kern_time.c revision 1.127 1 1.127 ad /* $NetBSD: kern_time.c,v 1.127 2007/08/07 11:43:35 ad Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.88 mycroft * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.72 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 cgd * may be used to endorse or promote products derived from this software
53 1.1 cgd * without specific prior written permission.
54 1.1 cgd *
55 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 cgd * SUCH DAMAGE.
66 1.1 cgd *
67 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 1.1 cgd */
69 1.58 lukem
70 1.58 lukem #include <sys/cdefs.h>
71 1.127 ad __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.127 2007/08/07 11:43:35 ad Exp $");
72 1.1 cgd
73 1.5 mycroft #include <sys/param.h>
74 1.5 mycroft #include <sys/resourcevar.h>
75 1.5 mycroft #include <sys/kernel.h>
76 1.8 cgd #include <sys/systm.h>
77 1.5 mycroft #include <sys/proc.h>
78 1.8 cgd #include <sys/vnode.h>
79 1.17 christos #include <sys/signalvar.h>
80 1.25 perry #include <sys/syslog.h>
81 1.101 kardel #include <sys/timetc.h>
82 1.122 dsl #ifndef __HAVE_TIMECOUNTER
83 1.95 cube #include <sys/timevar.h>
84 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
85 1.99 elad #include <sys/kauth.h>
86 1.1 cgd
87 1.11 cgd #include <sys/mount.h>
88 1.11 cgd #include <sys/syscallargs.h>
89 1.19 christos
90 1.37 thorpej #include <uvm/uvm_extern.h>
91 1.37 thorpej
92 1.5 mycroft #include <machine/cpu.h>
93 1.23 cgd
94 1.97 simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
95 1.118 ad &pool_allocator_nointr, IPL_NONE);
96 1.97 simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
97 1.118 ad &pool_allocator_nointr, IPL_NONE);
98 1.97 simonb
99 1.63 thorpej /* Time of day and interval timer support.
100 1.1 cgd *
101 1.1 cgd * These routines provide the kernel entry points to get and set
102 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
103 1.1 cgd * here provide support for adding and subtracting timeval structures
104 1.1 cgd * and decrementing interval timers, optionally reloading the interval
105 1.1 cgd * timers when they expire.
106 1.1 cgd */
107 1.1 cgd
108 1.22 jtc /* This function is used by clock_settime and settimeofday */
109 1.39 tron int
110 1.98 christos settime(struct proc *p, struct timespec *ts)
111 1.22 jtc {
112 1.98 christos struct timeval delta, tv;
113 1.101 kardel #ifdef __HAVE_TIMECOUNTER
114 1.101 kardel struct timeval now;
115 1.101 kardel struct timespec ts1;
116 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
117 1.47 thorpej struct cpu_info *ci;
118 1.114 ad int s1, s2;
119 1.22 jtc
120 1.98 christos /*
121 1.98 christos * Don't allow the time to be set forward so far it will wrap
122 1.98 christos * and become negative, thus allowing an attacker to bypass
123 1.98 christos * the next check below. The cutoff is 1 year before rollover
124 1.98 christos * occurs, so even if the attacker uses adjtime(2) to move
125 1.98 christos * the time past the cutoff, it will take a very long time
126 1.98 christos * to get to the wrap point.
127 1.98 christos *
128 1.98 christos * XXX: we check against INT_MAX since on 64-bit
129 1.98 christos * platforms, sizeof(int) != sizeof(long) and
130 1.98 christos * time_t is 32 bits even when atv.tv_sec is 64 bits.
131 1.98 christos */
132 1.98 christos if (ts->tv_sec > INT_MAX - 365*24*60*60) {
133 1.113 ad struct proc *pp;
134 1.113 ad
135 1.117 ad mutex_enter(&proclist_lock);
136 1.113 ad pp = p->p_pptr;
137 1.113 ad mutex_enter(&pp->p_mutex);
138 1.98 christos log(LOG_WARNING, "pid %d (%s) "
139 1.98 christos "invoked by uid %d ppid %d (%s) "
140 1.98 christos "tried to set clock forward to %ld\n",
141 1.99 elad p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
142 1.98 christos pp->p_pid, pp->p_comm, (long)ts->tv_sec);
143 1.113 ad mutex_exit(&pp->p_mutex);
144 1.117 ad mutex_exit(&proclist_lock);
145 1.98 christos return (EPERM);
146 1.98 christos }
147 1.98 christos TIMESPEC_TO_TIMEVAL(&tv, ts);
148 1.98 christos
149 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
150 1.114 ad s1 = splsoftclock();
151 1.114 ad s2 = splclock();
152 1.101 kardel #ifdef __HAVE_TIMECOUNTER
153 1.101 kardel microtime(&now);
154 1.101 kardel timersub(&tv, &now, &delta);
155 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
156 1.98 christos timersub(&tv, &time, &delta);
157 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
158 1.106 elad if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
159 1.106 elad kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
160 1.106 elad KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
161 1.114 ad splx(s1);
162 1.29 tls return (EPERM);
163 1.55 tron }
164 1.29 tls #ifdef notyet
165 1.109 elad if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
166 1.114 ad splx(s1);
167 1.29 tls return (EPERM);
168 1.55 tron }
169 1.29 tls #endif
170 1.103 kardel
171 1.101 kardel #ifdef __HAVE_TIMECOUNTER
172 1.103 kardel TIMEVAL_TO_TIMESPEC(&tv, &ts1);
173 1.101 kardel tc_setclock(&ts1);
174 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
175 1.98 christos time = tv;
176 1.103 kardel #endif /* !__HAVE_TIMECOUNTER */
177 1.103 kardel
178 1.114 ad splx(s2);
179 1.103 kardel
180 1.22 jtc timeradd(&boottime, &delta, &boottime);
181 1.103 kardel
182 1.47 thorpej /*
183 1.47 thorpej * XXXSMP
184 1.47 thorpej * This is wrong. We should traverse a list of all
185 1.47 thorpej * CPUs and add the delta to the runtime of those
186 1.47 thorpej * CPUs which have a process on them.
