Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.119
      1  1.119       dsl /*	$NetBSD: kern_time.c,v 1.119 2007/05/12 20:27:57 dsl Exp $	*/
      2   1.42       cgd 
      3   1.42       cgd /*-
      4   1.88   mycroft  * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
      5   1.42       cgd  * All rights reserved.
      6   1.42       cgd  *
      7   1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8   1.42       cgd  * by Christopher G. Demetriou.
      9   1.42       cgd  *
     10   1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11   1.42       cgd  * modification, are permitted provided that the following conditions
     12   1.42       cgd  * are met:
     13   1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14   1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15   1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17   1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18   1.42       cgd  * 3. All advertising materials mentioning features or use of this software
     19   1.42       cgd  *    must display the following acknowledgement:
     20   1.42       cgd  *	This product includes software developed by the NetBSD
     21   1.42       cgd  *	Foundation, Inc. and its contributors.
     22   1.42       cgd  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.42       cgd  *    contributors may be used to endorse or promote products derived
     24   1.42       cgd  *    from this software without specific prior written permission.
     25   1.42       cgd  *
     26   1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     37   1.42       cgd  */
     38    1.9       cgd 
     39    1.1       cgd /*
     40    1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     41    1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     42    1.1       cgd  *
     43    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     44    1.1       cgd  * modification, are permitted provided that the following conditions
     45    1.1       cgd  * are met:
     46    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     47    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     48    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     49    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     50    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     51   1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     52    1.1       cgd  *    may be used to endorse or promote products derived from this software
     53    1.1       cgd  *    without specific prior written permission.
     54    1.1       cgd  *
     55    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65    1.1       cgd  * SUCH DAMAGE.
     66    1.1       cgd  *
     67   1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68    1.1       cgd  */
     69   1.58     lukem 
     70   1.58     lukem #include <sys/cdefs.h>
     71  1.119       dsl __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.119 2007/05/12 20:27:57 dsl Exp $");
     72    1.1       cgd 
     73    1.5   mycroft #include <sys/param.h>
     74    1.5   mycroft #include <sys/resourcevar.h>
     75    1.5   mycroft #include <sys/kernel.h>
     76    1.8       cgd #include <sys/systm.h>
     77    1.5   mycroft #include <sys/proc.h>
     78    1.8       cgd #include <sys/vnode.h>
     79   1.17  christos #include <sys/signalvar.h>
     80   1.25     perry #include <sys/syslog.h>
     81  1.101    kardel #ifdef __HAVE_TIMECOUNTER
     82  1.101    kardel #include <sys/timetc.h>
     83  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
     84   1.95      cube #include <sys/timevar.h>
     85  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
     86   1.99      elad #include <sys/kauth.h>
     87    1.1       cgd 
     88   1.11       cgd #include <sys/mount.h>
     89   1.11       cgd #include <sys/syscallargs.h>
     90   1.19  christos 
     91   1.37   thorpej #include <uvm/uvm_extern.h>
     92   1.37   thorpej 
     93    1.5   mycroft #include <machine/cpu.h>
     94   1.23       cgd 
     95   1.97    simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     96  1.118        ad     &pool_allocator_nointr, IPL_NONE);
     97   1.97    simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     98  1.118        ad     &pool_allocator_nointr, IPL_NONE);
     99   1.97    simonb 
    100  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    101  1.101    kardel static int itimespecfix(struct timespec *);		/* XXX move itimerfix to timespecs */
    102  1.101    kardel #endif /* __HAVE_TIMECOUNTER */
    103   1.63   thorpej 
    104   1.63   thorpej /* Time of day and interval timer support.
    105    1.1       cgd  *
    106    1.1       cgd  * These routines provide the kernel entry points to get and set
    107    1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    108    1.1       cgd  * here provide support for adding and subtracting timeval structures
    109    1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    110    1.1       cgd  * timers when they expire.
    111    1.1       cgd  */
    112    1.1       cgd 
    113   1.22       jtc /* This function is used by clock_settime and settimeofday */
    114   1.39      tron int
    115   1.98  christos settime(struct proc *p, struct timespec *ts)
    116   1.22       jtc {
    117   1.98  christos 	struct timeval delta, tv;
    118  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    119  1.101    kardel 	struct timeval now;
    120  1.101    kardel 	struct timespec ts1;
    121  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    122   1.47   thorpej 	struct cpu_info *ci;
    123  1.114        ad 	int s1, s2;
    124   1.22       jtc 
    125   1.98  christos 	/*
    126   1.98  christos 	 * Don't allow the time to be set forward so far it will wrap
    127   1.98  christos 	 * and become negative, thus allowing an attacker to bypass
    128   1.98  christos 	 * the next check below.  The cutoff is 1 year before rollover
    129   1.98  christos 	 * occurs, so even if the attacker uses adjtime(2) to move
    130   1.98  christos 	 * the time past the cutoff, it will take a very long time
    131   1.98  christos 	 * to get to the wrap point.
    132   1.98  christos 	 *
    133   1.98  christos 	 * XXX: we check against INT_MAX since on 64-bit
    134   1.98  christos 	 *	platforms, sizeof(int) != sizeof(long) and
    135   1.98  christos 	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
    136   1.98  christos 	 */
    137   1.98  christos 	if (ts->tv_sec > INT_MAX - 365*24*60*60) {
    138  1.113        ad 		struct proc *pp;
    139  1.113        ad 
    140  1.117        ad 		mutex_enter(&proclist_lock);
    141  1.113        ad 		pp = p->p_pptr;
    142  1.113        ad 		mutex_enter(&pp->p_mutex);
    143   1.98  christos 		log(LOG_WARNING, "pid %d (%s) "
    144   1.98  christos 		    "invoked by uid %d ppid %d (%s) "
    145   1.98  christos 		    "tried to set clock forward to %ld\n",
    146   1.99      elad 		    p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
    147   1.98  christos 		    pp->p_pid, pp->p_comm, (long)ts->tv_sec);
    148  1.113        ad 		mutex_exit(&pp->p_mutex);
    149  1.117        ad 		mutex_exit(&proclist_lock);
    150   1.98  christos 		return (EPERM);
    151   1.98  christos 	}
    152   1.98  christos 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    153   1.98  christos 
    154   1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    155  1.114        ad 	s1 = splsoftclock();
    156  1.114        ad 	s2 = splclock();
    157  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    158  1.101    kardel 	microtime(&now);
    159  1.101    kardel 	timersub(&tv, &now, &delta);
    160  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    161   1.98  christos 	timersub(&tv, &time, &delta);
    162  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    163  1.106      elad 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
    164  1.106      elad 	    kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
    165  1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
    166  1.114        ad 		splx(s1);
    167   1.29       tls 		return (EPERM);
    168   1.55      tron 	}
    169   1.29       tls #ifdef notyet
    170  1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    171  1.114        ad 		splx(s1);
    172   1.29       tls 		return (EPERM);
    173   1.55      tron 	}
    174   1.29       tls #endif
    175  1.103    kardel 
    176  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    177  1.103    kardel 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    178  1.101    kardel 	tc_setclock(&ts1);
    179  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    180   1.98  christos 	time = tv;
    181  1.103    kardel #endif /* !__HAVE_TIMECOUNTER */
    182  1.103    kardel 
    183  1.114        ad 	splx(s2);
    184  1.103    kardel 
    185   1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    186  1.103    kardel 
    187   1.47   thorpej 	/*
    188   1.47   thorpej 	 * XXXSMP
    189   1.47   thorpej 	 * This is wrong.  We should traverse a list of all
    190   1.47   thorpej 	 * CPUs and add the delta to the runtime of those
    191   1.47   thorpej 	 * CPUs which have a process on them.
