 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
947 1.67 nathanw pt->pt_time.it_value.tv_usec = 1;
948 1.67 nathanw }
949 1.67 nathanw }
950 1.67 nathanw }
951 1.67 nathanw }
952 1.67 nathanw
953 1.63 thorpej timer_settime(pt);
954 1.63 thorpej splx(s);
955 1.63 thorpej
956 1.92 cube if (ovalue) {
957 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
958 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
959 1.63 thorpej }
960 1.63 thorpej
961 1.63 thorpej return (0);
962 1.63 thorpej }
963 1.63 thorpej
964 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
965 1.63 thorpej int
966 1.110 yamt sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
967 1.63 thorpej {
968 1.63 thorpej struct sys_timer_gettime_args /* {
969 1.63 thorpej syscallarg(timer_t) timerid;
970 1.63 thorpej syscallarg(struct itimerspec *) value;
971 1.63 thorpej } */ *uap = v;
972 1.63 thorpej struct itimerspec its;
973 1.92 cube int error;
974 1.92 cube
975 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
976 1.92 cube &its)) != 0)
977 1.92 cube return error;
978 1.92 cube
979 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
980 1.92 cube }
981 1.92 cube
982 1.92 cube int
983 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
984 1.92 cube {
985 1.92 cube int s;
986 1.63 thorpej struct ptimer *pt;
987 1.92 cube struct itimerval aitv;
988 1.63 thorpej
989 1.63 thorpej if ((p->p_timers == NULL) ||
990 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
991 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
992 1.63 thorpej return (EINVAL);
993 1.63 thorpej
994 1.63 thorpej s = splclock();
995 1.63 thorpej timer_gettime(pt, &aitv);
996 1.1 cgd splx(s);
997 1.63 thorpej
998 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
999 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
1000 1.63 thorpej
1001 1.92 cube return 0;
1002 1.63 thorpej }
1003 1.63 thorpej
1004 1.63 thorpej /*
1005 1.63 thorpej * Return the count of the number of times a periodic timer expired
1006 1.63 thorpej * while a notification was already pending. The counter is reset when
1007 1.63 thorpej * a timer expires and a notification can be posted.
1008 1.63 thorpej */
1009 1.63 thorpej int
1010 1.63 thorpej sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
1011 1.63 thorpej {
1012 1.63 thorpej struct sys_timer_getoverrun_args /* {
1013 1.63 thorpej syscallarg(timer_t) timerid;
1014 1.63 thorpej } */ *uap = v;
1015 1.63 thorpej struct proc *p = l->l_proc;
1016 1.63 thorpej int timerid;
1017 1.63 thorpej struct ptimer *pt;
1018 1.63 thorpej
1019 1.63 thorpej timerid = SCARG(uap, timerid);
1020 1.63 thorpej
1021 1.63 thorpej if ((p->p_timers == NULL) ||
1022 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
1023 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1024 1.63 thorpej return (EINVAL);
1025 1.63 thorpej
1026 1.63 thorpej *retval = pt->pt_poverruns;
1027 1.63 thorpej
1028 1.63 thorpej return (0);
1029 1.63 thorpej }
1030 1.63 thorpej
1031 1.63 thorpej /*
1032 1.63 thorpej * Real interval timer expired:
1033 1.63 thorpej * send process whose timer expired an alarm signal.
1034 1.63 thorpej * If time is not set up to reload, then just return.
1035 1.63 thorpej * Else compute next time timer should go off which is > current time.
1036 1.63 thorpej * This is where delay in processing this timeout causes multiple
1037 1.63 thorpej * SIGALRM calls to be compressed into one.
