Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.117.2.6
      1  1.117.2.6        ad /*	$NetBSD: kern_time.c,v 1.117.2.6 2007/10/23 20:17:12 ad Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4       1.88   mycroft  * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8       1.42       cgd  * by Christopher G. Demetriou.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  * 3. All advertising materials mentioning features or use of this software
     19       1.42       cgd  *    must display the following acknowledgement:
     20       1.42       cgd  *	This product includes software developed by the NetBSD
     21       1.42       cgd  *	Foundation, Inc. and its contributors.
     22       1.42       cgd  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23       1.42       cgd  *    contributors may be used to endorse or promote products derived
     24       1.42       cgd  *    from this software without specific prior written permission.
     25       1.42       cgd  *
     26       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     37       1.42       cgd  */
     38        1.9       cgd 
     39        1.1       cgd /*
     40        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     41        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     42        1.1       cgd  *
     43        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     44        1.1       cgd  * modification, are permitted provided that the following conditions
     45        1.1       cgd  * are met:
     46        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     47        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     48        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     49        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     50        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     51       1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     52        1.1       cgd  *    may be used to endorse or promote products derived from this software
     53        1.1       cgd  *    without specific prior written permission.
     54        1.1       cgd  *
     55        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65        1.1       cgd  * SUCH DAMAGE.
     66        1.1       cgd  *
     67       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68        1.1       cgd  */
     69       1.58     lukem 
     70       1.58     lukem #include <sys/cdefs.h>
     71  1.117.2.6        ad __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.117.2.6 2007/10/23 20:17:12 ad Exp $");
     72        1.1       cgd 
     73        1.5   mycroft #include <sys/param.h>
     74        1.5   mycroft #include <sys/resourcevar.h>
     75        1.5   mycroft #include <sys/kernel.h>
     76        1.8       cgd #include <sys/systm.h>
     77        1.5   mycroft #include <sys/proc.h>
     78        1.8       cgd #include <sys/vnode.h>
     79       1.17  christos #include <sys/signalvar.h>
     80       1.25     perry #include <sys/syslog.h>
     81      1.101    kardel #include <sys/timetc.h>
     82  1.117.2.2        ad #ifndef __HAVE_TIMECOUNTER
     83       1.95      cube #include <sys/timevar.h>
     84      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
     85       1.99      elad #include <sys/kauth.h>
     86        1.1       cgd 
     87       1.11       cgd #include <sys/mount.h>
     88       1.11       cgd #include <sys/syscallargs.h>
     89       1.19  christos 
     90       1.37   thorpej #include <uvm/uvm_extern.h>
     91       1.37   thorpej 
     92  1.117.2.6        ad #include <sys/cpu.h>
     93       1.23       cgd 
     94       1.97    simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     95  1.117.2.1        ad     &pool_allocator_nointr, IPL_NONE);
     96       1.97    simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     97  1.117.2.1        ad     &pool_allocator_nointr, IPL_NONE);
     98       1.97    simonb 
     99       1.63   thorpej /* Time of day and interval timer support.
    100        1.1       cgd  *
    101        1.1       cgd  * These routines provide the kernel entry points to get and set
    102        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    103        1.1       cgd  * here provide support for adding and subtracting timeval structures
    104        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    105        1.1       cgd  * timers when they expire.
    106        1.1       cgd  */
    107        1.1       cgd 
    108       1.22       jtc /* This function is used by clock_settime and settimeofday */
    109       1.39      tron int
    110       1.98  christos settime(struct proc *p, struct timespec *ts)
    111       1.22       jtc {
    112       1.98  christos 	struct timeval delta, tv;
    113      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    114      1.101    kardel 	struct timeval now;
    115      1.101    kardel 	struct timespec ts1;
    116      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    117  1.117.2.4        ad 	lwp_t *l;
    118  1.117.2.4        ad 	int s;
    119       1.22       jtc 
    120       1.98  christos 	/*
    121       1.98  christos 	 * Don't allow the time to be set forward so far it will wrap
    122       1.98  christos 	 * and become negative, thus allowing an attacker to bypass
    123       1.98  christos 	 * the next check below.  The cutoff is 1 year before rollover
    124       1.98  christos 	 * occurs, so even if the attacker uses adjtime(2) to move
    125       1.98  christos 	 * the time past the cutoff, it will take a very long time
    126       1.98  christos 	 * to get to the wrap point.
    127       1.98  christos 	 *
    128       1.98  christos 	 * XXX: we check against INT_MAX since on 64-bit
    129       1.98  christos 	 *	platforms, sizeof(int) != sizeof(long) and
    130       1.98  christos 	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
    131       1.98  christos 	 */
    132       1.98  christos 	if (ts->tv_sec > INT_MAX - 365*24*60*60) {
    133      1.113        ad 		struct proc *pp;
    134      1.113        ad 
    135      1.117        ad 		mutex_enter(&proclist_lock);
    136      1.113        ad 		pp = p->p_pptr;
    137      1.113        ad 		mutex_enter(&pp->p_mutex);
    138       1.98  christos 		log(LOG_WARNING, "pid %d (%s) "
    139       1.98  christos 		    "invoked by uid %d ppid %d (%s) "
    140       1.98  christos 		    "tried to set clock forward to %ld\n",
    141       1.99      elad 		    p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
    142       1.98  christos 		    pp->p_pid, pp->p_comm, (long)ts->tv_sec);
    143      1.113        ad 		mutex_exit(&pp->p_mutex);
    144      1.117        ad 		mutex_exit(&proclist_lock);
    145       1.98  christos 		return (EPERM);
    146       1.98  christos 	}
    147       1.98  christos 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    148       1.98  christos 
    149       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    150  1.117.2.4        ad 	s = splclock();
    151      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    152      1.101    kardel 	microtime(&now);
    153      1.101    kardel 	timersub(&tv, &now, &delta);
    154      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    155       1.98  christos 	timersub(&tv, &time, &delta);
    156      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    157      1.106      elad 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
    158      1.106      elad 	    kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
    159      1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
    160  1.117.2.4        ad 		splx(s);
    161       1.29       tls 		return (EPERM);
    162       1.55      tron 	}
    163       1.29       tls #ifdef notyet
    164      1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    165  1.117.2.4        ad 		splx(s);
    166       1.29       tls 		return (EPERM);
    167       1.55      tron 	}
    168       1.29       tls #endif
    169      1.103    kardel 
    170      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    171      1.103    kardel 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    172      1.101    kardel 	tc_setclock(&ts1);
    173      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    174       1.98  christos 	time = tv;
    175      1.103    kardel #endif /* !__HAVE_TIMECOUNTER */
    176      1.103    kardel 
    177       1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    178      1.103    kardel 
    179       1.47   thorpej 	/*
    180  1.117.2.4        ad 	 * XXXSMP: There is a short race between setting the time above
    181  1.117.2.4        ad 	 * and adjusting LWP's run times.  Fixing this properly means
    182  1.117.2.4        ad 	 * pausing all CPUs while we adjust the clock.