    192   1.47   thorpej 	 */
    193   1.47   thorpej 	ci = curcpu();
    194   1.47   thorpej 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    195   1.47   thorpej 	    &ci->ci_schedstate.spc_runtime);
    196  1.114        ad 	splx(s1);
    197   1.22       jtc 	resettodr();
    198   1.29       tls 	return (0);
    199   1.22       jtc }
    200   1.22       jtc 
    201   1.22       jtc /* ARGSUSED */
    202   1.22       jtc int
    203  1.110      yamt sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    204   1.22       jtc {
    205   1.45  augustss 	struct sys_clock_gettime_args /* {
    206   1.22       jtc 		syscallarg(clockid_t) clock_id;
    207   1.23       cgd 		syscallarg(struct timespec *) tp;
    208   1.23       cgd 	} */ *uap = v;
    209   1.22       jtc 	clockid_t clock_id;
    210   1.22       jtc 	struct timespec ats;
    211   1.22       jtc 
    212   1.22       jtc 	clock_id = SCARG(uap, clock_id);
    213   1.61    simonb 	switch (clock_id) {
    214   1.61    simonb 	case CLOCK_REALTIME:
    215   1.96    simonb 		nanotime(&ats);
    216   1.61    simonb 		break;
    217   1.61    simonb 	case CLOCK_MONOTONIC:
    218  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    219  1.101    kardel 		nanouptime(&ats);
    220  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    221  1.101    kardel 		{
    222  1.101    kardel 		int s;
    223  1.101    kardel 
    224   1.61    simonb 		/* XXX "hz" granularity */
    225   1.63   thorpej 		s = splclock();
    226  1.101    kardel 		TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
    227   1.61    simonb 		splx(s);
    228  1.101    kardel 		}
    229  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    230   1.61    simonb 		break;
    231   1.61    simonb 	default:
    232   1.22       jtc 		return (EINVAL);
    233   1.61    simonb 	}
    234   1.22       jtc 
    235   1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    236   1.22       jtc }
    237   1.22       jtc 
    238   1.22       jtc /* ARGSUSED */
    239   1.22       jtc int
    240  1.110      yamt sys_clock_settime(struct lwp *l, void *v, register_t *retval)
    241   1.22       jtc {
    242   1.45  augustss 	struct sys_clock_settime_args /* {
    243   1.22       jtc 		syscallarg(clockid_t) clock_id;
    244   1.23       cgd 		syscallarg(const struct timespec *) tp;
    245   1.23       cgd 	} */ *uap = v;
    246   1.22       jtc 	int error;
    247   1.22       jtc 
    248  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    249  1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
    250   1.22       jtc 		return (error);
    251   1.22       jtc 
    252  1.105        ad 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
    253   1.56      manu }
    254   1.56      manu 
    255   1.56      manu 
    256   1.56      manu int
    257   1.98  christos clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
    258   1.56      manu {
    259   1.60      manu 	struct timespec ats;
    260   1.56      manu 	int error;
    261   1.56      manu 
    262   1.60      manu 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    263   1.60      manu 		return (error);
    264   1.60      manu 
    265   1.61    simonb 	switch (clock_id) {
    266   1.61    simonb 	case CLOCK_REALTIME:
    267   1.98  christos 		if ((error = settime(p, &ats)) != 0)
    268   1.61    simonb 			return (error);
    269   1.61    simonb 		break;
    270   1.61    simonb 	case CLOCK_MONOTONIC:
    271   1.61    simonb 		return (EINVAL);	/* read-only clock */
    272   1.61    simonb 	default:
    273   1.56      manu 		return (EINVAL);
    274   1.61    simonb 	}
    275   1.22       jtc 
    276   1.22       jtc 	return 0;
    277   1.22       jtc }
    278   1.22       jtc 
    279   1.22       jtc int
    280  1.110      yamt sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    281   1.22       jtc {
    282   1.45  augustss 	struct sys_clock_getres_args /* {
    283   1.22       jtc 		syscallarg(clockid_t) clock_id;
    284   1.23       cgd 		syscallarg(struct timespec *) tp;
    285   1.23       cgd 	} */ *uap = v;
    286   1.22       jtc 	clockid_t clock_id;
    287   1.22       jtc 	struct timespec ts;
    288   1.22       jtc 	int error = 0;
    289   1.22       jtc 
    290   1.22       jtc 	clock_id = SCARG(uap, clock_id);
    291   1.61    simonb 	switch (clock_id) {
    292   1.61    simonb 	case CLOCK_REALTIME:
    293   1.61    simonb 	case CLOCK_MONOTONIC:
    294   1.22       jtc 		ts.tv_sec = 0;
    295  1.102    kardel #ifdef __HAVE_TIMECOUNTER
    296  1.102    kardel 		if (tc_getfrequency() > 1000000000)
    297  1.102    kardel 			ts.tv_nsec = 1;
    298  1.102    kardel 		else
    299  1.102    kardel 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    300  1.102    kardel #else /* !__HAVE_TIMECOUNTER */
    301   1.22       jtc 		ts.tv_nsec = 1000000000 / hz;
    302  1.102    kardel #endif /* !__HAVE_TIMECOUNTER */
    303   1.61    simonb 		break;
    304   1.61    simonb 	default:
    305   1.61    simonb 		return (EINVAL);
    306   1.61    simonb 	}
    307   1.22       jtc 
    308   1.61    simonb 	if (SCARG(uap, tp))
    309   1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    310   1.22       jtc 
    311   1.22       jtc 	return error;
    312   1.22       jtc }
    313   1.22       jtc 
    314   1.27       jtc /* ARGSUSED */
    315   1.27       jtc int
    316  1.110      yamt sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    317   1.27       jtc {
    318  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    319  1.101    kardel 	struct sys_nanosleep_args/* {
    320  1.101    kardel 		syscallarg(struct timespec *) rqtp;
    321  1.101    kardel 		syscallarg(struct timespec *) rmtp;
    322  1.101    kardel 	} */ *uap = v;
    323  1.101    kardel 	struct timespec rmt, rqt;
    324  1.101    kardel 	int error, timo;
    325  1.101    kardel 
    326  1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    327  1.101    kardel 	if (error)
    328  1.101    kardel 		return (error);
    329  1.101    kardel 
    330  1.101    kardel 	if (itimespecfix(&rqt))
    331  1.101    kardel 		return (EINVAL);
    332  1.101    kardel 
    333  1.101    kardel 	timo = tstohz(&rqt);
    334  1.101    kardel 	/*
    335  1.101    kardel 	 * Avoid inadvertantly sleeping forever
    336  1.101    kardel 	 */
    337  1.101    kardel 	if (timo == 0)
    338  1.101    kardel 		timo = 1;
    339  1.101    kardel 
    340  1.104    kardel 	getnanouptime(&rmt);
    341  1.104    kardel 
    342  1.115   thorpej 	error = kpause("nanoslp", true, timo, NULL);
    343  1.101    kardel 	if (error == ERESTART)
    344  1.101    kardel 		error = EINTR;
    345  1.101    kardel 	if (error == EWOULDBLOCK)
    346  1.101    kardel 		error = 0;
    347  1.101    kardel 
    348  1.101    kardel 	if (SCARG(uap, rmtp)) {
    349  1.101    kardel 		int error1;
    350  1.104    kardel 		struct timespec rmtend;
    351  1.101    kardel 
    352  1.104    kardel 		getnanouptime(&rmtend);
    353  1.101    kardel 
    354  1.104    kardel 		timespecsub(&rmtend, &rmt, &rmt);
    355  1.101    kardel 		timespecsub(&rqt, &rmt, &rmt);
    356  1.101    kardel 		if (rmt.tv_sec < 0)
    357  1.101    kardel 			timespecclear(&rmt);
    358  1.101    kardel 
    359  1.116  christos 		error1 = copyout((void *)&rmt, (void *)SCARG(uap,rmtp),
    360  1.101    kardel 			sizeof(rmt));
    361  1.101    kardel 		if (error1)
    362  1.101    kardel 			return (error1);
    363  1.101    kardel 	}
    364  1.101    kardel 
    365  1.101    kardel 	return error;
    366  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    367   1.45  augustss 	struct sys_nanosleep_args/* {
    368   1.27       jtc 		syscallarg(struct timespec *) rqtp;
    369   1.27       jtc 		syscallarg(struct timespec *) rmtp;
    370   1.27       jtc 	} */ *uap = v;
    371   1.27       jtc 	struct timespec rqt;
    372   1.27       jtc 	struct timespec rmt;
    373   1.27       jtc 	struct timeval atv, utv;
    374   1.27       jtc 	int error, s, timo;
    375   1.27       jtc 
    376   1.89  christos 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    377   1.27       jtc 	if (error)
    378   1.27       jtc 		return (error);
    379   1.27       jtc 
    380   1.85    atatat 	TIMESPEC_TO_TIMEVAL(&atv,&rqt);
    381   1.80  christos 	if (itimerfix(&atv))
    382   1.27       jtc 		return (EINVAL);
    383   1.27       jtc 
    384   1.27       jtc 	s = splclock();
    385   1.27       jtc 	timeradd(&atv,&time,&atv);
    386   1.27       jtc 	timo = hzto(&atv);
    387   1.63   thorpej 	/*
    388   1.27       jtc 	 * Avoid inadvertantly sleeping forever
