Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.124
      1  1.124  christos /*	$NetBSD: kern_time.c,v 1.124 2007/05/21 15:35:48 christos Exp $	*/
      2   1.42       cgd 
      3   1.42       cgd /*-
      4   1.88   mycroft  * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
      5   1.42       cgd  * All rights reserved.
      6   1.42       cgd  *
      7   1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8   1.42       cgd  * by Christopher G. Demetriou.
      9   1.42       cgd  *
     10   1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11   1.42       cgd  * modification, are permitted provided that the following conditions
     12   1.42       cgd  * are met:
     13   1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14   1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15   1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17   1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18   1.42       cgd  * 3. All advertising materials mentioning features or use of this software
     19   1.42       cgd  *    must display the following acknowledgement:
     20   1.42       cgd  *	This product includes software developed by the NetBSD
     21   1.42       cgd  *	Foundation, Inc. and its contributors.
     22   1.42       cgd  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.42       cgd  *    contributors may be used to endorse or promote products derived
     24   1.42       cgd  *    from this software without specific prior written permission.
     25   1.42       cgd  *
     26   1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     37   1.42       cgd  */
     38    1.9       cgd 
     39    1.1       cgd /*
     40    1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     41    1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     42    1.1       cgd  *
     43    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     44    1.1       cgd  * modification, are permitted provided that the following conditions
     45    1.1       cgd  * are met:
     46    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     47    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     48    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     49    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     50    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     51   1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     52    1.1       cgd  *    may be used to endorse or promote products derived from this software
     53    1.1       cgd  *    without specific prior written permission.
     54    1.1       cgd  *
     55    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65    1.1       cgd  * SUCH DAMAGE.
     66    1.1       cgd  *
     67   1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68    1.1       cgd  */
     69   1.58     lukem 
     70   1.58     lukem #include <sys/cdefs.h>
     71  1.124  christos __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.124 2007/05/21 15:35:48 christos Exp $");
     72    1.1       cgd 
     73    1.5   mycroft #include <sys/param.h>
     74    1.5   mycroft #include <sys/resourcevar.h>
     75    1.5   mycroft #include <sys/kernel.h>
     76    1.8       cgd #include <sys/systm.h>
     77    1.5   mycroft #include <sys/proc.h>
     78    1.8       cgd #include <sys/vnode.h>
     79   1.17  christos #include <sys/signalvar.h>
     80   1.25     perry #include <sys/syslog.h>
     81  1.101    kardel #include <sys/timetc.h>
     82  1.122       dsl #ifndef __HAVE_TIMECOUNTER
     83   1.95      cube #include <sys/timevar.h>
     84  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
     85   1.99      elad #include <sys/kauth.h>
     86    1.1       cgd 
     87   1.11       cgd #include <sys/mount.h>
     88   1.11       cgd #include <sys/syscallargs.h>
     89   1.19  christos 
     90   1.37   thorpej #include <uvm/uvm_extern.h>
     91   1.37   thorpej 
     92    1.5   mycroft #include <machine/cpu.h>
     93   1.23       cgd 
     94   1.97    simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     95  1.118        ad     &pool_allocator_nointr, IPL_NONE);
     96   1.97    simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     97  1.118        ad     &pool_allocator_nointr, IPL_NONE);
     98   1.97    simonb 
     99  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    100  1.101    kardel static int itimespecfix(struct timespec *);		/* XXX move itimerfix to timespecs */
    101  1.101    kardel #endif /* __HAVE_TIMECOUNTER */
    102   1.63   thorpej 
    103   1.63   thorpej /* Time of day and interval timer support.
    104    1.1       cgd  *
    105    1.1       cgd  * These routines provide the kernel entry points to get and set
    106    1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    107    1.1       cgd  * here provide support for adding and subtracting timeval structures
    108    1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    109    1.1       cgd  * timers when they expire.
    110    1.1       cgd  */
    111    1.1       cgd 
    112   1.22       jtc /* This function is used by clock_settime and settimeofday */
    113   1.39      tron int
    114   1.98  christos settime(struct proc *p, struct timespec *ts)
    115   1.22       jtc {
    116   1.98  christos 	struct timeval delta, tv;
    117  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    118  1.101    kardel 	struct timeval now;
    119  1.101    kardel 	struct timespec ts1;
    120  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    121   1.47   thorpej 	struct cpu_info *ci;
    122  1.114        ad 	int s1, s2;
    123   1.22       jtc 
    124   1.98  christos 	/*
    125   1.98  christos 	 * Don't allow the time to be set forward so far it will wrap
    126   1.98  christos 	 * and become negative, thus allowing an attacker to bypass
    127   1.98  christos 	 * the next check below.  The cutoff is 1 year before rollover
    128   1.98  christos 	 * occurs, so even if the attacker uses adjtime(2) to move
    129   1.98  christos 	 * the time past the cutoff, it will take a very long time
    130   1.98  christos 	 * to get to the wrap point.
    131   1.98  christos 	 *
    132   1.98  christos 	 * XXX: we check against INT_MAX since on 64-bit
    133   1.98  christos 	 *	platforms, sizeof(int) != sizeof(long) and
    134   1.98  christos 	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
    135   1.98  christos 	 */
    136   1.98  christos 	if (ts->tv_sec > INT_MAX - 365*24*60*60) {
    137  1.113        ad 		struct proc *pp;
    138  1.113        ad 
    139  1.117        ad 		mutex_enter(&proclist_lock);
    140  1.113        ad 		pp = p->p_pptr;
    141  1.113        ad 		mutex_enter(&pp->p_mutex);
    142   1.98  christos 		log(LOG_WARNING, "pid %d (%s) "
    143   1.98  christos 		    "invoked by uid %d ppid %d (%s) "
    144   1.98  christos 		    "tried to set clock forward to %ld\n",
    145   1.99      elad 		    p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
    146   1.98  christos 		    pp->p_pid, pp->p_comm, (long)ts->tv_sec);
    147  1.113        ad 		mutex_exit(&pp->p_mutex);
    148  1.117        ad 		mutex_exit(&proclist_lock);
    149   1.98  christos 		return (EPERM);
    150   1.98  christos 	}
    151   1.98  christos 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    152   1.98  christos 
    153   1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    154  1.114        ad 	s1 = splsoftclock();
    155  1.114        ad 	s2 = splclock();
    156  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    157  1.101    kardel 	microtime(&now);
    158  1.101    kardel 	timersub(&tv, &now, &delta);
    159  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    160   1.98  christos 	timersub(&tv, &time, &delta);
    161  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    162  1.106      elad 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
    163  1.106      elad 	    kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
    164  1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
    165  1.114        ad 		splx(s1);
    166   1.29       tls 		return (EPERM);
    167   1.55      tron 	}
    168   1.29       tls #ifdef notyet
    169  1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    170  1.114        ad 		splx(s1);
    171   1.29       tls 		return (EPERM);
    172   1.55      tron 	}
    173   1.29       tls #endif
    174  1.103    kardel 
    175  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    176  1.103    kardel 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    177  1.101    kardel 	tc_setclock(&ts1);
    178  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    179   1.98  christos 	time = tv;
    180  1.103    kardel #endif /* !__HAVE_TIMECOUNTER */
    181  1.103    kardel 
    182  1.114        ad 	splx(s2);
    183  1.103    kardel 
    184   1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    185  1.103    kardel 
    186   1.47   thorpej 	/*
    187   1.47   thorpej 	 * XXXSMP
    188   1.47   thorpej 	 * This is wrong.  We should traverse a list of all
    189   1.47   thorpej 	 * CPUs and add the delta to the runtime of those
    190   1.47   thorpej 	 * CPUs which have a process on them.
