kern_time.c revision 1.122 1 1.122 dsl /* $NetBSD: kern_time.c,v 1.122 2007/05/13 14:43:53 dsl Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.88 mycroft * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.72 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 cgd * may be used to endorse or promote products derived from this software
53 1.1 cgd * without specific prior written permission.
54 1.1 cgd *
55 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 cgd * SUCH DAMAGE.
66 1.1 cgd *
67 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 1.1 cgd */
69 1.58 lukem
70 1.58 lukem #include <sys/cdefs.h>
71 1.122 dsl __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.122 2007/05/13 14:43:53 dsl Exp $");
72 1.1 cgd
73 1.5 mycroft #include <sys/param.h>
74 1.5 mycroft #include <sys/resourcevar.h>
75 1.5 mycroft #include <sys/kernel.h>
76 1.8 cgd #include <sys/systm.h>
77 1.5 mycroft #include <sys/proc.h>
78 1.8 cgd #include <sys/vnode.h>
79 1.17 christos #include <sys/signalvar.h>
80 1.25 perry #include <sys/syslog.h>
81 1.101 kardel #include <sys/timetc.h>
82 1.122 dsl #ifndef __HAVE_TIMECOUNTER
83 1.95 cube #include <sys/timevar.h>
84 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
85 1.99 elad #include <sys/kauth.h>
86 1.1 cgd
87 1.11 cgd #include <sys/mount.h>
88 1.11 cgd #include <sys/syscallargs.h>
89 1.19 christos
90 1.37 thorpej #include <uvm/uvm_extern.h>
91 1.37 thorpej
92 1.5 mycroft #include <machine/cpu.h>
93 1.23 cgd
94 1.97 simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
95 1.118 ad &pool_allocator_nointr, IPL_NONE);
96 1.97 simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
97 1.118 ad &pool_allocator_nointr, IPL_NONE);
98 1.97 simonb
99 1.101 kardel #ifdef __HAVE_TIMECOUNTER
100 1.101 kardel static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
101 1.101 kardel #endif /* __HAVE_TIMECOUNTER */
102 1.63 thorpej
103 1.63 thorpej /* Time of day and interval timer support.
104 1.1 cgd *
105 1.1 cgd * These routines provide the kernel entry points to get and set
106 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
107 1.1 cgd * here provide support for adding and subtracting timeval structures
108 1.1 cgd * and decrementing interval timers, optionally reloading the interval
109 1.1 cgd * timers when they expire.
110 1.1 cgd */
111 1.1 cgd
112 1.22 jtc /* This function is used by clock_settime and settimeofday */
113 1.39 tron int
114 1.98 christos settime(struct proc *p, struct timespec *ts)
115 1.22 jtc {
116 1.98 christos struct timeval delta, tv;
117 1.101 kardel #ifdef __HAVE_TIMECOUNTER
118 1.101 kardel struct timeval now;
119 1.101 kardel struct timespec ts1;
120 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
121 1.47 thorpej struct cpu_info *ci;
122 1.114 ad int s1, s2;
123 1.22 jtc
124 1.98 christos /*
125 1.98 christos * Don't allow the time to be set forward so far it will wrap
126 1.98 christos * and become negative, thus allowing an attacker to bypass
127 1.98 christos * the next check below. The cutoff is 1 year before rollover
128 1.98 christos * occurs, so even if the attacker uses adjtime(2) to move
129 1.98 christos * the time past the cutoff, it will take a very long time
130 1.98 christos * to get to the wrap point.
131 1.98 christos *
132 1.98 christos * XXX: we check against INT_MAX since on 64-bit
133 1.98 christos * platforms, sizeof(int) != sizeof(long) and
134 1.98 christos * time_t is 32 bits even when atv.tv_sec is 64 bits.
135 1.98 christos */
136 1.98 christos if (ts->tv_sec > INT_MAX - 365*24*60*60) {
137 1.113 ad struct proc *pp;
138 1.113 ad
139 1.117 ad mutex_enter(&proclist_lock);
140 1.113 ad pp = p->p_pptr;
141 1.113 ad mutex_enter(&pp->p_mutex);
142 1.98 christos log(LOG_WARNING, "pid %d (%s) "
143 1.98 christos "invoked by uid %d ppid %d (%s) "
144 1.98 christos "tried to set clock forward to %ld\n",
145 1.99 elad p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
146 1.98 christos pp->p_pid, pp->p_comm, (long)ts->tv_sec);
147 1.113 ad mutex_exit(&pp->p_mutex);
148 1.117 ad mutex_exit(&proclist_lock);
149 1.98 christos return (EPERM);
150 1.98 christos }
151 1.98 christos TIMESPEC_TO_TIMEVAL(&tv, ts);
152 1.98 christos
153 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
154 1.114 ad s1 = splsoftclock();
155 1.114 ad s2 = splclock();
156 1.101 kardel #ifdef __HAVE_TIMECOUNTER
157 1.101 kardel microtime(&now);
158 1.101 kardel timersub(&tv, &now, &delta);
159 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
160 1.98 christos timersub(&tv, &time, &delta);
161 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
162 1.106 elad if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
163 1.106 elad kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
164 1.106 elad KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
165 1.114 ad splx(s1);
166 1.29 tls return (EPERM);
167 1.55 tron }
168 1.29 tls #ifdef notyet
169 1.109 elad if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
170 1.114 ad splx(s1);
171 1.29 tls return (EPERM);
172 1.55 tron }
173 1.29 tls #endif
174 1.103 kardel
175 1.101 kardel #ifdef __HAVE_TIMECOUNTER
176 1.103 kardel TIMEVAL_TO_TIMESPEC(&tv, &ts1);
177 1.101 kardel tc_setclock(&ts1);
178 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
179 1.98 christos time = tv;
180 1.103 kardel #endif /* !__HAVE_TIMECOUNTER */
181 1.103 kardel
182 1.114 ad splx(s2);
183 1.103 kardel
184 1.22 jtc timeradd(&boottime, &delta, &boottime);
185 1.103 kardel
186 1.47 thorpej /*
187 1.47 thorpej * XXXSMP
188 1.47 thorpej * This is wrong. We should traverse a list of all
189 1.47 thorpej * CPUs and add the delta to the runtime of those
190 1.47 thorpej * CPUs which have a process on them.