    389   1.27       jtc 	 */
    390   1.27       jtc 	if (timo == 0)
    391   1.27       jtc 		timo = 1;
    392   1.27       jtc 	splx(s);
    393   1.27       jtc 
    394  1.115   thorpej 	error = kpause("nanoslp", true, timo, NULL);
    395   1.27       jtc 	if (error == ERESTART)
    396   1.27       jtc 		error = EINTR;
    397   1.27       jtc 	if (error == EWOULDBLOCK)
    398   1.27       jtc 		error = 0;
    399   1.27       jtc 
    400   1.27       jtc 	if (SCARG(uap, rmtp)) {
    401   1.89  christos 		int error1;
    402   1.28       jtc 
    403   1.27       jtc 		s = splclock();
    404   1.27       jtc 		utv = time;
    405   1.27       jtc 		splx(s);
    406   1.27       jtc 
    407   1.27       jtc 		timersub(&atv, &utv, &utv);
    408   1.27       jtc 		if (utv.tv_sec < 0)
    409   1.27       jtc 			timerclear(&utv);
    410   1.27       jtc 
    411   1.27       jtc 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    412  1.116  christos 		error1 = copyout((void *)&rmt, (void *)SCARG(uap,rmtp),
    413   1.28       jtc 			sizeof(rmt));
    414   1.89  christos 		if (error1)
    415   1.89  christos 			return (error1);
    416   1.27       jtc 	}
    417   1.27       jtc 
    418   1.27       jtc 	return error;
    419  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    420   1.27       jtc }
    421   1.22       jtc 
    422    1.1       cgd /* ARGSUSED */
    423    1.3    andrew int
    424  1.110      yamt sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    425   1.15   thorpej {
    426   1.45  augustss 	struct sys_gettimeofday_args /* {
    427   1.11       cgd 		syscallarg(struct timeval *) tp;
    428   1.84    simonb 		syscallarg(void *) tzp;		really "struct timezone *"
    429   1.15   thorpej 	} */ *uap = v;
    430    1.1       cgd 	struct timeval atv;
    431    1.1       cgd 	int error = 0;
    432   1.25     perry 	struct timezone tzfake;
    433    1.1       cgd 
    434   1.11       cgd 	if (SCARG(uap, tp)) {
    435    1.1       cgd 		microtime(&atv);
    436   1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    437   1.17  christos 		if (error)
    438    1.1       cgd 			return (error);
    439    1.1       cgd 	}
    440   1.25     perry 	if (SCARG(uap, tzp)) {
    441   1.25     perry 		/*
    442   1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    443   1.25     perry 		 * fake up a timezone struct and return it if demanded.
    444   1.25     perry 		 */
    445   1.25     perry 		tzfake.tz_minuteswest = 0;
    446   1.25     perry 		tzfake.tz_dsttime = 0;
    447   1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    448   1.25     perry 	}
    449    1.1       cgd 	return (error);
    450    1.1       cgd }
    451    1.1       cgd 
    452    1.1       cgd /* ARGSUSED */
    453    1.3    andrew int
    454  1.110      yamt sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    455   1.15   thorpej {
    456   1.16   mycroft 	struct sys_settimeofday_args /* {
    457   1.24       cgd 		syscallarg(const struct timeval *) tv;
    458   1.84    simonb 		syscallarg(const void *) tzp;	really "const struct timezone *"
    459   1.15   thorpej 	} */ *uap = v;
    460   1.60      manu 
    461  1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    462   1.60      manu }
    463   1.60      manu 
    464   1.60      manu int
    465  1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    466  1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    467   1.60      manu {
    468   1.22       jtc 	struct timeval atv;
    469   1.98  christos 	struct timespec ts;
    470   1.22       jtc 	int error;
    471    1.1       cgd 
    472    1.8       cgd 	/* Verify all parameters before changing time. */
    473  1.119       dsl 
    474  1.119       dsl 	if (check_kauth) {
    475  1.119       dsl 		error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    476  1.119       dsl 		    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL);
    477  1.119       dsl 		if (error != 0)
    478  1.119       dsl 			return (error);
    479  1.119       dsl 	}
    480  1.119       dsl 
    481   1.25     perry 	/*
    482   1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    483   1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    484   1.25     perry 	 */
    485   1.98  christos 	if (utzp)
    486   1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    487  1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    488   1.98  christos 
    489   1.98  christos 	if (utv == NULL)
    490   1.98  christos 		return 0;
    491   1.98  christos 
    492  1.119       dsl 	if (userspace) {
    493  1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    494  1.119       dsl 			return error;
    495  1.119       dsl 		utv = &atv;
    496  1.119       dsl 	}
    497  1.119       dsl 
    498  1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    499  1.119       dsl 	return settime(l->l_proc, &ts);
    500    1.1       cgd }
    501    1.1       cgd 
    502  1.101    kardel #ifndef __HAVE_TIMECOUNTER
    503    1.1       cgd int	tickdelta;			/* current clock skew, us. per tick */
    504    1.1       cgd long	timedelta;			/* unapplied time correction, us. */
    505    1.1       cgd long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    506  1.101    kardel #endif
    507  1.101    kardel 
    508   1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    509    1.1       cgd 
    510    1.1       cgd /* ARGSUSED */
    511    1.3    andrew int
    512  1.110      yamt sys_adjtime(struct lwp *l, void *v, register_t *retval)
    513   1.15   thorpej {
    514   1.45  augustss 	struct sys_adjtime_args /* {
    515   1.24       cgd 		syscallarg(const struct timeval *) delta;
    516   1.11       cgd 		syscallarg(struct timeval *) olddelta;
    517   1.15   thorpej 	} */ *uap = v;
    518   1.56      manu 	int error;
    519    1.1       cgd 
    520  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    521  1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    522    1.1       cgd 		return (error);
    523   1.17  christos 
    524  1.105        ad 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    525   1.56      manu }
    526   1.56      manu 
    527   1.56      manu int
    528  1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    529   1.56      manu {
    530   1.60      manu 	struct timeval atv;
    531  1.101    kardel 	int error = 0;
    532  1.101    kardel 
    533  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    534  1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    535  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    536   1.56      manu 	long ndelta, ntickdelta, odelta;
    537   1.56      manu 	int s;
    538  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    539  1.101    kardel 
    540  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    541  1.101    kardel 	if (olddelta) {
    542  1.101    kardel 		atv.tv_sec = time_adjtime / 1000000;
    543  1.101    kardel 		atv.tv_usec = time_adjtime % 1000000;
    544  1.101    kardel 		if (atv.tv_usec < 0) {
    545  1.101    kardel 			atv.tv_usec += 1000000;
    546  1.101    kardel 			atv.tv_sec--;
    547  1.101    kardel 		}
    548  1.101    kardel 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    549  1.101    kardel 		if (error)
    550  1.101    kardel 			return (error);
    551  1.101    kardel 	}
    552  1.101    kardel 
    553  1.101    kardel 	if (delta) {
    554  1.101    kardel 		error = copyin(delta, &atv, sizeof(struct timeval));
    555  1.101    kardel 		if (error)
    556  1.101    kardel 			return (error);
    557  1.101    kardel 
    558  1.101    kardel 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    559  1.101    kardel 			atv.tv_usec;
    560    1.8       cgd 
    561  1.101    kardel 		if (time_adjtime)
    562  1.101    kardel 			/* We need to save the system time during shutdown */
    563  1.101    kardel 			time_adjusted |= 1;
    564  1.101    kardel 	}
    565  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    566   1.60      manu 	error = copyin(delta, &atv, sizeof(struct timeval));
    567   1.60      manu 	if (error)
    568   1.60      manu 		return (error);
    569   1.60      manu 
    570    1.8       cgd 	/*
    571    1.8       cgd 	 * Compute the total correction and the rate at which to apply it.
    572    1.8       cgd 	 * Round the adjustment down to a whole multiple of the per-tick
    573    1.8       cgd 	 * delta, so that after some number of incremental changes in
    574    1.8       cgd 	 * hardclock(), tickdelta will become zero, lest the correction
    575    1.8       cgd 	 * overshoot and start taking us away from the desired final time.