    183       1.47   thorpej 	 */
    184  1.117.2.4        ad 	mutex_enter(&proclist_lock);
    185  1.117.2.4        ad 	LIST_FOREACH(l, &alllwp, l_list) {
    186  1.117.2.4        ad 		lwp_lock(l);
    187  1.117.2.4        ad 		timeradd(&l->l_stime, &delta, &l->l_stime);
    188  1.117.2.4        ad 		lwp_unlock(l);
    189  1.117.2.4        ad 	}
    190  1.117.2.4        ad 	mutex_exit(&proclist_lock);
    191       1.22       jtc 	resettodr();
    192  1.117.2.4        ad 	splx(s);
    193  1.117.2.4        ad 
    194       1.29       tls 	return (0);
    195       1.22       jtc }
    196       1.22       jtc 
    197       1.22       jtc /* ARGSUSED */
    198       1.22       jtc int
    199      1.110      yamt sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    200       1.22       jtc {
    201       1.45  augustss 	struct sys_clock_gettime_args /* {
    202       1.22       jtc 		syscallarg(clockid_t) clock_id;
    203       1.23       cgd 		syscallarg(struct timespec *) tp;
    204       1.23       cgd 	} */ *uap = v;
    205       1.22       jtc 	clockid_t clock_id;
    206       1.22       jtc 	struct timespec ats;
    207       1.22       jtc 
    208       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    209       1.61    simonb 	switch (clock_id) {
    210       1.61    simonb 	case CLOCK_REALTIME:
    211       1.96    simonb 		nanotime(&ats);
    212       1.61    simonb 		break;
    213       1.61    simonb 	case CLOCK_MONOTONIC:
    214      1.101    kardel 		nanouptime(&ats);
    215       1.61    simonb 		break;
    216       1.61    simonb 	default:
    217       1.22       jtc 		return (EINVAL);
    218       1.61    simonb 	}
    219       1.22       jtc 
    220       1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    221       1.22       jtc }
    222       1.22       jtc 
    223       1.22       jtc /* ARGSUSED */
    224       1.22       jtc int
    225      1.110      yamt sys_clock_settime(struct lwp *l, void *v, register_t *retval)
    226       1.22       jtc {
    227       1.45  augustss 	struct sys_clock_settime_args /* {
    228       1.22       jtc 		syscallarg(clockid_t) clock_id;
    229       1.23       cgd 		syscallarg(const struct timespec *) tp;
    230       1.23       cgd 	} */ *uap = v;
    231       1.22       jtc 	int error;
    232       1.22       jtc 
    233      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    234      1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
    235       1.22       jtc 		return (error);
    236       1.22       jtc 
    237      1.105        ad 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
    238       1.56      manu }
    239       1.56      manu 
    240       1.56      manu 
    241       1.56      manu int
    242       1.98  christos clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
    243       1.56      manu {
    244       1.60      manu 	struct timespec ats;
    245       1.56      manu 	int error;
    246       1.56      manu 
    247       1.60      manu 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    248       1.60      manu 		return (error);
    249       1.60      manu 
    250       1.61    simonb 	switch (clock_id) {
    251       1.61    simonb 	case CLOCK_REALTIME:
    252       1.98  christos 		if ((error = settime(p, &ats)) != 0)
    253       1.61    simonb 			return (error);
    254       1.61    simonb 		break;
    255       1.61    simonb 	case CLOCK_MONOTONIC:
    256       1.61    simonb 		return (EINVAL);	/* read-only clock */
    257       1.61    simonb 	default:
    258       1.56      manu 		return (EINVAL);
    259       1.61    simonb 	}
    260       1.22       jtc 
    261       1.22       jtc 	return 0;
    262       1.22       jtc }
    263       1.22       jtc 
    264       1.22       jtc int
    265      1.110      yamt sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    266       1.22       jtc {
    267       1.45  augustss 	struct sys_clock_getres_args /* {
    268       1.22       jtc 		syscallarg(clockid_t) clock_id;
    269       1.23       cgd 		syscallarg(struct timespec *) tp;
    270       1.23       cgd 	} */ *uap = v;
    271       1.22       jtc 	clockid_t clock_id;
    272       1.22       jtc 	struct timespec ts;
    273       1.22       jtc 	int error = 0;
    274       1.22       jtc 
    275       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    276       1.61    simonb 	switch (clock_id) {
    277       1.61    simonb 	case CLOCK_REALTIME:
    278       1.61    simonb 	case CLOCK_MONOTONIC:
    279       1.22       jtc 		ts.tv_sec = 0;
    280      1.102    kardel 		if (tc_getfrequency() > 1000000000)
    281      1.102    kardel 			ts.tv_nsec = 1;
    282      1.102    kardel 		else
    283      1.102    kardel 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    284       1.61    simonb 		break;
    285       1.61    simonb 	default:
    286       1.61    simonb 		return (EINVAL);
    287       1.61    simonb 	}
    288       1.22       jtc 
    289       1.61    simonb 	if (SCARG(uap, tp))
    290       1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    291       1.22       jtc 
    292       1.22       jtc 	return error;
    293       1.22       jtc }
    294       1.22       jtc 
    295       1.27       jtc /* ARGSUSED */
    296       1.27       jtc int
    297      1.110      yamt sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    298       1.27       jtc {
    299      1.101    kardel 	struct sys_nanosleep_args/* {
    300      1.101    kardel 		syscallarg(struct timespec *) rqtp;
    301      1.101    kardel 		syscallarg(struct timespec *) rmtp;
    302      1.101    kardel 	} */ *uap = v;
    303      1.101    kardel 	struct timespec rmt, rqt;
    304  1.117.2.2        ad 	int error, error1;
    305      1.101    kardel 
    306      1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    307      1.101    kardel 	if (error)
    308      1.101    kardel 		return (error);
    309      1.101    kardel 
    310  1.117.2.2        ad 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    311  1.117.2.2        ad 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    312  1.117.2.2        ad 		return error;
    313  1.117.2.2        ad 
    314  1.117.2.2        ad 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    315  1.117.2.2        ad 	return error1 ? error1 : error;
    316  1.117.2.2        ad }
    317  1.117.2.2        ad 
    318  1.117.2.2        ad int
    319  1.117.2.2        ad nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    320  1.117.2.2        ad {
    321  1.117.2.2        ad #ifdef __HAVE_TIMECOUNTER
    322  1.117.2.2        ad 	int error, timo;
    323  1.117.2.2        ad 
    324  1.117.2.2        ad 	if (itimespecfix(rqt))
    325      1.101    kardel 		return (EINVAL);
    326      1.101    kardel 
    327  1.117.2.2        ad 	timo = tstohz(rqt);
    328      1.101    kardel 	/*
    329      1.101    kardel 	 * Avoid inadvertantly sleeping forever
    330      1.101    kardel 	 */
    331      1.101    kardel 	if (timo == 0)
    332      1.101    kardel 		timo = 1;
    333      1.101    kardel 
    334  1.117.2.2        ad 	if (rmt != NULL)
    335  1.117.2.2        ad 		getnanouptime(rmt);
    336      1.104    kardel 
    337      1.115   thorpej 	error = kpause("nanoslp", true, timo, NULL);
    338      1.101    kardel 	if (error == ERESTART)
    339      1.101    kardel 		error = EINTR;
    340      1.101    kardel 	if (error == EWOULDBLOCK)
    341      1.101    kardel 		error = 0;
    342      1.101    kardel 
    343  1.117.2.2        ad 	if (rmt!= NULL) {
    344      1.104    kardel 		struct timespec rmtend;
    345      1.101    kardel 
    346      1.104    kardel 		getnanouptime(&rmtend);
    347      1.101    kardel 
    348  1.117.2.2        ad 		timespecsub(&rmtend, rmt, rmt);
    349  1.117.2.2        ad 		timespecsub(rqt, rmt, rmt);
    350  1.117.2.2        ad 		if (rmt->tv_sec < 0)
    351  1.117.2.2        ad 			timespecclear(rmt);
    352      1.101    kardel 	}
    353      1.101    kardel 
    354      1.101    kardel 	return error;
    355      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    356       1.27       jtc 	struct timeval atv, utv;
    357       1.27       jtc 	int error, s, timo;
    358       1.27       jtc 
    359  1.117.2.2        ad 	TIMESPEC_TO_TIMEVAL(&atv, rqt);
    360       1.80  christos 	if (itimerfix(&atv))
    361       1.27       jtc 		return (EINVAL);
    362       1.27       jtc 
    363       1.27       jtc 	s = splclock();
    364       1.27       jtc 	timeradd(&atv,&time,&atv);
    365       1.27       jtc 	timo = hzto(&atv);
    366       1.63   thorpej 	/*
    367       1.27       jtc 	 * Avoid inadvertantly sleeping forever
    368       1.27       jtc 	 */
    369       1.27       jtc 	if (timo == 0)
    370       1.27       jtc 		timo = 1;
    371       1.27       jtc 	splx(s);
    372       1.27       jtc 