191 1.47 thorpej */
192 1.47 thorpej ci = curcpu();
193 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
194 1.47 thorpej &ci->ci_schedstate.spc_runtime);
195 1.114 ad splx(s1);
196 1.22 jtc resettodr();
197 1.29 tls return (0);
198 1.22 jtc }
199 1.22 jtc
200 1.22 jtc /* ARGSUSED */
201 1.22 jtc int
202 1.110 yamt sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
203 1.22 jtc {
204 1.45 augustss struct sys_clock_gettime_args /* {
205 1.22 jtc syscallarg(clockid_t) clock_id;
206 1.23 cgd syscallarg(struct timespec *) tp;
207 1.23 cgd } */ *uap = v;
208 1.22 jtc clockid_t clock_id;
209 1.22 jtc struct timespec ats;
210 1.22 jtc
211 1.22 jtc clock_id = SCARG(uap, clock_id);
212 1.61 simonb switch (clock_id) {
213 1.61 simonb case CLOCK_REALTIME:
214 1.96 simonb nanotime(&ats);
215 1.61 simonb break;
216 1.61 simonb case CLOCK_MONOTONIC:
217 1.101 kardel nanouptime(&ats);
218 1.61 simonb break;
219 1.61 simonb default:
220 1.22 jtc return (EINVAL);
221 1.61 simonb }
222 1.22 jtc
223 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
224 1.22 jtc }
225 1.22 jtc
226 1.22 jtc /* ARGSUSED */
227 1.22 jtc int
228 1.110 yamt sys_clock_settime(struct lwp *l, void *v, register_t *retval)
229 1.22 jtc {
230 1.45 augustss struct sys_clock_settime_args /* {
231 1.22 jtc syscallarg(clockid_t) clock_id;
232 1.23 cgd syscallarg(const struct timespec *) tp;
233 1.23 cgd } */ *uap = v;
234 1.22 jtc int error;
235 1.22 jtc
236 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
237 1.106 elad KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
238 1.22 jtc return (error);
239 1.22 jtc
240 1.105 ad return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
241 1.56 manu }
242 1.56 manu
243 1.56 manu
244 1.56 manu int
245 1.98 christos clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
246 1.56 manu {
247 1.60 manu struct timespec ats;
248 1.56 manu int error;
249 1.56 manu
250 1.60 manu if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
251 1.60 manu return (error);
252 1.60 manu
253 1.61 simonb switch (clock_id) {
254 1.61 simonb case CLOCK_REALTIME:
255 1.98 christos if ((error = settime(p, &ats)) != 0)
256 1.61 simonb return (error);
257 1.61 simonb break;
258 1.61 simonb case CLOCK_MONOTONIC:
259 1.61 simonb return (EINVAL); /* read-only clock */
260 1.61 simonb default:
261 1.56 manu return (EINVAL);
262 1.61 simonb }
263 1.22 jtc
264 1.22 jtc return 0;
265 1.22 jtc }
266 1.22 jtc
267 1.22 jtc int
268 1.110 yamt sys_clock_getres(struct lwp *l, void *v, register_t *retval)
269 1.22 jtc {
270 1.45 augustss struct sys_clock_getres_args /* {
271 1.22 jtc syscallarg(clockid_t) clock_id;
272 1.23 cgd syscallarg(struct timespec *) tp;
273 1.23 cgd } */ *uap = v;
274 1.22 jtc clockid_t clock_id;
275 1.22 jtc struct timespec ts;
276 1.22 jtc int error = 0;
277 1.22 jtc
278 1.22 jtc clock_id = SCARG(uap, clock_id);
279 1.61 simonb switch (clock_id) {
280 1.61 simonb case CLOCK_REALTIME:
281 1.61 simonb case CLOCK_MONOTONIC:
282 1.22 jtc ts.tv_sec = 0;
283 1.102 kardel if (tc_getfrequency() > 1000000000)
284 1.102 kardel ts.tv_nsec = 1;
285 1.102 kardel else
286 1.102 kardel ts.tv_nsec = 1000000000 / tc_getfrequency();
287 1.61 simonb break;
288 1.61 simonb default:
289 1.61 simonb return (EINVAL);
290 1.61 simonb }
291 1.22 jtc
292 1.61 simonb if (SCARG(uap, tp))
293 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
294 1.22 jtc
295 1.22 jtc return error;
296 1.22 jtc }
297 1.22 jtc
298 1.27 jtc /* ARGSUSED */
299 1.27 jtc int
300 1.110 yamt sys_nanosleep(struct lwp *l, void *v, register_t *retval)
301 1.27 jtc {
302 1.101 kardel struct sys_nanosleep_args/* {
303 1.101 kardel syscallarg(struct timespec *) rqtp;
304 1.101 kardel syscallarg(struct timespec *) rmtp;
305 1.101 kardel } */ *uap = v;
306 1.101 kardel struct timespec rmt, rqt;
307 1.120 dsl int error, error1;
308 1.101 kardel
309 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
310 1.101 kardel if (error)
311 1.101 kardel return (error);
312 1.101 kardel
313 1.120 dsl error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
314 1.120 dsl if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
315 1.120 dsl return error;
316 1.120 dsl
317 1.120 dsl error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
318 1.120 dsl return error1 ? error1 : error;
319 1.120 dsl }
320 1.120 dsl
321 1.120 dsl int
322 1.120 dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
323 1.120 dsl {
324 1.120 dsl #ifdef __HAVE_TIMECOUNTER
325 1.120 dsl int error, timo;
326 1.120 dsl
327 1.120 dsl if (itimespecfix(rqt))
328 1.101 kardel return (EINVAL);
329 1.101 kardel
330 1.120 dsl timo = tstohz(rqt);
331 1.101 kardel /*
332 1.101 kardel * Avoid inadvertantly sleeping forever
333 1.101 kardel */
334 1.101 kardel if (timo == 0)
335 1.101 kardel timo = 1;
336 1.101 kardel
337 1.120 dsl getnanouptime(rmt);
338 1.104 kardel
339 1.115 thorpej error = kpause("nanoslp", true, timo, NULL);
340 1.101 kardel if (error == ERESTART)
341 1.101 kardel error = EINTR;
342 1.101 kardel if (error == EWOULDBLOCK)
343 1.101 kardel error = 0;
344 1.101 kardel
345 1.120 dsl if (rmt!= NULL) {
346 1.104 kardel struct timespec rmtend;
347 1.101 kardel
348 1.104 kardel getnanouptime(&rmtend);
349 1.101 kardel
350 1.120 dsl timespecsub(&rmtend, rmt, rmt);
351 1.120 dsl timespecsub(rqt, rmt, rmt);
352 1.120 dsl if (rmt->tv_sec < 0)
353 1.120 dsl timespecclear(rmt);
354 1.101 kardel }
355 1.101 kardel
356 1.101 kardel return error;
357 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
358 1.27 jtc struct timeval atv, utv;
359 1.27 jtc int error, s, timo;
360 1.27 jtc
361 1.120 dsl TIMESPEC_TO_TIMEVAL(&atv, rqt);
362 1.80 christos if (itimerfix(&atv))
363 1.27 jtc return (EINVAL);
364 1.27 jtc
365 1.27 jtc s = splclock();
366 1.27 jtc timeradd(&atv,&time,&atv);
367 1.27 jtc timo = hzto(&atv);
368 1.63 thorpej /*
369 1.27 jtc * Avoid inadvertantly sleeping forever
370 1.27 jtc */
371 1.27 jtc if (timo == 0)
372 1.27 jtc timo = 1;
373 1.27 jtc splx(s);
374 1.27 jtc
375 1.115 thorpej error = kpause("nanoslp", true, timo, NULL);
376 1.27 jtc if (error == ERESTART)
377 1.27 jtc error = EINTR;
378 1.27 jtc if (error == EWOULDBLOCK)
379 1.27 jtc error = 0;
380 1.27 jtc
381 1.120 dsl if (rmt != NULL) {
382 1.27 jtc s = splclock();
383 1.27 jtc utv = time;
384 1.27 jtc splx(s);
385 1.27 jtc
386 1.27 jtc timersub(&atv, &utv, &utv);
387 1.27 jtc if (utv.tv_sec < 0)
388 1.27 jtc timerclear(&utv);
389 1.27 jtc
390 1.120 dsl TIMEVAL_TO_TIMESPEC(&utv, rmt);
391 1.27 jtc }
392 1.27 jtc
393 1.27 jtc return error;
394 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
395 1.27 jtc }
396 1.22 jtc
397 1.1 cgd /* ARGSUSED */
398 1.3 andrew int
399 1.110 yamt sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
400 1.15 thorpej {
401 1.45 augustss struct sys_gettimeofday_args /* {
402 1.11 cgd syscallarg(struct timeval *) tp;
403 1.84 simonb syscallarg(void *) tzp; really "struct timezone *"
404 1.15 thorpej } */ *uap = v;
405 1.1 cgd struct timeval atv;
406 1.1 cgd int error = 0;
407 1.25 perry struct timezone tzfake;
408 1.1 cgd
409 1.11 cgd if (SCARG(uap, tp)) {
410 1.1 cgd microtime(&atv);
411 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
412 1.17 christos if (error)
413 1.1 cgd return (error);
414 1.1 cgd }
415 1.25 perry if (SCARG(uap, tzp)) {
416 1.25 perry /*
417 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
418 1.25 perry * fake up a timezone struct and return it if demanded.