    576    1.8       cgd 	 */
    577   1.60      manu 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    578   1.41       hwr 	if (ndelta > bigadj || ndelta < -bigadj)
    579    1.8       cgd 		ntickdelta = 10 * tickadj;
    580    1.8       cgd 	else
    581    1.8       cgd 		ntickdelta = tickadj;
    582    1.8       cgd 	if (ndelta % ntickdelta)
    583    1.8       cgd 		ndelta = ndelta / ntickdelta * ntickdelta;
    584    1.8       cgd 
    585    1.8       cgd 	/*
    586    1.8       cgd 	 * To make hardclock()'s job easier, make the per-tick delta negative
    587    1.8       cgd 	 * if we want time to run slower; then hardclock can simply compute
    588    1.8       cgd 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    589    1.8       cgd 	 */
    590    1.8       cgd 	if (ndelta < 0)
    591    1.8       cgd 		ntickdelta = -ntickdelta;
    592   1.68       dsl 	if (ndelta != 0)
    593   1.68       dsl 		/* We need to save the system clock time during shutdown */
    594   1.68       dsl 		time_adjusted |= 1;
    595    1.1       cgd 	s = splclock();
    596    1.8       cgd 	odelta = timedelta;
    597    1.1       cgd 	timedelta = ndelta;
    598    1.8       cgd 	tickdelta = ntickdelta;
    599    1.1       cgd 	splx(s);
    600    1.1       cgd 
    601   1.56      manu 	if (olddelta) {
    602   1.60      manu 		atv.tv_sec = odelta / 1000000;
    603   1.60      manu 		atv.tv_usec = odelta % 1000000;
    604   1.79       chs 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    605    1.8       cgd 	}
    606  1.101    kardel #endif /* __HAVE_TIMECOUNTER */
    607  1.101    kardel 
    608   1.79       chs 	return error;
    609    1.1       cgd }
    610    1.1       cgd 
    611    1.1       cgd /*
    612   1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    613   1.63   thorpej  * timer_*() family of routines are supported.
    614    1.1       cgd  *
    615   1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    616   1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    617   1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    618   1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    619   1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    620   1.63   thorpej  * syscall.
    621    1.1       cgd  *
    622   1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    623   1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    624    1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    625   1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    626   1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    627   1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    628   1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    629   1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    630   1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    631   1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    632   1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    633   1.63   thorpej 
    634   1.63   thorpej /* Allocate a POSIX realtime timer. */
    635   1.63   thorpej int
    636  1.110      yamt sys_timer_create(struct lwp *l, void *v, register_t *retval)
    637   1.63   thorpej {
    638   1.63   thorpej 	struct sys_timer_create_args /* {
    639   1.63   thorpej 		syscallarg(clockid_t) clock_id;
    640   1.63   thorpej 		syscallarg(struct sigevent *) evp;
    641   1.63   thorpej 		syscallarg(timer_t *) timerid;
    642   1.63   thorpej 	} */ *uap = v;
    643   1.92      cube 
    644   1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    645  1.105        ad 	    SCARG(uap, evp), copyin, l);
    646   1.92      cube }
    647   1.92      cube 
    648   1.92      cube int
    649   1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    650  1.105        ad     copyin_t fetch_event, struct lwp *l)
    651   1.92      cube {
    652   1.92      cube 	int error;
    653   1.92      cube 	timer_t timerid;
    654   1.63   thorpej 	struct ptimer *pt;
    655  1.105        ad 	struct proc *p;
    656  1.105        ad 
    657  1.105        ad 	p = l->l_proc;
    658   1.63   thorpej 
    659   1.63   thorpej 	if (id < CLOCK_REALTIME ||
    660   1.63   thorpej 	    id > CLOCK_PROF)
    661   1.63   thorpej 		return (EINVAL);
    662   1.63   thorpej 
    663   1.63   thorpej 	if (p->p_timers == NULL)
    664   1.63   thorpej 		timers_alloc(p);
    665   1.63   thorpej 
    666   1.63   thorpej 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    667   1.63   thorpej 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    668   1.63   thorpej 		if (p->p_timers->pts_timers[timerid] == NULL)
    669   1.63   thorpej 			break;
    670   1.63   thorpej 
    671   1.63   thorpej 	if (timerid == TIMER_MAX)
    672   1.63   thorpej 		return EAGAIN;
    673   1.63   thorpej 
    674   1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    675   1.63   thorpej 	if (evp) {
    676   1.63   thorpej 		if (((error =
    677   1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    678   1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    679   1.63   thorpej 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    680   1.63   thorpej 			pool_put(&ptimer_pool, pt);
    681   1.63   thorpej 			return (error ? error : EINVAL);
    682   1.63   thorpej 		}
    683   1.63   thorpej 	} else {
    684   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    685   1.63   thorpej 		switch (id) {
    686   1.63   thorpej 		case CLOCK_REALTIME:
    687   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    688   1.63   thorpej 			break;
    689   1.63   thorpej 		case CLOCK_VIRTUAL:
    690   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    691   1.63   thorpej 			break;
    692   1.63   thorpej 		case CLOCK_PROF:
    693   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    694   1.63   thorpej 			break;
    695   1.63   thorpej 		}
    696   1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    697   1.63   thorpej 	}
    698   1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    699   1.73  christos 	pt->pt_info.ksi_errno = 0;
    700   1.73  christos 	pt->pt_info.ksi_code = 0;
    701   1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    702  1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    703   1.73  christos 	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
    704   1.63   thorpej 
    705   1.63   thorpej 	pt->pt_type = id;
    706   1.63   thorpej 	pt->pt_proc = p;
    707   1.63   thorpej 	pt->pt_overruns = 0;
    708   1.63   thorpej 	pt->pt_poverruns = 0;
    709   1.64   nathanw 	pt->pt_entry = timerid;
    710   1.63   thorpej 	timerclear(&pt->pt_time.it_value);
    711   1.63   thorpej 	if (id == CLOCK_REALTIME)
    712   1.63   thorpej 		callout_init(&pt->pt_ch);
    713   1.63   thorpej 	else
    714   1.63   thorpej 		pt->pt_active = 0;
    715   1.63   thorpej 
    716   1.63   thorpej 	p->p_timers->pts_timers[timerid] = pt;
    717   1.63   thorpej 
    718   1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    719   1.63   thorpej }
    720   1.63   thorpej 
    721   1.63   thorpej /* Delete a POSIX realtime timer */
    722    1.3    andrew int
    723  1.110      yamt sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    724   1.15   thorpej {
    725   1.63   thorpej 	struct sys_timer_delete_args /*  {
    726   1.63   thorpej 		syscallarg(timer_t) timerid;
    727   1.15   thorpej 	} */ *uap = v;
    728   1.63   thorpej 	struct proc *p = l->l_proc;
    729   1.65  jdolecek 	timer_t timerid;
    730   1.63   thorpej 	struct ptimer *pt, *ptn;
    731    1.1       cgd 	int s;
    732    1.1       cgd 
    733   1.63   thorpej 	timerid = SCARG(uap, timerid);
    734   1.63   thorpej 
    735   1.63   thorpej 	if ((p->p_timers == NULL) ||
    736   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    737   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    738    1.1       cgd 		return (EINVAL);
    739   1.63   thorpej 
    740   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME)
    741   1.63   thorpej 		callout_stop(&pt->pt_ch);
    742   1.63   thorpej 	else if (pt->pt_active) {
    743   1.63   thorpej 		s = splclock();
    744   1.63   thorpej 		ptn = LIST_NEXT(pt, pt_list);
    745   1.63   thorpej 		LIST_REMOVE(pt, pt_list);
    746   1.63   thorpej 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    747   1.63   thorpej 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    748   1.63   thorpej 			    &ptn->pt_time.it_value);
    749   1.63   thorpej 		splx(s);
    750   1.63   thorpej 	}
    751   1.63   thorpej 
    752   1.63   thorpej 	p->p_timers->pts_timers[timerid] = NULL;
    753   1.63   thorpej 	pool_put(&ptimer_pool, pt);
    754   1.63   thorpej 
    755   1.63   thorpej 	return (0);
    756   1.63   thorpej }
    757   1.63   thorpej 
    758   1.63   thorpej /*
    759   1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    760   1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    761   1.67   nathanw  * time for virtual timers.
    762   1.63   thorpej  * Must be called at splclock().
    763   1.63   thorpej  */
    764   1.63   thorpej void
    765   1.63   thorpej timer_settime(struct ptimer *pt)
    766   1.63   thorpej {
    767   1.63   thorpej 	struct ptimer *ptn, *pptn;
    768   1.63   thorpej 	struct ptlist *ptl;
    769   1.63   thorpej 
    770   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    771   1.63   thorpej 		callout_stop(&pt->pt_ch);
    772   1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    773   1.63   thorpej 			/*
    774   1.63   thorpej 			 * Don't need to check hzto() return value, here.
