kern_time.c revision 1.12 1 1.12 mycroft /* $NetBSD: kern_time.c,v 1.12 1994/12/11 18:06:10 mycroft Exp $ */
2 1.9 cgd
3 1.1 cgd /*
4 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
5 1.8 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.1 cgd * 3. All advertising materials mentioning features or use of this software
16 1.1 cgd * must display the following acknowledgement:
17 1.1 cgd * This product includes software developed by the University of
18 1.1 cgd * California, Berkeley and its contributors.
19 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
20 1.1 cgd * may be used to endorse or promote products derived from this software
21 1.1 cgd * without specific prior written permission.
22 1.1 cgd *
23 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 cgd * SUCH DAMAGE.
34 1.1 cgd *
35 1.9 cgd * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
36 1.1 cgd */
37 1.1 cgd
38 1.5 mycroft #include <sys/param.h>
39 1.5 mycroft #include <sys/resourcevar.h>
40 1.5 mycroft #include <sys/kernel.h>
41 1.8 cgd #include <sys/systm.h>
42 1.5 mycroft #include <sys/proc.h>
43 1.8 cgd #include <sys/vnode.h>
44 1.1 cgd
45 1.11 cgd #include <sys/mount.h>
46 1.11 cgd #include <sys/syscallargs.h>
47 1.11 cgd
48 1.5 mycroft #include <machine/cpu.h>
49 1.1 cgd
50 1.1 cgd /*
51 1.1 cgd * Time of day and interval timer support.
52 1.1 cgd *
53 1.1 cgd * These routines provide the kernel entry points to get and set
54 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
55 1.1 cgd * here provide support for adding and subtracting timeval structures
56 1.1 cgd * and decrementing interval timers, optionally reloading the interval
57 1.1 cgd * timers when they expire.
58 1.1 cgd */
59 1.1 cgd
60 1.1 cgd /* ARGSUSED */
61 1.3 andrew int
62 1.1 cgd gettimeofday(p, uap, retval)
63 1.1 cgd struct proc *p;
64 1.11 cgd register struct gettimeofday_args /* {
65 1.11 cgd syscallarg(struct timeval *) tp;
66 1.11 cgd syscallarg(struct timezone *) tzp;
67 1.11 cgd } */ *uap;
68 1.11 cgd register_t *retval;
69 1.1 cgd {
70 1.1 cgd struct timeval atv;
71 1.1 cgd int error = 0;
72 1.1 cgd
73 1.11 cgd if (SCARG(uap, tp)) {
74 1.1 cgd microtime(&atv);
75 1.11 cgd if (error = copyout((caddr_t)&atv, (caddr_t)SCARG(uap, tp),
76 1.1 cgd sizeof (atv)))
77 1.1 cgd return (error);
78 1.1 cgd }
79 1.11 cgd if (SCARG(uap, tzp))
80 1.11 cgd error = copyout((caddr_t)&tz, (caddr_t)SCARG(uap, tzp),
81 1.1 cgd sizeof (tz));
82 1.1 cgd return (error);
83 1.1 cgd }
84 1.1 cgd
85 1.1 cgd /* ARGSUSED */
86 1.3 andrew int
87 1.1 cgd settimeofday(p, uap, retval)
88 1.1 cgd struct proc *p;
89 1.11 cgd struct settimeofday_args /* {
90 1.11 cgd syscallarg(struct timeval *) tv;
91 1.11 cgd syscallarg(struct timezone *) tzp;
92 1.11 cgd } */ *uap;
93 1.11 cgd register_t *retval;
94 1.1 cgd {
95 1.8 cgd struct timeval atv, delta;
96 1.1 cgd struct timezone atz;
97 1.1 cgd int error, s;
98 1.1 cgd
99 1.1 cgd if (error = suser(p->p_ucred, &p->p_acflag))
100 1.1 cgd return (error);
101 1.8 cgd /* Verify all parameters before changing time. */
102 1.11 cgd if (SCARG(uap, tv) && (error = copyin((caddr_t)SCARG(uap, tv),
103 1.11 cgd (caddr_t)&atv, sizeof(atv))))
104 1.8 cgd return (error);
105 1.11 cgd if (SCARG(uap, tzp) && (error = copyin((caddr_t)SCARG(uap, tzp),
106 1.11 cgd (caddr_t)&atz, sizeof(atz))))
107 1.8 cgd return (error);
108 1.11 cgd if (SCARG(uap, tv)) {
109 1.1 cgd /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