    373      1.115   thorpej 	error = kpause("nanoslp", true, timo, NULL);
    374       1.27       jtc 	if (error == ERESTART)
    375       1.27       jtc 		error = EINTR;
    376       1.27       jtc 	if (error == EWOULDBLOCK)
    377       1.27       jtc 		error = 0;
    378       1.27       jtc 
    379  1.117.2.2        ad 	if (rmt != NULL) {
    380       1.27       jtc 		s = splclock();
    381       1.27       jtc 		utv = time;
    382       1.27       jtc 		splx(s);
    383       1.27       jtc 
    384       1.27       jtc 		timersub(&atv, &utv, &utv);
    385       1.27       jtc 		if (utv.tv_sec < 0)
    386       1.27       jtc 			timerclear(&utv);
    387       1.27       jtc 
    388  1.117.2.2        ad 		TIMEVAL_TO_TIMESPEC(&utv, rmt);
    389       1.27       jtc 	}
    390       1.27       jtc 
    391       1.27       jtc 	return error;
    392      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    393       1.27       jtc }
    394       1.22       jtc 
    395        1.1       cgd /* ARGSUSED */
    396        1.3    andrew int
    397      1.110      yamt sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    398       1.15   thorpej {
    399       1.45  augustss 	struct sys_gettimeofday_args /* {
    400       1.11       cgd 		syscallarg(struct timeval *) tp;
    401       1.84    simonb 		syscallarg(void *) tzp;		really "struct timezone *"
    402       1.15   thorpej 	} */ *uap = v;
    403        1.1       cgd 	struct timeval atv;
    404        1.1       cgd 	int error = 0;
    405       1.25     perry 	struct timezone tzfake;
    406        1.1       cgd 
    407       1.11       cgd 	if (SCARG(uap, tp)) {
    408        1.1       cgd 		microtime(&atv);
    409       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    410       1.17  christos 		if (error)
    411        1.1       cgd 			return (error);
    412        1.1       cgd 	}
    413       1.25     perry 	if (SCARG(uap, tzp)) {
    414       1.25     perry 		/*
    415       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    416       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    417       1.25     perry 		 */
    418       1.25     perry 		tzfake.tz_minuteswest = 0;
    419       1.25     perry 		tzfake.tz_dsttime = 0;
    420       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    421       1.25     perry 	}
    422        1.1       cgd 	return (error);
    423        1.1       cgd }
    424        1.1       cgd 
    425        1.1       cgd /* ARGSUSED */
    426        1.3    andrew int
    427      1.110      yamt sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    428       1.15   thorpej {
    429       1.16   mycroft 	struct sys_settimeofday_args /* {
    430       1.24       cgd 		syscallarg(const struct timeval *) tv;
    431       1.84    simonb 		syscallarg(const void *) tzp;	really "const struct timezone *"
    432       1.15   thorpej 	} */ *uap = v;
    433       1.60      manu 
    434  1.117.2.2        ad 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    435       1.60      manu }
    436       1.60      manu 
    437       1.60      manu int
    438  1.117.2.2        ad settimeofday1(const struct timeval *utv, bool userspace,
    439  1.117.2.2        ad     const void *utzp, struct lwp *l, bool check_kauth)
    440       1.60      manu {
    441       1.22       jtc 	struct timeval atv;
    442       1.98  christos 	struct timespec ts;
    443       1.22       jtc 	int error;
    444        1.1       cgd 
    445        1.8       cgd 	/* Verify all parameters before changing time. */
    446  1.117.2.2        ad 
    447  1.117.2.2        ad 	if (check_kauth) {
    448  1.117.2.2        ad 		error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    449  1.117.2.2        ad 		    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL);
    450  1.117.2.2        ad 		if (error != 0)
    451  1.117.2.2        ad 			return (error);
    452  1.117.2.2        ad 	}
    453  1.117.2.2        ad 
    454       1.25     perry 	/*
    455       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    456       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    457       1.25     perry 	 */
    458       1.98  christos 	if (utzp)
    459       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    460  1.117.2.2        ad 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    461       1.98  christos 
    462       1.98  christos 	if (utv == NULL)
    463       1.98  christos 		return 0;
    464       1.98  christos 
    465  1.117.2.2        ad 	if (userspace) {
    466  1.117.2.2        ad 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    467  1.117.2.2        ad 			return error;
    468  1.117.2.2        ad 		utv = &atv;
    469  1.117.2.2        ad 	}
    470  1.117.2.2        ad 
    471  1.117.2.2        ad 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    472  1.117.2.2        ad 	return settime(l->l_proc, &ts);
    473        1.1       cgd }
    474        1.1       cgd 
    475      1.101    kardel #ifndef __HAVE_TIMECOUNTER
    476        1.1       cgd int	tickdelta;			/* current clock skew, us. per tick */
    477        1.1       cgd long	timedelta;			/* unapplied time correction, us. */
    478        1.1       cgd long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    479      1.101    kardel #endif
    480      1.101    kardel 
    481       1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    482        1.1       cgd 
    483        1.1       cgd /* ARGSUSED */
    484        1.3    andrew int
    485      1.110      yamt sys_adjtime(struct lwp *l, void *v, register_t *retval)
    486       1.15   thorpej {
    487       1.45  augustss 	struct sys_adjtime_args /* {
    488       1.24       cgd 		syscallarg(const struct timeval *) delta;
    489       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    490       1.15   thorpej 	} */ *uap = v;
    491       1.56      manu 	int error;
    492        1.1       cgd 
    493      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    494      1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    495        1.1       cgd 		return (error);
    496       1.17  christos 
    497      1.105        ad 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    498       1.56      manu }
    499       1.56      manu 
    500       1.56      manu int
    501      1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    502       1.56      manu {
    503       1.60      manu 	struct timeval atv;
    504      1.101    kardel 	int error = 0;
    505      1.101    kardel 
    506      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    507      1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    508      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    509       1.56      manu 	long ndelta, ntickdelta, odelta;
    510       1.56      manu 	int s;
    511      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    512      1.101    kardel 
    513      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    514      1.101    kardel 	if (olddelta) {
    515      1.101    kardel 		atv.tv_sec = time_adjtime / 1000000;
    516      1.101    kardel 		atv.tv_usec = time_adjtime % 1000000;
    517      1.101    kardel 		if (atv.tv_usec < 0) {
    518      1.101    kardel 			atv.tv_usec += 1000000;
    519      1.101    kardel 			atv.tv_sec--;
    520      1.101    kardel 		}
    521      1.101    kardel 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    522      1.101    kardel 		if (error)
    523      1.101    kardel 			return (error);
    524      1.101    kardel 	}
    525      1.101    kardel 
    526      1.101    kardel 	if (delta) {
    527      1.101    kardel 		error = copyin(delta, &atv, sizeof(struct timeval));
    528      1.101    kardel 		if (error)
    529      1.101    kardel 			return (error);
    530      1.101    kardel 
    531      1.101    kardel 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    532      1.101    kardel 			atv.tv_usec;
    533        1.8       cgd 
    534      1.101    kardel 		if (time_adjtime)
    535      1.101    kardel 			/* We need to save the system time during shutdown */
    536      1.101    kardel 			time_adjusted |= 1;
    537      1.101    kardel 	}
    538      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    539       1.60      manu 	error = copyin(delta, &atv, sizeof(struct timeval));
    540       1.60      manu 	if (error)
    541       1.60      manu 		return (error);
    542       1.60      manu 
    543        1.8       cgd 	/*
    544        1.8       cgd 	 * Compute the total correction and the rate at which to apply it.
    545        1.8       cgd 	 * Round the adjustment down to a whole multiple of the per-tick
    546        1.8       cgd 	 * delta, so that after some number of incremental changes in
    547        1.8       cgd 	 * hardclock(), tickdelta will become zero, lest the correction
    548        1.8       cgd 	 * overshoot and start taking us away from the desired final time.