    775   1.63   thorpej 			 * callout_reset() does it for us.
    776   1.63   thorpej 			 */
    777   1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    778   1.63   thorpej 			    realtimerexpire, pt);
    779   1.63   thorpej 		}
    780   1.63   thorpej 	} else {
    781   1.63   thorpej 		if (pt->pt_active) {
    782   1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    783   1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    784   1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    785   1.63   thorpej 				timeradd(&pt->pt_time.it_value,
    786   1.63   thorpej 				    &ptn->pt_time.it_value,
    787   1.63   thorpej 				    &ptn->pt_time.it_value);
    788   1.63   thorpej 		}
    789   1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    790   1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    791   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    792   1.63   thorpej 			else
    793   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    794   1.63   thorpej 
    795   1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    796   1.63   thorpej 			     ptn && timercmp(&pt->pt_time.it_value,
    797   1.63   thorpej 				 &ptn->pt_time.it_value, >);
    798   1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    799   1.63   thorpej 				timersub(&pt->pt_time.it_value,
    800   1.63   thorpej 				    &ptn->pt_time.it_value,
    801   1.63   thorpej 				    &pt->pt_time.it_value);
    802   1.63   thorpej 
    803   1.63   thorpej 			if (pptn)
    804   1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    805   1.63   thorpej 			else
    806   1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    807   1.63   thorpej 
    808   1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    809   1.63   thorpej 				timersub(&ptn->pt_time.it_value,
    810   1.63   thorpej 				    &pt->pt_time.it_value,
    811   1.63   thorpej 				    &ptn->pt_time.it_value);
    812   1.63   thorpej 
    813   1.63   thorpej 			pt->pt_active = 1;
    814   1.63   thorpej 		} else
    815   1.63   thorpej 			pt->pt_active = 0;
    816   1.63   thorpej 	}
    817   1.63   thorpej }
    818   1.63   thorpej 
    819   1.63   thorpej void
    820   1.63   thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    821   1.63   thorpej {
    822  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    823  1.101    kardel 	struct timeval now;
    824  1.101    kardel #endif
    825   1.63   thorpej 	struct ptimer *ptn;
    826   1.63   thorpej 
    827   1.63   thorpej 	*aitv = pt->pt_time;
    828   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    829    1.1       cgd 		/*
    830   1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    831   1.63   thorpej 		 * part of real time timer.  If time for real time
    832   1.63   thorpej 		 * timer has passed return 0, else return difference
    833   1.63   thorpej 		 * between current time and time for the timer to go
    834   1.63   thorpej 		 * off.
    835    1.1       cgd 		 */
    836   1.63   thorpej 		if (timerisset(&aitv->it_value)) {
    837  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    838  1.101    kardel 			getmicrotime(&now);
    839  1.101    kardel 			if (timercmp(&aitv->it_value, &now, <))
    840  1.101    kardel 				timerclear(&aitv->it_value);
    841  1.101    kardel 			else
    842  1.101    kardel 				timersub(&aitv->it_value, &now,
    843  1.101    kardel 				    &aitv->it_value);
    844  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    845   1.63   thorpej 			if (timercmp(&aitv->it_value, &time, <))
    846   1.63   thorpej 				timerclear(&aitv->it_value);
    847    1.1       cgd 			else
    848   1.63   thorpej 				timersub(&aitv->it_value, &time,
    849   1.63   thorpej 				    &aitv->it_value);
    850  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    851   1.36   thorpej 		}
    852   1.63   thorpej 	} else if (pt->pt_active) {
    853   1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    854   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    855   1.63   thorpej 		else
    856   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    857   1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    858   1.63   thorpej 			timeradd(&aitv->it_value,
    859   1.63   thorpej 			    &ptn->pt_time.it_value, &aitv->it_value);
    860   1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    861    1.1       cgd 	} else
    862   1.63   thorpej 		timerclear(&aitv->it_value);
    863   1.63   thorpej }
    864   1.63   thorpej 
    865   1.63   thorpej 
    866   1.63   thorpej 
    867   1.63   thorpej /* Set and arm a POSIX realtime timer */
    868   1.63   thorpej int
    869  1.110      yamt sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    870   1.63   thorpej {
    871   1.63   thorpej 	struct sys_timer_settime_args /* {
    872   1.63   thorpej 		syscallarg(timer_t) timerid;
    873   1.63   thorpej 		syscallarg(int) flags;
    874   1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    875   1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    876   1.63   thorpej 	} */ *uap = v;
    877   1.92      cube 	int error;
    878   1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    879   1.92      cube 
    880   1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    881   1.92      cube 	    sizeof(struct itimerspec))) != 0)
    882   1.92      cube 		return (error);
    883   1.92      cube 
    884   1.92      cube 	if (SCARG(uap, ovalue))
    885   1.92      cube 		ovp = &ovalue;
    886   1.92      cube 
    887   1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    888   1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    889   1.92      cube 		return error;
    890   1.92      cube 
    891   1.92      cube 	if (ovp)
    892   1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    893   1.92      cube 		    sizeof(struct itimerspec));
    894   1.92      cube 	return 0;
    895   1.92      cube }
    896   1.92      cube 
    897   1.92      cube int
    898   1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    899   1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    900   1.92      cube {
    901  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    902  1.101    kardel 	struct timeval now;
    903  1.101    kardel #endif
    904   1.63   thorpej 	struct itimerval val, oval;
    905   1.63   thorpej 	struct ptimer *pt;
    906  1.101    kardel 	int s;
    907   1.63   thorpej 
    908   1.63   thorpej 	if ((p->p_timers == NULL) ||
    909   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    910   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    911   1.63   thorpej 		return (EINVAL);
    912   1.63   thorpej 
    913   1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    914   1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    915   1.63   thorpej 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    916   1.63   thorpej 		return (EINVAL);
    917   1.63   thorpej 
    918   1.63   thorpej 	oval = pt->pt_time;
    919   1.63   thorpej 	pt->pt_time = val;
    920   1.63   thorpej 
    921   1.63   thorpej 	s = splclock();
    922   1.67   nathanw 	/*
    923   1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    924   1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    925   1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    926   1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    927   1.67   nathanw 	 * negative, which would confuse the comparison tests.
    928   1.67   nathanw 	 */
    929   1.67   nathanw 	if (timerisset(&pt->pt_time.it_value)) {
    930   1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    931  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    932  1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    933  1.101    kardel 				getmicrotime(&now);
    934  1.101    kardel 				timeradd(&pt->pt_time.it_value, &now,
    935  1.101    kardel 				    &pt->pt_time.it_value);
    936  1.101    kardel 			}
    937  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    938   1.92      cube 			if ((flags & TIMER_ABSTIME) == 0)
    939   1.67   nathanw 				timeradd(&pt->pt_time.it_value, &time,
    940   1.67   nathanw 				    &pt->pt_time.it_value);
    941  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    942   1.67   nathanw 		} else {
    943   1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    944  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    945  1.101    kardel 				getmicrotime(&now);
    946  1.101    kardel 				timersub(&pt->pt_time.it_value, &now,
    947  1.101    kardel 				    &pt->pt_time.it_value);
    948  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    949   1.67   nathanw 				timersub(&pt->pt_time.it_value, &time,
    950   1.67   nathanw 				    &pt->pt_time.it_value);
    951  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    952   1.67   nathanw 				if (!timerisset(&pt->pt_time.it_value) ||
    953   1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    954   1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    955   1.67   nathanw 					pt->pt_time.it_value.tv_usec = 1;
    956   1.67   nathanw 				}
    957   1.67   nathanw 			}
    958   1.67   nathanw 		}
    959   1.67   nathanw 	}
    960   1.67   nathanw 
    961   1.63   thorpej 	timer_settime(pt);
    962   1.63   thorpej 	splx(s);
    963   1.63   thorpej 
    964   1.92      cube 	if (ovalue) {
    965   1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    966   1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    967   1.63   thorpej 	}
    968   1.63   thorpej 
    969   1.63   thorpej 	return (0);
    970   1.63   thorpej }
    971   1.63   thorpej 
    972   1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    973   1.63   thorpej int
    974  1.110      yamt sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    975   1.63   thorpej {
    976   1.63   thorpej 	struct sys_timer_gettime_args /* {
    977   1.63   thorpej 		syscallarg(timer_t) timerid;
    978   1.63   thorpej 		syscallarg(struct itimerspec *) value;
    979   1.63   thorpej 	} */ *uap = v;
    980   1.63   thorpej 	struct itimerspec its;
    981   1.92      cube 	int error;
    982   1.92      cube 
    983   1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    984   1.92      cube 	    &its)) != 0)
    985   1.92      cube 		return error;
    986   1.92      cube 
    987   1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    988   1.92      cube }
    989   1.92      cube 
    990   1.92      cube int
    991   1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    992   1.92      cube {
    993   1.92      cube 	int s;
    994   1.63   thorpej 	struct ptimer *pt;
    995   1.92      cube 	struct itimerval aitv;
    996   1.63   thorpej 
    997   1.63   thorpej 	if ((p->p_timers == NULL) ||
    998   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    999   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
   1000   1.63   thorpej 		return (EINVAL);
   1001   1.63   thorpej 
   1002   1.63   thorpej 	s = splclock();
   1003   1.63   thorpej 	timer_gettime(pt, &aitv);
   1004    1.1       cgd 	splx(s);
   1005   1.63   thorpej 
   1006   1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
   1007   1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
   1008   1.63   thorpej 
   1009   1.92      cube 	return 0;
   1010   1.63   thorpej }
   1011   1.63   thorpej 
   1012   1.63   thorpej /*
   1013   1.63   thorpej  * Return the count of the number of times a periodic timer expired
   1014   1.63   thorpej  * while a notification was already pending. The counter is reset when
   1015   1.63   thorpej  * a timer expires and a notification can be posted.