187 1.47 thorpej */
188 1.47 thorpej ci = curcpu();
189 1.47 thorpej timeradd(&ci->ci_schedstate.spc_runtime, &delta,
190 1.47 thorpej &ci->ci_schedstate.spc_runtime);
191 1.114 ad splx(s1);
192 1.22 jtc resettodr();
193 1.29 tls return (0);
194 1.22 jtc }
195 1.22 jtc
196 1.22 jtc /* ARGSUSED */
197 1.22 jtc int
198 1.110 yamt sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
199 1.22 jtc {
200 1.45 augustss struct sys_clock_gettime_args /* {
201 1.22 jtc syscallarg(clockid_t) clock_id;
202 1.23 cgd syscallarg(struct timespec *) tp;
203 1.23 cgd } */ *uap = v;
204 1.22 jtc clockid_t clock_id;
205 1.22 jtc struct timespec ats;
206 1.22 jtc
207 1.22 jtc clock_id = SCARG(uap, clock_id);
208 1.61 simonb switch (clock_id) {
209 1.61 simonb case CLOCK_REALTIME:
210 1.96 simonb nanotime(&ats);
211 1.61 simonb break;
212 1.61 simonb case CLOCK_MONOTONIC:
213 1.101 kardel nanouptime(&ats);
214 1.61 simonb break;
215 1.61 simonb default:
216 1.22 jtc return (EINVAL);
217 1.61 simonb }
218 1.22 jtc
219 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
220 1.22 jtc }
221 1.22 jtc
222 1.22 jtc /* ARGSUSED */
223 1.22 jtc int
224 1.110 yamt sys_clock_settime(struct lwp *l, void *v, register_t *retval)
225 1.22 jtc {
226 1.45 augustss struct sys_clock_settime_args /* {
227 1.22 jtc syscallarg(clockid_t) clock_id;
228 1.23 cgd syscallarg(const struct timespec *) tp;
229 1.23 cgd } */ *uap = v;
230 1.22 jtc int error;
231 1.22 jtc
232 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
233 1.106 elad KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
234 1.22 jtc return (error);
235 1.22 jtc
236 1.105 ad return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
237 1.56 manu }
238 1.56 manu
239 1.56 manu
240 1.56 manu int
241 1.98 christos clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
242 1.56 manu {
243 1.60 manu struct timespec ats;
244 1.56 manu int error;
245 1.56 manu
246 1.60 manu if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
247 1.60 manu return (error);
248 1.60 manu
249 1.61 simonb switch (clock_id) {
250 1.61 simonb case CLOCK_REALTIME:
251 1.98 christos if ((error = settime(p, &ats)) != 0)
252 1.61 simonb return (error);
253 1.61 simonb break;
254 1.61 simonb case CLOCK_MONOTONIC:
255 1.61 simonb return (EINVAL); /* read-only clock */
256 1.61 simonb default:
257 1.56 manu return (EINVAL);
258 1.61 simonb }
259 1.22 jtc
260 1.22 jtc return 0;
261 1.22 jtc }
262 1.22 jtc
263 1.22 jtc int
264 1.110 yamt sys_clock_getres(struct lwp *l, void *v, register_t *retval)
265 1.22 jtc {
266 1.45 augustss struct sys_clock_getres_args /* {
267 1.22 jtc syscallarg(clockid_t) clock_id;
268 1.23 cgd syscallarg(struct timespec *) tp;
269 1.23 cgd } */ *uap = v;
270 1.22 jtc clockid_t clock_id;
271 1.22 jtc struct timespec ts;
272 1.22 jtc int error = 0;
273 1.22 jtc
274 1.22 jtc clock_id = SCARG(uap, clock_id);
275 1.61 simonb switch (clock_id) {
276 1.61 simonb case CLOCK_REALTIME:
277 1.61 simonb case CLOCK_MONOTONIC:
278 1.22 jtc ts.tv_sec = 0;
279 1.102 kardel if (tc_getfrequency() > 1000000000)
280 1.102 kardel ts.tv_nsec = 1;
281 1.102 kardel else
282 1.102 kardel ts.tv_nsec = 1000000000 / tc_getfrequency();
283 1.61 simonb break;
284 1.61 simonb default:
285 1.61 simonb return (EINVAL);
286 1.61 simonb }
287 1.22 jtc
288 1.61 simonb if (SCARG(uap, tp))
289 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
290 1.22 jtc
291 1.22 jtc return error;
292 1.22 jtc }
293 1.22 jtc
294 1.27 jtc /* ARGSUSED */
295 1.27 jtc int
296 1.110 yamt sys_nanosleep(struct lwp *l, void *v, register_t *retval)
297 1.27 jtc {
298 1.101 kardel struct sys_nanosleep_args/* {
299 1.101 kardel syscallarg(struct timespec *) rqtp;
300 1.101 kardel syscallarg(struct timespec *) rmtp;
301 1.101 kardel } */ *uap = v;
302 1.101 kardel struct timespec rmt, rqt;
303 1.120 dsl int error, error1;
304 1.101 kardel
305 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
306 1.101 kardel if (error)
307 1.101 kardel return (error);
308 1.101 kardel
309 1.120 dsl error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
310 1.120 dsl if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
311 1.120 dsl return error;
312 1.120 dsl
313 1.120 dsl error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
314 1.120 dsl return error1 ? error1 : error;
315 1.120 dsl }
316 1.120 dsl
317 1.120 dsl int
318 1.120 dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
319 1.120 dsl {
320 1.120 dsl #ifdef __HAVE_TIMECOUNTER
321 1.120 dsl int error, timo;
322 1.120 dsl
323 1.120 dsl if (itimespecfix(rqt))
324 1.101 kardel return (EINVAL);
325 1.101 kardel
326 1.120 dsl timo = tstohz(rqt);
327 1.101 kardel /*
328 1.101 kardel * Avoid inadvertantly sleeping forever
329 1.101 kardel */
330 1.101 kardel if (timo == 0)
331 1.101 kardel timo = 1;
332 1.101 kardel
333 1.123 dsl if (rmt != NULL)
334 1.123 dsl getnanouptime(rmt);
335 1.104 kardel
336 1.115 thorpej error = kpause("nanoslp", true, timo, NULL);
337 1.101 kardel if (error == ERESTART)
338 1.101 kardel error = EINTR;
339 1.101 kardel if (error == EWOULDBLOCK)
340 1.101 kardel error = 0;
341 1.101 kardel
342 1.120 dsl if (rmt!= NULL) {
343 1.104 kardel struct timespec rmtend;
344 1.101 kardel
345 1.104 kardel getnanouptime(&rmtend);
346 1.101 kardel
347 1.120 dsl timespecsub(&rmtend, rmt, rmt);
348 1.120 dsl timespecsub(rqt, rmt, rmt);
349 1.120 dsl if (rmt->tv_sec < 0)
350 1.120 dsl timespecclear(rmt);
351 1.101 kardel }
352 1.101 kardel
353 1.101 kardel return error;
354 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
355 1.27 jtc struct timeval atv, utv;
356 1.27 jtc int error, s, timo;
357 1.27 jtc
358 1.120 dsl TIMESPEC_TO_TIMEVAL(&atv, rqt);
359 1.80 christos if (itimerfix(&atv))
360 1.27 jtc return (EINVAL);
361 1.27 jtc
362 1.27 jtc s = splclock();
363 1.27 jtc timeradd(&atv,&time,&atv);
364 1.27 jtc timo = hzto(&atv);
365 1.63 thorpej /*
366 1.27 jtc * Avoid inadvertantly sleeping forever
367 1.27 jtc */
368 1.27 jtc if (timo == 0)
369 1.27 jtc timo = 1;
370 1.27 jtc splx(s);
371 1.27 jtc
372 1.115 thorpej error = kpause("nanoslp", true, timo, NULL);
373 1.27 jtc if (error == ERESTART)
374 1.27 jtc error = EINTR;
375 1.27 jtc if (error == EWOULDBLOCK)
376 1.27 jtc error = 0;
377 1.27 jtc
378 1.120 dsl if (rmt != NULL) {
379 1.27 jtc s = splclock();
380 1.27 jtc utv = time;
381 1.27 jtc splx(s);
382 1.27 jtc
383 1.27 jtc timersub(&atv, &utv, &utv);
384 1.27 jtc if (utv.tv_sec < 0)
385 1.27 jtc timerclear(&utv);
386 1.27 jtc
387 1.120 dsl TIMEVAL_TO_TIMESPEC(&utv, rmt);
388 1.27 jtc }
389 1.27 jtc
390 1.27 jtc return error;
391 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
392 1.27 jtc }
393 1.22 jtc
394 1.1 cgd /* ARGSUSED */
395 1.3 andrew int
396 1.110 yamt sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
397 1.15 thorpej {
398 1.45 augustss struct sys_gettimeofday_args /* {
399 1.11 cgd syscallarg(struct timeval *) tp;
400 1.84 simonb syscallarg(void *) tzp; really "struct timezone *"
401 1.15 thorpej } */ *uap = v;
402 1.1 cgd struct timeval atv;
403 1.1 cgd int error = 0;
404 1.25 perry struct timezone tzfake;
405 1.1 cgd
406 1.11 cgd if (SCARG(uap, tp)) {
407 1.1 cgd microtime(&atv);
408 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
409 1.17 christos if (error)
410 1.1 cgd return (error);
411 1.1 cgd }
412 1.25 perry if (SCARG(uap, tzp)) {
413 1.25 perry /*
414 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
415 1.25 perry * fake up a timezone struct and return it if demanded.