419 1.25 perry */
420 1.25 perry tzfake.tz_minuteswest = 0;
421 1.25 perry tzfake.tz_dsttime = 0;
422 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
423 1.25 perry }
424 1.1 cgd return (error);
425 1.1 cgd }
426 1.1 cgd
427 1.1 cgd /* ARGSUSED */
428 1.3 andrew int
429 1.110 yamt sys_settimeofday(struct lwp *l, void *v, register_t *retval)
430 1.15 thorpej {
431 1.16 mycroft struct sys_settimeofday_args /* {
432 1.24 cgd syscallarg(const struct timeval *) tv;
433 1.84 simonb syscallarg(const void *) tzp; really "const struct timezone *"
434 1.15 thorpej } */ *uap = v;
435 1.60 manu
436 1.119 dsl return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
437 1.60 manu }
438 1.60 manu
439 1.60 manu int
440 1.119 dsl settimeofday1(const struct timeval *utv, bool userspace,
441 1.119 dsl const void *utzp, struct lwp *l, bool check_kauth)
442 1.60 manu {
443 1.22 jtc struct timeval atv;
444 1.98 christos struct timespec ts;
445 1.22 jtc int error;
446 1.1 cgd
447 1.8 cgd /* Verify all parameters before changing time. */
448 1.119 dsl
449 1.119 dsl if (check_kauth) {
450 1.119 dsl error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
451 1.119 dsl KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL);
452 1.119 dsl if (error != 0)
453 1.119 dsl return (error);
454 1.119 dsl }
455 1.119 dsl
456 1.25 perry /*
457 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
458 1.25 perry * obsolete program would try to set it, so we log a warning.
459 1.25 perry */
460 1.98 christos if (utzp)
461 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
462 1.119 dsl "(obsolete) kernel time zone\n", l->l_proc->p_pid);
463 1.98 christos
464 1.98 christos if (utv == NULL)
465 1.98 christos return 0;
466 1.98 christos
467 1.119 dsl if (userspace) {
468 1.119 dsl if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
469 1.119 dsl return error;
470 1.119 dsl utv = &atv;
471 1.119 dsl }
472 1.119 dsl
473 1.119 dsl TIMEVAL_TO_TIMESPEC(utv, &ts);
474 1.119 dsl return settime(l->l_proc, &ts);
475 1.1 cgd }
476 1.1 cgd
477 1.101 kardel #ifndef __HAVE_TIMECOUNTER
478 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
479 1.1 cgd long timedelta; /* unapplied time correction, us. */
480 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
481 1.101 kardel #endif
482 1.101 kardel
483 1.68 dsl int time_adjusted; /* set if an adjustment is made */
484 1.1 cgd
485 1.1 cgd /* ARGSUSED */
486 1.3 andrew int
487 1.110 yamt sys_adjtime(struct lwp *l, void *v, register_t *retval)
488 1.15 thorpej {
489 1.45 augustss struct sys_adjtime_args /* {
490 1.24 cgd syscallarg(const struct timeval *) delta;
491 1.11 cgd syscallarg(struct timeval *) olddelta;
492 1.15 thorpej } */ *uap = v;
493 1.56 manu int error;
494 1.1 cgd
495 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
496 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
497 1.1 cgd return (error);
498 1.17 christos
499 1.105 ad return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
500 1.56 manu }
501 1.56 manu
502 1.56 manu int
503 1.110 yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
504 1.56 manu {
505 1.60 manu struct timeval atv;
506 1.101 kardel int error = 0;
507 1.101 kardel
508 1.101 kardel #ifdef __HAVE_TIMECOUNTER
509 1.101 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
510 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
511 1.56 manu long ndelta, ntickdelta, odelta;
512 1.56 manu int s;
513 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
514 1.101 kardel
515 1.101 kardel #ifdef __HAVE_TIMECOUNTER
516 1.101 kardel if (olddelta) {
517 1.101 kardel atv.tv_sec = time_adjtime / 1000000;
518 1.101 kardel atv.tv_usec = time_adjtime % 1000000;
519 1.101 kardel if (atv.tv_usec < 0) {
520 1.101 kardel atv.tv_usec += 1000000;
521 1.101 kardel atv.tv_sec--;
522 1.101 kardel }
523 1.101 kardel error = copyout(&atv, olddelta, sizeof(struct timeval));
524 1.101 kardel if (error)
525 1.101 kardel return (error);
526 1.101 kardel }
527 1.101 kardel
528 1.101 kardel if (delta) {
529 1.101 kardel error = copyin(delta, &atv, sizeof(struct timeval));
530 1.101 kardel if (error)
531 1.101 kardel return (error);
532 1.101 kardel
533 1.101 kardel time_adjtime = (int64_t)atv.tv_sec * 1000000 +
534 1.101 kardel atv.tv_usec;
535 1.8 cgd
536 1.101 kardel if (time_adjtime)
537 1.101 kardel /* We need to save the system time during shutdown */
538 1.101 kardel time_adjusted |= 1;
539 1.101 kardel }
540 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
541 1.60 manu error = copyin(delta, &atv, sizeof(struct timeval));
542 1.60 manu if (error)
543 1.60 manu return (error);
544 1.60 manu
545 1.8 cgd /*
546 1.8 cgd * Compute the total correction and the rate at which to apply it.
547 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
548 1.8 cgd * delta, so that after some number of incremental changes in
549 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
550 1.8 cgd * overshoot and start taking us away from the desired final time.
551 1.8 cgd */
552 1.60 manu ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
553 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
554 1.8 cgd ntickdelta = 10 * tickadj;
555 1.8 cgd else
556 1.8 cgd ntickdelta = tickadj;
557 1.8 cgd if (ndelta % ntickdelta)
558 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
559 1.8 cgd
560 1.8 cgd /*
561 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
562 1.8 cgd * if we want time to run slower; then hardclock can simply compute
563 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
564 1.8 cgd */
565 1.8 cgd if (ndelta < 0)
566 1.8 cgd ntickdelta = -ntickdelta;
567 1.68 dsl if (ndelta != 0)
568 1.68 dsl /* We need to save the system clock time during shutdown */
569 1.68 dsl time_adjusted |= 1;
570 1.1 cgd s = splclock();
571 1.8 cgd odelta = timedelta;
572 1.1 cgd timedelta = ndelta;
573 1.8 cgd tickdelta = ntickdelta;
574 1.1 cgd splx(s);
575 1.1 cgd
576 1.56 manu if (olddelta) {
577 1.60 manu atv.tv_sec = odelta / 1000000;
578 1.60 manu atv.tv_usec = odelta % 1000000;
579 1.79 chs error = copyout(&atv, olddelta, sizeof(struct timeval));
580 1.8 cgd }
581 1.101 kardel #endif /* __HAVE_TIMECOUNTER */
582 1.101 kardel
583 1.79 chs return error;
584 1.1 cgd }
585 1.1 cgd
586 1.1 cgd /*
587 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
588 1.63 thorpej * timer_*() family of routines are supported.