   1016   1.63   thorpej  */
   1017   1.63   thorpej int
   1018   1.63   thorpej sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
   1019   1.63   thorpej {
   1020   1.63   thorpej 	struct sys_timer_getoverrun_args /* {
   1021   1.63   thorpej 		syscallarg(timer_t) timerid;
   1022   1.63   thorpej 	} */ *uap = v;
   1023   1.63   thorpej 	struct proc *p = l->l_proc;
   1024   1.63   thorpej 	int timerid;
   1025   1.63   thorpej 	struct ptimer *pt;
   1026   1.63   thorpej 
   1027   1.63   thorpej 	timerid = SCARG(uap, timerid);
   1028   1.63   thorpej 
   1029   1.63   thorpej 	if ((p->p_timers == NULL) ||
   1030   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
   1031   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
   1032   1.63   thorpej 		return (EINVAL);
   1033   1.63   thorpej 
   1034   1.63   thorpej 	*retval = pt->pt_poverruns;
   1035   1.63   thorpej 
   1036   1.63   thorpej 	return (0);
   1037   1.63   thorpej }
   1038   1.63   thorpej 
   1039   1.63   thorpej /*
   1040   1.63   thorpej  * Real interval timer expired:
   1041   1.63   thorpej  * send process whose timer expired an alarm signal.
   1042   1.63   thorpej  * If time is not set up to reload, then just return.
   1043   1.63   thorpej  * Else compute next time timer should go off which is > current time.
   1044   1.63   thorpej  * This is where delay in processing this timeout causes multiple
   1045   1.63   thorpej  * SIGALRM calls to be compressed into one.
   1046   1.63   thorpej  */
   1047   1.63   thorpej void
   1048   1.63   thorpej realtimerexpire(void *arg)
   1049   1.63   thorpej {
   1050  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1051  1.101    kardel 	struct timeval now;
   1052  1.101    kardel #endif
   1053   1.63   thorpej 	struct ptimer *pt;
   1054   1.63   thorpej 	int s;
   1055   1.63   thorpej 
   1056   1.63   thorpej 	pt = (struct ptimer *)arg;
   1057   1.63   thorpej 
   1058   1.63   thorpej 	itimerfire(pt);
   1059   1.63   thorpej 
   1060   1.63   thorpej 	if (!timerisset(&pt->pt_time.it_interval)) {
   1061   1.63   thorpej 		timerclear(&pt->pt_time.it_value);
   1062   1.63   thorpej 		return;
   1063   1.63   thorpej 	}
   1064  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1065  1.101    kardel 	for (;;) {
   1066  1.101    kardel 		s = splclock();	/* XXX need spl now? */
   1067  1.101    kardel 		timeradd(&pt->pt_time.it_value,
   1068  1.101    kardel 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1069  1.101    kardel 		getmicrotime(&now);
   1070  1.101    kardel 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
   1071  1.101    kardel 			/*
   1072  1.101    kardel 			 * Don't need to check hzto() return value, here.
   1073  1.101    kardel 			 * callout_reset() does it for us.
   1074  1.101    kardel 			 */
   1075  1.101    kardel 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1076  1.101    kardel 			    realtimerexpire, pt);
   1077  1.101    kardel 			splx(s);
   1078  1.101    kardel 			return;
   1079  1.101    kardel 		}
   1080  1.101    kardel 		splx(s);
   1081  1.101    kardel 		pt->pt_overruns++;
   1082  1.101    kardel 	}
   1083  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1084   1.63   thorpej 	for (;;) {
   1085   1.63   thorpej 		s = splclock();
   1086   1.63   thorpej 		timeradd(&pt->pt_time.it_value,
   1087   1.63   thorpej 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1088   1.63   thorpej 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
   1089   1.63   thorpej 			/*
   1090   1.63   thorpej 			 * Don't need to check hzto() return value, here.
   1091   1.63   thorpej 			 * callout_reset() does it for us.
   1092   1.63   thorpej 			 */
   1093   1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1094   1.63   thorpej 			    realtimerexpire, pt);
   1095   1.63   thorpej 			splx(s);
   1096   1.63   thorpej 			return;
   1097   1.63   thorpej 		}
   1098   1.63   thorpej 		splx(s);
   1099   1.63   thorpej 		pt->pt_overruns++;
   1100   1.63   thorpej 	}
   1101  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1102   1.63   thorpej }
   1103   1.63   thorpej 
   1104   1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1105   1.63   thorpej /* ARGSUSED */
   1106   1.63   thorpej int
   1107  1.110      yamt sys_getitimer(struct lwp *l, void *v, register_t *retval)
   1108   1.63   thorpej {
   1109   1.63   thorpej 	struct sys_getitimer_args /* {
   1110   1.63   thorpej 		syscallarg(int) which;
   1111   1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1112   1.63   thorpej 	} */ *uap = v;
   1113   1.63   thorpej 	struct proc *p = l->l_proc;
   1114   1.63   thorpej 	struct itimerval aitv;
   1115   1.91      cube 	int error;
   1116   1.91      cube 
   1117   1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1118   1.91      cube 	if (error)
   1119   1.91      cube 		return error;
   1120   1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1121   1.91      cube }
   1122   1.63   thorpej 
   1123   1.91      cube int
   1124   1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1125   1.91      cube {
   1126   1.91      cube 	int s;
   1127   1.63   thorpej 
   1128   1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
   1129   1.63   thorpej 		return (EINVAL);
   1130   1.63   thorpej 
   1131   1.63   thorpej 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
   1132   1.91      cube 		timerclear(&itvp->it_value);
   1133   1.91      cube 		timerclear(&itvp->it_interval);
   1134   1.63   thorpej 	} else {
   1135   1.63   thorpej 		s = splclock();
   1136   1.91      cube 		timer_gettime(p->p_timers->pts_timers[which], itvp);
   1137   1.63   thorpej 		splx(s);
   1138   1.63   thorpej 	}
   1139   1.63   thorpej 
   1140   1.91      cube 	return 0;
   1141    1.1       cgd }
   1142    1.1       cgd 
   1143   1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1144    1.1       cgd /* ARGSUSED */
   1145    1.3    andrew int
   1146   1.63   thorpej sys_setitimer(struct lwp *l, void *v, register_t *retval)
   1147   1.15   thorpej {
   1148   1.45  augustss 	struct sys_setitimer_args /* {
   1149   1.30   mycroft 		syscallarg(int) which;
   1150   1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1151   1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1152   1.15   thorpej 	} */ *uap = v;
   1153   1.63   thorpej 	struct proc *p = l->l_proc;
   1154   1.30   mycroft 	int which = SCARG(uap, which);
   1155   1.21       cgd 	struct sys_getitimer_args getargs;
   1156   1.91      cube 	const struct itimerval *itvp;
   1157    1.1       cgd 	struct itimerval aitv;
   1158   1.91      cube 	int error;
   1159    1.1       cgd 
   1160   1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1161    1.1       cgd 		return (EINVAL);
   1162   1.11       cgd 	itvp = SCARG(uap, itv);
   1163   1.63   thorpej 	if (itvp &&
   1164   1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1165    1.1       cgd 		return (error);
   1166   1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1167   1.30   mycroft 		SCARG(&getargs, which) = which;
   1168   1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1169   1.63   thorpej 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1170   1.21       cgd 			return (error);
   1171   1.21       cgd 	}
   1172    1.1       cgd 	if (itvp == 0)
   1173    1.1       cgd 		return (0);
   1174   1.91      cube 
   1175   1.91      cube 	return dosetitimer(p, which, &aitv);
   1176   1.91      cube }
   1177   1.91      cube 
   1178   1.91      cube int
   1179   1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1180   1.91      cube {
   1181  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1182  1.101    kardel 	struct timeval now;
   1183  1.101    kardel #endif
   1184   1.91      cube 	struct ptimer *pt;
   1185   1.91      cube 	int s;
   1186   1.91      cube 
   1187   1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1188    1.1       cgd 		return (EINVAL);
   1189   1.63   thorpej 
   1190   1.63   thorpej 	/*
   1191   1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1192   1.63   thorpej 	 * wants to clear the timer.