110 1.12 mycroft delta = atv;
111 1.8 cgd s = splclock();
112 1.12 mycroft __timersub(&delta, &time);
113 1.8 cgd time = atv;
114 1.8 cgd (void) splsoftclock();
115 1.12 mycroft __timeradd(&boottime, &delta);
116 1.12 mycroft __timeradd(&runtime, &delta);
117 1.8 cgd LEASE_UPDATETIME(delta.tv_sec);
118 1.8 cgd splx(s);
119 1.1 cgd resettodr();
120 1.1 cgd }
121 1.11 cgd if (SCARG(uap, tzp))
122 1.1 cgd tz = atz;
123 1.8 cgd return (0);
124 1.1 cgd }
125 1.1 cgd
126 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
127 1.1 cgd long timedelta; /* unapplied time correction, us. */
128 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
129 1.1 cgd
130 1.1 cgd /* ARGSUSED */
131 1.3 andrew int
132 1.1 cgd adjtime(p, uap, retval)
133 1.1 cgd struct proc *p;
134 1.11 cgd register struct adjtime_args /* {
135 1.11 cgd syscallarg(struct timeval *) delta;
136 1.11 cgd syscallarg(struct timeval *) olddelta;
137 1.11 cgd } */ *uap;
138 1.11 cgd register_t *retval;
139 1.1 cgd {
140 1.8 cgd struct timeval atv;
141 1.8 cgd register long ndelta, ntickdelta, odelta;
142 1.1 cgd int s, error;
143 1.1 cgd
144 1.1 cgd if (error = suser(p->p_ucred, &p->p_acflag))
145 1.1 cgd return (error);
146 1.11 cgd if (error = copyin((caddr_t)SCARG(uap, delta), (caddr_t)&atv,
147 1.11 cgd sizeof(struct timeval)))
148 1.1 cgd return (error);
149 1.8 cgd
150 1.8 cgd /*
151 1.8 cgd * Compute the total correction and the rate at which to apply it.
152 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
153 1.8 cgd * delta, so that after some number of incremental changes in
154 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
155 1.8 cgd * overshoot and start taking us away from the desired final time.
156 1.8 cgd */
157 1.1 cgd ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
158 1.8 cgd if (ndelta > bigadj)
159 1.8 cgd ntickdelta = 10 * tickadj;
160 1.8 cgd else
161 1.8 cgd ntickdelta = tickadj;
162 1.8 cgd if (ndelta % ntickdelta)
163 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
164 1.8 cgd
165 1.8 cgd /*
166 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
167 1.8 cgd * if we want time to run slower; then hardclock can simply compute
168 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
169 1.8 cgd */
170 1.8 cgd if (ndelta < 0)
171 1.8 cgd ntickdelta = -ntickdelta;
172 1.1 cgd s = splclock();
173 1.8 cgd odelta = timedelta;
174 1.1 cgd timedelta = ndelta;
175 1.8 cgd tickdelta = ntickdelta;
176 1.1 cgd splx(s);
177 1.1 cgd
178 1.11 cgd if (SCARG(uap, olddelta)) {
179 1.8 cgd atv.tv_sec = odelta / 1000000;
180 1.8 cgd atv.tv_usec = odelta % 1000000;
181 1.11 cgd (void) copyout((caddr_t)&atv, (caddr_t)SCARG(uap, olddelta),
182 1.8 cgd sizeof(struct timeval));
183 1.8 cgd }
184 1.1 cgd return (0);
185 1.1 cgd }
186 1.1 cgd
187 1.1 cgd /*
188 1.1 cgd * Get value of an interval timer. The process virtual and
189 1.1 cgd * profiling virtual time timers are kept in the p_stats area, since
190 1.1 cgd * they can be swapped out. These are kept internally in the
191 1.1 cgd * way they are specified externally: in time until they expire.
192 1.1 cgd *
193 1.1 cgd * The real time interval timer is kept in the process table slot
194 1.1 cgd * for the process, and its value (it_value) is kept as an
195 1.1 cgd * absolute time rather than as a delta, so that it is easy to keep
196 1.1 cgd * periodic real-time signals from drifting.