1038 1.63 thorpej */
1039 1.63 thorpej void
1040 1.63 thorpej realtimerexpire(void *arg)
1041 1.63 thorpej {
1042 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1043 1.101 kardel struct timeval now;
1044 1.101 kardel #endif
1045 1.63 thorpej struct ptimer *pt;
1046 1.63 thorpej int s;
1047 1.63 thorpej
1048 1.63 thorpej pt = (struct ptimer *)arg;
1049 1.63 thorpej
1050 1.63 thorpej itimerfire(pt);
1051 1.63 thorpej
1052 1.63 thorpej if (!timerisset(&pt->pt_time.it_interval)) {
1053 1.63 thorpej timerclear(&pt->pt_time.it_value);
1054 1.63 thorpej return;
1055 1.63 thorpej }
1056 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1057 1.101 kardel for (;;) {
1058 1.101 kardel s = splclock(); /* XXX need spl now? */
1059 1.101 kardel timeradd(&pt->pt_time.it_value,
1060 1.101 kardel &pt->pt_time.it_interval, &pt->pt_time.it_value);
1061 1.101 kardel getmicrotime(&now);
1062 1.101 kardel if (timercmp(&pt->pt_time.it_value, &now, >)) {
1063 1.101 kardel /*
1064 1.101 kardel * Don't need to check hzto() return value, here.
1065 1.101 kardel * callout_reset() does it for us.
1066 1.101 kardel */
1067 1.101 kardel callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1068 1.101 kardel realtimerexpire, pt);
1069 1.101 kardel splx(s);
1070 1.101 kardel return;
1071 1.101 kardel }
1072 1.101 kardel splx(s);
1073 1.101 kardel pt->pt_overruns++;
1074 1.101 kardel }
1075 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1076 1.63 thorpej for (;;) {
1077 1.63 thorpej s = splclock();
1078 1.63 thorpej timeradd(&pt->pt_time.it_value,
1079 1.63 thorpej &pt->pt_time.it_interval, &pt->pt_time.it_value);
1080 1.63 thorpej if (timercmp(&pt->pt_time.it_value, &time, >)) {
1081 1.63 thorpej /*
1082 1.63 thorpej * Don't need to check hzto() return value, here.
1083 1.63 thorpej * callout_reset() does it for us.
1084 1.63 thorpej */
1085 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1086 1.63 thorpej realtimerexpire, pt);
1087 1.63 thorpej splx(s);
1088 1.63 thorpej return;
1089 1.63 thorpej }
1090 1.63 thorpej splx(s);
1091 1.63 thorpej pt->pt_overruns++;
1092 1.63 thorpej }
1093 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1094 1.63 thorpej }
1095 1.63 thorpej
1096 1.63 thorpej /* BSD routine to get the value of an interval timer. */
1097 1.63 thorpej /* ARGSUSED */
1098 1.63 thorpej int
1099 1.110 yamt sys_getitimer(struct lwp *l, void *v, register_t *retval)
1100 1.63 thorpej {
1101 1.63 thorpej struct sys_getitimer_args /* {
1102 1.63 thorpej syscallarg(int) which;
1103 1.63 thorpej syscallarg(struct itimerval *) itv;
1104 1.63 thorpej } */ *uap = v;
1105 1.63 thorpej struct proc *p = l->l_proc;
1106 1.63 thorpej struct itimerval aitv;
1107 1.91 cube int error;
1108 1.91 cube
1109 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
1110 1.91 cube if (error)
1111 1.91 cube return error;
1112 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1113 1.91 cube }
1114 1.63 thorpej
1115 1.91 cube int
1116 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1117 1.91 cube {
1118 1.91 cube int s;
1119 1.63 thorpej
1120 1.63 thorpej if ((u_int)which > ITIMER_PROF)
1121 1.63 thorpej return (EINVAL);
1122 1.63 thorpej
1123 1.63 thorpej if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1124 1.91 cube timerclear(&itvp->it_value);
1125 1.91 cube timerclear(&itvp->it_interval);
1126 1.63 thorpej } else {
1127 1.63 thorpej s = splclock();
1128 1.91 cube timer_gettime(p->p_timers->pts_timers[which], itvp);
1129 1.63 thorpej splx(s);
1130 1.63 thorpej }
1131 1.63 thorpej
1132 1.91 cube return 0;
1133 1.1 cgd }
1134 1.1 cgd
1135 1.63 thorpej /* BSD routine to set/arm an interval timer. */
1136 1.1 cgd /* ARGSUSED */
1137 1.3 andrew int