589 1.1 cgd *
590 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
591 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
592 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
593 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
594 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
595 1.63 thorpej * syscall.
596 1.1 cgd *
597 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
598 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
599 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
600 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
601 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
602 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
603 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
604 1.63 thorpej * given below), to be delayed in real time past when it is supposed
605 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
606 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
607 1.63 thorpej * compute the next time in absolute time the timer should go off. */
608 1.63 thorpej
609 1.63 thorpej /* Allocate a POSIX realtime timer. */
610 1.63 thorpej int
611 1.110 yamt sys_timer_create(struct lwp *l, void *v, register_t *retval)
612 1.63 thorpej {
613 1.63 thorpej struct sys_timer_create_args /* {
614 1.63 thorpej syscallarg(clockid_t) clock_id;
615 1.63 thorpej syscallarg(struct sigevent *) evp;
616 1.63 thorpej syscallarg(timer_t *) timerid;
617 1.63 thorpej } */ *uap = v;
618 1.92 cube
619 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
620 1.105 ad SCARG(uap, evp), copyin, l);
621 1.92 cube }
622 1.92 cube
623 1.92 cube int
624 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
625 1.105 ad copyin_t fetch_event, struct lwp *l)
626 1.92 cube {
627 1.92 cube int error;
628 1.92 cube timer_t timerid;
629 1.63 thorpej struct ptimer *pt;
630 1.105 ad struct proc *p;
631 1.105 ad
632 1.105 ad p = l->l_proc;
633 1.63 thorpej
634 1.63 thorpej if (id < CLOCK_REALTIME ||
635 1.63 thorpej id > CLOCK_PROF)
636 1.63 thorpej return (EINVAL);
637 1.63 thorpej
638 1.63 thorpej if (p->p_timers == NULL)
639 1.63 thorpej timers_alloc(p);
640 1.63 thorpej
641 1.63 thorpej /* Find a free timer slot, skipping those reserved for setitimer(). */
642 1.63 thorpej for (timerid = 3; timerid < TIMER_MAX; timerid++)
643 1.63 thorpej if (p->p_timers->pts_timers[timerid] == NULL)
644 1.63 thorpej break;
645 1.63 thorpej
646 1.63 thorpej if (timerid == TIMER_MAX)
647 1.63 thorpej return EAGAIN;
648 1.63 thorpej
649 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
650 1.63 thorpej if (evp) {
651 1.63 thorpej if (((error =
652 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
653 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
654 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
655 1.63 thorpej pool_put(&ptimer_pool, pt);
656 1.63 thorpej return (error ? error : EINVAL);
657 1.63 thorpej }
658 1.63 thorpej } else {
659 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
660 1.63 thorpej switch (id) {
661 1.63 thorpej case CLOCK_REALTIME:
662 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
663 1.63 thorpej break;
664 1.63 thorpej case CLOCK_VIRTUAL:
665 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
666 1.63 thorpej break;
667 1.63 thorpej case CLOCK_PROF:
668 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
669 1.63 thorpej break;
670 1.63 thorpej }
671 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
672 1.63 thorpej }
673 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
674 1.73 christos pt->pt_info.ksi_errno = 0;
675 1.73 christos pt->pt_info.ksi_code = 0;
676 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
677 1.105 ad pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
678 1.73 christos pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
679 1.63 thorpej
680 1.63 thorpej pt->pt_type = id;
681 1.63 thorpej pt->pt_proc = p;
682 1.63 thorpej pt->pt_overruns = 0;
683 1.63 thorpej pt->pt_poverruns = 0;
684 1.64 nathanw pt->pt_entry = timerid;
685 1.63 thorpej timerclear(&pt->pt_time.it_value);
686 1.63 thorpej if (id == CLOCK_REALTIME)
687 1.63 thorpej callout_init(&pt->pt_ch);
688 1.63 thorpej else
689 1.63 thorpej pt->pt_active = 0;
690 1.63 thorpej
691 1.63 thorpej p->p_timers->pts_timers[timerid] = pt;
692 1.63 thorpej
693 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
694 1.63 thorpej }
695 1.63 thorpej
696 1.63 thorpej /* Delete a POSIX realtime timer */
697 1.3 andrew int
698 1.110 yamt sys_timer_delete(struct lwp *l, void *v, register_t *retval)
699 1.15 thorpej {
700 1.63 thorpej struct sys_timer_delete_args /* {
701 1.63 thorpej syscallarg(timer_t) timerid;
702 1.15 thorpej } */ *uap = v;
703 1.63 thorpej struct proc *p = l->l_proc;
704 1.65 jdolecek timer_t timerid;
705 1.63 thorpej struct ptimer *pt, *ptn;
706 1.1 cgd int s;
707 1.1 cgd
708 1.63 thorpej timerid = SCARG(uap, timerid);
709 1.63 thorpej
710 1.63 thorpej if ((p->p_timers == NULL) ||
711 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
712 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
713 1.1 cgd return (EINVAL);
714 1.63 thorpej
715 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
716 1.63 thorpej callout_stop(&pt->pt_ch);
717 1.63 thorpej else if (pt->pt_active) {
718 1.63 thorpej s = splclock();
719 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
720 1.63 thorpej LIST_REMOVE(pt, pt_list);
721 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
722 1.63 thorpej timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
723 1.63 thorpej &ptn->pt_time.it_value);
724 1.63 thorpej splx(s);
725 1.63 thorpej }
726 1.63 thorpej
727 1.63 thorpej p->p_timers->pts_timers[timerid] = NULL;
728 1.63 thorpej pool_put(&ptimer_pool, pt);
729 1.63 thorpej
730 1.63 thorpej return (0);
731 1.63 thorpej }
732 1.63 thorpej
733 1.63 thorpej /*
734 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
735 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
736 1.67 nathanw * time for virtual timers.
737 1.63 thorpej * Must be called at splclock().
738 1.63 thorpej */
739 1.63 thorpej void
740 1.63 thorpej timer_settime(struct ptimer *pt)
741 1.63 thorpej {
742 1.63 thorpej struct ptimer *ptn, *pptn;
743 1.63 thorpej struct ptlist *ptl;
744 1.63 thorpej
745 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
746 1.63 thorpej callout_stop(&pt->pt_ch);
747 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
748 1.63 thorpej /*
749 1.63 thorpej * Don't need to check hzto() return value, here.
750 1.63 thorpej * callout_reset() does it for us.