197 1.1 cgd *
198 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
199 1.1 cgd * kern_clock.c. The real time timer is processed by a timeout
200 1.1 cgd * routine, called from the softclock() routine. Since a callout
201 1.1 cgd * may be delayed in real time due to interrupt processing in the system,
202 1.1 cgd * it is possible for the real time timeout routine (realitexpire, given below),
203 1.1 cgd * to be delayed in real time past when it is supposed to occur. It
204 1.1 cgd * does not suffice, therefore, to reload the real timer .it_value from the
205 1.1 cgd * real time timers .it_interval. Rather, we compute the next time in
206 1.1 cgd * absolute time the timer should go off.
207 1.1 cgd */
208 1.1 cgd /* ARGSUSED */
209 1.3 andrew int
210 1.1 cgd getitimer(p, uap, retval)
211 1.1 cgd struct proc *p;
212 1.11 cgd register struct getitimer_args /* {
213 1.11 cgd syscallarg(u_int) which;
214 1.11 cgd syscallarg(struct itimerval *) itv;
215 1.11 cgd } */ *uap;
216 1.11 cgd register_t *retval;
217 1.1 cgd {
218 1.1 cgd struct itimerval aitv;
219 1.1 cgd int s;
220 1.1 cgd
221 1.11 cgd if (SCARG(uap, which) > ITIMER_PROF)
222 1.1 cgd return (EINVAL);
223 1.1 cgd s = splclock();
224 1.11 cgd if (SCARG(uap, which) == ITIMER_REAL) {
225 1.1 cgd /*
226 1.12 mycroft * Convert from absolute to relative time in .it_value
227 1.1 cgd * part of real time timer. If time for real time timer
228 1.1 cgd * has passed return 0, else return difference between
229 1.1 cgd * current time and time for the timer to go off.
230 1.1 cgd */
231 1.1 cgd aitv = p->p_realtimer;
232 1.1 cgd if (timerisset(&aitv.it_value))
233 1.1 cgd if (timercmp(&aitv.it_value, &time, <))
234 1.1 cgd timerclear(&aitv.it_value);
235 1.1 cgd else
236 1.12 mycroft __timersub(&aitv.it_value, &time);
237 1.1 cgd } else
238 1.11 cgd aitv = p->p_stats->p_timer[SCARG(uap, which)];
239 1.1 cgd splx(s);
240 1.11 cgd return (copyout((caddr_t)&aitv, (caddr_t)SCARG(uap, itv),
241 1.1 cgd sizeof (struct itimerval)));
242 1.1 cgd }
243 1.1 cgd
244 1.1 cgd /* ARGSUSED */
245 1.3 andrew int
246 1.1 cgd setitimer(p, uap, retval)
247 1.1 cgd struct proc *p;
248 1.11 cgd register struct setitimer_args /* {
249 1.11 cgd syscallarg(u_int) which;
250 1.11 cgd syscallarg(struct itimerval *) itv;
251 1.11 cgd syscallarg(struct itimerval *) oitv;
252 1.11 cgd } */ *uap;
253 1.11 cgd register_t *retval;
254 1.1 cgd {
255 1.1 cgd struct itimerval aitv;
256 1.1 cgd register struct itimerval *itvp;
257 1.1 cgd int s, error;
258 1.1 cgd
259 1.11 cgd if (SCARG(uap, which) > ITIMER_PROF)
260 1.1 cgd return (EINVAL);
261 1.11 cgd itvp = SCARG(uap, itv);
262 1.1 cgd if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
263 1.1 cgd sizeof(struct itimerval))))
264 1.1 cgd return (error);
265 1.11 cgd if ((SCARG(uap, itv) = SCARG(uap, oitv)) &&
266 1.11 cgd (error = getitimer(p, uap, retval)))
267 1.1 cgd return (error);
268 1.1 cgd if (itvp == 0)
269 1.1 cgd return (0);
270 1.1 cgd if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
271 1.1 cgd return (EINVAL);
272 1.1 cgd s = splclock();
273 1.11 cgd if (SCARG(uap, which) == ITIMER_REAL) {
274 1.7 mycroft untimeout(realitexpire, p);
275 1.1 cgd if (timerisset(&aitv.it_value)) {
276 1.12 mycroft __timeradd(&aitv.it_value, &time);
277 1.7 mycroft timeout(realitexpire, p, hzto(&aitv.it_value));
278 1.1 cgd }
279 1.1 cgd p->p_realtimer = aitv;
280 1.1 cgd } else
281 1.11 cgd p->p_stats->p_timer[SCARG(uap, which)] = aitv;
282 1.1 cgd splx(s);
283 1.1 cgd return (0);
284 1.1 cgd }
285 1.1 cgd
286 1.1 cgd /*
287 1.1 cgd * Real interval timer expired:
288 1.1 cgd * send process whose timer expired an alarm signal.