    191   1.47   thorpej 	 */
    192   1.47   thorpej 	ci = curcpu();
    193   1.47   thorpej 	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
    194   1.47   thorpej 	    &ci->ci_schedstate.spc_runtime);
    195  1.114        ad 	splx(s1);
    196   1.22       jtc 	resettodr();
    197   1.29       tls 	return (0);
    198   1.22       jtc }
    199   1.22       jtc 
    200   1.22       jtc /* ARGSUSED */
    201   1.22       jtc int
    202  1.110      yamt sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    203   1.22       jtc {
    204   1.45  augustss 	struct sys_clock_gettime_args /* {
    205   1.22       jtc 		syscallarg(clockid_t) clock_id;
    206   1.23       cgd 		syscallarg(struct timespec *) tp;
    207   1.23       cgd 	} */ *uap = v;
    208   1.22       jtc 	clockid_t clock_id;
    209   1.22       jtc 	struct timespec ats;
    210   1.22       jtc 
    211   1.22       jtc 	clock_id = SCARG(uap, clock_id);
    212   1.61    simonb 	switch (clock_id) {
    213   1.61    simonb 	case CLOCK_REALTIME:
    214   1.96    simonb 		nanotime(&ats);
    215   1.61    simonb 		break;
    216   1.61    simonb 	case CLOCK_MONOTONIC:
    217  1.101    kardel 		nanouptime(&ats);
    218   1.61    simonb 		break;
    219   1.61    simonb 	default:
    220   1.22       jtc 		return (EINVAL);
    221   1.61    simonb 	}
    222   1.22       jtc 
    223   1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    224   1.22       jtc }
    225   1.22       jtc 
    226   1.22       jtc /* ARGSUSED */
    227   1.22       jtc int
    228  1.110      yamt sys_clock_settime(struct lwp *l, void *v, register_t *retval)
    229   1.22       jtc {
    230   1.45  augustss 	struct sys_clock_settime_args /* {
    231   1.22       jtc 		syscallarg(clockid_t) clock_id;
    232   1.23       cgd 		syscallarg(const struct timespec *) tp;
    233   1.23       cgd 	} */ *uap = v;
    234   1.22       jtc 	int error;
    235   1.22       jtc 
    236  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    237  1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
    238   1.22       jtc 		return (error);
    239   1.22       jtc 
    240  1.105        ad 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
    241   1.56      manu }
    242   1.56      manu 
    243   1.56      manu 
    244   1.56      manu int
    245   1.98  christos clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
    246   1.56      manu {
    247   1.60      manu 	struct timespec ats;
    248   1.56      manu 	int error;
    249   1.56      manu 
    250   1.60      manu 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    251   1.60      manu 		return (error);
    252   1.60      manu 
    253   1.61    simonb 	switch (clock_id) {
    254   1.61    simonb 	case CLOCK_REALTIME:
    255   1.98  christos 		if ((error = settime(p, &ats)) != 0)
    256   1.61    simonb 			return (error);
    257   1.61    simonb 		break;
    258   1.61    simonb 	case CLOCK_MONOTONIC:
    259   1.61    simonb 		return (EINVAL);	/* read-only clock */
    260   1.61    simonb 	default:
    261   1.56      manu 		return (EINVAL);
    262   1.61    simonb 	}
    263   1.22       jtc 
    264   1.22       jtc 	return 0;
    265   1.22       jtc }
    266   1.22       jtc 
    267   1.22       jtc int
    268  1.110      yamt sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    269   1.22       jtc {
    270   1.45  augustss 	struct sys_clock_getres_args /* {
    271   1.22       jtc 		syscallarg(clockid_t) clock_id;
    272   1.23       cgd 		syscallarg(struct timespec *) tp;
    273   1.23       cgd 	} */ *uap = v;
    274   1.22       jtc 	clockid_t clock_id;
    275   1.22       jtc 	struct timespec ts;
    276   1.22       jtc 	int error = 0;
    277   1.22       jtc 
    278   1.22       jtc 	clock_id = SCARG(uap, clock_id);
    279   1.61    simonb 	switch (clock_id) {
    280   1.61    simonb 	case CLOCK_REALTIME:
    281   1.61    simonb 	case CLOCK_MONOTONIC:
    282   1.22       jtc 		ts.tv_sec = 0;
    283  1.102    kardel 		if (tc_getfrequency() > 1000000000)
    284  1.102    kardel 			ts.tv_nsec = 1;
    285  1.102    kardel 		else
    286  1.102    kardel 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    287   1.61    simonb 		break;
    288   1.61    simonb 	default:
    289   1.61    simonb 		return (EINVAL);
    290   1.61    simonb 	}
    291   1.22       jtc 
    292   1.61    simonb 	if (SCARG(uap, tp))
    293   1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    294   1.22       jtc 
    295   1.22       jtc 	return error;
    296   1.22       jtc }
    297   1.22       jtc 
    298   1.27       jtc /* ARGSUSED */
    299   1.27       jtc int
    300  1.110      yamt sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    301   1.27       jtc {
    302  1.101    kardel 	struct sys_nanosleep_args/* {
    303  1.101    kardel 		syscallarg(struct timespec *) rqtp;
    304  1.101    kardel 		syscallarg(struct timespec *) rmtp;
    305  1.101    kardel 	} */ *uap = v;
    306  1.101    kardel 	struct timespec rmt, rqt;
    307  1.120       dsl 	int error, error1;
    308  1.101    kardel 
    309  1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    310  1.101    kardel 	if (error)
    311  1.101    kardel 		return (error);
    312  1.101    kardel 
    313  1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    314  1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    315  1.120       dsl 		return error;
    316  1.120       dsl 
    317  1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    318  1.120       dsl 	return error1 ? error1 : error;
    319  1.120       dsl }
    320  1.120       dsl 
    321  1.120       dsl int
    322  1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    323  1.120       dsl {
    324  1.120       dsl #ifdef __HAVE_TIMECOUNTER
    325  1.120       dsl 	int error, timo;
    326  1.120       dsl 
    327  1.120       dsl 	if (itimespecfix(rqt))
    328  1.101    kardel 		return (EINVAL);
    329  1.101    kardel 
    330  1.120       dsl 	timo = tstohz(rqt);
    331  1.101    kardel 	/*
    332  1.101    kardel 	 * Avoid inadvertantly sleeping forever
    333  1.101    kardel 	 */
    334  1.101    kardel 	if (timo == 0)
    335  1.101    kardel 		timo = 1;
    336  1.101    kardel 
    337  1.123       dsl 	if (rmt != NULL)
    338  1.123       dsl 		getnanouptime(rmt);
    339  1.104    kardel 
    340  1.115   thorpej 	error = kpause("nanoslp", true, timo, NULL);
    341  1.101    kardel 	if (error == ERESTART)
    342  1.101    kardel 		error = EINTR;
    343  1.101    kardel 	if (error == EWOULDBLOCK)
    344  1.101    kardel 		error = 0;
    345  1.101    kardel 
    346  1.120       dsl 	if (rmt!= NULL) {
    347  1.104    kardel 		struct timespec rmtend;
    348  1.101    kardel 
    349  1.104    kardel 		getnanouptime(&rmtend);
    350  1.101    kardel 
    351  1.120       dsl 		timespecsub(&rmtend, rmt, rmt);
    352  1.120       dsl 		timespecsub(rqt, rmt, rmt);
    353  1.120       dsl 		if (rmt->tv_sec < 0)
    354  1.120       dsl 			timespecclear(rmt);
    355  1.101    kardel 	}
    356  1.101    kardel 
    357  1.101    kardel 	return error;
    358  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    359   1.27       jtc 	struct timeval atv, utv;
    360   1.27       jtc 	int error, s, timo;
    361   1.27       jtc 
    362  1.120       dsl 	TIMESPEC_TO_TIMEVAL(&atv, rqt);
    363   1.80  christos 	if (itimerfix(&atv))
    364   1.27       jtc 		return (EINVAL);
    365   1.27       jtc 
    366   1.27       jtc 	s = splclock();
    367   1.27       jtc 	timeradd(&atv,&time,&atv);
    368   1.27       jtc 	timo = hzto(&atv);
    369   1.63   thorpej 	/*
    370   1.27       jtc 	 * Avoid inadvertantly sleeping forever
    371   1.27       jtc 	 */
    372   1.27       jtc 	if (timo == 0)
    373   1.27       jtc 		timo = 1;
    374   1.27       jtc 	splx(s);
    375   1.27       jtc 
    376  1.115   thorpej 	error = kpause("nanoslp", true, timo, NULL);
    377   1.27       jtc 	if (error == ERESTART)
    378   1.27       jtc 		error = EINTR;
    379   1.27       jtc 	if (error == EWOULDBLOCK)
    380   1.27       jtc 		error = 0;
    381   1.27       jtc 
    382  1.120       dsl 	if (rmt != NULL) {
    383   1.27       jtc 		s = splclock();
    384   1.27       jtc 		utv = time;
    385   1.27       jtc 		splx(s);
    386   1.27       jtc 
    387   1.27       jtc 		timersub(&atv, &utv, &utv);
    388   1.27       jtc 		if (utv.tv_sec < 0)
    389   1.27       jtc 			timerclear(&utv);
    390   1.27       jtc 
    391  1.120       dsl 		TIMEVAL_TO_TIMESPEC(&utv, rmt);
    392   1.27       jtc 	}
    393   1.27       jtc 
    394   1.27       jtc 	return error;
    395  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    396   1.27       jtc }
    397   1.22       jtc 
    398    1.1       cgd /* ARGSUSED */
    399    1.3    andrew int
    400  1.110      yamt sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    401   1.15   thorpej {
    402   1.45  augustss 	struct sys_gettimeofday_args /* {
    403   1.11       cgd 		syscallarg(struct timeval *) tp;
    404   1.84    simonb 		syscallarg(void *) tzp;		really "struct timezone *"
    405   1.15   thorpej 	} */ *uap = v;
    406    1.1       cgd 	struct timeval atv;
    407    1.1       cgd 	int error = 0;
    408   1.25     perry 	struct timezone tzfake;
    409    1.1       cgd 
    410   1.11       cgd 	if (SCARG(uap, tp)) {
    411    1.1       cgd 		microtime(&atv);
    412   1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    413   1.17  christos 		if (error)
    414    1.1       cgd 			return (error);
    415    1.1       cgd 	}
    416   1.25     perry 	if (SCARG(uap, tzp)) {
    417   1.25     perry 		/*
    418   1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    419   1.25     perry 		 * fake up a timezone struct and return it if demanded.