751 1.63 thorpej */
752 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
753 1.63 thorpej realtimerexpire, pt);
754 1.63 thorpej }
755 1.63 thorpej } else {
756 1.63 thorpej if (pt->pt_active) {
757 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
758 1.63 thorpej LIST_REMOVE(pt, pt_list);
759 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
760 1.63 thorpej timeradd(&pt->pt_time.it_value,
761 1.63 thorpej &ptn->pt_time.it_value,
762 1.63 thorpej &ptn->pt_time.it_value);
763 1.63 thorpej }
764 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
765 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
766 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
767 1.63 thorpej else
768 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
769 1.63 thorpej
770 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
771 1.63 thorpej ptn && timercmp(&pt->pt_time.it_value,
772 1.63 thorpej &ptn->pt_time.it_value, >);
773 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
774 1.63 thorpej timersub(&pt->pt_time.it_value,
775 1.63 thorpej &ptn->pt_time.it_value,
776 1.63 thorpej &pt->pt_time.it_value);
777 1.63 thorpej
778 1.63 thorpej if (pptn)
779 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
780 1.63 thorpej else
781 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
782 1.63 thorpej
783 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
784 1.63 thorpej timersub(&ptn->pt_time.it_value,
785 1.63 thorpej &pt->pt_time.it_value,
786 1.63 thorpej &ptn->pt_time.it_value);
787 1.63 thorpej
788 1.63 thorpej pt->pt_active = 1;
789 1.63 thorpej } else
790 1.63 thorpej pt->pt_active = 0;
791 1.63 thorpej }
792 1.63 thorpej }
793 1.63 thorpej
794 1.63 thorpej void
795 1.63 thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
796 1.63 thorpej {
797 1.101 kardel #ifdef __HAVE_TIMECOUNTER
798 1.101 kardel struct timeval now;
799 1.101 kardel #endif
800 1.63 thorpej struct ptimer *ptn;
801 1.63 thorpej
802 1.63 thorpej *aitv = pt->pt_time;
803 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
804 1.1 cgd /*
805 1.12 mycroft * Convert from absolute to relative time in .it_value
806 1.63 thorpej * part of real time timer. If time for real time
807 1.63 thorpej * timer has passed return 0, else return difference
808 1.63 thorpej * between current time and time for the timer to go
809 1.63 thorpej * off.
810 1.1 cgd */
811 1.63 thorpej if (timerisset(&aitv->it_value)) {
812 1.101 kardel #ifdef __HAVE_TIMECOUNTER
813 1.101 kardel getmicrotime(&now);
814 1.101 kardel if (timercmp(&aitv->it_value, &now, <))
815 1.101 kardel timerclear(&aitv->it_value);
816 1.101 kardel else
817 1.101 kardel timersub(&aitv->it_value, &now,
818 1.101 kardel &aitv->it_value);
819 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
820 1.63 thorpej if (timercmp(&aitv->it_value, &time, <))
821 1.63 thorpej timerclear(&aitv->it_value);
822 1.1 cgd else
823 1.63 thorpej timersub(&aitv->it_value, &time,
824 1.63 thorpej &aitv->it_value);
825 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
826 1.36 thorpej }
827 1.63 thorpej } else if (pt->pt_active) {
828 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
829 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
830 1.63 thorpej else
831 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
832 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
833 1.63 thorpej timeradd(&aitv->it_value,
834 1.63 thorpej &ptn->pt_time.it_value, &aitv->it_value);
835 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
836 1.1 cgd } else
837 1.63 thorpej timerclear(&aitv->it_value);
838 1.63 thorpej }
839 1.63 thorpej
840 1.63 thorpej
841 1.63 thorpej
842 1.63 thorpej /* Set and arm a POSIX realtime timer */
843 1.63 thorpej int
844 1.110 yamt sys_timer_settime(struct lwp *l, void *v, register_t *retval)
845 1.63 thorpej {
846 1.63 thorpej struct sys_timer_settime_args /* {
847 1.63 thorpej syscallarg(timer_t) timerid;
848 1.63 thorpej syscallarg(int) flags;
849 1.63 thorpej syscallarg(const struct itimerspec *) value;
850 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
851 1.63 thorpej } */ *uap = v;
852 1.92 cube int error;
853 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
854 1.92 cube
855 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
856 1.92 cube sizeof(struct itimerspec))) != 0)
857 1.92 cube return (error);
858 1.92 cube
859 1.92 cube if (SCARG(uap, ovalue))
860 1.92 cube ovp = &ovalue;
861 1.92 cube
862 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
863 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
864 1.92 cube return error;
865 1.92 cube
866 1.92 cube if (ovp)
867 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
868 1.92 cube sizeof(struct itimerspec));
869 1.92 cube return 0;
870 1.92 cube }
871 1.92 cube
872 1.92 cube int
873 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
874 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
875 1.92 cube {
876 1.101 kardel #ifdef __HAVE_TIMECOUNTER
877 1.101 kardel struct timeval now;
878 1.101 kardel #endif
879 1.63 thorpej struct itimerval val, oval;
880 1.63 thorpej struct ptimer *pt;
881 1.101 kardel int s;
882 1.63 thorpej
883 1.63 thorpej if ((p->p_timers == NULL) ||
884 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
885 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
886 1.63 thorpej return (EINVAL);
887 1.63 thorpej
888 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
889 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
890 1.63 thorpej if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
891 1.63 thorpej return (EINVAL);
892 1.63 thorpej
893 1.63 thorpej oval = pt->pt_time;
894 1.63 thorpej pt->pt_time = val;
895 1.63 thorpej
896 1.63 thorpej s = splclock();
897 1.67 nathanw /*
898 1.67 nathanw * If we've been passed a relative time for a realtime timer,
899 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
900 1.67 nathanw * timer, convert it to relative and make sure we don't set it
901 1.67 nathanw * to zero, which would cancel the timer, or let it go
902 1.67 nathanw * negative, which would confuse the comparison tests.
903 1.67 nathanw */
904 1.67 nathanw if (timerisset(&pt->pt_time.it_value)) {
905 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
906 1.101 kardel #ifdef __HAVE_TIMECOUNTER
907 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
908 1.101 kardel getmicrotime(&now);
909 1.101 kardel timeradd(&pt->pt_time.it_value, &now,
910 1.101 kardel &pt->pt_time.it_value);
911 1.101 kardel }
912 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
913 1.92 cube if ((flags & TIMER_ABSTIME) == 0)
914 1.67 nathanw timeradd(&pt->pt_time.it_value, &time,
915 1.67 nathanw &pt->pt_time.it_value);
916 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
917 1.67 nathanw } else {
918 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
919 1.101 kardel #ifdef __HAVE_TIMECOUNTER
920 1.101 kardel getmicrotime(&now);
921 1.101 kardel timersub(&pt->pt_time.it_value, &now,
922 1.101 kardel &pt->pt_time.it_value);
923 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
924 1.67 nathanw timersub(&pt->pt_time.it_value, &time,
925 1.67 nathanw &pt->pt_time.it_value);
926 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
927 1.67 nathanw if (!timerisset(&pt->pt_time.it_value) ||
928 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
929 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
930 1.67 nathanw pt->pt_time.it_value.tv_usec = 1;
931 1.67 nathanw }
932 1.67 nathanw }
933 1.67 nathanw }
934 1.67 nathanw }
935 1.67 nathanw
936 1.63 thorpej timer_settime(pt);
937 1.63 thorpej splx(s);
938 1.63 thorpej
939 1.92 cube if (ovalue) {
940 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
941 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
942 1.63 thorpej }
943 1.63 thorpej
944 1.63 thorpej return (0);
945 1.63 thorpej }
946 1.63 thorpej
947 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
948 1.63 thorpej int
949 1.110 yamt sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
950 1.63 thorpej {
951 1.63 thorpej struct sys_timer_gettime_args /* {
952 1.63 thorpej syscallarg(timer_t) timerid;
953 1.63 thorpej syscallarg(struct itimerspec *) value;
954 1.63 thorpej } */ *uap = v;
955 1.63 thorpej struct itimerspec its;
956 1.92 cube int error;
957 1.92 cube
958 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
959 1.92 cube &its)) != 0)
960 1.92 cube return error;
961 1.92 cube
962 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
963 1.92 cube }
964 1.92 cube
965 1.92 cube int
966 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
967 1.92 cube {
968 1.92 cube int s;
969 1.63 thorpej struct ptimer *pt;
970 1.92 cube struct itimerval aitv;
971 1.63 thorpej
972 1.63 thorpej if ((p->p_timers == NULL) ||
973 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
974 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
975 1.63 thorpej return (EINVAL);
976 1.63 thorpej
977 1.63 thorpej s = splclock();
978 1.63 thorpej timer_gettime(pt, &aitv);
979 1.1 cgd splx(s);
980 1.63 thorpej
981 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
982 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
983 1.63 thorpej
984 1.92 cube return 0;
985 1.63 thorpej }
986 1.63 thorpej
987 1.63 thorpej /*
988 1.63 thorpej * Return the count of the number of times a periodic timer expired
989 1.63 thorpej * while a notification was already pending. The counter is reset when
990 1.63 thorpej * a timer expires and a notification can be posted.