416 1.25 perry */
417 1.25 perry tzfake.tz_minuteswest = 0;
418 1.25 perry tzfake.tz_dsttime = 0;
419 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
420 1.25 perry }
421 1.1 cgd return (error);
422 1.1 cgd }
423 1.1 cgd
424 1.1 cgd /* ARGSUSED */
425 1.3 andrew int
426 1.110 yamt sys_settimeofday(struct lwp *l, void *v, register_t *retval)
427 1.15 thorpej {
428 1.16 mycroft struct sys_settimeofday_args /* {
429 1.24 cgd syscallarg(const struct timeval *) tv;
430 1.84 simonb syscallarg(const void *) tzp; really "const struct timezone *"
431 1.15 thorpej } */ *uap = v;
432 1.60 manu
433 1.119 dsl return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
434 1.60 manu }
435 1.60 manu
436 1.60 manu int
437 1.119 dsl settimeofday1(const struct timeval *utv, bool userspace,
438 1.119 dsl const void *utzp, struct lwp *l, bool check_kauth)
439 1.60 manu {
440 1.22 jtc struct timeval atv;
441 1.98 christos struct timespec ts;
442 1.22 jtc int error;
443 1.1 cgd
444 1.8 cgd /* Verify all parameters before changing time. */
445 1.119 dsl
446 1.119 dsl if (check_kauth) {
447 1.119 dsl error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
448 1.119 dsl KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL);
449 1.119 dsl if (error != 0)
450 1.119 dsl return (error);
451 1.119 dsl }
452 1.119 dsl
453 1.25 perry /*
454 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
455 1.25 perry * obsolete program would try to set it, so we log a warning.
456 1.25 perry */
457 1.98 christos if (utzp)
458 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
459 1.119 dsl "(obsolete) kernel time zone\n", l->l_proc->p_pid);
460 1.98 christos
461 1.98 christos if (utv == NULL)
462 1.98 christos return 0;
463 1.98 christos
464 1.119 dsl if (userspace) {
465 1.119 dsl if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
466 1.119 dsl return error;
467 1.119 dsl utv = &atv;
468 1.119 dsl }
469 1.119 dsl
470 1.119 dsl TIMEVAL_TO_TIMESPEC(utv, &ts);
471 1.119 dsl return settime(l->l_proc, &ts);
472 1.1 cgd }
473 1.1 cgd
474 1.101 kardel #ifndef __HAVE_TIMECOUNTER
475 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
476 1.1 cgd long timedelta; /* unapplied time correction, us. */
477 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
478 1.101 kardel #endif
479 1.101 kardel
480 1.68 dsl int time_adjusted; /* set if an adjustment is made */
481 1.1 cgd
482 1.1 cgd /* ARGSUSED */
483 1.3 andrew int
484 1.110 yamt sys_adjtime(struct lwp *l, void *v, register_t *retval)
485 1.15 thorpej {
486 1.45 augustss struct sys_adjtime_args /* {
487 1.24 cgd syscallarg(const struct timeval *) delta;
488 1.11 cgd syscallarg(struct timeval *) olddelta;
489 1.15 thorpej } */ *uap = v;
490 1.56 manu int error;
491 1.1 cgd
492 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
493 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
494 1.1 cgd return (error);
495 1.17 christos
496 1.105 ad return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
497 1.56 manu }
498 1.56 manu
499 1.56 manu int
500 1.110 yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
501 1.56 manu {
502 1.60 manu struct timeval atv;
503 1.101 kardel int error = 0;
504 1.101 kardel
505 1.101 kardel #ifdef __HAVE_TIMECOUNTER
506 1.101 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
507 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
508 1.56 manu long ndelta, ntickdelta, odelta;
509 1.56 manu int s;
510 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
511 1.101 kardel
512 1.101 kardel #ifdef __HAVE_TIMECOUNTER
513 1.101 kardel if (olddelta) {
514 1.101 kardel atv.tv_sec = time_adjtime / 1000000;
515 1.101 kardel atv.tv_usec = time_adjtime % 1000000;
516 1.101 kardel if (atv.tv_usec < 0) {
517 1.101 kardel atv.tv_usec += 1000000;
518 1.101 kardel atv.tv_sec--;
519 1.101 kardel }
520 1.101 kardel error = copyout(&atv, olddelta, sizeof(struct timeval));
521 1.101 kardel if (error)
522 1.101 kardel return (error);
523 1.101 kardel }
524 1.101 kardel
525 1.101 kardel if (delta) {
526 1.101 kardel error = copyin(delta, &atv, sizeof(struct timeval));
527 1.101 kardel if (error)
528 1.101 kardel return (error);
529 1.101 kardel
530 1.101 kardel time_adjtime = (int64_t)atv.tv_sec * 1000000 +
531 1.101 kardel atv.tv_usec;
532 1.8 cgd
533 1.101 kardel if (time_adjtime)
534 1.101 kardel /* We need to save the system time during shutdown */
535 1.101 kardel time_adjusted |= 1;
536 1.101 kardel }
537 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
538 1.60 manu error = copyin(delta, &atv, sizeof(struct timeval));
539 1.60 manu if (error)
540 1.60 manu return (error);
541 1.60 manu
542 1.8 cgd /*
543 1.8 cgd * Compute the total correction and the rate at which to apply it.
544 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
545 1.8 cgd * delta, so that after some number of incremental changes in
546 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
547 1.8 cgd * overshoot and start taking us away from the desired final time.