1138 1.63 thorpej sys_setitimer(struct lwp *l, void *v, register_t *retval)
1139 1.15 thorpej {
1140 1.45 augustss struct sys_setitimer_args /* {
1141 1.30 mycroft syscallarg(int) which;
1142 1.24 cgd syscallarg(const struct itimerval *) itv;
1143 1.11 cgd syscallarg(struct itimerval *) oitv;
1144 1.15 thorpej } */ *uap = v;
1145 1.63 thorpej struct proc *p = l->l_proc;
1146 1.30 mycroft int which = SCARG(uap, which);
1147 1.21 cgd struct sys_getitimer_args getargs;
1148 1.91 cube const struct itimerval *itvp;
1149 1.1 cgd struct itimerval aitv;
1150 1.91 cube int error;
1151 1.1 cgd
1152 1.30 mycroft if ((u_int)which > ITIMER_PROF)
1153 1.1 cgd return (EINVAL);
1154 1.11 cgd itvp = SCARG(uap, itv);
1155 1.63 thorpej if (itvp &&
1156 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1157 1.1 cgd return (error);
1158 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1159 1.30 mycroft SCARG(&getargs, which) = which;
1160 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1161 1.63 thorpej if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1162 1.21 cgd return (error);
1163 1.21 cgd }
1164 1.1 cgd if (itvp == 0)
1165 1.1 cgd return (0);
1166 1.91 cube
1167 1.91 cube return dosetitimer(p, which, &aitv);
1168 1.91 cube }
1169 1.91 cube
1170 1.91 cube int
1171 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1172 1.91 cube {
1173 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1174 1.101 kardel struct timeval now;
1175 1.101 kardel #endif
1176 1.91 cube struct ptimer *pt;
1177 1.91 cube int s;
1178 1.91 cube
1179 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1180 1.1 cgd return (EINVAL);
1181 1.63 thorpej
1182 1.63 thorpej /*
1183 1.63 thorpej * Don't bother allocating data structures if the process just
1184 1.63 thorpej * wants to clear the timer.
1185 1.63 thorpej */
1186 1.91 cube if (!timerisset(&itvp->it_value) &&
1187 1.63 thorpej ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1188 1.63 thorpej return (0);
1189 1.63 thorpej
1190 1.63 thorpej if (p->p_timers == NULL)
1191 1.63 thorpej timers_alloc(p);
1192 1.63 thorpej if (p->p_timers->pts_timers[which] == NULL) {
1193 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
1194 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1195 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1196 1.63 thorpej pt->pt_overruns = 0;
1197 1.63 thorpej pt->pt_proc = p;
1198 1.63 thorpej pt->pt_type = which;
1199 1.64 nathanw pt->pt_entry = which;
1200 1.63 thorpej switch (which) {
1201 1.63 thorpej case ITIMER_REAL:
1202 1.63 thorpej callout_init(&pt->pt_ch);
1203 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1204 1.63 thorpej break;
1205 1.63 thorpej case ITIMER_VIRTUAL:
1206 1.63 thorpej pt->pt_active = 0;
1207 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1208 1.63 thorpej break;
1209 1.63 thorpej case ITIMER_PROF:
1210 1.63 thorpej pt->pt_active = 0;
1211 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1212 1.63 thorpej break;
1213 1.1 cgd }
1214 1.1 cgd } else
1215 1.63 thorpej pt = p->p_timers->pts_timers[which];
1216 1.63 thorpej
1217 1.91 cube pt->pt_time = *itvp;
1218 1.63 thorpej p->p_timers->pts_timers[which] = pt;
1219 1.63 thorpej
1220 1.63 thorpej s = splclock();
1221 1.67 nathanw if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1222 1.67 nathanw /* Convert to absolute time */
1223 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1224 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1225 1.101 kardel getmicrotime(&now);
1226 1.101 kardel timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1227 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1228 1.67 nathanw timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1229 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1230 1.67 nathanw }