991 1.63 thorpej */
992 1.63 thorpej int
993 1.63 thorpej sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
994 1.63 thorpej {
995 1.63 thorpej struct sys_timer_getoverrun_args /* {
996 1.63 thorpej syscallarg(timer_t) timerid;
997 1.63 thorpej } */ *uap = v;
998 1.63 thorpej struct proc *p = l->l_proc;
999 1.63 thorpej int timerid;
1000 1.63 thorpej struct ptimer *pt;
1001 1.63 thorpej
1002 1.63 thorpej timerid = SCARG(uap, timerid);
1003 1.63 thorpej
1004 1.63 thorpej if ((p->p_timers == NULL) ||
1005 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
1006 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1007 1.63 thorpej return (EINVAL);
1008 1.63 thorpej
1009 1.63 thorpej *retval = pt->pt_poverruns;
1010 1.63 thorpej
1011 1.63 thorpej return (0);
1012 1.63 thorpej }
1013 1.63 thorpej
1014 1.63 thorpej /*
1015 1.63 thorpej * Real interval timer expired:
1016 1.63 thorpej * send process whose timer expired an alarm signal.
1017 1.63 thorpej * If time is not set up to reload, then just return.
1018 1.63 thorpej * Else compute next time timer should go off which is > current time.
1019 1.63 thorpej * This is where delay in processing this timeout causes multiple
1020 1.63 thorpej * SIGALRM calls to be compressed into one.
1021 1.63 thorpej */
1022 1.63 thorpej void
1023 1.63 thorpej realtimerexpire(void *arg)
1024 1.63 thorpej {
1025 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1026 1.101 kardel struct timeval now;
1027 1.101 kardel #endif
1028 1.63 thorpej struct ptimer *pt;
1029 1.63 thorpej int s;
1030 1.63 thorpej
1031 1.63 thorpej pt = (struct ptimer *)arg;
1032 1.63 thorpej
1033 1.63 thorpej itimerfire(pt);
1034 1.63 thorpej
1035 1.63 thorpej if (!timerisset(&pt->pt_time.it_interval)) {
1036 1.63 thorpej timerclear(&pt->pt_time.it_value);
1037 1.63 thorpej return;
1038 1.63 thorpej }
1039 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1040 1.101 kardel for (;;) {
1041 1.101 kardel s = splclock(); /* XXX need spl now? */
1042 1.101 kardel timeradd(&pt->pt_time.it_value,
1043 1.101 kardel &pt->pt_time.it_interval, &pt->pt_time.it_value);
1044 1.101 kardel getmicrotime(&now);
1045 1.101 kardel if (timercmp(&pt->pt_time.it_value, &now, >)) {
1046 1.101 kardel /*
1047 1.101 kardel * Don't need to check hzto() return value, here.
1048 1.101 kardel * callout_reset() does it for us.
1049 1.101 kardel */
1050 1.101 kardel callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1051 1.101 kardel realtimerexpire, pt);
1052 1.101 kardel splx(s);
1053 1.101 kardel return;
1054 1.101 kardel }
1055 1.101 kardel splx(s);
1056 1.101 kardel pt->pt_overruns++;
1057 1.101 kardel }
1058 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1059 1.63 thorpej for (;;) {
1060 1.63 thorpej s = splclock();
1061 1.63 thorpej timeradd(&pt->pt_time.it_value,
1062 1.63 thorpej &pt->pt_time.it_interval, &pt->pt_time.it_value);
1063 1.63 thorpej if (timercmp(&pt->pt_time.it_value, &time, >)) {
1064 1.63 thorpej /*
1065 1.63 thorpej * Don't need to check hzto() return value, here.
1066 1.63 thorpej * callout_reset() does it for us.
1067 1.63 thorpej */
1068 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1069 1.63 thorpej realtimerexpire, pt);
1070 1.63 thorpej splx(s);
1071 1.63 thorpej return;
1072 1.63 thorpej }
1073 1.63 thorpej splx(s);
1074 1.63 thorpej pt->pt_overruns++;
1075 1.63 thorpej }
1076 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1077 1.63 thorpej }
1078 1.63 thorpej
1079 1.63 thorpej /* BSD routine to get the value of an interval timer. */
1080 1.63 thorpej /* ARGSUSED */
1081 1.63 thorpej int
1082 1.110 yamt sys_getitimer(struct lwp *l, void *v, register_t *retval)
1083 1.63 thorpej {
1084 1.63 thorpej struct sys_getitimer_args /* {
1085 1.63 thorpej syscallarg(int) which;
1086 1.63 thorpej syscallarg(struct itimerval *) itv;
1087 1.63 thorpej } */ *uap = v;
1088 1.63 thorpej struct proc *p = l->l_proc;
1089 1.63 thorpej struct itimerval aitv;
1090 1.91 cube int error;
1091 1.91 cube
1092 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
1093 1.91 cube if (error)
1094 1.91 cube return error;
1095 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1096 1.91 cube }
1097 1.63 thorpej
1098 1.91 cube int
1099 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1100 1.91 cube {
1101 1.91 cube int s;
1102 1.63 thorpej
1103 1.63 thorpej if ((u_int)which > ITIMER_PROF)
1104 1.63 thorpej return (EINVAL);
1105 1.63 thorpej
1106 1.63 thorpej if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1107 1.91 cube timerclear(&itvp->it_value);
1108 1.91 cube timerclear(&itvp->it_interval);
1109 1.63 thorpej } else {
1110 1.63 thorpej s = splclock();
1111 1.91 cube timer_gettime(p->p_timers->pts_timers[which], itvp);
1112 1.63 thorpej splx(s);
1113 1.63 thorpej }
1114 1.63 thorpej
1115 1.91 cube return 0;
1116 1.1 cgd }
1117 1.1 cgd
1118 1.63 thorpej /* BSD routine to set/arm an interval timer. */
1119 1.1 cgd /* ARGSUSED */
1120 1.3 andrew int
1121 1.63 thorpej sys_setitimer(struct lwp *l, void *v, register_t *retval)
1122 1.15 thorpej {
1123 1.45 augustss struct sys_setitimer_args /* {
1124 1.30 mycroft syscallarg(int) which;
1125 1.24 cgd syscallarg(const struct itimerval *) itv;
1126 1.11 cgd syscallarg(struct itimerval *) oitv;
1127 1.15 thorpej } */ *uap = v;
1128 1.63 thorpej struct proc *p = l->l_proc;
1129 1.30 mycroft int which = SCARG(uap, which);
1130 1.21 cgd struct sys_getitimer_args getargs;
1131 1.91 cube const struct itimerval *itvp;
1132 1.1 cgd struct itimerval aitv;
1133 1.91 cube int error;
1134 1.1 cgd
1135 1.30 mycroft if ((u_int)which > ITIMER_PROF)
1136 1.1 cgd return (EINVAL);
1137 1.11 cgd itvp = SCARG(uap, itv);
1138 1.63 thorpej if (itvp &&
1139 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1140 1.1 cgd return (error);
1141 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1142 1.30 mycroft SCARG(&getargs, which) = which;
1143 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1144 1.63 thorpej if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1145 1.21 cgd return (error);
1146 1.21 cgd }
1147 1.1 cgd if (itvp == 0)
1148 1.1 cgd return (0);
1149 1.91 cube
1150 1.91 cube return dosetitimer(p, which, &aitv);
1151 1.91 cube }
1152 1.91 cube
1153 1.91 cube int
1154 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1155 1.91 cube {
1156 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1157 1.101 kardel struct timeval now;
1158 1.101 kardel #endif
1159 1.91 cube struct ptimer *pt;
1160 1.91 cube int s;
1161 1.91 cube
1162 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1163 1.1 cgd return (EINVAL);
1164 1.63 thorpej
1165 1.63 thorpej /*
1166 1.63 thorpej * Don't bother allocating data structures if the process just
1167 1.63 thorpej * wants to clear the timer.