548 1.8 cgd */
549 1.60 manu ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
550 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
551 1.8 cgd ntickdelta = 10 * tickadj;
552 1.8 cgd else
553 1.8 cgd ntickdelta = tickadj;
554 1.8 cgd if (ndelta % ntickdelta)
555 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
556 1.8 cgd
557 1.8 cgd /*
558 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
559 1.8 cgd * if we want time to run slower; then hardclock can simply compute
560 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
561 1.8 cgd */
562 1.8 cgd if (ndelta < 0)
563 1.8 cgd ntickdelta = -ntickdelta;
564 1.68 dsl if (ndelta != 0)
565 1.68 dsl /* We need to save the system clock time during shutdown */
566 1.68 dsl time_adjusted |= 1;
567 1.1 cgd s = splclock();
568 1.8 cgd odelta = timedelta;
569 1.1 cgd timedelta = ndelta;
570 1.8 cgd tickdelta = ntickdelta;
571 1.1 cgd splx(s);
572 1.1 cgd
573 1.56 manu if (olddelta) {
574 1.60 manu atv.tv_sec = odelta / 1000000;
575 1.60 manu atv.tv_usec = odelta % 1000000;
576 1.79 chs error = copyout(&atv, olddelta, sizeof(struct timeval));
577 1.8 cgd }
578 1.101 kardel #endif /* __HAVE_TIMECOUNTER */
579 1.101 kardel
580 1.79 chs return error;
581 1.1 cgd }
582 1.1 cgd
583 1.1 cgd /*
584 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
585 1.63 thorpej * timer_*() family of routines are supported.
586 1.1 cgd *
587 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
588 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
589 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
590 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
591 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
592 1.63 thorpej * syscall.
593 1.1 cgd *
594 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
595 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
596 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
597 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
598 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
599 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
600 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
601 1.63 thorpej * given below), to be delayed in real time past when it is supposed
602 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
603 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
604 1.63 thorpej * compute the next time in absolute time the timer should go off. */
605 1.63 thorpej
606 1.63 thorpej /* Allocate a POSIX realtime timer. */
607 1.63 thorpej int
608 1.110 yamt sys_timer_create(struct lwp *l, void *v, register_t *retval)
609 1.63 thorpej {
610 1.63 thorpej struct sys_timer_create_args /* {
611 1.63 thorpej syscallarg(clockid_t) clock_id;
612 1.63 thorpej syscallarg(struct sigevent *) evp;
613 1.63 thorpej syscallarg(timer_t *) timerid;
614 1.63 thorpej } */ *uap = v;
615 1.92 cube
616 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
617 1.105 ad SCARG(uap, evp), copyin, l);
618 1.92 cube }
619 1.92 cube
620 1.92 cube int
621 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
622 1.105 ad copyin_t fetch_event, struct lwp *l)
623 1.92 cube {
624 1.92 cube int error;
625 1.92 cube timer_t timerid;
626 1.63 thorpej struct ptimer *pt;
627 1.105 ad struct proc *p;
628 1.105 ad
629 1.105 ad p = l->l_proc;
630 1.63 thorpej
631 1.63 thorpej if (id < CLOCK_REALTIME ||
632 1.63 thorpej id > CLOCK_PROF)
633 1.63 thorpej return (EINVAL);
634 1.63 thorpej
635 1.63 thorpej if (p->p_timers == NULL)
636 1.63 thorpej timers_alloc(p);
637 1.63 thorpej
638 1.63 thorpej /* Find a free timer slot, skipping those reserved for setitimer(). */
639 1.63 thorpej for (timerid = 3; timerid < TIMER_MAX; timerid++)
640 1.63 thorpej if (p->p_timers->pts_timers[timerid] == NULL)
641 1.63 thorpej break;
642 1.63 thorpej
643 1.63 thorpej if (timerid == TIMER_MAX)
644 1.63 thorpej return EAGAIN;
645 1.63 thorpej
646 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
647 1.63 thorpej if (evp) {
648 1.63 thorpej if (((error =
649 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
650 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
651 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
652 1.63 thorpej pool_put(&ptimer_pool, pt);
653 1.63 thorpej return (error ? error : EINVAL);
654 1.63 thorpej }
655 1.63 thorpej } else {
656 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
657 1.63 thorpej switch (id) {
658 1.63 thorpej case CLOCK_REALTIME:
659 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
660 1.63 thorpej break;
661 1.63 thorpej case CLOCK_VIRTUAL:
662 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
663 1.63 thorpej break;
664 1.63 thorpej case CLOCK_PROF:
665 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
666 1.63 thorpej break;
667 1.63 thorpej }
668 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
669 1.63 thorpej }
670 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
671 1.73 christos pt->pt_info.ksi_errno = 0;
672 1.73 christos pt->pt_info.ksi_code = 0;
673 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
674 1.105 ad pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
675 1.124 christos pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
676 1.63 thorpej
677 1.63 thorpej pt->pt_type = id;
678 1.63 thorpej pt->pt_proc = p;
679 1.63 thorpej pt->pt_overruns = 0;
680 1.63 thorpej pt->pt_poverruns = 0;
681 1.64 nathanw pt->pt_entry = timerid;
682 1.63 thorpej timerclear(&pt->pt_time.it_value);
683 1.63 thorpej if (id == CLOCK_REALTIME)
684 1.125 ad callout_init(&pt->pt_ch, 0);
685 1.63 thorpej else
686 1.63 thorpej pt->pt_active = 0;
687 1.63 thorpej
688 1.63 thorpej p->p_timers->pts_timers[timerid] = pt;
689 1.63 thorpej
690 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
691 1.63 thorpej }
692 1.63 thorpej
693 1.63 thorpej /* Delete a POSIX realtime timer */
694 1.3 andrew int
695 1.110 yamt sys_timer_delete(struct lwp *l, void *v, register_t *retval)
696 1.15 thorpej {
697 1.63 thorpej struct sys_timer_delete_args /* {
698 1.63 thorpej syscallarg(timer_t) timerid;
699 1.15 thorpej } */ *uap = v;
700 1.63 thorpej struct proc *p = l->l_proc;
701 1.65 jdolecek timer_t timerid;
702 1.63 thorpej struct ptimer *pt, *ptn;
703 1.1 cgd int s;
704 1.1 cgd
705 1.63 thorpej timerid = SCARG(uap, timerid);
706 1.63 thorpej
707 1.63 thorpej if ((p->p_timers == NULL) ||
708 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
709 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
710 1.1 cgd return (EINVAL);
711 1.63 thorpej
712 1.125 ad if (pt->pt_type == CLOCK_REALTIME) {
713 1.63 thorpej callout_stop(&pt->pt_ch);
714 1.125 ad callout_destroy(&pt->pt_ch);
715 1.125 ad } else if (pt->pt_active) {
716 1.63 thorpej s = splclock();
717 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
718 1.63 thorpej LIST_REMOVE(pt, pt_list);
719 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
720 1.63 thorpej timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
721 1.63 thorpej &ptn->pt_time.it_value);
722 1.63 thorpej splx(s);
723 1.63 thorpej }
724 1.63 thorpej
725 1.63 thorpej p->p_timers->pts_timers[timerid] = NULL;
726 1.63 thorpej pool_put(&ptimer_pool, pt);
727 1.63 thorpej
728 1.63 thorpej return (0);
729 1.63 thorpej }
730 1.63 thorpej
731 1.63 thorpej /*
732 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
733 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
734 1.67 nathanw * time for virtual timers.
735 1.63 thorpej * Must be called at splclock().
736 1.63 thorpej */
737 1.63 thorpej void
738 1.63 thorpej timer_settime(struct ptimer *pt)
739 1.63 thorpej {
740 1.63 thorpej struct ptimer *ptn, *pptn;
741 1.63 thorpej struct ptlist *ptl;
742 1.63 thorpej
743 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
744 1.63 thorpej callout_stop(&pt->pt_ch);
745 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
746 1.63 thorpej /*
747 1.63 thorpej * Don't need to check hzto() return value, here.