1231 1.63 thorpej timer_settime(pt);
1232 1.1 cgd splx(s);
1233 1.63 thorpej
1234 1.1 cgd return (0);
1235 1.1 cgd }
1236 1.1 cgd
1237 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1238 1.63 thorpej void
1239 1.63 thorpej timers_alloc(struct proc *p)
1240 1.63 thorpej {
1241 1.63 thorpej int i;
1242 1.63 thorpej struct ptimers *pts;
1243 1.63 thorpej
1244 1.100 yamt pts = pool_get(&ptimers_pool, PR_WAITOK);
1245 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1246 1.63 thorpej LIST_INIT(&pts->pts_prof);
1247 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1248 1.63 thorpej pts->pts_timers[i] = NULL;
1249 1.64 nathanw pts->pts_fired = 0;
1250 1.63 thorpej p->p_timers = pts;
1251 1.63 thorpej }
1252 1.63 thorpej
1253 1.1 cgd /*
1254 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1255 1.63 thorpej * then clean up all timers and free all the data structures. If
1256 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1257 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1258 1.63 thorpej * structure if none of those remain.
1259 1.1 cgd */
1260 1.3 andrew void
1261 1.63 thorpej timers_free(struct proc *p, int which)
1262 1.6 cgd {
1263 1.63 thorpej int i, s;
1264 1.63 thorpej struct ptimers *pts;
1265 1.63 thorpej struct ptimer *pt, *ptn;
1266 1.63 thorpej struct timeval tv;
1267 1.63 thorpej
1268 1.63 thorpej if (p->p_timers) {
1269 1.63 thorpej pts = p->p_timers;
1270 1.63 thorpej if (which == TIMERS_ALL)
1271 1.63 thorpej i = 0;
1272 1.63 thorpej else {
1273 1.63 thorpej s = splclock();
1274 1.63 thorpej timerclear(&tv);
1275 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1276 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1277 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1278 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1279 1.63 thorpej LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1280 1.63 thorpej if (ptn) {
1281 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1282 1.63 thorpej &ptn->pt_time.it_value);
1283 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1284 1.63 thorpej ptn, pt_list);
1285 1.63 thorpej }
1286 1.63 thorpej
1287 1.63 thorpej timerclear(&tv);
1288 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1289 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_PROF];
1290 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1291 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1292 1.63 thorpej LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1293 1.63 thorpej if (ptn) {
1294 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1295 1.63 thorpej &ptn->pt_time.it_value);
1296 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1297 1.63 thorpej pt_list);
1298 1.63 thorpej }
1299 1.1 cgd splx(s);
1300 1.63 thorpej i = 3;
1301 1.63 thorpej }
1302 1.63 thorpej for ( ; i < TIMER_MAX; i++)
1303 1.63 thorpej if ((pt = pts->pts_timers[i]) != NULL) {
1304 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
1305 1.63 thorpej callout_stop(&pt->pt_ch);
1306 1.63 thorpej pts->pts_timers[i] = NULL;
1307 1.63 thorpej pool_put(&ptimer_pool, pt);
1308 1.63 thorpej }
1309 1.63 thorpej if ((pts->pts_timers[0] == NULL) &&
1310 1.63 thorpej (pts->pts_timers[1] == NULL) &&
1311 1.63 thorpej (pts->pts_timers[2] == NULL)) {
1312 1.63 thorpej p->p_timers = NULL;
1313 1.97 simonb pool_put(&ptimers_pool, pts);
1314 1.1 cgd }
1315 1.1 cgd }
1316 1.1 cgd }
1317 1.1 cgd
1318 1.1 cgd /*
1319 1.1 cgd * Check that a proposed value to load into the .it_value or
1320 1.1 cgd * .it_interval part of an interval timer is acceptable, and
1321 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
1322 1.1 cgd * than the resolution of the clock, round it up.)