    420   1.25     perry 		 */
    421   1.25     perry 		tzfake.tz_minuteswest = 0;
    422   1.25     perry 		tzfake.tz_dsttime = 0;
    423   1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    424   1.25     perry 	}
    425    1.1       cgd 	return (error);
    426    1.1       cgd }
    427    1.1       cgd 
    428    1.1       cgd /* ARGSUSED */
    429    1.3    andrew int
    430  1.110      yamt sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    431   1.15   thorpej {
    432   1.16   mycroft 	struct sys_settimeofday_args /* {
    433   1.24       cgd 		syscallarg(const struct timeval *) tv;
    434   1.84    simonb 		syscallarg(const void *) tzp;	really "const struct timezone *"
    435   1.15   thorpej 	} */ *uap = v;
    436   1.60      manu 
    437  1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    438   1.60      manu }
    439   1.60      manu 
    440   1.60      manu int
    441  1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    442  1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    443   1.60      manu {
    444   1.22       jtc 	struct timeval atv;
    445   1.98  christos 	struct timespec ts;
    446   1.22       jtc 	int error;
    447    1.1       cgd 
    448    1.8       cgd 	/* Verify all parameters before changing time. */
    449  1.119       dsl 
    450  1.119       dsl 	if (check_kauth) {
    451  1.119       dsl 		error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    452  1.119       dsl 		    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL);
    453  1.119       dsl 		if (error != 0)
    454  1.119       dsl 			return (error);
    455  1.119       dsl 	}
    456  1.119       dsl 
    457   1.25     perry 	/*
    458   1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    459   1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    460   1.25     perry 	 */
    461   1.98  christos 	if (utzp)
    462   1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    463  1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    464   1.98  christos 
    465   1.98  christos 	if (utv == NULL)
    466   1.98  christos 		return 0;
    467   1.98  christos 
    468  1.119       dsl 	if (userspace) {
    469  1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    470  1.119       dsl 			return error;
    471  1.119       dsl 		utv = &atv;
    472  1.119       dsl 	}
    473  1.119       dsl 
    474  1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    475  1.119       dsl 	return settime(l->l_proc, &ts);
    476    1.1       cgd }
    477    1.1       cgd 
    478  1.101    kardel #ifndef __HAVE_TIMECOUNTER
    479    1.1       cgd int	tickdelta;			/* current clock skew, us. per tick */
    480    1.1       cgd long	timedelta;			/* unapplied time correction, us. */
    481    1.1       cgd long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    482  1.101    kardel #endif
    483  1.101    kardel 
    484   1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    485    1.1       cgd 
    486    1.1       cgd /* ARGSUSED */
    487    1.3    andrew int
    488  1.110      yamt sys_adjtime(struct lwp *l, void *v, register_t *retval)
    489   1.15   thorpej {
    490   1.45  augustss 	struct sys_adjtime_args /* {
    491   1.24       cgd 		syscallarg(const struct timeval *) delta;
    492   1.11       cgd 		syscallarg(struct timeval *) olddelta;
    493   1.15   thorpej 	} */ *uap = v;
    494   1.56      manu 	int error;
    495    1.1       cgd 
    496  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    497  1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    498    1.1       cgd 		return (error);
    499   1.17  christos 
    500  1.105        ad 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    501   1.56      manu }
    502   1.56      manu 
    503   1.56      manu int
    504  1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    505   1.56      manu {
    506   1.60      manu 	struct timeval atv;
    507  1.101    kardel 	int error = 0;
    508  1.101    kardel 
    509  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    510  1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    511  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    512   1.56      manu 	long ndelta, ntickdelta, odelta;
    513   1.56      manu 	int s;
    514  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    515  1.101    kardel 
    516  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    517  1.101    kardel 	if (olddelta) {
    518  1.101    kardel 		atv.tv_sec = time_adjtime / 1000000;
    519  1.101    kardel 		atv.tv_usec = time_adjtime % 1000000;
    520  1.101    kardel 		if (atv.tv_usec < 0) {
    521  1.101    kardel 			atv.tv_usec += 1000000;
    522  1.101    kardel 			atv.tv_sec--;
    523  1.101    kardel 		}
    524  1.101    kardel 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    525  1.101    kardel 		if (error)
    526  1.101    kardel 			return (error);
    527  1.101    kardel 	}
    528  1.101    kardel 
    529  1.101    kardel 	if (delta) {
    530  1.101    kardel 		error = copyin(delta, &atv, sizeof(struct timeval));
    531  1.101    kardel 		if (error)
    532  1.101    kardel 			return (error);
    533  1.101    kardel 
    534  1.101    kardel 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    535  1.101    kardel 			atv.tv_usec;
    536    1.8       cgd 
    537  1.101    kardel 		if (time_adjtime)
    538  1.101    kardel 			/* We need to save the system time during shutdown */
    539  1.101    kardel 			time_adjusted |= 1;
    540  1.101    kardel 	}
    541  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    542   1.60      manu 	error = copyin(delta, &atv, sizeof(struct timeval));
    543   1.60      manu 	if (error)
    544   1.60      manu 		return (error);
    545   1.60      manu 
    546    1.8       cgd 	/*
    547    1.8       cgd 	 * Compute the total correction and the rate at which to apply it.
    548    1.8       cgd 	 * Round the adjustment down to a whole multiple of the per-tick
    549    1.8       cgd 	 * delta, so that after some number of incremental changes in
    550    1.8       cgd 	 * hardclock(), tickdelta will become zero, lest the correction
    551    1.8       cgd 	 * overshoot and start taking us away from the desired final time.
    552    1.8       cgd 	 */
    553   1.60      manu 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    554   1.41       hwr 	if (ndelta > bigadj || ndelta < -bigadj)
    555    1.8       cgd 		ntickdelta = 10 * tickadj;
    556    1.8       cgd 	else
    557    1.8       cgd 		ntickdelta = tickadj;
    558    1.8       cgd 	if (ndelta % ntickdelta)
    559    1.8       cgd 		ndelta = ndelta / ntickdelta * ntickdelta;
    560    1.8       cgd 
    561    1.8       cgd 	/*
    562    1.8       cgd 	 * To make hardclock()'s job easier, make the per-tick delta negative
    563    1.8       cgd 	 * if we want time to run slower; then hardclock can simply compute
    564    1.8       cgd 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    565    1.8       cgd 	 */
    566    1.8       cgd 	if (ndelta < 0)
    567    1.8       cgd 		ntickdelta = -ntickdelta;
    568   1.68       dsl 	if (ndelta != 0)
    569   1.68       dsl 		/* We need to save the system clock time during shutdown */
    570   1.68       dsl 		time_adjusted |= 1;
    571    1.1       cgd 	s = splclock();
    572    1.8       cgd 	odelta = timedelta;
    573    1.1       cgd 	timedelta = ndelta;
    574    1.8       cgd 	tickdelta = ntickdelta;
    575    1.1       cgd 	splx(s);
    576    1.1       cgd 
    577   1.56      manu 	if (olddelta) {
    578   1.60      manu 		atv.tv_sec = odelta / 1000000;
    579   1.60      manu 		atv.tv_usec = odelta % 1000000;
    580   1.79       chs 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    581    1.8       cgd 	}
    582  1.101    kardel #endif /* __HAVE_TIMECOUNTER */
    583  1.101    kardel 
    584   1.79       chs 	return error;
    585    1.1       cgd }
    586    1.1       cgd 
    587    1.1       cgd /*
    588   1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    589   1.63   thorpej  * timer_*() family of routines are supported.