    549        1.8       cgd 	 */
    550       1.60      manu 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    551       1.41       hwr 	if (ndelta > bigadj || ndelta < -bigadj)
    552        1.8       cgd 		ntickdelta = 10 * tickadj;
    553        1.8       cgd 	else
    554        1.8       cgd 		ntickdelta = tickadj;
    555        1.8       cgd 	if (ndelta % ntickdelta)
    556        1.8       cgd 		ndelta = ndelta / ntickdelta * ntickdelta;
    557        1.8       cgd 
    558        1.8       cgd 	/*
    559        1.8       cgd 	 * To make hardclock()'s job easier, make the per-tick delta negative
    560        1.8       cgd 	 * if we want time to run slower; then hardclock can simply compute
    561        1.8       cgd 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    562        1.8       cgd 	 */
    563        1.8       cgd 	if (ndelta < 0)
    564        1.8       cgd 		ntickdelta = -ntickdelta;
    565       1.68       dsl 	if (ndelta != 0)
    566       1.68       dsl 		/* We need to save the system clock time during shutdown */
    567       1.68       dsl 		time_adjusted |= 1;
    568        1.1       cgd 	s = splclock();
    569        1.8       cgd 	odelta = timedelta;
    570        1.1       cgd 	timedelta = ndelta;
    571        1.8       cgd 	tickdelta = ntickdelta;
    572        1.1       cgd 	splx(s);
    573        1.1       cgd 
    574       1.56      manu 	if (olddelta) {
    575       1.60      manu 		atv.tv_sec = odelta / 1000000;
    576       1.60      manu 		atv.tv_usec = odelta % 1000000;
    577       1.79       chs 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    578        1.8       cgd 	}
    579      1.101    kardel #endif /* __HAVE_TIMECOUNTER */
    580      1.101    kardel 
    581       1.79       chs 	return error;
    582        1.1       cgd }
    583        1.1       cgd 
    584        1.1       cgd /*
    585       1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    586       1.63   thorpej  * timer_*() family of routines are supported.
    587        1.1       cgd  *
    588       1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    589       1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    590       1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    591       1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    592       1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    593       1.63   thorpej  * syscall.
    594        1.1       cgd  *
    595       1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    596       1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    597        1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    598       1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    599       1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    600       1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    601       1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    602       1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    603       1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    604       1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    605       1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    606       1.63   thorpej 
    607       1.63   thorpej /* Allocate a POSIX realtime timer. */
    608       1.63   thorpej int
    609      1.110      yamt sys_timer_create(struct lwp *l, void *v, register_t *retval)
    610       1.63   thorpej {
    611       1.63   thorpej 	struct sys_timer_create_args /* {
    612       1.63   thorpej 		syscallarg(clockid_t) clock_id;
    613       1.63   thorpej 		syscallarg(struct sigevent *) evp;
    614       1.63   thorpej 		syscallarg(timer_t *) timerid;
    615       1.63   thorpej 	} */ *uap = v;
    616       1.92      cube 
    617       1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    618      1.105        ad 	    SCARG(uap, evp), copyin, l);
    619       1.92      cube }
    620       1.92      cube 
    621       1.92      cube int
    622       1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    623      1.105        ad     copyin_t fetch_event, struct lwp *l)
    624       1.92      cube {
    625       1.92      cube 	int error;
    626       1.92      cube 	timer_t timerid;
    627       1.63   thorpej 	struct ptimer *pt;
    628      1.105        ad 	struct proc *p;
    629      1.105        ad 
    630      1.105        ad 	p = l->l_proc;
    631       1.63   thorpej 
    632       1.63   thorpej 	if (id < CLOCK_REALTIME ||
    633       1.63   thorpej 	    id > CLOCK_PROF)
    634       1.63   thorpej 		return (EINVAL);
    635       1.63   thorpej 
    636       1.63   thorpej 	if (p->p_timers == NULL)
    637       1.63   thorpej 		timers_alloc(p);
    638       1.63   thorpej 
    639       1.63   thorpej 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    640       1.63   thorpej 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    641       1.63   thorpej 		if (p->p_timers->pts_timers[timerid] == NULL)
    642       1.63   thorpej 			break;
    643       1.63   thorpej 
    644       1.63   thorpej 	if (timerid == TIMER_MAX)
    645       1.63   thorpej 		return EAGAIN;
    646       1.63   thorpej 
    647       1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    648       1.63   thorpej 	if (evp) {
    649       1.63   thorpej 		if (((error =
    650       1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    651       1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    652       1.63   thorpej 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    653       1.63   thorpej 			pool_put(&ptimer_pool, pt);
    654       1.63   thorpej 			return (error ? error : EINVAL);
    655       1.63   thorpej 		}
    656       1.63   thorpej 	} else {
    657       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    658       1.63   thorpej 		switch (id) {
    659       1.63   thorpej 		case CLOCK_REALTIME:
    660       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    661       1.63   thorpej 			break;
    662       1.63   thorpej 		case CLOCK_VIRTUAL:
    663       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    664       1.63   thorpej 			break;
    665       1.63   thorpej 		case CLOCK_PROF:
    666       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    667       1.63   thorpej 			break;
    668       1.63   thorpej 		}
    669       1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    670       1.63   thorpej 	}
    671       1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    672       1.73  christos 	pt->pt_info.ksi_errno = 0;
    673       1.73  christos 	pt->pt_info.ksi_code = 0;
    674       1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    675      1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    676  1.117.2.2        ad 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    677       1.63   thorpej 
    678       1.63   thorpej 	pt->pt_type = id;
    679       1.63   thorpej 	pt->pt_proc = p;
    680       1.63   thorpej 	pt->pt_overruns = 0;
    681       1.63   thorpej 	pt->pt_poverruns = 0;
    682       1.64   nathanw 	pt->pt_entry = timerid;
    683       1.63   thorpej 	timerclear(&pt->pt_time.it_value);
    684       1.63   thorpej 	if (id == CLOCK_REALTIME)
    685  1.117.2.3        ad 		callout_init(&pt->pt_ch, 0);
    686       1.63   thorpej 	else
    687       1.63   thorpej 		pt->pt_active = 0;
    688       1.63   thorpej 
    689       1.63   thorpej 	p->p_timers->pts_timers[timerid] = pt;
    690       1.63   thorpej 
    691       1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    692       1.63   thorpej }
    693       1.63   thorpej 
    694       1.63   thorpej /* Delete a POSIX realtime timer */
    695        1.3    andrew int
    696      1.110      yamt sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    697       1.15   thorpej {
    698       1.63   thorpej 	struct sys_timer_delete_args /*  {
    699       1.63   thorpej 		syscallarg(timer_t) timerid;
    700       1.15   thorpej 	} */ *uap = v;
    701       1.63   thorpej 	struct proc *p = l->l_proc;
    702       1.65  jdolecek 	timer_t timerid;
    703       1.63   thorpej 	struct ptimer *pt, *ptn;
    704        1.1       cgd 	int s;
    705        1.1       cgd 
    706       1.63   thorpej 	timerid = SCARG(uap, timerid);
    707       1.63   thorpej 
    708       1.63   thorpej 	if ((p->p_timers == NULL) ||
    709       1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    710       1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    711        1.1       cgd 		return (EINVAL);
    712       1.63   thorpej 
    713  1.117.2.3        ad 	if (pt->pt_type == CLOCK_REALTIME) {
    714       1.63   thorpej 		callout_stop(&pt->pt_ch);
    715  1.117.2.3        ad 		callout_destroy(&pt->pt_ch);
    716  1.117.2.3        ad 	} else if (pt->pt_active) {
    717       1.63   thorpej 		s = splclock();
    718       1.63   thorpej 		ptn = LIST_NEXT(pt, pt_list);
    719       1.63   thorpej 		LIST_REMOVE(pt, pt_list);
    720       1.63   thorpej 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    721       1.63   thorpej 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    722       1.63   thorpej 			    &ptn->pt_time.it_value);
    723       1.63   thorpej 		splx(s);
    724       1.63   thorpej 	}
    725       1.63   thorpej 
    726       1.63   thorpej 	p->p_timers->pts_timers[timerid] = NULL;
    727       1.63   thorpej 	pool_put(&ptimer_pool, pt);
    728       1.63   thorpej 
    729       1.63   thorpej 	return (0);
    730       1.63   thorpej }
    731       1.63   thorpej 
    732       1.63   thorpej /*
    733       1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    734       1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    735       1.67   nathanw  * time for virtual timers.
    736       1.63   thorpej  * Must be called at splclock().
    737       1.63   thorpej  */
    738       1.63   thorpej void
    739       1.63   thorpej timer_settime(struct ptimer *pt)
    740       1.63   thorpej {
    741       1.63   thorpej 	struct ptimer *ptn, *pptn;
    742       1.63   thorpej 	struct ptlist *ptl;
    743       1.63   thorpej 
    744       1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    745       1.63   thorpej 		callout_stop(&pt->pt_ch);
    746       1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    747       1.63   thorpej 			/*
    748       1.63   thorpej 			 * Don't need to check hzto() return value, here.