1323 1.1 cgd */
1324 1.3 andrew int
1325 1.63 thorpej itimerfix(struct timeval *tv)
1326 1.1 cgd {
1327 1.1 cgd
1328 1.59 christos if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1329 1.1 cgd return (EINVAL);
1330 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1331 1.1 cgd tv->tv_usec = tick;
1332 1.1 cgd return (0);
1333 1.1 cgd }
1334 1.1 cgd
1335 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1336 1.101 kardel int
1337 1.101 kardel itimespecfix(struct timespec *ts)
1338 1.101 kardel {
1339 1.101 kardel
1340 1.101 kardel if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1341 1.101 kardel return (EINVAL);
1342 1.101 kardel if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1343 1.101 kardel ts->tv_nsec = tick * 1000;
1344 1.101 kardel return (0);
1345 1.101 kardel }
1346 1.101 kardel #endif /* __HAVE_TIMECOUNTER */
1347 1.101 kardel
1348 1.1 cgd /*
1349 1.1 cgd * Decrement an interval timer by a specified number
1350 1.1 cgd * of microseconds, which must be less than a second,
1351 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1352 1.1 cgd * it. In this case, carry over (usec - old value) to
1353 1.8 cgd * reduce the value reloaded into the timer so that
1354 1.1 cgd * the timer does not drift. This routine assumes
1355 1.1 cgd * that it is called in a context where the timers
1356 1.1 cgd * on which it is operating cannot change in value.
1357 1.1 cgd */
1358 1.3 andrew int
1359 1.63 thorpej itimerdecr(struct ptimer *pt, int usec)
1360 1.63 thorpej {
1361 1.45 augustss struct itimerval *itp;
1362 1.1 cgd
1363 1.63 thorpej itp = &pt->pt_time;
1364 1.1 cgd if (itp->it_value.tv_usec < usec) {
1365 1.1 cgd if (itp->it_value.tv_sec == 0) {
1366 1.1 cgd /* expired, and already in next interval */
1367 1.1 cgd usec -= itp->it_value.tv_usec;
1368 1.1 cgd goto expire;
1369 1.1 cgd }
1370 1.1 cgd itp->it_value.tv_usec += 1000000;
1371 1.1 cgd itp->it_value.tv_sec--;
1372 1.1 cgd }
1373 1.1 cgd itp->it_value.tv_usec -= usec;
1374 1.1 cgd usec = 0;
1375 1.1 cgd if (timerisset(&itp->it_value))
1376 1.1 cgd return (1);
1377 1.1 cgd /* expired, exactly at end of interval */
1378 1.1 cgd expire:
1379 1.1 cgd if (timerisset(&itp->it_interval)) {
1380 1.1 cgd itp->it_value = itp->it_interval;
1381 1.1 cgd itp->it_value.tv_usec -= usec;
1382 1.1 cgd if (itp->it_value.tv_usec < 0) {
1383 1.1 cgd itp->it_value.tv_usec += 1000000;
1384 1.1 cgd itp->it_value.tv_sec--;
1385 1.1 cgd }
1386 1.63 thorpej timer_settime(pt);
1387 1.1 cgd } else
1388 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1389 1.1 cgd return (0);
1390 1.42 cgd }
1391 1.42 cgd
1392 1.63 thorpej void
1393 1.63 thorpej itimerfire(struct ptimer *pt)
1394 1.63 thorpej {
1395 1.63 thorpej struct proc *p = pt->pt_proc;
1396 1.78 cl
1397 1.63 thorpej if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1398 1.63 thorpej /*
1399 1.63 thorpej * No RT signal infrastructure exists at this time;
1400 1.63 thorpej * just post the signal number and throw away the
1401 1.63 thorpej * value.