    590    1.1       cgd  *
    591   1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    592   1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    593   1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    594   1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    595   1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    596   1.63   thorpej  * syscall.
    597    1.1       cgd  *
    598   1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    599   1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    600    1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    601   1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    602   1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    603   1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    604   1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    605   1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    606   1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    607   1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    608   1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    609   1.63   thorpej 
    610   1.63   thorpej /* Allocate a POSIX realtime timer. */
    611   1.63   thorpej int
    612  1.110      yamt sys_timer_create(struct lwp *l, void *v, register_t *retval)
    613   1.63   thorpej {
    614   1.63   thorpej 	struct sys_timer_create_args /* {
    615   1.63   thorpej 		syscallarg(clockid_t) clock_id;
    616   1.63   thorpej 		syscallarg(struct sigevent *) evp;
    617   1.63   thorpej 		syscallarg(timer_t *) timerid;
    618   1.63   thorpej 	} */ *uap = v;
    619   1.92      cube 
    620   1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    621  1.105        ad 	    SCARG(uap, evp), copyin, l);
    622   1.92      cube }
    623   1.92      cube 
    624   1.92      cube int
    625   1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    626  1.105        ad     copyin_t fetch_event, struct lwp *l)
    627   1.92      cube {
    628   1.92      cube 	int error;
    629   1.92      cube 	timer_t timerid;
    630   1.63   thorpej 	struct ptimer *pt;
    631  1.105        ad 	struct proc *p;
    632  1.105        ad 
    633  1.105        ad 	p = l->l_proc;
    634   1.63   thorpej 
    635   1.63   thorpej 	if (id < CLOCK_REALTIME ||
    636   1.63   thorpej 	    id > CLOCK_PROF)
    637   1.63   thorpej 		return (EINVAL);
    638   1.63   thorpej 
    639   1.63   thorpej 	if (p->p_timers == NULL)
    640   1.63   thorpej 		timers_alloc(p);
    641   1.63   thorpej 
    642   1.63   thorpej 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    643   1.63   thorpej 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    644   1.63   thorpej 		if (p->p_timers->pts_timers[timerid] == NULL)
    645   1.63   thorpej 			break;
    646   1.63   thorpej 
    647   1.63   thorpej 	if (timerid == TIMER_MAX)
    648   1.63   thorpej 		return EAGAIN;
    649   1.63   thorpej 
    650   1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    651   1.63   thorpej 	if (evp) {
    652   1.63   thorpej 		if (((error =
    653   1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    654   1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    655   1.63   thorpej 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    656   1.63   thorpej 			pool_put(&ptimer_pool, pt);
    657   1.63   thorpej 			return (error ? error : EINVAL);
    658   1.63   thorpej 		}
    659   1.63   thorpej 	} else {
    660   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    661   1.63   thorpej 		switch (id) {
    662   1.63   thorpej 		case CLOCK_REALTIME:
    663   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    664   1.63   thorpej 			break;
    665   1.63   thorpej 		case CLOCK_VIRTUAL:
    666   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    667   1.63   thorpej 			break;
    668   1.63   thorpej 		case CLOCK_PROF:
    669   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    670   1.63   thorpej 			break;
    671   1.63   thorpej 		}
    672   1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    673   1.63   thorpej 	}
    674   1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    675   1.73  christos 	pt->pt_info.ksi_errno = 0;
    676   1.73  christos 	pt->pt_info.ksi_code = 0;
    677   1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    678  1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    679  1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    680   1.63   thorpej 
    681   1.63   thorpej 	pt->pt_type = id;
    682   1.63   thorpej 	pt->pt_proc = p;
    683   1.63   thorpej 	pt->pt_overruns = 0;
    684   1.63   thorpej 	pt->pt_poverruns = 0;
    685   1.64   nathanw 	pt->pt_entry = timerid;
    686   1.63   thorpej 	timerclear(&pt->pt_time.it_value);
    687   1.63   thorpej 	if (id == CLOCK_REALTIME)
    688   1.63   thorpej 		callout_init(&pt->pt_ch);
    689   1.63   thorpej 	else
    690   1.63   thorpej 		pt->pt_active = 0;
    691   1.63   thorpej 
    692   1.63   thorpej 	p->p_timers->pts_timers[timerid] = pt;
    693   1.63   thorpej 
    694   1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    695   1.63   thorpej }
    696   1.63   thorpej 
    697   1.63   thorpej /* Delete a POSIX realtime timer */
    698    1.3    andrew int
    699  1.110      yamt sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    700   1.15   thorpej {
    701   1.63   thorpej 	struct sys_timer_delete_args /*  {
    702   1.63   thorpej 		syscallarg(timer_t) timerid;
    703   1.15   thorpej 	} */ *uap = v;
    704   1.63   thorpej 	struct proc *p = l->l_proc;
    705   1.65  jdolecek 	timer_t timerid;
    706   1.63   thorpej 	struct ptimer *pt, *ptn;
    707    1.1       cgd 	int s;
    708    1.1       cgd 
    709   1.63   thorpej 	timerid = SCARG(uap, timerid);
    710   1.63   thorpej 
    711   1.63   thorpej 	if ((p->p_timers == NULL) ||
    712   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    713   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    714    1.1       cgd 		return (EINVAL);
    715   1.63   thorpej 
    716   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME)
    717   1.63   thorpej 		callout_stop(&pt->pt_ch);
    718   1.63   thorpej 	else if (pt->pt_active) {
    719   1.63   thorpej 		s = splclock();
    720   1.63   thorpej 		ptn = LIST_NEXT(pt, pt_list);
    721   1.63   thorpej 		LIST_REMOVE(pt, pt_list);
    722   1.63   thorpej 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    723   1.63   thorpej 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    724   1.63   thorpej 			    &ptn->pt_time.it_value);
    725   1.63   thorpej 		splx(s);
    726   1.63   thorpej 	}
    727   1.63   thorpej 
    728   1.63   thorpej 	p->p_timers->pts_timers[timerid] = NULL;
    729   1.63   thorpej 	pool_put(&ptimer_pool, pt);
    730   1.63   thorpej 
    731   1.63   thorpej 	return (0);
    732   1.63   thorpej }
    733   1.63   thorpej 
    734   1.63   thorpej /*
    735   1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    736   1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    737   1.67   nathanw  * time for virtual timers.
    738   1.63   thorpej  * Must be called at splclock().
    739   1.63   thorpej  */
    740   1.63   thorpej void
    741   1.63   thorpej timer_settime(struct ptimer *pt)
    742   1.63   thorpej {
    743   1.63   thorpej 	struct ptimer *ptn, *pptn;
    744   1.63   thorpej 	struct ptlist *ptl;
    745   1.63   thorpej 
    746   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    747   1.63   thorpej 		callout_stop(&pt->pt_ch);
    748   1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    749   1.63   thorpej 			/*
    750   1.63   thorpej 			 * Don't need to check hzto() return value, here.
    751   1.63   thorpej 			 * callout_reset() does it for us.