748 1.63 thorpej * callout_reset() does it for us.
749 1.63 thorpej */
750 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
751 1.63 thorpej realtimerexpire, pt);
752 1.63 thorpej }
753 1.63 thorpej } else {
754 1.63 thorpej if (pt->pt_active) {
755 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
756 1.63 thorpej LIST_REMOVE(pt, pt_list);
757 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
758 1.63 thorpej timeradd(&pt->pt_time.it_value,
759 1.63 thorpej &ptn->pt_time.it_value,
760 1.63 thorpej &ptn->pt_time.it_value);
761 1.63 thorpej }
762 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
763 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
764 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
765 1.63 thorpej else
766 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
767 1.63 thorpej
768 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
769 1.63 thorpej ptn && timercmp(&pt->pt_time.it_value,
770 1.63 thorpej &ptn->pt_time.it_value, >);
771 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
772 1.63 thorpej timersub(&pt->pt_time.it_value,
773 1.63 thorpej &ptn->pt_time.it_value,
774 1.63 thorpej &pt->pt_time.it_value);
775 1.63 thorpej
776 1.63 thorpej if (pptn)
777 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
778 1.63 thorpej else
779 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
780 1.63 thorpej
781 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
782 1.63 thorpej timersub(&ptn->pt_time.it_value,
783 1.63 thorpej &pt->pt_time.it_value,
784 1.63 thorpej &ptn->pt_time.it_value);
785 1.63 thorpej
786 1.63 thorpej pt->pt_active = 1;
787 1.63 thorpej } else
788 1.63 thorpej pt->pt_active = 0;
789 1.63 thorpej }
790 1.63 thorpej }
791 1.63 thorpej
792 1.63 thorpej void
793 1.63 thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
794 1.63 thorpej {
795 1.101 kardel #ifdef __HAVE_TIMECOUNTER
796 1.101 kardel struct timeval now;
797 1.101 kardel #endif
798 1.63 thorpej struct ptimer *ptn;
799 1.63 thorpej
800 1.63 thorpej *aitv = pt->pt_time;
801 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
802 1.1 cgd /*
803 1.12 mycroft * Convert from absolute to relative time in .it_value
804 1.63 thorpej * part of real time timer. If time for real time
805 1.63 thorpej * timer has passed return 0, else return difference
806 1.63 thorpej * between current time and time for the timer to go
807 1.63 thorpej * off.
808 1.1 cgd */
809 1.63 thorpej if (timerisset(&aitv->it_value)) {
810 1.101 kardel #ifdef __HAVE_TIMECOUNTER
811 1.101 kardel getmicrotime(&now);
812 1.101 kardel if (timercmp(&aitv->it_value, &now, <))
813 1.101 kardel timerclear(&aitv->it_value);
814 1.101 kardel else
815 1.101 kardel timersub(&aitv->it_value, &now,
816 1.101 kardel &aitv->it_value);
817 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
818 1.63 thorpej if (timercmp(&aitv->it_value, &time, <))
819 1.63 thorpej timerclear(&aitv->it_value);
820 1.1 cgd else
821 1.63 thorpej timersub(&aitv->it_value, &time,
822 1.63 thorpej &aitv->it_value);
823 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
824 1.36 thorpej }
825 1.63 thorpej } else if (pt->pt_active) {
826 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
827 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
828 1.63 thorpej else
829 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
830 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
831 1.63 thorpej timeradd(&aitv->it_value,
832 1.63 thorpej &ptn->pt_time.it_value, &aitv->it_value);
833 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
834 1.1 cgd } else
835 1.63 thorpej timerclear(&aitv->it_value);
836 1.63 thorpej }
837 1.63 thorpej
838 1.63 thorpej
839 1.63 thorpej
840 1.63 thorpej /* Set and arm a POSIX realtime timer */
841 1.63 thorpej int
842 1.110 yamt sys_timer_settime(struct lwp *l, void *v, register_t *retval)
843 1.63 thorpej {
844 1.63 thorpej struct sys_timer_settime_args /* {
845 1.63 thorpej syscallarg(timer_t) timerid;
846 1.63 thorpej syscallarg(int) flags;
847 1.63 thorpej syscallarg(const struct itimerspec *) value;
848 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
849 1.63 thorpej } */ *uap = v;
850 1.92 cube int error;
851 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
852 1.92 cube
853 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
854 1.92 cube sizeof(struct itimerspec))) != 0)
855 1.92 cube return (error);
856 1.92 cube
857 1.92 cube if (SCARG(uap, ovalue))
858 1.92 cube ovp = &ovalue;
859 1.92 cube
860 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
861 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
862 1.92 cube return error;
863 1.92 cube
864 1.92 cube if (ovp)
865 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
866 1.92 cube sizeof(struct itimerspec));
867 1.92 cube return 0;
868 1.92 cube }
869 1.92 cube
870 1.92 cube int
871 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
872 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
873 1.92 cube {
874 1.101 kardel #ifdef __HAVE_TIMECOUNTER
875 1.101 kardel struct timeval now;
876 1.101 kardel #endif
877 1.63 thorpej struct itimerval val, oval;
878 1.63 thorpej struct ptimer *pt;
879 1.101 kardel int s;
880 1.63 thorpej
881 1.63 thorpej if ((p->p_timers == NULL) ||
882 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
883 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
884 1.63 thorpej return (EINVAL);
885 1.63 thorpej
886 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
887 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
888 1.63 thorpej if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
889 1.63 thorpej return (EINVAL);
890 1.63 thorpej
891 1.63 thorpej oval = pt->pt_time;
892 1.63 thorpej pt->pt_time = val;
893 1.63 thorpej
894 1.63 thorpej s = splclock();
895 1.67 nathanw /*
896 1.67 nathanw * If we've been passed a relative time for a realtime timer,
897 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
898 1.67 nathanw * timer, convert it to relative and make sure we don't set it
899 1.67 nathanw * to zero, which would cancel the timer, or let it go
900 1.67 nathanw * negative, which would confuse the comparison tests.