   1193   1.63   thorpej 	 */
   1194   1.91      cube 	if (!timerisset(&itvp->it_value) &&
   1195   1.63   thorpej 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1196   1.63   thorpej 		return (0);
   1197   1.63   thorpej 
   1198   1.63   thorpej 	if (p->p_timers == NULL)
   1199   1.63   thorpej 		timers_alloc(p);
   1200   1.63   thorpej 	if (p->p_timers->pts_timers[which] == NULL) {
   1201   1.63   thorpej 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1202   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1203   1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1204   1.63   thorpej 		pt->pt_overruns = 0;
   1205   1.63   thorpej 		pt->pt_proc = p;
   1206   1.63   thorpej 		pt->pt_type = which;
   1207   1.64   nathanw 		pt->pt_entry = which;
   1208   1.63   thorpej 		switch (which) {
   1209   1.63   thorpej 		case ITIMER_REAL:
   1210   1.63   thorpej 			callout_init(&pt->pt_ch);
   1211   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1212   1.63   thorpej 			break;
   1213   1.63   thorpej 		case ITIMER_VIRTUAL:
   1214   1.63   thorpej 			pt->pt_active = 0;
   1215   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1216   1.63   thorpej 			break;
   1217   1.63   thorpej 		case ITIMER_PROF:
   1218   1.63   thorpej 			pt->pt_active = 0;
   1219   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1220   1.63   thorpej 			break;
   1221    1.1       cgd 		}
   1222    1.1       cgd 	} else
   1223   1.63   thorpej 		pt = p->p_timers->pts_timers[which];
   1224   1.63   thorpej 
   1225   1.91      cube 	pt->pt_time = *itvp;
   1226   1.63   thorpej 	p->p_timers->pts_timers[which] = pt;
   1227   1.63   thorpej 
   1228   1.63   thorpej 	s = splclock();
   1229   1.67   nathanw 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1230   1.67   nathanw 		/* Convert to absolute time */
   1231  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1232  1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1233  1.101    kardel 		getmicrotime(&now);
   1234  1.101    kardel 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1235  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1236   1.67   nathanw 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
   1237  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1238   1.67   nathanw 	}
   1239   1.63   thorpej 	timer_settime(pt);
   1240    1.1       cgd 	splx(s);
   1241   1.63   thorpej 
   1242    1.1       cgd 	return (0);
   1243    1.1       cgd }
   1244    1.1       cgd 
   1245   1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1246   1.63   thorpej void
   1247   1.63   thorpej timers_alloc(struct proc *p)
   1248   1.63   thorpej {
   1249   1.63   thorpej 	int i;
   1250   1.63   thorpej 	struct ptimers *pts;
   1251   1.63   thorpej 
   1252  1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1253   1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1254   1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1255   1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1256   1.63   thorpej 		pts->pts_timers[i] = NULL;
   1257   1.64   nathanw 	pts->pts_fired = 0;
   1258   1.63   thorpej 	p->p_timers = pts;
   1259   1.63   thorpej }
   1260   1.63   thorpej 
   1261    1.1       cgd /*
   1262   1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1263   1.63   thorpej  * then clean up all timers and free all the data structures. If
   1264   1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1265   1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1266   1.63   thorpej  * structure if none of those remain.
   1267    1.1       cgd  */
   1268    1.3    andrew void
   1269   1.63   thorpej timers_free(struct proc *p, int which)
   1270    1.6       cgd {
   1271   1.63   thorpej 	int i, s;
   1272   1.63   thorpej 	struct ptimers *pts;
   1273   1.63   thorpej 	struct ptimer *pt, *ptn;
   1274   1.63   thorpej 	struct timeval tv;
   1275   1.63   thorpej 
   1276   1.63   thorpej 	if (p->p_timers) {
   1277   1.63   thorpej 		pts = p->p_timers;
   1278   1.63   thorpej 		if (which == TIMERS_ALL)
   1279   1.63   thorpej 			i = 0;
   1280   1.63   thorpej 		else {
   1281   1.63   thorpej 			s = splclock();
   1282   1.63   thorpej 			timerclear(&tv);
   1283   1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1284   1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1285   1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1286   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1287   1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1288   1.63   thorpej 			if (ptn) {
   1289   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1290   1.63   thorpej 				    &ptn->pt_time.it_value);
   1291   1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1292   1.63   thorpej 				    ptn, pt_list);
   1293   1.63   thorpej 			}
   1294   1.63   thorpej 
   1295   1.63   thorpej 			timerclear(&tv);
   1296   1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1297   1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1298   1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1299   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1300   1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1301   1.63   thorpej 			if (ptn) {
   1302   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1303   1.63   thorpej 				    &ptn->pt_time.it_value);
   1304   1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1305   1.63   thorpej 				    pt_list);
   1306   1.63   thorpej 			}
   1307    1.1       cgd 			splx(s);
   1308   1.63   thorpej 			i = 3;
   1309   1.63   thorpej 		}
   1310   1.63   thorpej 		for ( ; i < TIMER_MAX; i++)
   1311   1.63   thorpej 			if ((pt = pts->pts_timers[i]) != NULL) {
   1312   1.63   thorpej 				if (pt->pt_type == CLOCK_REALTIME)
   1313   1.63   thorpej 					callout_stop(&pt->pt_ch);
   1314   1.63   thorpej 				pts->pts_timers[i] = NULL;
   1315   1.63   thorpej 				pool_put(&ptimer_pool, pt);
   1316   1.63   thorpej 			}
   1317   1.63   thorpej 		if ((pts->pts_timers[0] == NULL) &&
   1318   1.63   thorpej 		    (pts->pts_timers[1] == NULL) &&
   1319   1.63   thorpej 		    (pts->pts_timers[2] == NULL)) {
   1320   1.63   thorpej 			p->p_timers = NULL;
   1321   1.97    simonb 			pool_put(&ptimers_pool, pts);
   1322    1.1       cgd 		}
   1323    1.1       cgd 	}
   1324    1.1       cgd }
   1325    1.1       cgd 
   1326    1.1       cgd /*
   1327    1.1       cgd  * Check that a proposed value to load into the .it_value or
   1328    1.1       cgd  * .it_interval part of an interval timer is acceptable, and
   1329    1.1       cgd  * fix it to have at least minimal value (i.e. if it is less
   1330    1.1       cgd  * than the resolution of the clock, round it up.)
   1331    1.1       cgd  */
   1332    1.3    andrew int
   1333   1.63   thorpej itimerfix(struct timeval *tv)
   1334    1.1       cgd {
   1335    1.1       cgd 
   1336   1.59  christos 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
   1337    1.1       cgd 		return (EINVAL);
   1338    1.1       cgd 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
   1339    1.1       cgd 		tv->tv_usec = tick;
   1340    1.1       cgd 	return (0);
   1341    1.1       cgd }
   1342    1.1       cgd 
   1343  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1344  1.101    kardel int
   1345  1.101    kardel itimespecfix(struct timespec *ts)
   1346  1.101    kardel {
   1347  1.101    kardel 
   1348  1.101    kardel 	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
   1349  1.101    kardel 		return (EINVAL);
   1350  1.101    kardel 	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
   1351  1.101    kardel 		ts->tv_nsec = tick * 1000;
   1352  1.101    kardel 	return (0);
   1353  1.101    kardel }
   1354  1.101    kardel #endif /* __HAVE_TIMECOUNTER */
   1355  1.101    kardel 
   1356    1.1       cgd /*
   1357    1.1       cgd  * Decrement an interval timer by a specified number
   1358    1.1       cgd  * of microseconds, which must be less than a second,
   1359    1.1       cgd  * i.e. < 1000000.  If the timer expires, then reload
   1360    1.1       cgd  * it.  In this case, carry over (usec - old value) to
   1361    1.8       cgd  * reduce the value reloaded into the timer so that
   1362    1.1       cgd  * the timer does not drift.  This routine assumes
   1363    1.1       cgd  * that it is called in a context where the timers
   1364    1.1       cgd  * on which it is operating cannot change in value.