    752   1.63   thorpej 			 */
    753   1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    754   1.63   thorpej 			    realtimerexpire, pt);
    755   1.63   thorpej 		}
    756   1.63   thorpej 	} else {
    757   1.63   thorpej 		if (pt->pt_active) {
    758   1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    759   1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    760   1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    761   1.63   thorpej 				timeradd(&pt->pt_time.it_value,
    762   1.63   thorpej 				    &ptn->pt_time.it_value,
    763   1.63   thorpej 				    &ptn->pt_time.it_value);
    764   1.63   thorpej 		}
    765   1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    766   1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    767   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    768   1.63   thorpej 			else
    769   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    770   1.63   thorpej 
    771   1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    772   1.63   thorpej 			     ptn && timercmp(&pt->pt_time.it_value,
    773   1.63   thorpej 				 &ptn->pt_time.it_value, >);
    774   1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    775   1.63   thorpej 				timersub(&pt->pt_time.it_value,
    776   1.63   thorpej 				    &ptn->pt_time.it_value,
    777   1.63   thorpej 				    &pt->pt_time.it_value);
    778   1.63   thorpej 
    779   1.63   thorpej 			if (pptn)
    780   1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    781   1.63   thorpej 			else
    782   1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    783   1.63   thorpej 
    784   1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    785   1.63   thorpej 				timersub(&ptn->pt_time.it_value,
    786   1.63   thorpej 				    &pt->pt_time.it_value,
    787   1.63   thorpej 				    &ptn->pt_time.it_value);
    788   1.63   thorpej 
    789   1.63   thorpej 			pt->pt_active = 1;
    790   1.63   thorpej 		} else
    791   1.63   thorpej 			pt->pt_active = 0;
    792   1.63   thorpej 	}
    793   1.63   thorpej }
    794   1.63   thorpej 
    795   1.63   thorpej void
    796   1.63   thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    797   1.63   thorpej {
    798  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    799  1.101    kardel 	struct timeval now;
    800  1.101    kardel #endif
    801   1.63   thorpej 	struct ptimer *ptn;
    802   1.63   thorpej 
    803   1.63   thorpej 	*aitv = pt->pt_time;
    804   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    805    1.1       cgd 		/*
    806   1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    807   1.63   thorpej 		 * part of real time timer.  If time for real time
    808   1.63   thorpej 		 * timer has passed return 0, else return difference
    809   1.63   thorpej 		 * between current time and time for the timer to go
    810   1.63   thorpej 		 * off.
    811    1.1       cgd 		 */
    812   1.63   thorpej 		if (timerisset(&aitv->it_value)) {
    813  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    814  1.101    kardel 			getmicrotime(&now);
    815  1.101    kardel 			if (timercmp(&aitv->it_value, &now, <))
    816  1.101    kardel 				timerclear(&aitv->it_value);
    817  1.101    kardel 			else
    818  1.101    kardel 				timersub(&aitv->it_value, &now,
    819  1.101    kardel 				    &aitv->it_value);
    820  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    821   1.63   thorpej 			if (timercmp(&aitv->it_value, &time, <))
    822   1.63   thorpej 				timerclear(&aitv->it_value);
    823    1.1       cgd 			else
    824   1.63   thorpej 				timersub(&aitv->it_value, &time,
    825   1.63   thorpej 				    &aitv->it_value);
    826  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    827   1.36   thorpej 		}
    828   1.63   thorpej 	} else if (pt->pt_active) {
    829   1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    830   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    831   1.63   thorpej 		else
    832   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    833   1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    834   1.63   thorpej 			timeradd(&aitv->it_value,
    835   1.63   thorpej 			    &ptn->pt_time.it_value, &aitv->it_value);
    836   1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    837    1.1       cgd 	} else
    838   1.63   thorpej 		timerclear(&aitv->it_value);
    839   1.63   thorpej }
    840   1.63   thorpej 
    841   1.63   thorpej 
    842   1.63   thorpej 
    843   1.63   thorpej /* Set and arm a POSIX realtime timer */
    844   1.63   thorpej int
    845  1.110      yamt sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    846   1.63   thorpej {
    847   1.63   thorpej 	struct sys_timer_settime_args /* {
    848   1.63   thorpej 		syscallarg(timer_t) timerid;
    849   1.63   thorpej 		syscallarg(int) flags;
    850   1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    851   1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    852   1.63   thorpej 	} */ *uap = v;
    853   1.92      cube 	int error;
    854   1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    855   1.92      cube 
    856   1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    857   1.92      cube 	    sizeof(struct itimerspec))) != 0)
    858   1.92      cube 		return (error);
    859   1.92      cube 
    860   1.92      cube 	if (SCARG(uap, ovalue))
    861   1.92      cube 		ovp = &ovalue;
    862   1.92      cube 
    863   1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    864   1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    865   1.92      cube 		return error;
    866   1.92      cube 
    867   1.92      cube 	if (ovp)
    868   1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    869   1.92      cube 		    sizeof(struct itimerspec));
    870   1.92      cube 	return 0;
    871   1.92      cube }
    872   1.92      cube 
    873   1.92      cube int
    874   1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    875   1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    876   1.92      cube {
    877  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    878  1.101    kardel 	struct timeval now;
    879  1.101    kardel #endif
    880   1.63   thorpej 	struct itimerval val, oval;
    881   1.63   thorpej 	struct ptimer *pt;
    882  1.101    kardel 	int s;
    883   1.63   thorpej 
    884   1.63   thorpej 	if ((p->p_timers == NULL) ||
    885   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    886   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    887   1.63   thorpej 		return (EINVAL);
    888   1.63   thorpej 
    889   1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    890   1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    891   1.63   thorpej 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    892   1.63   thorpej 		return (EINVAL);
    893   1.63   thorpej 
    894   1.63   thorpej 	oval = pt->pt_time;
    895   1.63   thorpej 	pt->pt_time = val;
    896   1.63   thorpej 
    897   1.63   thorpej 	s = splclock();
    898   1.67   nathanw 	/*
    899   1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    900   1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    901   1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    902   1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    903   1.67   nathanw 	 * negative, which would confuse the comparison tests.
    904   1.67   nathanw 	 */
    905   1.67   nathanw 	if (timerisset(&pt->pt_time.it_value)) {
    906   1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    907  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    908  1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    909  1.101    kardel 				getmicrotime(&now);
    910  1.101    kardel 				timeradd(&pt->pt_time.it_value, &now,
    911  1.101    kardel 				    &pt->pt_time.it_value);
    912  1.101    kardel 			}
    913  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    914   1.92      cube 			if ((flags & TIMER_ABSTIME) == 0)
    915   1.67   nathanw 				timeradd(&pt->pt_time.it_value, &time,
    916   1.67   nathanw 				    &pt->pt_time.it_value);
    917  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    918   1.67   nathanw 		} else {
    919   1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    920  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    921  1.101    kardel 				getmicrotime(&now);
    922  1.101    kardel 				timersub(&pt->pt_time.it_value, &now,
    923  1.101    kardel 				    &pt->pt_time.it_value);
    924  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    925   1.67   nathanw 				timersub(&pt->pt_time.it_value, &time,
    926   1.67   nathanw 				    &pt->pt_time.it_value);
    927  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    928   1.67   nathanw 				if (!timerisset(&pt->pt_time.it_value) ||
    929   1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    930   1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    931   1.67   nathanw 					pt->pt_time.it_value.tv_usec = 1;
    932   1.67   nathanw 				}
    933   1.67   nathanw 			}
    934   1.67   nathanw 		}
    935   1.67   nathanw 	}
    936   1.67   nathanw 
    937   1.63   thorpej 	timer_settime(pt);
    938   1.63   thorpej 	splx(s);
    939   1.63   thorpej 
    940   1.92      cube 	if (ovalue) {
    941   1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    942   1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    943   1.63   thorpej 	}
    944   1.63   thorpej 
    945   1.63   thorpej 	return (0);
    946   1.63   thorpej }
    947   1.63   thorpej 
    948   1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    949   1.63   thorpej int
    950  1.110      yamt sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    951   1.63   thorpej {
    952   1.63   thorpej 	struct sys_timer_gettime_args /* {
    953   1.63   thorpej 		syscallarg(timer_t) timerid;
    954   1.63   thorpej 		syscallarg(struct itimerspec *) value;
    955   1.63   thorpej 	} */ *uap = v;
    956   1.63   thorpej 	struct itimerspec its;
    957   1.92      cube 	int error;
    958   1.92      cube 
    959   1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    960   1.92      cube 	    &its)) != 0)
    961   1.92      cube 		return error;
    962   1.92      cube 
    963   1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    964   1.92      cube }
    965   1.92      cube 
    966   1.92      cube int
    967   1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    968   1.92      cube {
    969   1.92      cube 	int s;
    970   1.63   thorpej 	struct ptimer *pt;
    971   1.92      cube 	struct itimerval aitv;
    972   1.63   thorpej 
    973   1.63   thorpej 	if ((p->p_timers == NULL) ||
    974   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    975   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    976   1.63   thorpej 		return (EINVAL);
    977   1.63   thorpej 
    978   1.63   thorpej 	s = splclock();
    979   1.63   thorpej 	timer_gettime(pt, &aitv);
    980    1.1       cgd 	splx(s);
    981   1.63   thorpej 
    982   1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    983   1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    984   1.63   thorpej 
    985   1.92      cube 	return 0;
    986   1.63   thorpej }
    987   1.63   thorpej 
    988   1.63   thorpej /*
    989   1.63   thorpej  * Return the count of the number of times a periodic timer expired
    990   1.63   thorpej  * while a notification was already pending. The counter is reset when
    991   1.63   thorpej  * a timer expires and a notification can be posted.