901 1.67 nathanw */
902 1.67 nathanw if (timerisset(&pt->pt_time.it_value)) {
903 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
904 1.101 kardel #ifdef __HAVE_TIMECOUNTER
905 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
906 1.101 kardel getmicrotime(&now);
907 1.101 kardel timeradd(&pt->pt_time.it_value, &now,
908 1.101 kardel &pt->pt_time.it_value);
909 1.101 kardel }
910 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
911 1.92 cube if ((flags & TIMER_ABSTIME) == 0)
912 1.67 nathanw timeradd(&pt->pt_time.it_value, &time,
913 1.67 nathanw &pt->pt_time.it_value);
914 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
915 1.67 nathanw } else {
916 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
917 1.101 kardel #ifdef __HAVE_TIMECOUNTER
918 1.101 kardel getmicrotime(&now);
919 1.101 kardel timersub(&pt->pt_time.it_value, &now,
920 1.101 kardel &pt->pt_time.it_value);
921 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
922 1.67 nathanw timersub(&pt->pt_time.it_value, &time,
923 1.67 nathanw &pt->pt_time.it_value);
924 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
925 1.67 nathanw if (!timerisset(&pt->pt_time.it_value) ||
926 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
927 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
928 1.67 nathanw pt->pt_time.it_value.tv_usec = 1;
929 1.67 nathanw }
930 1.67 nathanw }
931 1.67 nathanw }
932 1.67 nathanw }
933 1.67 nathanw
934 1.63 thorpej timer_settime(pt);
935 1.63 thorpej splx(s);
936 1.63 thorpej
937 1.92 cube if (ovalue) {
938 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
939 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
940 1.63 thorpej }
941 1.63 thorpej
942 1.63 thorpej return (0);
943 1.63 thorpej }
944 1.63 thorpej
945 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
946 1.63 thorpej int
947 1.110 yamt sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
948 1.63 thorpej {
949 1.63 thorpej struct sys_timer_gettime_args /* {
950 1.63 thorpej syscallarg(timer_t) timerid;
951 1.63 thorpej syscallarg(struct itimerspec *) value;
952 1.63 thorpej } */ *uap = v;
953 1.63 thorpej struct itimerspec its;
954 1.92 cube int error;
955 1.92 cube
956 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
957 1.92 cube &its)) != 0)
958 1.92 cube return error;
959 1.92 cube
960 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
961 1.92 cube }
962 1.92 cube
963 1.92 cube int
964 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
965 1.92 cube {
966 1.92 cube int s;
967 1.63 thorpej struct ptimer *pt;
968 1.92 cube struct itimerval aitv;
969 1.63 thorpej
970 1.63 thorpej if ((p->p_timers == NULL) ||
971 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
972 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
973 1.63 thorpej return (EINVAL);
974 1.63 thorpej
975 1.63 thorpej s = splclock();
976 1.63 thorpej timer_gettime(pt, &aitv);
977 1.1 cgd splx(s);
978 1.63 thorpej
979 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
980 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
981 1.63 thorpej
982 1.92 cube return 0;
983 1.63 thorpej }
984 1.63 thorpej
985 1.63 thorpej /*
986 1.63 thorpej * Return the count of the number of times a periodic timer expired
987 1.63 thorpej * while a notification was already pending. The counter is reset when
988 1.63 thorpej * a timer expires and a notification can be posted.
989 1.63 thorpej */
990 1.63 thorpej int
991 1.63 thorpej sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
992 1.63 thorpej {
993 1.63 thorpej struct sys_timer_getoverrun_args /* {
994 1.63 thorpej syscallarg(timer_t) timerid;
995 1.63 thorpej } */ *uap = v;
996 1.63 thorpej struct proc *p = l->l_proc;
997 1.63 thorpej int timerid;
998 1.63 thorpej struct ptimer *pt;
999 1.63 thorpej
1000 1.63 thorpej timerid = SCARG(uap, timerid);
1001 1.63 thorpej
1002 1.63 thorpej if ((p->p_timers == NULL) ||
1003 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
1004 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1005 1.63 thorpej return (EINVAL);
1006 1.63 thorpej
1007 1.63 thorpej *retval = pt->pt_poverruns;
1008 1.63 thorpej
1009 1.63 thorpej return (0);
1010 1.63 thorpej }
1011 1.63 thorpej
1012 1.63 thorpej /*
1013 1.63 thorpej * Real interval timer expired:
1014 1.63 thorpej * send process whose timer expired an alarm signal.
1015 1.63 thorpej * If time is not set up to reload, then just return.
1016 1.63 thorpej * Else compute next time timer should go off which is > current time.
1017 1.63 thorpej * This is where delay in processing this timeout causes multiple
1018 1.63 thorpej * SIGALRM calls to be compressed into one.
1019 1.63 thorpej */
1020 1.63 thorpej void
1021 1.63 thorpej realtimerexpire(void *arg)
1022 1.63 thorpej {
1023 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1024 1.101 kardel struct timeval now;
1025 1.101 kardel #endif
1026 1.63 thorpej struct ptimer *pt;
1027 1.63 thorpej int s;
1028 1.63 thorpej
1029 1.63 thorpej pt = (struct ptimer *)arg;
1030 1.63 thorpej
1031 1.63 thorpej itimerfire(pt);
1032 1.63 thorpej
1033 1.63 thorpej if (!timerisset(&pt->pt_time.it_interval)) {
1034 1.63 thorpej timerclear(&pt->pt_time.it_value);
1035 1.63 thorpej return;
1036 1.63 thorpej }
1037 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1038 1.101 kardel for (;;) {
1039 1.101 kardel s = splclock(); /* XXX need spl now? */
1040 1.101 kardel timeradd(&pt->pt_time.it_value,
1041 1.101 kardel &pt->pt_time.it_interval, &pt->pt_time.it_value);
1042 1.101 kardel getmicrotime(&now);
1043 1.101 kardel if (timercmp(&pt->pt_time.it_value, &now, >)) {
1044 1.101 kardel /*
1045 1.101 kardel * Don't need to check hzto() return value, here.
1046 1.101 kardel * callout_reset() does it for us.
1047 1.101 kardel */
1048 1.101 kardel callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1049 1.101 kardel realtimerexpire, pt);
1050 1.101 kardel splx(s);
1051 1.101 kardel return;
1052 1.101 kardel }
1053 1.101 kardel splx(s);
1054 1.101 kardel pt->pt_overruns++;
1055 1.101 kardel }
1056 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1057 1.63 thorpej for (;;) {
1058 1.63 thorpej s = splclock();
1059 1.63 thorpej timeradd(&pt->pt_time.it_value,
1060 1.63 thorpej &pt->pt_time.it_interval, &pt->pt_time.it_value);
1061 1.63 thorpej if (timercmp(&pt->pt_time.it_value, &time, >)) {
1062 1.63 thorpej /*
1063 1.63 thorpej * Don't need to check hzto() return value, here.
1064 1.63 thorpej * callout_reset() does it for us.