    749       1.63   thorpej 			 * callout_reset() does it for us.
    750       1.63   thorpej 			 */
    751       1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    752       1.63   thorpej 			    realtimerexpire, pt);
    753       1.63   thorpej 		}
    754       1.63   thorpej 	} else {
    755       1.63   thorpej 		if (pt->pt_active) {
    756       1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    757       1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    758       1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    759       1.63   thorpej 				timeradd(&pt->pt_time.it_value,
    760       1.63   thorpej 				    &ptn->pt_time.it_value,
    761       1.63   thorpej 				    &ptn->pt_time.it_value);
    762       1.63   thorpej 		}
    763       1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    764       1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    765       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    766       1.63   thorpej 			else
    767       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    768       1.63   thorpej 
    769       1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    770       1.63   thorpej 			     ptn && timercmp(&pt->pt_time.it_value,
    771       1.63   thorpej 				 &ptn->pt_time.it_value, >);
    772       1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    773       1.63   thorpej 				timersub(&pt->pt_time.it_value,
    774       1.63   thorpej 				    &ptn->pt_time.it_value,
    775       1.63   thorpej 				    &pt->pt_time.it_value);
    776       1.63   thorpej 
    777       1.63   thorpej 			if (pptn)
    778       1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    779       1.63   thorpej 			else
    780       1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    781       1.63   thorpej 
    782       1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    783       1.63   thorpej 				timersub(&ptn->pt_time.it_value,
    784       1.63   thorpej 				    &pt->pt_time.it_value,
    785       1.63   thorpej 				    &ptn->pt_time.it_value);
    786       1.63   thorpej 
    787       1.63   thorpej 			pt->pt_active = 1;
    788       1.63   thorpej 		} else
    789       1.63   thorpej 			pt->pt_active = 0;
    790       1.63   thorpej 	}
    791       1.63   thorpej }
    792       1.63   thorpej 
    793       1.63   thorpej void
    794       1.63   thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    795       1.63   thorpej {
    796      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    797      1.101    kardel 	struct timeval now;
    798      1.101    kardel #endif
    799       1.63   thorpej 	struct ptimer *ptn;
    800       1.63   thorpej 
    801       1.63   thorpej 	*aitv = pt->pt_time;
    802       1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    803        1.1       cgd 		/*
    804       1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    805       1.63   thorpej 		 * part of real time timer.  If time for real time
    806       1.63   thorpej 		 * timer has passed return 0, else return difference
    807       1.63   thorpej 		 * between current time and time for the timer to go
    808       1.63   thorpej 		 * off.
    809        1.1       cgd 		 */
    810       1.63   thorpej 		if (timerisset(&aitv->it_value)) {
    811      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    812      1.101    kardel 			getmicrotime(&now);
    813      1.101    kardel 			if (timercmp(&aitv->it_value, &now, <))
    814      1.101    kardel 				timerclear(&aitv->it_value);
    815      1.101    kardel 			else
    816      1.101    kardel 				timersub(&aitv->it_value, &now,
    817      1.101    kardel 				    &aitv->it_value);
    818      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    819       1.63   thorpej 			if (timercmp(&aitv->it_value, &time, <))
    820       1.63   thorpej 				timerclear(&aitv->it_value);
    821        1.1       cgd 			else
    822       1.63   thorpej 				timersub(&aitv->it_value, &time,
    823       1.63   thorpej 				    &aitv->it_value);
    824      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    825       1.36   thorpej 		}
    826       1.63   thorpej 	} else if (pt->pt_active) {
    827       1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    828       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    829       1.63   thorpej 		else
    830       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    831       1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    832       1.63   thorpej 			timeradd(&aitv->it_value,
    833       1.63   thorpej 			    &ptn->pt_time.it_value, &aitv->it_value);
    834       1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    835        1.1       cgd 	} else
    836       1.63   thorpej 		timerclear(&aitv->it_value);
    837       1.63   thorpej }
    838       1.63   thorpej 
    839       1.63   thorpej 
    840       1.63   thorpej 
    841       1.63   thorpej /* Set and arm a POSIX realtime timer */
    842       1.63   thorpej int
    843      1.110      yamt sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    844       1.63   thorpej {
    845       1.63   thorpej 	struct sys_timer_settime_args /* {
    846       1.63   thorpej 		syscallarg(timer_t) timerid;
    847       1.63   thorpej 		syscallarg(int) flags;
    848       1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    849       1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    850       1.63   thorpej 	} */ *uap = v;
    851       1.92      cube 	int error;
    852       1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    853       1.92      cube 
    854       1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    855       1.92      cube 	    sizeof(struct itimerspec))) != 0)
    856       1.92      cube 		return (error);
    857       1.92      cube 
    858       1.92      cube 	if (SCARG(uap, ovalue))
    859       1.92      cube 		ovp = &ovalue;
    860       1.92      cube 
    861       1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    862       1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    863       1.92      cube 		return error;
    864       1.92      cube 
    865       1.92      cube 	if (ovp)
    866       1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    867       1.92      cube 		    sizeof(struct itimerspec));
    868       1.92      cube 	return 0;
    869       1.92      cube }
    870       1.92      cube 
    871       1.92      cube int
    872       1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    873       1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    874       1.92      cube {
    875      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    876      1.101    kardel 	struct timeval now;
    877      1.101    kardel #endif
    878       1.63   thorpej 	struct itimerval val, oval;
    879       1.63   thorpej 	struct ptimer *pt;
    880      1.101    kardel 	int s;
    881       1.63   thorpej 
    882       1.63   thorpej 	if ((p->p_timers == NULL) ||
    883       1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    884       1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    885       1.63   thorpej 		return (EINVAL);
    886       1.63   thorpej 
    887       1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    888       1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    889       1.63   thorpej 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    890       1.63   thorpej 		return (EINVAL);
    891       1.63   thorpej 
    892       1.63   thorpej 	oval = pt->pt_time;
    893       1.63   thorpej 	pt->pt_time = val;
    894       1.63   thorpej 
    895       1.63   thorpej 	s = splclock();
    896       1.67   nathanw 	/*
    897       1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    898       1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    899       1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    900       1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    901       1.67   nathanw 	 * negative, which would confuse the comparison tests.
    902       1.67   nathanw 	 */
    903       1.67   nathanw 	if (timerisset(&pt->pt_time.it_value)) {
    904       1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    905      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    906      1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    907      1.101    kardel 				getmicrotime(&now);
    908      1.101    kardel 				timeradd(&pt->pt_time.it_value, &now,
    909      1.101    kardel 				    &pt->pt_time.it_value);
    910      1.101    kardel 			}
    911      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    912       1.92      cube 			if ((flags & TIMER_ABSTIME) == 0)
    913       1.67   nathanw 				timeradd(&pt->pt_time.it_value, &time,
    914       1.67   nathanw 				    &pt->pt_time.it_value);
    915      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    916       1.67   nathanw 		} else {
    917       1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    918      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    919      1.101    kardel 				getmicrotime(&now);
    920      1.101    kardel 				timersub(&pt->pt_time.it_value, &now,
    921      1.101    kardel 				    &pt->pt_time.it_value);
    922      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    923       1.67   nathanw 				timersub(&pt->pt_time.it_value, &time,
    924       1.67   nathanw 				    &pt->pt_time.it_value);
    925      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    926       1.67   nathanw 				if (!timerisset(&pt->pt_time.it_value) ||
    927       1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    928       1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    929       1.67   nathanw 					pt->pt_time.it_value.tv_usec = 1;
    930       1.67   nathanw 				}
    931       1.67   nathanw 			}
    932       1.67   nathanw 		}
    933       1.67   nathanw 	}
    934       1.67   nathanw 
    935       1.63   thorpej 	timer_settime(pt);
    936       1.63   thorpej 	splx(s);
    937       1.63   thorpej 
    938       1.92      cube 	if (ovalue) {
    939       1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    940       1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    941       1.63   thorpej 	}
    942       1.63   thorpej 
    943       1.63   thorpej 	return (0);
    944       1.63   thorpej }
    945       1.63   thorpej 
    946       1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    947       1.63   thorpej int
    948      1.110      yamt sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    949       1.63   thorpej {
    950       1.63   thorpej 	struct sys_timer_gettime_args /* {
    951       1.63   thorpej 		syscallarg(timer_t) timerid;
    952       1.63   thorpej 		syscallarg(struct itimerspec *) value;
    953       1.63   thorpej 	} */ *uap = v;
    954       1.63   thorpej 	struct itimerspec its;
    955       1.92      cube 	int error;
    956       1.92      cube 
    957       1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    958       1.92      cube 	    &its)) != 0)
    959       1.92      cube 		return error;
    960       1.92      cube 
    961       1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    962       1.92      cube }
    963       1.92      cube 
    964       1.92      cube int
    965       1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    966       1.92      cube {
    967       1.92      cube 	int s;
    968       1.63   thorpej 	struct ptimer *pt;
    969       1.92      cube 	struct itimerval aitv;
    970       1.63   thorpej 
    971       1.63   thorpej 	if ((p->p_timers == NULL) ||
    972       1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    973       1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    974       1.63   thorpej 		return (EINVAL);
    975       1.63   thorpej 
    976       1.63   thorpej 	s = splclock();
    977       1.63   thorpej 	timer_gettime(pt, &aitv);
    978        1.1       cgd 	splx(s);
    979       1.63   thorpej 
    980       1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    981       1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    982       1.63   thorpej 
    983       1.92      cube 	return 0;
    984       1.63   thorpej }
    985       1.63   thorpej 
    986       1.63   thorpej /*
    987       1.63   thorpej  * Return the count of the number of times a periodic timer expired
    988       1.63   thorpej  * while a notification was already pending. The counter is reset when
    989       1.63   thorpej  * a timer expires and a notification can be posted.