289 1.1 cgd * If time is not set up to reload, then just return.
290 1.1 cgd * Else compute next time timer should go off which is > current time.
291 1.1 cgd * This is where delay in processing this timeout causes multiple
292 1.1 cgd * SIGALRM calls to be compressed into one.
293 1.1 cgd */
294 1.3 andrew void
295 1.6 cgd realitexpire(arg)
296 1.6 cgd void *arg;
297 1.6 cgd {
298 1.1 cgd register struct proc *p;
299 1.1 cgd int s;
300 1.1 cgd
301 1.6 cgd p = (struct proc *)arg;
302 1.1 cgd psignal(p, SIGALRM);
303 1.1 cgd if (!timerisset(&p->p_realtimer.it_interval)) {
304 1.1 cgd timerclear(&p->p_realtimer.it_value);
305 1.1 cgd return;
306 1.1 cgd }
307 1.1 cgd for (;;) {
308 1.1 cgd s = splclock();
309 1.12 mycroft __timeradd(&p->p_realtimer.it_value,
310 1.1 cgd &p->p_realtimer.it_interval);
311 1.1 cgd if (timercmp(&p->p_realtimer.it_value, &time, >)) {
312 1.7 mycroft timeout(realitexpire, p,
313 1.1 cgd hzto(&p->p_realtimer.it_value));
314 1.1 cgd splx(s);
315 1.1 cgd return;
316 1.1 cgd }
317 1.1 cgd splx(s);
318 1.1 cgd }
319 1.1 cgd }
320 1.1 cgd
321 1.1 cgd /*
322 1.1 cgd * Check that a proposed value to load into the .it_value or
323 1.1 cgd * .it_interval part of an interval timer is acceptable, and
324 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
325 1.1 cgd * than the resolution of the clock, round it up.)
326 1.1 cgd */
327 1.3 andrew int
328 1.1 cgd itimerfix(tv)
329 1.1 cgd struct timeval *tv;
330 1.1 cgd {
331 1.1 cgd
332 1.1 cgd if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
333 1.1 cgd tv->tv_usec < 0 || tv->tv_usec >= 1000000)
334 1.1 cgd return (EINVAL);
335 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
336 1.1 cgd tv->tv_usec = tick;
337 1.1 cgd return (0);
338 1.1 cgd }
339 1.1 cgd
340 1.1 cgd /*
341 1.1 cgd * Decrement an interval timer by a specified number
342 1.1 cgd * of microseconds, which must be less than a second,
343 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
344 1.1 cgd * it. In this case, carry over (usec - old value) to
345 1.8 cgd * reduce the value reloaded into the timer so that
346 1.1 cgd * the timer does not drift. This routine assumes
347 1.1 cgd * that it is called in a context where the timers
348 1.1 cgd * on which it is operating cannot change in value.
349 1.1 cgd */
350 1.3 andrew int
351 1.1 cgd itimerdecr(itp, usec)
352 1.1 cgd register struct itimerval *itp;
353 1.1 cgd int usec;
354 1.1 cgd {
355 1.1 cgd
356 1.1 cgd if (itp->it_value.tv_usec < usec) {
357 1.1 cgd if (itp->it_value.tv_sec == 0) {
358 1.1 cgd /* expired, and already in next interval */
359 1.1 cgd usec -= itp->it_value.tv_usec;
360 1.1 cgd goto expire;
361 1.1 cgd }
362 1.1 cgd itp->it_value.tv_usec += 1000000;
363 1.1 cgd itp->it_value.tv_sec--;
364 1.1 cgd }
365 1.1 cgd itp->it_value.tv_usec -= usec;
366 1.1 cgd usec = 0;
367 1.1 cgd if (timerisset(&itp->it_value))
368 1.1 cgd return (1);
369 1.1 cgd /* expired, exactly at end of interval */
370 1.1 cgd expire:
371 1.1 cgd if (timerisset(&itp->it_interval)) {
372 1.1 cgd itp->it_value = itp->it_interval;
373 1.1 cgd itp->it_value.tv_usec -= usec;
374 1.1 cgd if (itp->it_value.tv_usec < 0) {
375 1.1 cgd itp->it_value.tv_usec += 1000000;
376 1.1 cgd itp->it_value.tv_sec--;
377 1.1 cgd }
378 1.1 cgd } else
379 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
380 1.1 cgd return (0);
381 1.1 cgd }
382