1065 1.63 thorpej */
1066 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1067 1.63 thorpej realtimerexpire, pt);
1068 1.63 thorpej splx(s);
1069 1.63 thorpej return;
1070 1.63 thorpej }
1071 1.63 thorpej splx(s);
1072 1.63 thorpej pt->pt_overruns++;
1073 1.63 thorpej }
1074 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1075 1.63 thorpej }
1076 1.63 thorpej
1077 1.63 thorpej /* BSD routine to get the value of an interval timer. */
1078 1.63 thorpej /* ARGSUSED */
1079 1.63 thorpej int
1080 1.110 yamt sys_getitimer(struct lwp *l, void *v, register_t *retval)
1081 1.63 thorpej {
1082 1.63 thorpej struct sys_getitimer_args /* {
1083 1.63 thorpej syscallarg(int) which;
1084 1.63 thorpej syscallarg(struct itimerval *) itv;
1085 1.63 thorpej } */ *uap = v;
1086 1.63 thorpej struct proc *p = l->l_proc;
1087 1.63 thorpej struct itimerval aitv;
1088 1.91 cube int error;
1089 1.91 cube
1090 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
1091 1.91 cube if (error)
1092 1.91 cube return error;
1093 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1094 1.91 cube }
1095 1.63 thorpej
1096 1.91 cube int
1097 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1098 1.91 cube {
1099 1.91 cube int s;
1100 1.63 thorpej
1101 1.63 thorpej if ((u_int)which > ITIMER_PROF)
1102 1.63 thorpej return (EINVAL);
1103 1.63 thorpej
1104 1.63 thorpej if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1105 1.91 cube timerclear(&itvp->it_value);
1106 1.91 cube timerclear(&itvp->it_interval);
1107 1.63 thorpej } else {
1108 1.63 thorpej s = splclock();
1109 1.91 cube timer_gettime(p->p_timers->pts_timers[which], itvp);
1110 1.63 thorpej splx(s);
1111 1.63 thorpej }
1112 1.63 thorpej
1113 1.91 cube return 0;
1114 1.1 cgd }
1115 1.1 cgd
1116 1.63 thorpej /* BSD routine to set/arm an interval timer. */
1117 1.1 cgd /* ARGSUSED */
1118 1.3 andrew int
1119 1.63 thorpej sys_setitimer(struct lwp *l, void *v, register_t *retval)
1120 1.15 thorpej {
1121 1.45 augustss struct sys_setitimer_args /* {
1122 1.30 mycroft syscallarg(int) which;
1123 1.24 cgd syscallarg(const struct itimerval *) itv;
1124 1.11 cgd syscallarg(struct itimerval *) oitv;
1125 1.15 thorpej } */ *uap = v;
1126 1.63 thorpej struct proc *p = l->l_proc;
1127 1.30 mycroft int which = SCARG(uap, which);
1128 1.21 cgd struct sys_getitimer_args getargs;
1129 1.91 cube const struct itimerval *itvp;
1130 1.1 cgd struct itimerval aitv;
1131 1.91 cube int error;
1132 1.1 cgd
1133 1.30 mycroft if ((u_int)which > ITIMER_PROF)
1134 1.1 cgd return (EINVAL);
1135 1.11 cgd itvp = SCARG(uap, itv);
1136 1.63 thorpej if (itvp &&
1137 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1138 1.1 cgd return (error);
1139 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1140 1.30 mycroft SCARG(&getargs, which) = which;
1141 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1142 1.63 thorpej if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1143 1.21 cgd return (error);
1144 1.21 cgd }
1145 1.1 cgd if (itvp == 0)
1146 1.1 cgd return (0);
1147 1.91 cube
1148 1.91 cube return dosetitimer(p, which, &aitv);
1149 1.91 cube }
1150 1.91 cube
1151 1.91 cube int
1152 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1153 1.91 cube {
1154 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1155 1.101 kardel struct timeval now;
1156 1.101 kardel #endif
1157 1.91 cube struct ptimer *pt;
1158 1.91 cube int s;
1159 1.91 cube
1160 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1161 1.1 cgd return (EINVAL);
1162 1.63 thorpej
1163 1.63 thorpej /*
1164 1.63 thorpej * Don't bother allocating data structures if the process just
1165 1.63 thorpej * wants to clear the timer.
1166 1.63 thorpej */
1167 1.91 cube if (!timerisset(&itvp->it_value) &&
1168 1.63 thorpej ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1169 1.63 thorpej return (0);
1170 1.63 thorpej
1171 1.63 thorpej if (p->p_timers == NULL)
1172 1.63 thorpej timers_alloc(p);
1173 1.63 thorpej if (p->p_timers->pts_timers[which] == NULL) {
1174 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
1175 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1176 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1177 1.63 thorpej pt->pt_overruns = 0;
1178 1.63 thorpej pt->pt_proc = p;
1179 1.63 thorpej pt->pt_type = which;
1180 1.64 nathanw pt->pt_entry = which;
1181 1.63 thorpej switch (which) {
1182 1.63 thorpej case ITIMER_REAL:
1183 1.125 ad callout_init(&pt->pt_ch, 0);
1184 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1185 1.63 thorpej break;
1186 1.63 thorpej case ITIMER_VIRTUAL:
1187 1.63 thorpej pt->pt_active = 0;
1188 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1189 1.63 thorpej break;
1190 1.63 thorpej case ITIMER_PROF:
1191 1.63 thorpej pt->pt_active = 0;
1192 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1193 1.63 thorpej break;
1194 1.1 cgd }
1195 1.1 cgd } else
1196 1.63 thorpej pt = p->p_timers->pts_timers[which];
1197 1.63 thorpej
1198 1.91 cube pt->pt_time = *itvp;
1199 1.63 thorpej p->p_timers->pts_timers[which] = pt;
1200 1.63 thorpej
1201 1.63 thorpej s = splclock();
1202 1.67 nathanw if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1203 1.67 nathanw /* Convert to absolute time */
1204 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1205 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1206 1.101 kardel getmicrotime(&now);
1207 1.101 kardel timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1208 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1209 1.67 nathanw timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1210 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1211 1.67 nathanw }
1212 1.63 thorpej timer_settime(pt);
1213 1.1 cgd splx(s);
1214 1.63 thorpej
1215 1.1 cgd return (0);
1216 1.1 cgd }
1217 1.1 cgd
1218 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1219 1.63 thorpej void
1220 1.63 thorpej timers_alloc(struct proc *p)
1221 1.63 thorpej {
1222 1.63 thorpej int i;
1223 1.63 thorpej struct ptimers *pts;
1224 1.63 thorpej
1225 1.100 yamt pts = pool_get(&ptimers_pool, PR_WAITOK);
1226 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1227 1.63 thorpej LIST_INIT(&pts->pts_prof);
1228 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1229 1.63 thorpej pts->pts_timers[i] = NULL;
1230 1.64 nathanw pts->pts_fired = 0;
1231 1.63 thorpej p->p_timers = pts;
1232 1.63 thorpej }
1233 1.63 thorpej
1234 1.1 cgd /*
1235 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1236 1.63 thorpej * then clean up all timers and free all the data structures. If
1237 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1238 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1239 1.63 thorpej * structure if none of those remain.