    992   1.63   thorpej  */
    993   1.63   thorpej int
    994   1.63   thorpej sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
    995   1.63   thorpej {
    996   1.63   thorpej 	struct sys_timer_getoverrun_args /* {
    997   1.63   thorpej 		syscallarg(timer_t) timerid;
    998   1.63   thorpej 	} */ *uap = v;
    999   1.63   thorpej 	struct proc *p = l->l_proc;
   1000   1.63   thorpej 	int timerid;
   1001   1.63   thorpej 	struct ptimer *pt;
   1002   1.63   thorpej 
   1003   1.63   thorpej 	timerid = SCARG(uap, timerid);
   1004   1.63   thorpej 
   1005   1.63   thorpej 	if ((p->p_timers == NULL) ||
   1006   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
   1007   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
   1008   1.63   thorpej 		return (EINVAL);
   1009   1.63   thorpej 
   1010   1.63   thorpej 	*retval = pt->pt_poverruns;
   1011   1.63   thorpej 
   1012   1.63   thorpej 	return (0);
   1013   1.63   thorpej }
   1014   1.63   thorpej 
   1015   1.63   thorpej /*
   1016   1.63   thorpej  * Real interval timer expired:
   1017   1.63   thorpej  * send process whose timer expired an alarm signal.
   1018   1.63   thorpej  * If time is not set up to reload, then just return.
   1019   1.63   thorpej  * Else compute next time timer should go off which is > current time.
   1020   1.63   thorpej  * This is where delay in processing this timeout causes multiple
   1021   1.63   thorpej  * SIGALRM calls to be compressed into one.
   1022   1.63   thorpej  */
   1023   1.63   thorpej void
   1024   1.63   thorpej realtimerexpire(void *arg)
   1025   1.63   thorpej {
   1026  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1027  1.101    kardel 	struct timeval now;
   1028  1.101    kardel #endif
   1029   1.63   thorpej 	struct ptimer *pt;
   1030   1.63   thorpej 	int s;
   1031   1.63   thorpej 
   1032   1.63   thorpej 	pt = (struct ptimer *)arg;
   1033   1.63   thorpej 
   1034   1.63   thorpej 	itimerfire(pt);
   1035   1.63   thorpej 
   1036   1.63   thorpej 	if (!timerisset(&pt->pt_time.it_interval)) {
   1037   1.63   thorpej 		timerclear(&pt->pt_time.it_value);
   1038   1.63   thorpej 		return;
   1039   1.63   thorpej 	}
   1040  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1041  1.101    kardel 	for (;;) {
   1042  1.101    kardel 		s = splclock();	/* XXX need spl now? */
   1043  1.101    kardel 		timeradd(&pt->pt_time.it_value,
   1044  1.101    kardel 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1045  1.101    kardel 		getmicrotime(&now);
   1046  1.101    kardel 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
   1047  1.101    kardel 			/*
   1048  1.101    kardel 			 * Don't need to check hzto() return value, here.
   1049  1.101    kardel 			 * callout_reset() does it for us.
   1050  1.101    kardel 			 */
   1051  1.101    kardel 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1052  1.101    kardel 			    realtimerexpire, pt);
   1053  1.101    kardel 			splx(s);
   1054  1.101    kardel 			return;
   1055  1.101    kardel 		}
   1056  1.101    kardel 		splx(s);
   1057  1.101    kardel 		pt->pt_overruns++;
   1058  1.101    kardel 	}
   1059  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1060   1.63   thorpej 	for (;;) {
   1061   1.63   thorpej 		s = splclock();
   1062   1.63   thorpej 		timeradd(&pt->pt_time.it_value,
   1063   1.63   thorpej 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1064   1.63   thorpej 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
   1065   1.63   thorpej 			/*
   1066   1.63   thorpej 			 * Don't need to check hzto() return value, here.
   1067   1.63   thorpej 			 * callout_reset() does it for us.
   1068   1.63   thorpej 			 */
   1069   1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1070   1.63   thorpej 			    realtimerexpire, pt);
   1071   1.63   thorpej 			splx(s);
   1072   1.63   thorpej 			return;
   1073   1.63   thorpej 		}
   1074   1.63   thorpej 		splx(s);
   1075   1.63   thorpej 		pt->pt_overruns++;
   1076   1.63   thorpej 	}
   1077  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1078   1.63   thorpej }
   1079   1.63   thorpej 
   1080   1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1081   1.63   thorpej /* ARGSUSED */
   1082   1.63   thorpej int
   1083  1.110      yamt sys_getitimer(struct lwp *l, void *v, register_t *retval)
   1084   1.63   thorpej {
   1085   1.63   thorpej 	struct sys_getitimer_args /* {
   1086   1.63   thorpej 		syscallarg(int) which;
   1087   1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1088   1.63   thorpej 	} */ *uap = v;
   1089   1.63   thorpej 	struct proc *p = l->l_proc;
   1090   1.63   thorpej 	struct itimerval aitv;
   1091   1.91      cube 	int error;
   1092   1.91      cube 
   1093   1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1094   1.91      cube 	if (error)
   1095   1.91      cube 		return error;
   1096   1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1097   1.91      cube }
   1098   1.63   thorpej 
   1099   1.91      cube int
   1100   1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1101   1.91      cube {
   1102   1.91      cube 	int s;
   1103   1.63   thorpej 
   1104   1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
   1105   1.63   thorpej 		return (EINVAL);
   1106   1.63   thorpej 
   1107   1.63   thorpej 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
   1108   1.91      cube 		timerclear(&itvp->it_value);
   1109   1.91      cube 		timerclear(&itvp->it_interval);
   1110   1.63   thorpej 	} else {
   1111   1.63   thorpej 		s = splclock();
   1112   1.91      cube 		timer_gettime(p->p_timers->pts_timers[which], itvp);
   1113   1.63   thorpej 		splx(s);
   1114   1.63   thorpej 	}
   1115   1.63   thorpej 
   1116   1.91      cube 	return 0;
   1117    1.1       cgd }
   1118    1.1       cgd 
   1119   1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1120    1.1       cgd /* ARGSUSED */
   1121    1.3    andrew int
   1122   1.63   thorpej sys_setitimer(struct lwp *l, void *v, register_t *retval)
   1123   1.15   thorpej {
   1124   1.45  augustss 	struct sys_setitimer_args /* {
   1125   1.30   mycroft 		syscallarg(int) which;
   1126   1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1127   1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1128   1.15   thorpej 	} */ *uap = v;
   1129   1.63   thorpej 	struct proc *p = l->l_proc;
   1130   1.30   mycroft 	int which = SCARG(uap, which);
   1131   1.21       cgd 	struct sys_getitimer_args getargs;
   1132   1.91      cube 	const struct itimerval *itvp;
   1133    1.1       cgd 	struct itimerval aitv;
   1134   1.91      cube 	int error;
   1135    1.1       cgd 
   1136   1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1137    1.1       cgd 		return (EINVAL);
   1138   1.11       cgd 	itvp = SCARG(uap, itv);
   1139   1.63   thorpej 	if (itvp &&
   1140   1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1141    1.1       cgd 		return (error);
   1142   1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1143   1.30   mycroft 		SCARG(&getargs, which) = which;
   1144   1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1145   1.63   thorpej 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1146   1.21       cgd 			return (error);
   1147   1.21       cgd 	}
   1148    1.1       cgd 	if (itvp == 0)
   1149    1.1       cgd 		return (0);
   1150   1.91      cube 
   1151   1.91      cube 	return dosetitimer(p, which, &aitv);
   1152   1.91      cube }
   1153   1.91      cube 
   1154   1.91      cube int
   1155   1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1156   1.91      cube {
   1157  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1158  1.101    kardel 	struct timeval now;
   1159  1.101    kardel #endif
   1160   1.91      cube 	struct ptimer *pt;
   1161   1.91      cube 	int s;
   1162   1.91      cube 
   1163   1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1164    1.1       cgd 		return (EINVAL);
   1165   1.63   thorpej 
   1166   1.63   thorpej 	/*
   1167   1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1168   1.63   thorpej 	 * wants to clear the timer.