1402 1.63 thorpej */
1403 1.113 ad if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1404 1.63 thorpej pt->pt_overruns++;
1405 1.63 thorpej else {
1406 1.75 christos ksiginfo_t ksi;
1407 1.111 yamt KSI_INIT(&ksi);
1408 1.75 christos ksi.ksi_signo = pt->pt_ev.sigev_signo;
1409 1.75 christos ksi.ksi_code = SI_TIMER;
1410 1.75 christos ksi.ksi_sigval = pt->pt_ev.sigev_value;
1411 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1412 1.63 thorpej pt->pt_overruns = 0;
1413 1.113 ad mutex_enter(&proclist_mutex);
1414 1.75 christos kpsignal(p, &ksi, NULL);
1415 1.113 ad mutex_exit(&proclist_mutex);
1416 1.64 nathanw }
1417 1.63 thorpej }
1418 1.63 thorpej }
1419 1.63 thorpej
1420 1.42 cgd /*
1421 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1422 1.42 cgd * for usage and rationale.
1423 1.42 cgd */
1424 1.42 cgd int
1425 1.63 thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1426 1.42 cgd {
1427 1.49 itojun struct timeval tv, delta;
1428 1.101 kardel int rv = 0;
1429 1.101 kardel #ifndef __HAVE_TIMECOUNTER
1430 1.101 kardel int s;
1431 1.101 kardel #endif
1432 1.42 cgd
1433 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1434 1.101 kardel getmicrouptime(&tv);
1435 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1436 1.63 thorpej s = splclock();
1437 1.49 itojun tv = mono_time;
1438 1.49 itojun splx(s);
1439 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1440 1.49 itojun timersub(&tv, lasttime, &delta);
1441 1.42 cgd
1442 1.42 cgd /*
1443 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1444 1.42 cgd * even if interval is huge.
1445 1.42 cgd */
1446 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1447 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1448 1.49 itojun *lasttime = tv;
1449 1.42 cgd rv = 1;
1450 1.42 cgd }
1451 1.50 itojun
1452 1.50 itojun return (rv);
1453 1.50 itojun }
1454 1.50 itojun
1455 1.50 itojun /*
1456 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1457 1.50 itojun */
1458 1.50 itojun int
1459 1.63 thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1460 1.50 itojun {
1461 1.50 itojun struct timeval tv, delta;
1462 1.101 kardel int rv;
1463 1.101 kardel #ifndef __HAVE_TIMECOUNTER
1464 1.101 kardel int s;
1465 1.101 kardel #endif
1466 1.50 itojun
1467 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1468 1.101 kardel getmicrouptime(&tv);
1469 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1470 1.63 thorpej s = splclock();
1471 1.50 itojun tv = mono_time;
1472 1.50 itojun splx(s);
1473 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1474 1.50 itojun timersub(&tv, lasttime, &delta);
1475 1.50 itojun
1476 1.50 itojun /*
1477 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1478 1.50 itojun * if more than one second have passed since the last update of
1479 1.50 itojun * lasttime, reset the counter.
1480 1.50 itojun *
1481 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1482 1.50 itojun * try to use *curpps for stat purposes as well.
1483 1.50 itojun */
1484 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1485 1.50 itojun delta.tv_sec >= 1) {
1486 1.50 itojun *lasttime = tv;
1487 1.50 itojun *curpps = 0;
1488 1.69 dyoung }
1489 1.69 dyoung if (maxpps < 0)
1490 1.53 itojun rv = 1;
1491 1.53 itojun else if (*curpps < maxpps)
1492 1.50 itojun rv = 1;
1493 1.50 itojun else
1494 1.50 itojun rv = 0;
1495 1.50 itojun
1496 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1497 1.50 itojun /* be careful about wrap-around */
1498 1.50 itojun if (*curpps + 1 > *curpps)
1499 1.50 itojun *curpps = *curpps + 1;
1500 1.50 itojun #else
1501 1.50 itojun /*
1502 1.50 itojun * assume that there's not too many calls to this function.
1503 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1504 1.50 itojun * behavior, not the behavior of this function.
1505 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1506 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1507 1.50 itojun */
1508 1.50 itojun *curpps = *curpps + 1;
1509 1.50 itojun #endif
1510 1.42 cgd
1511 1.42 cgd return (rv);
1512 1.1 cgd }
1513