1168 1.63 thorpej */
1169 1.91 cube if (!timerisset(&itvp->it_value) &&
1170 1.63 thorpej ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1171 1.63 thorpej return (0);
1172 1.63 thorpej
1173 1.63 thorpej if (p->p_timers == NULL)
1174 1.63 thorpej timers_alloc(p);
1175 1.63 thorpej if (p->p_timers->pts_timers[which] == NULL) {
1176 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
1177 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1178 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1179 1.63 thorpej pt->pt_overruns = 0;
1180 1.63 thorpej pt->pt_proc = p;
1181 1.63 thorpej pt->pt_type = which;
1182 1.64 nathanw pt->pt_entry = which;
1183 1.63 thorpej switch (which) {
1184 1.63 thorpej case ITIMER_REAL:
1185 1.63 thorpej callout_init(&pt->pt_ch);
1186 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1187 1.63 thorpej break;
1188 1.63 thorpej case ITIMER_VIRTUAL:
1189 1.63 thorpej pt->pt_active = 0;
1190 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1191 1.63 thorpej break;
1192 1.63 thorpej case ITIMER_PROF:
1193 1.63 thorpej pt->pt_active = 0;
1194 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1195 1.63 thorpej break;
1196 1.1 cgd }
1197 1.1 cgd } else
1198 1.63 thorpej pt = p->p_timers->pts_timers[which];
1199 1.63 thorpej
1200 1.91 cube pt->pt_time = *itvp;
1201 1.63 thorpej p->p_timers->pts_timers[which] = pt;
1202 1.63 thorpej
1203 1.63 thorpej s = splclock();
1204 1.67 nathanw if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1205 1.67 nathanw /* Convert to absolute time */
1206 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1207 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1208 1.101 kardel getmicrotime(&now);
1209 1.101 kardel timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1210 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1211 1.67 nathanw timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1212 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1213 1.67 nathanw }
1214 1.63 thorpej timer_settime(pt);
1215 1.1 cgd splx(s);
1216 1.63 thorpej
1217 1.1 cgd return (0);
1218 1.1 cgd }
1219 1.1 cgd
1220 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1221 1.63 thorpej void
1222 1.63 thorpej timers_alloc(struct proc *p)
1223 1.63 thorpej {
1224 1.63 thorpej int i;
1225 1.63 thorpej struct ptimers *pts;
1226 1.63 thorpej
1227 1.100 yamt pts = pool_get(&ptimers_pool, PR_WAITOK);
1228 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1229 1.63 thorpej LIST_INIT(&pts->pts_prof);
1230 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1231 1.63 thorpej pts->pts_timers[i] = NULL;
1232 1.64 nathanw pts->pts_fired = 0;
1233 1.63 thorpej p->p_timers = pts;
1234 1.63 thorpej }
1235 1.63 thorpej
1236 1.1 cgd /*
1237 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1238 1.63 thorpej * then clean up all timers and free all the data structures. If
1239 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1240 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1241 1.63 thorpej * structure if none of those remain.
1242 1.1 cgd */
1243 1.3 andrew void
1244 1.63 thorpej timers_free(struct proc *p, int which)
1245 1.6 cgd {
1246 1.63 thorpej int i, s;
1247 1.63 thorpej struct ptimers *pts;
1248 1.63 thorpej struct ptimer *pt, *ptn;
1249 1.63 thorpej struct timeval tv;
1250 1.63 thorpej
1251 1.63 thorpej if (p->p_timers) {
1252 1.63 thorpej pts = p->p_timers;
1253 1.63 thorpej if (which == TIMERS_ALL)
1254 1.63 thorpej i = 0;
1255 1.63 thorpej else {
1256 1.63 thorpej s = splclock();
1257 1.63 thorpej timerclear(&tv);
1258 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1259 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1260 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1261 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1262 1.63 thorpej LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1263 1.63 thorpej if (ptn) {
1264 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1265 1.63 thorpej &ptn->pt_time.it_value);
1266 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1267 1.63 thorpej ptn, pt_list);
1268 1.63 thorpej }
1269 1.63 thorpej
1270 1.63 thorpej timerclear(&tv);
1271 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1272 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_PROF];
1273 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1274 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1275 1.63 thorpej LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1276 1.63 thorpej if (ptn) {
1277 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1278 1.63 thorpej &ptn->pt_time.it_value);
1279 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1280 1.63 thorpej pt_list);
1281 1.63 thorpej }
1282 1.1 cgd splx(s);
1283 1.63 thorpej i = 3;
1284 1.63 thorpej }
1285 1.63 thorpej for ( ; i < TIMER_MAX; i++)
1286 1.63 thorpej if ((pt = pts->pts_timers[i]) != NULL) {
1287 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME)
1288 1.63 thorpej callout_stop(&pt->pt_ch);
1289 1.63 thorpej pts->pts_timers[i] = NULL;
1290 1.63 thorpej pool_put(&ptimer_pool, pt);
1291 1.63 thorpej }
1292 1.63 thorpej if ((pts->pts_timers[0] == NULL) &&
1293 1.63 thorpej (pts->pts_timers[1] == NULL) &&
1294 1.63 thorpej (pts->pts_timers[2] == NULL)) {
1295 1.63 thorpej p->p_timers = NULL;
1296 1.97 simonb pool_put(&ptimers_pool, pts);
1297 1.1 cgd }
1298 1.1 cgd }
1299 1.1 cgd }
1300 1.1 cgd
1301 1.1 cgd /*
1302 1.1 cgd * Check that a proposed value to load into the .it_value or
1303 1.1 cgd * .it_interval part of an interval timer is acceptable, and
1304 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
1305 1.1 cgd * than the resolution of the clock, round it up.)