   1365    1.1       cgd  */
   1366    1.3    andrew int
   1367   1.63   thorpej itimerdecr(struct ptimer *pt, int usec)
   1368   1.63   thorpej {
   1369   1.45  augustss 	struct itimerval *itp;
   1370    1.1       cgd 
   1371   1.63   thorpej 	itp = &pt->pt_time;
   1372    1.1       cgd 	if (itp->it_value.tv_usec < usec) {
   1373    1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1374    1.1       cgd 			/* expired, and already in next interval */
   1375    1.1       cgd 			usec -= itp->it_value.tv_usec;
   1376    1.1       cgd 			goto expire;
   1377    1.1       cgd 		}
   1378    1.1       cgd 		itp->it_value.tv_usec += 1000000;
   1379    1.1       cgd 		itp->it_value.tv_sec--;
   1380    1.1       cgd 	}
   1381    1.1       cgd 	itp->it_value.tv_usec -= usec;
   1382    1.1       cgd 	usec = 0;
   1383    1.1       cgd 	if (timerisset(&itp->it_value))
   1384    1.1       cgd 		return (1);
   1385    1.1       cgd 	/* expired, exactly at end of interval */
   1386    1.1       cgd expire:
   1387    1.1       cgd 	if (timerisset(&itp->it_interval)) {
   1388    1.1       cgd 		itp->it_value = itp->it_interval;
   1389    1.1       cgd 		itp->it_value.tv_usec -= usec;
   1390    1.1       cgd 		if (itp->it_value.tv_usec < 0) {
   1391    1.1       cgd 			itp->it_value.tv_usec += 1000000;
   1392    1.1       cgd 			itp->it_value.tv_sec--;
   1393    1.1       cgd 		}
   1394   1.63   thorpej 		timer_settime(pt);
   1395    1.1       cgd 	} else
   1396    1.1       cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1397    1.1       cgd 	return (0);
   1398   1.42       cgd }
   1399   1.42       cgd 
   1400   1.63   thorpej void
   1401   1.63   thorpej itimerfire(struct ptimer *pt)
   1402   1.63   thorpej {
   1403   1.63   thorpej 	struct proc *p = pt->pt_proc;
   1404   1.78        cl 
   1405   1.63   thorpej 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1406   1.63   thorpej 		/*
   1407   1.63   thorpej 		 * No RT signal infrastructure exists at this time;
   1408   1.63   thorpej 		 * just post the signal number and throw away the
   1409   1.63   thorpej 		 * value.
   1410   1.63   thorpej 		 */
   1411  1.113        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
   1412   1.63   thorpej 			pt->pt_overruns++;
   1413   1.63   thorpej 		else {
   1414   1.75  christos 			ksiginfo_t ksi;
   1415  1.111      yamt 			KSI_INIT(&ksi);
   1416   1.75  christos 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1417   1.75  christos 			ksi.ksi_code = SI_TIMER;
   1418   1.75  christos 			ksi.ksi_sigval = pt->pt_ev.sigev_value;
   1419   1.63   thorpej 			pt->pt_poverruns = pt->pt_overruns;
   1420   1.63   thorpej 			pt->pt_overruns = 0;
   1421  1.113        ad 			mutex_enter(&proclist_mutex);
   1422   1.75  christos 			kpsignal(p, &ksi, NULL);
   1423  1.113        ad 			mutex_exit(&proclist_mutex);
   1424   1.64   nathanw 		}
   1425   1.63   thorpej 	}
   1426   1.63   thorpej }
   1427   1.63   thorpej 
   1428   1.42       cgd /*
   1429   1.42       cgd  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1430   1.42       cgd  * for usage and rationale.
   1431   1.42       cgd  */
   1432   1.42       cgd int
   1433   1.63   thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1434   1.42       cgd {
   1435   1.49    itojun 	struct timeval tv, delta;
   1436  1.101    kardel 	int rv = 0;
   1437  1.101    kardel #ifndef __HAVE_TIMECOUNTER
   1438  1.101    kardel 	int s;
   1439  1.101    kardel #endif
   1440   1.42       cgd 
   1441  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1442  1.101    kardel 	getmicrouptime(&tv);
   1443  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1444   1.63   thorpej 	s = splclock();
   1445   1.49    itojun 	tv = mono_time;
   1446   1.49    itojun 	splx(s);
   1447  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1448   1.49    itojun 	timersub(&tv, lasttime, &delta);
   1449   1.42       cgd 
   1450   1.42       cgd 	/*
   1451   1.42       cgd 	 * check for 0,0 is so that the message will be seen at least once,
   1452   1.42       cgd 	 * even if interval is huge.
   1453   1.42       cgd 	 */
   1454   1.42       cgd 	if (timercmp(&delta, mininterval, >=) ||
   1455   1.42       cgd 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1456   1.49    itojun 		*lasttime = tv;
   1457   1.42       cgd 		rv = 1;
   1458   1.42       cgd 	}
   1459   1.50    itojun 
   1460   1.50    itojun 	return (rv);
   1461   1.50    itojun }
   1462   1.50    itojun 
   1463   1.50    itojun /*
   1464   1.50    itojun  * ppsratecheck(): packets (or events) per second limitation.
   1465   1.50    itojun  */
   1466   1.50    itojun int
   1467   1.63   thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1468   1.50    itojun {
   1469   1.50    itojun 	struct timeval tv, delta;
   1470  1.101    kardel 	int rv;
   1471  1.101    kardel #ifndef __HAVE_TIMECOUNTER
   1472  1.101    kardel 	int s;
   1473  1.101    kardel #endif
   1474   1.50    itojun 
   1475  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1476  1.101    kardel 	getmicrouptime(&tv);
   1477  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1478   1.63   thorpej 	s = splclock();
   1479   1.50    itojun 	tv = mono_time;
   1480   1.50    itojun 	splx(s);
   1481  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1482   1.50    itojun 	timersub(&tv, lasttime, &delta);
   1483   1.50    itojun 
   1484   1.50    itojun 	/*
   1485   1.50    itojun 	 * check for 0,0 is so that the message will be seen at least once.
   1486   1.50    itojun 	 * if more than one second have passed since the last update of
   1487   1.50    itojun 	 * lasttime, reset the counter.
   1488   1.50    itojun 	 *
   1489   1.50    itojun 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1490   1.50    itojun 	 * try to use *curpps for stat purposes as well.
   1491   1.50    itojun 	 */
   1492   1.50    itojun 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1493   1.50    itojun 	    delta.tv_sec >= 1) {
   1494   1.50    itojun 		*lasttime = tv;
   1495   1.50    itojun 		*curpps = 0;
   1496   1.69    dyoung 	}
   1497   1.69    dyoung 	if (maxpps < 0)
   1498   1.53    itojun 		rv = 1;
   1499   1.53    itojun 	else if (*curpps < maxpps)
   1500   1.50    itojun 		rv = 1;
   1501   1.50    itojun 	else
   1502   1.50    itojun 		rv = 0;
   1503   1.50    itojun 
   1504   1.51     jhawk #if 1 /*DIAGNOSTIC?*/
   1505   1.50    itojun 	/* be careful about wrap-around */
   1506   1.50    itojun 	if (*curpps + 1 > *curpps)
   1507   1.50    itojun 		*curpps = *curpps + 1;
   1508   1.50    itojun #else
   1509   1.50    itojun 	/*
   1510   1.50    itojun 	 * assume that there's not too many calls to this function.
   1511   1.50    itojun 	 * not sure if the assumption holds, as it depends on *caller's*
   1512   1.50    itojun 	 * behavior, not the behavior of this function.
   1513   1.50    itojun 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1514   1.51     jhawk 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1515   1.50    itojun 	 */
   1516   1.50    itojun 	*curpps = *curpps + 1;
   1517   1.50    itojun #endif
   1518   1.42       cgd 
   1519   1.42       cgd 	return (rv);
   1520    1.1       cgd }
   1521