   1169   1.63   thorpej 	 */
   1170   1.91      cube 	if (!timerisset(&itvp->it_value) &&
   1171   1.63   thorpej 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1172   1.63   thorpej 		return (0);
   1173   1.63   thorpej 
   1174   1.63   thorpej 	if (p->p_timers == NULL)
   1175   1.63   thorpej 		timers_alloc(p);
   1176   1.63   thorpej 	if (p->p_timers->pts_timers[which] == NULL) {
   1177   1.63   thorpej 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1178   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1179   1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1180   1.63   thorpej 		pt->pt_overruns = 0;
   1181   1.63   thorpej 		pt->pt_proc = p;
   1182   1.63   thorpej 		pt->pt_type = which;
   1183   1.64   nathanw 		pt->pt_entry = which;
   1184   1.63   thorpej 		switch (which) {
   1185   1.63   thorpej 		case ITIMER_REAL:
   1186   1.63   thorpej 			callout_init(&pt->pt_ch);
   1187   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1188   1.63   thorpej 			break;
   1189   1.63   thorpej 		case ITIMER_VIRTUAL:
   1190   1.63   thorpej 			pt->pt_active = 0;
   1191   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1192   1.63   thorpej 			break;
   1193   1.63   thorpej 		case ITIMER_PROF:
   1194   1.63   thorpej 			pt->pt_active = 0;
   1195   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1196   1.63   thorpej 			break;
   1197    1.1       cgd 		}
   1198    1.1       cgd 	} else
   1199   1.63   thorpej 		pt = p->p_timers->pts_timers[which];
   1200   1.63   thorpej 
   1201   1.91      cube 	pt->pt_time = *itvp;
   1202   1.63   thorpej 	p->p_timers->pts_timers[which] = pt;
   1203   1.63   thorpej 
   1204   1.63   thorpej 	s = splclock();
   1205   1.67   nathanw 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1206   1.67   nathanw 		/* Convert to absolute time */
   1207  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1208  1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1209  1.101    kardel 		getmicrotime(&now);
   1210  1.101    kardel 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1211  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1212   1.67   nathanw 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
   1213  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1214   1.67   nathanw 	}
   1215   1.63   thorpej 	timer_settime(pt);
   1216    1.1       cgd 	splx(s);
   1217   1.63   thorpej 
   1218    1.1       cgd 	return (0);
   1219    1.1       cgd }
   1220    1.1       cgd 
   1221   1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1222   1.63   thorpej void
   1223   1.63   thorpej timers_alloc(struct proc *p)
   1224   1.63   thorpej {
   1225   1.63   thorpej 	int i;
   1226   1.63   thorpej 	struct ptimers *pts;
   1227   1.63   thorpej 
   1228  1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1229   1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1230   1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1231   1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1232   1.63   thorpej 		pts->pts_timers[i] = NULL;
   1233   1.64   nathanw 	pts->pts_fired = 0;
   1234   1.63   thorpej 	p->p_timers = pts;
   1235   1.63   thorpej }
   1236   1.63   thorpej 
   1237    1.1       cgd /*
   1238   1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1239   1.63   thorpej  * then clean up all timers and free all the data structures. If
   1240   1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1241   1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1242   1.63   thorpej  * structure if none of those remain.
   1243    1.1       cgd  */
   1244    1.3    andrew void
   1245   1.63   thorpej timers_free(struct proc *p, int which)
   1246    1.6       cgd {
   1247   1.63   thorpej 	int i, s;
   1248   1.63   thorpej 	struct ptimers *pts;
   1249   1.63   thorpej 	struct ptimer *pt, *ptn;
   1250   1.63   thorpej 	struct timeval tv;
   1251   1.63   thorpej 
   1252   1.63   thorpej 	if (p->p_timers) {
   1253   1.63   thorpej 		pts = p->p_timers;
   1254   1.63   thorpej 		if (which == TIMERS_ALL)
   1255   1.63   thorpej 			i = 0;
   1256   1.63   thorpej 		else {
   1257   1.63   thorpej 			s = splclock();
   1258   1.63   thorpej 			timerclear(&tv);
   1259   1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1260   1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1261   1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1262   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1263   1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1264   1.63   thorpej 			if (ptn) {
   1265   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1266   1.63   thorpej 				    &ptn->pt_time.it_value);
   1267   1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1268   1.63   thorpej 				    ptn, pt_list);
   1269   1.63   thorpej 			}
   1270   1.63   thorpej 
   1271   1.63   thorpej 			timerclear(&tv);
   1272   1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1273   1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1274   1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1275   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1276   1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1277   1.63   thorpej 			if (ptn) {
   1278   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1279   1.63   thorpej 				    &ptn->pt_time.it_value);
   1280   1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1281   1.63   thorpej 				    pt_list);
   1282   1.63   thorpej 			}
   1283    1.1       cgd 			splx(s);
   1284   1.63   thorpej 			i = 3;
   1285   1.63   thorpej 		}
   1286   1.63   thorpej 		for ( ; i < TIMER_MAX; i++)
   1287   1.63   thorpej 			if ((pt = pts->pts_timers[i]) != NULL) {
   1288   1.63   thorpej 				if (pt->pt_type == CLOCK_REALTIME)
   1289   1.63   thorpej 					callout_stop(&pt->pt_ch);
   1290   1.63   thorpej 				pts->pts_timers[i] = NULL;
   1291   1.63   thorpej 				pool_put(&ptimer_pool, pt);
   1292   1.63   thorpej 			}
   1293   1.63   thorpej 		if ((pts->pts_timers[0] == NULL) &&
   1294   1.63   thorpej 		    (pts->pts_timers[1] == NULL) &&
   1295   1.63   thorpej 		    (pts->pts_timers[2] == NULL)) {
   1296   1.63   thorpej 			p->p_timers = NULL;
   1297   1.97    simonb 			pool_put(&ptimers_pool, pts);
   1298    1.1       cgd 		}
   1299    1.1       cgd 	}
   1300    1.1       cgd }
   1301    1.1       cgd 
   1302    1.1       cgd /*
   1303    1.1       cgd  * Check that a proposed value to load into the .it_value or
   1304    1.1       cgd  * .it_interval part of an interval timer is acceptable, and
   1305    1.1       cgd  * fix it to have at least minimal value (i.e. if it is less
   1306    1.1       cgd  * than the resolution of the clock, round it up.)
   1307    1.1       cgd  */
   1308    1.3    andrew int
   1309   1.63   thorpej itimerfix(struct timeval *tv)
   1310    1.1       cgd {
   1311    1.1       cgd 
   1312   1.59  christos 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
   1313    1.1       cgd 		return (EINVAL);
   1314    1.1       cgd 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
   1315    1.1       cgd 		tv->tv_usec = tick;
   1316    1.1       cgd 	return (0);
   1317    1.1       cgd }
   1318    1.1       cgd 
   1319  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1320  1.101    kardel int
   1321  1.101    kardel itimespecfix(struct timespec *ts)
   1322  1.101    kardel {
   1323  1.101    kardel 
   1324  1.101    kardel 	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
   1325  1.101    kardel 		return (EINVAL);
   1326  1.101    kardel 	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
   1327  1.101    kardel 		ts->tv_nsec = tick * 1000;
   1328  1.101    kardel 	return (0);
   1329  1.101    kardel }
   1330  1.101    kardel #endif /* __HAVE_TIMECOUNTER */
   1331  1.101    kardel 
   1332    1.1       cgd /*
   1333    1.1       cgd  * Decrement an interval timer by a specified number
   1334    1.1       cgd  * of microseconds, which must be less than a second,
   1335    1.1       cgd  * i.e. < 1000000.  If the timer expires, then reload
   1336    1.1       cgd  * it.  In this case, carry over (usec - old value) to
   1337    1.8       cgd  * reduce the value reloaded into the timer so that
   1338    1.1       cgd  * the timer does not drift.  This routine assumes
   1339    1.1       cgd  * that it is called in a context where the timers
   1340    1.1       cgd  * on which it is operating cannot change in value.