1306 1.1 cgd */
1307 1.3 andrew int
1308 1.63 thorpej itimerfix(struct timeval *tv)
1309 1.1 cgd {
1310 1.1 cgd
1311 1.59 christos if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1312 1.1 cgd return (EINVAL);
1313 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1314 1.1 cgd tv->tv_usec = tick;
1315 1.1 cgd return (0);
1316 1.1 cgd }
1317 1.1 cgd
1318 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1319 1.101 kardel int
1320 1.101 kardel itimespecfix(struct timespec *ts)
1321 1.101 kardel {
1322 1.101 kardel
1323 1.101 kardel if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1324 1.101 kardel return (EINVAL);
1325 1.101 kardel if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1326 1.101 kardel ts->tv_nsec = tick * 1000;
1327 1.101 kardel return (0);
1328 1.101 kardel }
1329 1.101 kardel #endif /* __HAVE_TIMECOUNTER */
1330 1.101 kardel
1331 1.1 cgd /*
1332 1.1 cgd * Decrement an interval timer by a specified number
1333 1.1 cgd * of microseconds, which must be less than a second,
1334 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1335 1.1 cgd * it. In this case, carry over (usec - old value) to
1336 1.8 cgd * reduce the value reloaded into the timer so that
1337 1.1 cgd * the timer does not drift. This routine assumes
1338 1.1 cgd * that it is called in a context where the timers
1339 1.1 cgd * on which it is operating cannot change in value.
1340 1.1 cgd */
1341 1.3 andrew int
1342 1.63 thorpej itimerdecr(struct ptimer *pt, int usec)
1343 1.63 thorpej {
1344 1.45 augustss struct itimerval *itp;
1345 1.1 cgd
1346 1.63 thorpej itp = &pt->pt_time;
1347 1.1 cgd if (itp->it_value.tv_usec < usec) {
1348 1.1 cgd if (itp->it_value.tv_sec == 0) {
1349 1.1 cgd /* expired, and already in next interval */
1350 1.1 cgd usec -= itp->it_value.tv_usec;
1351 1.1 cgd goto expire;
1352 1.1 cgd }
1353 1.1 cgd itp->it_value.tv_usec += 1000000;
1354 1.1 cgd itp->it_value.tv_sec--;
1355 1.1 cgd }
1356 1.1 cgd itp->it_value.tv_usec -= usec;
1357 1.1 cgd usec = 0;
1358 1.1 cgd if (timerisset(&itp->it_value))
1359 1.1 cgd return (1);
1360 1.1 cgd /* expired, exactly at end of interval */
1361 1.1 cgd expire:
1362 1.1 cgd if (timerisset(&itp->it_interval)) {
1363 1.1 cgd itp->it_value = itp->it_interval;
1364 1.1 cgd itp->it_value.tv_usec -= usec;
1365 1.1 cgd if (itp->it_value.tv_usec < 0) {
1366 1.1 cgd itp->it_value.tv_usec += 1000000;
1367 1.1 cgd itp->it_value.tv_sec--;
1368 1.1 cgd }
1369 1.63 thorpej timer_settime(pt);
1370 1.1 cgd } else
1371 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1372 1.1 cgd return (0);
1373 1.42 cgd }
1374 1.42 cgd
1375 1.63 thorpej void
1376 1.63 thorpej itimerfire(struct ptimer *pt)
1377 1.63 thorpej {
1378 1.63 thorpej struct proc *p = pt->pt_proc;
1379 1.78 cl
1380 1.63 thorpej if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1381 1.63 thorpej /*
1382 1.63 thorpej * No RT signal infrastructure exists at this time;
1383 1.63 thorpej * just post the signal number and throw away the
1384 1.63 thorpej * value.
1385 1.63 thorpej */
1386 1.113 ad if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1387 1.63 thorpej pt->pt_overruns++;
1388 1.63 thorpej else {
1389 1.75 christos ksiginfo_t ksi;
1390 1.111 yamt KSI_INIT(&ksi);
1391 1.75 christos ksi.ksi_signo = pt->pt_ev.sigev_signo;
1392 1.75 christos ksi.ksi_code = SI_TIMER;
1393 1.75 christos ksi.ksi_sigval = pt->pt_ev.sigev_value;
1394 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1395 1.63 thorpej pt->pt_overruns = 0;
1396 1.113 ad mutex_enter(&proclist_mutex);
1397 1.75 christos kpsignal(p, &ksi, NULL);
1398 1.113 ad mutex_exit(&proclist_mutex);
1399 1.64 nathanw }
1400 1.63 thorpej }
1401 1.63 thorpej }
1402 1.63 thorpej
1403 1.42 cgd /*
1404 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1405 1.42 cgd * for usage and rationale.
1406 1.42 cgd */
1407 1.42 cgd int
1408 1.63 thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1409 1.42 cgd {
1410 1.49 itojun struct timeval tv, delta;
1411 1.101 kardel int rv = 0;
1412 1.101 kardel #ifndef __HAVE_TIMECOUNTER
1413 1.101 kardel int s;
1414 1.101 kardel #endif
1415 1.42 cgd
1416 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1417 1.101 kardel getmicrouptime(&tv);
1418 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1419 1.63 thorpej s = splclock();
1420 1.49 itojun tv = mono_time;
1421 1.49 itojun splx(s);
1422 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1423 1.49 itojun timersub(&tv, lasttime, &delta);
1424 1.42 cgd
1425 1.42 cgd /*
1426 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1427 1.42 cgd * even if interval is huge.
1428 1.42 cgd */
1429 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1430 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1431 1.49 itojun *lasttime = tv;
1432 1.42 cgd rv = 1;
1433 1.42 cgd }
1434 1.50 itojun
1435 1.50 itojun return (rv);
1436 1.50 itojun }
1437 1.50 itojun
1438 1.50 itojun /*
1439 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1440 1.50 itojun */
1441 1.50 itojun int
1442 1.63 thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1443 1.50 itojun {
1444 1.50 itojun struct timeval tv, delta;
1445 1.101 kardel int rv;
1446 1.101 kardel #ifndef __HAVE_TIMECOUNTER
1447 1.101 kardel int s;
1448 1.101 kardel #endif
1449 1.50 itojun
1450 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1451 1.101 kardel getmicrouptime(&tv);
1452 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1453 1.63 thorpej s = splclock();
1454 1.50 itojun tv = mono_time;
1455 1.50 itojun splx(s);
1456 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1457 1.50 itojun timersub(&tv, lasttime, &delta);
1458 1.50 itojun
1459 1.50 itojun /*
1460 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1461 1.50 itojun * if more than one second have passed since the last update of
1462 1.50 itojun * lasttime, reset the counter.
1463 1.50 itojun *
1464 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1465 1.50 itojun * try to use *curpps for stat purposes as well.
1466 1.50 itojun */
1467 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1468 1.50 itojun delta.tv_sec >= 1) {
1469 1.50 itojun *lasttime = tv;
1470 1.50 itojun *curpps = 0;
1471 1.69 dyoung }
1472 1.69 dyoung if (maxpps < 0)
1473 1.53 itojun rv = 1;
1474 1.53 itojun else if (*curpps < maxpps)
1475 1.50 itojun rv = 1;
1476 1.50 itojun else
1477 1.50 itojun rv = 0;
1478 1.50 itojun
1479 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1480 1.50 itojun /* be careful about wrap-around */
1481 1.50 itojun if (*curpps + 1 > *curpps)
1482 1.50 itojun *curpps = *curpps + 1;
1483 1.50 itojun #else
1484 1.50 itojun /*
1485 1.50 itojun * assume that there's not too many calls to this function.
1486 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1487 1.50 itojun * behavior, not the behavior of this function.
1488 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1489 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1490 1.50 itojun */
1491 1.50 itojun *curpps = *curpps + 1;
1492 1.50 itojun #endif
1493 1.42 cgd
1494 1.42 cgd return (rv);
1495 1.1 cgd }
1496