    990       1.63   thorpej  */
    991       1.63   thorpej int
    992       1.63   thorpej sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
    993       1.63   thorpej {
    994       1.63   thorpej 	struct sys_timer_getoverrun_args /* {
    995       1.63   thorpej 		syscallarg(timer_t) timerid;
    996       1.63   thorpej 	} */ *uap = v;
    997       1.63   thorpej 	struct proc *p = l->l_proc;
    998       1.63   thorpej 	int timerid;
    999       1.63   thorpej 	struct ptimer *pt;
   1000       1.63   thorpej 
   1001       1.63   thorpej 	timerid = SCARG(uap, timerid);
   1002       1.63   thorpej 
   1003       1.63   thorpej 	if ((p->p_timers == NULL) ||
   1004       1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
   1005       1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
   1006       1.63   thorpej 		return (EINVAL);
   1007       1.63   thorpej 
   1008       1.63   thorpej 	*retval = pt->pt_poverruns;
   1009       1.63   thorpej 
   1010       1.63   thorpej 	return (0);
   1011       1.63   thorpej }
   1012       1.63   thorpej 
   1013       1.63   thorpej /*
   1014       1.63   thorpej  * Real interval timer expired:
   1015       1.63   thorpej  * send process whose timer expired an alarm signal.
   1016       1.63   thorpej  * If time is not set up to reload, then just return.
   1017       1.63   thorpej  * Else compute next time timer should go off which is > current time.
   1018       1.63   thorpej  * This is where delay in processing this timeout causes multiple
   1019       1.63   thorpej  * SIGALRM calls to be compressed into one.
   1020       1.63   thorpej  */
   1021       1.63   thorpej void
   1022       1.63   thorpej realtimerexpire(void *arg)
   1023       1.63   thorpej {
   1024      1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1025      1.101    kardel 	struct timeval now;
   1026      1.101    kardel #endif
   1027       1.63   thorpej 	struct ptimer *pt;
   1028       1.63   thorpej 	int s;
   1029       1.63   thorpej 
   1030       1.63   thorpej 	pt = (struct ptimer *)arg;
   1031       1.63   thorpej 
   1032       1.63   thorpej 	itimerfire(pt);
   1033       1.63   thorpej 
   1034       1.63   thorpej 	if (!timerisset(&pt->pt_time.it_interval)) {
   1035       1.63   thorpej 		timerclear(&pt->pt_time.it_value);
   1036       1.63   thorpej 		return;
   1037       1.63   thorpej 	}
   1038      1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1039      1.101    kardel 	for (;;) {
   1040      1.101    kardel 		s = splclock();	/* XXX need spl now? */
   1041      1.101    kardel 		timeradd(&pt->pt_time.it_value,
   1042      1.101    kardel 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1043      1.101    kardel 		getmicrotime(&now);
   1044      1.101    kardel 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
   1045      1.101    kardel 			/*
   1046      1.101    kardel 			 * Don't need to check hzto() return value, here.
   1047      1.101    kardel 			 * callout_reset() does it for us.
   1048      1.101    kardel 			 */
   1049      1.101    kardel 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1050      1.101    kardel 			    realtimerexpire, pt);
   1051      1.101    kardel 			splx(s);
   1052      1.101    kardel 			return;
   1053      1.101    kardel 		}
   1054      1.101    kardel 		splx(s);
   1055      1.101    kardel 		pt->pt_overruns++;
   1056      1.101    kardel 	}
   1057      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1058       1.63   thorpej 	for (;;) {
   1059       1.63   thorpej 		s = splclock();
   1060       1.63   thorpej 		timeradd(&pt->pt_time.it_value,
   1061       1.63   thorpej 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1062       1.63   thorpej 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
   1063       1.63   thorpej 			/*
   1064       1.63   thorpej 			 * Don't need to check hzto() return value, here.
   1065       1.63   thorpej 			 * callout_reset() does it for us.
   1066       1.63   thorpej 			 */
   1067       1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1068       1.63   thorpej 			    realtimerexpire, pt);
   1069       1.63   thorpej 			splx(s);
   1070       1.63   thorpej 			return;
   1071       1.63   thorpej 		}
   1072       1.63   thorpej 		splx(s);
   1073       1.63   thorpej 		pt->pt_overruns++;
   1074       1.63   thorpej 	}
   1075      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1076       1.63   thorpej }
   1077       1.63   thorpej 
   1078       1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1079       1.63   thorpej /* ARGSUSED */
   1080       1.63   thorpej int
   1081      1.110      yamt sys_getitimer(struct lwp *l, void *v, register_t *retval)
   1082       1.63   thorpej {
   1083       1.63   thorpej 	struct sys_getitimer_args /* {
   1084       1.63   thorpej 		syscallarg(int) which;
   1085       1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1086       1.63   thorpej 	} */ *uap = v;
   1087       1.63   thorpej 	struct proc *p = l->l_proc;
   1088       1.63   thorpej 	struct itimerval aitv;
   1089       1.91      cube 	int error;
   1090       1.91      cube 
   1091       1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1092       1.91      cube 	if (error)
   1093       1.91      cube 		return error;
   1094       1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1095       1.91      cube }
   1096       1.63   thorpej 
   1097       1.91      cube int
   1098       1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1099       1.91      cube {
   1100       1.91      cube 	int s;
   1101       1.63   thorpej 
   1102       1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
   1103       1.63   thorpej 		return (EINVAL);
   1104       1.63   thorpej 
   1105       1.63   thorpej 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
   1106       1.91      cube 		timerclear(&itvp->it_value);
   1107       1.91      cube 		timerclear(&itvp->it_interval);
   1108       1.63   thorpej 	} else {
   1109       1.63   thorpej 		s = splclock();
   1110       1.91      cube 		timer_gettime(p->p_timers->pts_timers[which], itvp);
   1111       1.63   thorpej 		splx(s);
   1112       1.63   thorpej 	}
   1113       1.63   thorpej 
   1114       1.91      cube 	return 0;
   1115        1.1       cgd }
   1116        1.1       cgd 
   1117       1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1118        1.1       cgd /* ARGSUSED */
   1119        1.3    andrew int
   1120       1.63   thorpej sys_setitimer(struct lwp *l, void *v, register_t *retval)
   1121       1.15   thorpej {
   1122       1.45  augustss 	struct sys_setitimer_args /* {
   1123       1.30   mycroft 		syscallarg(int) which;
   1124       1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1125       1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1126       1.15   thorpej 	} */ *uap = v;
   1127       1.63   thorpej 	struct proc *p = l->l_proc;
   1128       1.30   mycroft 	int which = SCARG(uap, which);
   1129       1.21       cgd 	struct sys_getitimer_args getargs;
   1130       1.91      cube 	const struct itimerval *itvp;
   1131        1.1       cgd 	struct itimerval aitv;
   1132       1.91      cube 	int error;
   1133        1.1       cgd 
   1134       1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1135        1.1       cgd 		return (EINVAL);
   1136       1.11       cgd 	itvp = SCARG(uap, itv);
   1137       1.63   thorpej 	if (itvp &&
   1138       1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1139        1.1       cgd 		return (error);
   1140       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1141       1.30   mycroft 		SCARG(&getargs, which) = which;
   1142       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1143       1.63   thorpej 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1144       1.21       cgd 			return (error);
   1145       1.21       cgd 	}
   1146        1.1       cgd 	if (itvp == 0)
   1147        1.1       cgd 		return (0);
   1148       1.91      cube 
   1149       1.91      cube 	return dosetitimer(p, which, &aitv);
   1150       1.91      cube }
   1151       1.91      cube 
   1152       1.91      cube int
   1153       1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1154       1.91      cube {
   1155      1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1156      1.101    kardel 	struct timeval now;
   1157      1.101    kardel #endif
   1158       1.91      cube 	struct ptimer *pt;
   1159       1.91      cube 	int s;
   1160       1.91      cube 
   1161       1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1162        1.1       cgd 		return (EINVAL);
   1163       1.63   thorpej 
   1164       1.63   thorpej 	/*
   1165       1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1166       1.63   thorpej 	 * wants to clear the timer.