   1341    1.1       cgd  */
   1342    1.3    andrew int
   1343   1.63   thorpej itimerdecr(struct ptimer *pt, int usec)
   1344   1.63   thorpej {
   1345   1.45  augustss 	struct itimerval *itp;
   1346    1.1       cgd 
   1347   1.63   thorpej 	itp = &pt->pt_time;
   1348    1.1       cgd 	if (itp->it_value.tv_usec < usec) {
   1349    1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1350    1.1       cgd 			/* expired, and already in next interval */
   1351    1.1       cgd 			usec -= itp->it_value.tv_usec;
   1352    1.1       cgd 			goto expire;
   1353    1.1       cgd 		}
   1354    1.1       cgd 		itp->it_value.tv_usec += 1000000;
   1355    1.1       cgd 		itp->it_value.tv_sec--;
   1356    1.1       cgd 	}
   1357    1.1       cgd 	itp->it_value.tv_usec -= usec;
   1358    1.1       cgd 	usec = 0;
   1359    1.1       cgd 	if (timerisset(&itp->it_value))
   1360    1.1       cgd 		return (1);
   1361    1.1       cgd 	/* expired, exactly at end of interval */
   1362    1.1       cgd expire:
   1363    1.1       cgd 	if (timerisset(&itp->it_interval)) {
   1364    1.1       cgd 		itp->it_value = itp->it_interval;
   1365    1.1       cgd 		itp->it_value.tv_usec -= usec;
   1366    1.1       cgd 		if (itp->it_value.tv_usec < 0) {
   1367    1.1       cgd 			itp->it_value.tv_usec += 1000000;
   1368    1.1       cgd 			itp->it_value.tv_sec--;
   1369    1.1       cgd 		}
   1370   1.63   thorpej 		timer_settime(pt);
   1371    1.1       cgd 	} else
   1372    1.1       cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1373    1.1       cgd 	return (0);
   1374   1.42       cgd }
   1375   1.42       cgd 
   1376   1.63   thorpej void
   1377   1.63   thorpej itimerfire(struct ptimer *pt)
   1378   1.63   thorpej {
   1379   1.63   thorpej 	struct proc *p = pt->pt_proc;
   1380   1.78        cl 
   1381   1.63   thorpej 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1382   1.63   thorpej 		/*
   1383   1.63   thorpej 		 * No RT signal infrastructure exists at this time;
   1384   1.63   thorpej 		 * just post the signal number and throw away the
   1385   1.63   thorpej 		 * value.
   1386   1.63   thorpej 		 */
   1387  1.113        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
   1388   1.63   thorpej 			pt->pt_overruns++;
   1389   1.63   thorpej 		else {
   1390   1.75  christos 			ksiginfo_t ksi;
   1391  1.111      yamt 			KSI_INIT(&ksi);
   1392   1.75  christos 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1393   1.75  christos 			ksi.ksi_code = SI_TIMER;
   1394  1.124  christos 			ksi.ksi_value = pt->pt_ev.sigev_value;
   1395   1.63   thorpej 			pt->pt_poverruns = pt->pt_overruns;
   1396   1.63   thorpej 			pt->pt_overruns = 0;
   1397  1.113        ad 			mutex_enter(&proclist_mutex);
   1398   1.75  christos 			kpsignal(p, &ksi, NULL);
   1399  1.113        ad 			mutex_exit(&proclist_mutex);
   1400   1.64   nathanw 		}
   1401   1.63   thorpej 	}
   1402   1.63   thorpej }
   1403   1.63   thorpej 
   1404   1.42       cgd /*
   1405   1.42       cgd  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1406   1.42       cgd  * for usage and rationale.
   1407   1.42       cgd  */
   1408   1.42       cgd int
   1409   1.63   thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1410   1.42       cgd {
   1411   1.49    itojun 	struct timeval tv, delta;
   1412  1.101    kardel 	int rv = 0;
   1413  1.101    kardel #ifndef __HAVE_TIMECOUNTER
   1414  1.101    kardel 	int s;
   1415  1.101    kardel #endif
   1416   1.42       cgd 
   1417  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1418  1.101    kardel 	getmicrouptime(&tv);
   1419  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1420   1.63   thorpej 	s = splclock();
   1421   1.49    itojun 	tv = mono_time;
   1422   1.49    itojun 	splx(s);
   1423  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1424   1.49    itojun 	timersub(&tv, lasttime, &delta);
   1425   1.42       cgd 
   1426   1.42       cgd 	/*
   1427   1.42       cgd 	 * check for 0,0 is so that the message will be seen at least once,
   1428   1.42       cgd 	 * even if interval is huge.
   1429   1.42       cgd 	 */
   1430   1.42       cgd 	if (timercmp(&delta, mininterval, >=) ||
   1431   1.42       cgd 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1432   1.49    itojun 		*lasttime = tv;
   1433   1.42       cgd 		rv = 1;
   1434   1.42       cgd 	}
   1435   1.50    itojun 
   1436   1.50    itojun 	return (rv);
   1437   1.50    itojun }
   1438   1.50    itojun 
   1439   1.50    itojun /*
   1440   1.50    itojun  * ppsratecheck(): packets (or events) per second limitation.
   1441   1.50    itojun  */
   1442   1.50    itojun int
   1443   1.63   thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1444   1.50    itojun {
   1445   1.50    itojun 	struct timeval tv, delta;
   1446  1.101    kardel 	int rv;
   1447  1.101    kardel #ifndef __HAVE_TIMECOUNTER
   1448  1.101    kardel 	int s;
   1449  1.101    kardel #endif
   1450   1.50    itojun 
   1451  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1452  1.101    kardel 	getmicrouptime(&tv);
   1453  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1454   1.63   thorpej 	s = splclock();
   1455   1.50    itojun 	tv = mono_time;
   1456   1.50    itojun 	splx(s);
   1457  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1458   1.50    itojun 	timersub(&tv, lasttime, &delta);
   1459   1.50    itojun 
   1460   1.50    itojun 	/*
   1461   1.50    itojun 	 * check for 0,0 is so that the message will be seen at least once.
   1462   1.50    itojun 	 * if more than one second have passed since the last update of
   1463   1.50    itojun 	 * lasttime, reset the counter.
   1464   1.50    itojun 	 *
   1465   1.50    itojun 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1466   1.50    itojun 	 * try to use *curpps for stat purposes as well.
   1467   1.50    itojun 	 */
   1468   1.50    itojun 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1469   1.50    itojun 	    delta.tv_sec >= 1) {
   1470   1.50    itojun 		*lasttime = tv;
   1471   1.50    itojun 		*curpps = 0;
   1472   1.69    dyoung 	}
   1473   1.69    dyoung 	if (maxpps < 0)
   1474   1.53    itojun 		rv = 1;
   1475   1.53    itojun 	else if (*curpps < maxpps)
   1476   1.50    itojun 		rv = 1;
   1477   1.50    itojun 	else
   1478   1.50    itojun 		rv = 0;
   1479   1.50    itojun 
   1480   1.51     jhawk #if 1 /*DIAGNOSTIC?*/
   1481   1.50    itojun 	/* be careful about wrap-around */
   1482   1.50    itojun 	if (*curpps + 1 > *curpps)
   1483   1.50    itojun 		*curpps = *curpps + 1;
   1484   1.50    itojun #else
   1485   1.50    itojun 	/*
   1486   1.50    itojun 	 * assume that there's not too many calls to this function.
   1487   1.50    itojun 	 * not sure if the assumption holds, as it depends on *caller's*
   1488   1.50    itojun 	 * behavior, not the behavior of this function.
   1489   1.50    itojun 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1490   1.51     jhawk 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1491   1.50    itojun 	 */
   1492   1.50    itojun 	*curpps = *curpps + 1;
   1493   1.50    itojun #endif
   1494   1.42       cgd 
   1495   1.42       cgd 	return (rv);
   1496    1.1       cgd }
   1497