   1167       1.63   thorpej 	 */
   1168       1.91      cube 	if (!timerisset(&itvp->it_value) &&
   1169       1.63   thorpej 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1170       1.63   thorpej 		return (0);
   1171       1.63   thorpej 
   1172       1.63   thorpej 	if (p->p_timers == NULL)
   1173       1.63   thorpej 		timers_alloc(p);
   1174       1.63   thorpej 	if (p->p_timers->pts_timers[which] == NULL) {
   1175       1.63   thorpej 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1176       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1177       1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1178       1.63   thorpej 		pt->pt_overruns = 0;
   1179       1.63   thorpej 		pt->pt_proc = p;
   1180       1.63   thorpej 		pt->pt_type = which;
   1181       1.64   nathanw 		pt->pt_entry = which;
   1182       1.63   thorpej 		switch (which) {
   1183       1.63   thorpej 		case ITIMER_REAL:
   1184  1.117.2.3        ad 			callout_init(&pt->pt_ch, 0);
   1185       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1186       1.63   thorpej 			break;
   1187       1.63   thorpej 		case ITIMER_VIRTUAL:
   1188       1.63   thorpej 			pt->pt_active = 0;
   1189       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1190       1.63   thorpej 			break;
   1191       1.63   thorpej 		case ITIMER_PROF:
   1192       1.63   thorpej 			pt->pt_active = 0;
   1193       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1194       1.63   thorpej 			break;
   1195        1.1       cgd 		}
   1196        1.1       cgd 	} else
   1197       1.63   thorpej 		pt = p->p_timers->pts_timers[which];
   1198       1.63   thorpej 
   1199       1.91      cube 	pt->pt_time = *itvp;
   1200       1.63   thorpej 	p->p_timers->pts_timers[which] = pt;
   1201       1.63   thorpej 
   1202       1.63   thorpej 	s = splclock();
   1203       1.67   nathanw 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1204       1.67   nathanw 		/* Convert to absolute time */
   1205      1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1206      1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1207      1.101    kardel 		getmicrotime(&now);
   1208      1.101    kardel 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1209      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1210       1.67   nathanw 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
   1211      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1212       1.67   nathanw 	}
   1213       1.63   thorpej 	timer_settime(pt);
   1214        1.1       cgd 	splx(s);
   1215       1.63   thorpej 
   1216        1.1       cgd 	return (0);
   1217        1.1       cgd }
   1218        1.1       cgd 
   1219       1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1220       1.63   thorpej void
   1221       1.63   thorpej timers_alloc(struct proc *p)
   1222       1.63   thorpej {
   1223       1.63   thorpej 	int i;
   1224       1.63   thorpej 	struct ptimers *pts;
   1225       1.63   thorpej 
   1226      1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1227       1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1228       1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1229       1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1230       1.63   thorpej 		pts->pts_timers[i] = NULL;
   1231       1.64   nathanw 	pts->pts_fired = 0;
   1232       1.63   thorpej 	p->p_timers = pts;
   1233       1.63   thorpej }
   1234       1.63   thorpej 
   1235        1.1       cgd /*
   1236       1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1237       1.63   thorpej  * then clean up all timers and free all the data structures. If
   1238       1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1239       1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1240       1.63   thorpej  * structure if none of those remain.
   1241        1.1       cgd  */
   1242        1.3    andrew void
   1243       1.63   thorpej timers_free(struct proc *p, int which)
   1244        1.6       cgd {
   1245       1.63   thorpej 	int i, s;
   1246       1.63   thorpej 	struct ptimers *pts;
   1247       1.63   thorpej 	struct ptimer *pt, *ptn;
   1248       1.63   thorpej 	struct timeval tv;
   1249       1.63   thorpej 
   1250       1.63   thorpej 	if (p->p_timers) {
   1251       1.63   thorpej 		pts = p->p_timers;
   1252       1.63   thorpej 		if (which == TIMERS_ALL)
   1253       1.63   thorpej 			i = 0;
   1254       1.63   thorpej 		else {
   1255       1.63   thorpej 			s = splclock();
   1256       1.63   thorpej 			timerclear(&tv);
   1257       1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1258       1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1259       1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1260       1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1261       1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1262       1.63   thorpej 			if (ptn) {
   1263       1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1264       1.63   thorpej 				    &ptn->pt_time.it_value);
   1265       1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1266       1.63   thorpej 				    ptn, pt_list);
   1267       1.63   thorpej 			}
   1268       1.63   thorpej 
   1269       1.63   thorpej 			timerclear(&tv);
   1270       1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1271       1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1272       1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1273       1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1274       1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1275       1.63   thorpej 			if (ptn) {
   1276       1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1277       1.63   thorpej 				    &ptn->pt_time.it_value);
   1278       1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1279       1.63   thorpej 				    pt_list);
   1280       1.63   thorpej 			}
   1281        1.1       cgd 			splx(s);
   1282       1.63   thorpej 			i = 3;
   1283       1.63   thorpej 		}
   1284       1.63   thorpej 		for ( ; i < TIMER_MAX; i++)
   1285       1.63   thorpej 			if ((pt = pts->pts_timers[i]) != NULL) {
   1286  1.117.2.3        ad 				if (pt->pt_type == CLOCK_REALTIME) {
   1287       1.63   thorpej 					callout_stop(&pt->pt_ch);
   1288  1.117.2.3        ad 					callout_destroy(&pt->pt_ch);
   1289  1.117.2.3        ad 				}
   1290       1.63   thorpej 				pts->pts_timers[i] = NULL;
   1291       1.63   thorpej 				pool_put(&ptimer_pool, pt);
   1292       1.63   thorpej 			}
   1293       1.63   thorpej 		if ((pts->pts_timers[0] == NULL) &&
   1294       1.63   thorpej 		    (pts->pts_timers[1] == NULL) &&
   1295       1.63   thorpej 		    (pts->pts_timers[2] == NULL)) {
   1296       1.63   thorpej 			p->p_timers = NULL;
   1297       1.97    simonb 			pool_put(&ptimers_pool, pts);
   1298        1.1       cgd 		}
   1299        1.1       cgd 	}
   1300        1.1       cgd }
   1301        1.1       cgd 
   1302        1.1       cgd /*
   1303        1.1       cgd  * Decrement an interval timer by a specified number
   1304        1.1       cgd  * of microseconds, which must be less than a second,
   1305        1.1       cgd  * i.e. < 1000000.  If the timer expires, then reload
   1306        1.1       cgd  * it.  In this case, carry over (usec - old value) to
   1307        1.8       cgd  * reduce the value reloaded into the timer so that
   1308        1.1       cgd  * the timer does not drift.  This routine assumes
   1309        1.1       cgd  * that it is called in a context where the timers
   1310        1.1       cgd  * on which it is operating cannot change in value.
   1311        1.1       cgd  */
   1312        1.3    andrew int
   1313       1.63   thorpej itimerdecr(struct ptimer *pt, int usec)
   1314       1.63   thorpej {
   1315       1.45  augustss 	struct itimerval *itp;
   1316        1.1       cgd 
   1317       1.63   thorpej 	itp = &pt->pt_time;
   1318        1.1       cgd 	if (itp->it_value.tv_usec < usec) {
   1319        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1320        1.1       cgd 			/* expired, and already in next interval */
   1321        1.1       cgd 			usec -= itp->it_value.tv_usec;
   1322        1.1       cgd 			goto expire;
   1323        1.1       cgd 		}
   1324        1.1       cgd 		itp->it_value.tv_usec += 1000000;
   1325        1.1       cgd 		itp->it_value.tv_sec--;
   1326        1.1       cgd 	}
   1327        1.1       cgd 	itp->it_value.tv_usec -= usec;
   1328        1.1       cgd 	usec = 0;
   1329        1.1       cgd 	if (timerisset(&itp->it_value))
   1330        1.1       cgd 		return (1);
   1331        1.1       cgd 	/* expired, exactly at end of interval */
   1332        1.1       cgd expire:
   1333        1.1       cgd 	if (timerisset(&itp->it_interval)) {
   1334        1.1       cgd 		itp->it_value = itp->it_interval;
   1335        1.1       cgd 		itp->it_value.tv_usec -= usec;
   1336        1.1       cgd 		if (itp->it_value.tv_usec < 0) {
   1337        1.1       cgd 			itp->it_value.tv_usec += 1000000;
   1338        1.1       cgd 			itp->it_value.tv_sec--;
   1339        1.1       cgd 		}
   1340       1.63   thorpej 		timer_settime(pt);
   1341        1.1       cgd 	} else
   1342        1.1       cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1343        1.1       cgd 	return (0);
   1344       1.42       cgd }
   1345       1.42       cgd 
   1346       1.63   thorpej void
   1347       1.63   thorpej itimerfire(struct ptimer *pt)
   1348       1.63   thorpej {
   1349       1.63   thorpej 	struct proc *p = pt->pt_proc;
   1350       1.78        cl 
   1351       1.63   thorpej 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1352       1.63   thorpej 		/*
   1353       1.63   thorpej 		 * No RT signal infrastructure exists at this time;
   1354       1.63   thorpej 		 * just post the signal number and throw away the
   1355       1.63   thorpej 		 * value.
   1356       1.63   thorpej 		 */
   1357      1.113        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
   1358       1.63   thorpej 			pt->pt_overruns++;
   1359       1.63   thorpej 		else {
   1360       1.75  christos 			ksiginfo_t ksi;
   1361      1.111      yamt 			KSI_INIT(&ksi);
   1362       1.75  christos 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1363       1.75  christos 			ksi.ksi_code = SI_TIMER;
   1364  1.117.2.2        ad 			ksi.ksi_value = pt->pt_ev.sigev_value;
   1365       1.63   thorpej 			pt->pt_poverruns = pt->pt_overruns;
   1366       1.63   thorpej 			pt->pt_overruns = 0;
   1367      1.113        ad 			mutex_enter(&proclist_mutex);
   1368       1.75  christos 			kpsignal(p, &ksi, NULL);
   1369      1.113        ad 			mutex_exit(&proclist_mutex);
   1370       1.64   nathanw 		}
   1371       1.63   thorpej 	}
   1372       1.63   thorpej }
   1373       1.63   thorpej 
   1374       1.42       cgd /*
   1375       1.42       cgd  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1376       1.42       cgd  * for usage and rationale.
   1377       1.42       cgd  */
   1378       1.42       cgd int
   1379       1.63   thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1380       1.42       cgd {
   1381       1.49    itojun 	struct timeval tv, delta;
   1382      1.101    kardel 	int rv = 0;
   1383      1.101    kardel #ifndef __HAVE_TIMECOUNTER
   1384      1.101    kardel 	int s;
   1385      1.101    kardel #endif
   1386       1.42       cgd 
   1387      1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1388      1.101    kardel 	getmicrouptime(&tv);
   1389      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1390       1.63   thorpej 	s = splclock();
   1391       1.49    itojun 	tv = mono_time;
   1392       1.49    itojun 	splx(s);
   1393      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1394       1.49    itojun 	timersub(&tv, lasttime, &delta);
   1395       1.42       cgd 
   1396       1.42       cgd 	/*
   1397       1.42       cgd 	 * check for 0,0 is so that the message will be seen at least once,
   1398       1.42       cgd 	 * even if interval is huge.
   1399       1.42       cgd 	 */
   1400       1.42       cgd 	if (timercmp(&delta, mininterval, >=) ||
   1401       1.42       cgd 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1402       1.49    itojun 		*lasttime = tv;
   1403       1.42       cgd 		rv = 1;
   1404       1.42       cgd 	}
   1405       1.50    itojun 
   1406       1.50    itojun 	return (rv);
   1407       1.50    itojun }
   1408       1.50    itojun 
   1409       1.50    itojun /*
   1410       1.50    itojun  * ppsratecheck(): packets (or events) per second limitation.
   1411       1.50    itojun  */
   1412       1.50    itojun int
   1413       1.63   thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1414       1.50    itojun {
   1415       1.50    itojun 	struct timeval tv, delta;
   1416      1.101    kardel 	int rv;
   1417      1.101    kardel #ifndef __HAVE_TIMECOUNTER
   1418      1.101    kardel 	int s;
   1419      1.101    kardel #endif
   1420       1.50    itojun 
   1421      1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1422      1.101    kardel 	getmicrouptime(&tv);
   1423      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1424       1.63   thorpej 	s = splclock();
   1425       1.50    itojun 	tv = mono_time;
   1426       1.50    itojun 	splx(s);
   1427      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1428       1.50    itojun 	timersub(&tv, lasttime, &delta);
   1429       1.50    itojun 
   1430       1.50    itojun 	/*
   1431       1.50    itojun 	 * check for 0,0 is so that the message will be seen at least once.
   1432       1.50    itojun 	 * if more than one second have passed since the last update of
   1433       1.50    itojun 	 * lasttime, reset the counter.
   1434       1.50    itojun 	 *
   1435       1.50    itojun 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1436       1.50    itojun 	 * try to use *curpps for stat purposes as well.
   1437       1.50    itojun 	 */
   1438       1.50    itojun 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1439       1.50    itojun 	    delta.tv_sec >= 1) {
   1440       1.50    itojun 		*lasttime = tv;
   1441       1.50    itojun 		*curpps = 0;
   1442       1.69    dyoung 	}
   1443       1.69    dyoung 	if (maxpps < 0)
   1444       1.53    itojun 		rv = 1;
   1445       1.53    itojun 	else if (*curpps < maxpps)
   1446       1.50    itojun 		rv = 1;
   1447       1.50    itojun 	else
   1448       1.50    itojun 		rv = 0;
   1449       1.50    itojun 
   1450       1.51     jhawk #if 1 /*DIAGNOSTIC?*/
   1451       1.50    itojun 	/* be careful about wrap-around */
   1452       1.50    itojun 	if (*curpps + 1 > *curpps)
   1453       1.50    itojun 		*curpps = *curpps + 1;
   1454       1.50    itojun #else
   1455       1.50    itojun 	/*
   1456       1.50    itojun 	 * assume that there's not too many calls to this function.
   1457       1.50    itojun 	 * not sure if the assumption holds, as it depends on *caller's*
   1458       1.50    itojun 	 * behavior, not the behavior of this function.
   1459       1.50    itojun 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1460       1.51     jhawk 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1461       1.50    itojun 	 */
   1462       1.50    itojun 	*curpps = *curpps + 1;
   1463       1.50    itojun #endif
   1464       1.42       cgd 
   1465       1.42       cgd 	return (rv);
   1466        1.1       cgd }
   1467