1240 1.1 cgd */
1241 1.3 andrew void
1242 1.63 thorpej timers_free(struct proc *p, int which)
1243 1.6 cgd {
1244 1.63 thorpej int i, s;
1245 1.63 thorpej struct ptimers *pts;
1246 1.63 thorpej struct ptimer *pt, *ptn;
1247 1.63 thorpej struct timeval tv;
1248 1.63 thorpej
1249 1.63 thorpej if (p->p_timers) {
1250 1.63 thorpej pts = p->p_timers;
1251 1.63 thorpej if (which == TIMERS_ALL)
1252 1.63 thorpej i = 0;
1253 1.63 thorpej else {
1254 1.63 thorpej s = splclock();
1255 1.63 thorpej timerclear(&tv);
1256 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1257 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1258 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1259 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1260 1.63 thorpej LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1261 1.63 thorpej if (ptn) {
1262 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1263 1.63 thorpej &ptn->pt_time.it_value);
1264 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1265 1.63 thorpej ptn, pt_list);
1266 1.63 thorpej }
1267 1.63 thorpej
1268 1.63 thorpej timerclear(&tv);
1269 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1270 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_PROF];
1271 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1272 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1273 1.63 thorpej LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1274 1.63 thorpej if (ptn) {
1275 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1276 1.63 thorpej &ptn->pt_time.it_value);
1277 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1278 1.63 thorpej pt_list);
1279 1.63 thorpej }
1280 1.1 cgd splx(s);
1281 1.63 thorpej i = 3;
1282 1.63 thorpej }
1283 1.63 thorpej for ( ; i < TIMER_MAX; i++)
1284 1.63 thorpej if ((pt = pts->pts_timers[i]) != NULL) {
1285 1.125 ad if (pt->pt_type == CLOCK_REALTIME) {
1286 1.63 thorpej callout_stop(&pt->pt_ch);
1287 1.125 ad callout_destroy(&pt->pt_ch);
1288 1.125 ad }
1289 1.63 thorpej pts->pts_timers[i] = NULL;
1290 1.63 thorpej pool_put(&ptimer_pool, pt);
1291 1.63 thorpej }
1292 1.63 thorpej if ((pts->pts_timers[0] == NULL) &&
1293 1.63 thorpej (pts->pts_timers[1] == NULL) &&
1294 1.63 thorpej (pts->pts_timers[2] == NULL)) {
1295 1.63 thorpej p->p_timers = NULL;
1296 1.97 simonb pool_put(&ptimers_pool, pts);
1297 1.1 cgd }
1298 1.1 cgd }
1299 1.1 cgd }
1300 1.1 cgd
1301 1.1 cgd /*
1302 1.1 cgd * Check that a proposed value to load into the .it_value or
1303 1.1 cgd * .it_interval part of an interval timer is acceptable, and
1304 1.1 cgd * fix it to have at least minimal value (i.e. if it is less
1305 1.1 cgd * than the resolution of the clock, round it up.)
1306 1.1 cgd */
1307 1.3 andrew int
1308 1.63 thorpej itimerfix(struct timeval *tv)
1309 1.1 cgd {
1310 1.1 cgd
1311 1.59 christos if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1312 1.1 cgd return (EINVAL);
1313 1.1 cgd if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1314 1.1 cgd tv->tv_usec = tick;
1315 1.1 cgd return (0);
1316 1.1 cgd }
1317 1.1 cgd
1318 1.101 kardel int
1319 1.101 kardel itimespecfix(struct timespec *ts)
1320 1.101 kardel {
1321 1.101 kardel
1322 1.101 kardel if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1323 1.101 kardel return (EINVAL);
1324 1.101 kardel if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1325 1.101 kardel ts->tv_nsec = tick * 1000;
1326 1.101 kardel return (0);
1327 1.101 kardel }
1328 1.101 kardel
1329 1.1 cgd /*
1330 1.1 cgd * Decrement an interval timer by a specified number
1331 1.1 cgd * of microseconds, which must be less than a second,
1332 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1333 1.1 cgd * it. In this case, carry over (usec - old value) to
1334 1.8 cgd * reduce the value reloaded into the timer so that
1335 1.1 cgd * the timer does not drift. This routine assumes
1336 1.1 cgd * that it is called in a context where the timers
1337 1.1 cgd * on which it is operating cannot change in value.
1338 1.1 cgd */
1339 1.3 andrew int
1340 1.63 thorpej itimerdecr(struct ptimer *pt, int usec)
1341 1.63 thorpej {
1342 1.45 augustss struct itimerval *itp;
1343 1.1 cgd
1344 1.63 thorpej itp = &pt->pt_time;
1345 1.1 cgd if (itp->it_value.tv_usec < usec) {
1346 1.1 cgd if (itp->it_value.tv_sec == 0) {
1347 1.1 cgd /* expired, and already in next interval */
1348 1.1 cgd usec -= itp->it_value.tv_usec;
1349 1.1 cgd goto expire;
1350 1.1 cgd }
1351 1.1 cgd itp->it_value.tv_usec += 1000000;
1352 1.1 cgd itp->it_value.tv_sec--;
1353 1.1 cgd }
1354 1.1 cgd itp->it_value.tv_usec -= usec;
1355 1.1 cgd usec = 0;
1356 1.1 cgd if (timerisset(&itp->it_value))
1357 1.1 cgd return (1);
1358 1.1 cgd /* expired, exactly at end of interval */
1359 1.1 cgd expire:
1360 1.1 cgd if (timerisset(&itp->it_interval)) {
1361 1.1 cgd itp->it_value = itp->it_interval;
1362 1.1 cgd itp->it_value.tv_usec -= usec;
1363 1.1 cgd if (itp->it_value.tv_usec < 0) {
1364 1.1 cgd itp->it_value.tv_usec += 1000000;
1365 1.1 cgd itp->it_value.tv_sec--;
1366 1.1 cgd }
1367 1.63 thorpej timer_settime(pt);
1368 1.1 cgd } else
1369 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1370 1.1 cgd return (0);
1371 1.42 cgd }
1372 1.42 cgd
1373 1.63 thorpej void
1374 1.63 thorpej itimerfire(struct ptimer *pt)
1375 1.63 thorpej {
1376 1.63 thorpej struct proc *p = pt->pt_proc;
1377 1.78 cl
1378 1.63 thorpej if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1379 1.63 thorpej /*
1380 1.63 thorpej * No RT signal infrastructure exists at this time;
1381 1.63 thorpej * just post the signal number and throw away the
1382 1.63 thorpej * value.
1383 1.63 thorpej */
1384 1.113 ad if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1385 1.63 thorpej pt->pt_overruns++;
1386 1.63 thorpej else {
1387 1.75 christos ksiginfo_t ksi;
1388 1.111 yamt KSI_INIT(&ksi);
1389 1.75 christos ksi.ksi_signo = pt->pt_ev.sigev_signo;
1390 1.75 christos ksi.ksi_code = SI_TIMER;
1391 1.124 christos ksi.ksi_value = pt->pt_ev.sigev_value;
1392 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1393 1.63 thorpej pt->pt_overruns = 0;
1394 1.113 ad mutex_enter(&proclist_mutex);
1395 1.75 christos kpsignal(p, &ksi, NULL);
1396 1.113 ad mutex_exit(&proclist_mutex);
1397 1.64 nathanw }
1398 1.63 thorpej }
1399 1.63 thorpej }
1400 1.63 thorpej
1401 1.42 cgd /*
1402 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1403 1.42 cgd * for usage and rationale.
1404 1.42 cgd */
1405 1.42 cgd int
1406 1.63 thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1407 1.42 cgd {
1408 1.49 itojun struct timeval tv, delta;
1409 1.101 kardel int rv = 0;
1410 1.101 kardel #ifndef __HAVE_TIMECOUNTER
1411 1.101 kardel int s;
1412 1.101 kardel #endif
1413 1.42 cgd
1414 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1415 1.101 kardel getmicrouptime(&tv);
1416 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1417 1.63 thorpej s = splclock();
1418 1.49 itojun tv = mono_time;
1419 1.49 itojun splx(s);
1420 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1421 1.49 itojun timersub(&tv, lasttime, &delta);
1422 1.42 cgd
1423 1.42 cgd /*
1424 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1425 1.42 cgd * even if interval is huge.
1426 1.42 cgd */
1427 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1428 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1429 1.49 itojun *lasttime = tv;
1430 1.42 cgd rv = 1;
1431 1.42 cgd }
1432 1.50 itojun
1433 1.50 itojun return (rv);
1434 1.50 itojun }
1435 1.50 itojun
1436 1.50 itojun /*
1437 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1438 1.50 itojun */
1439 1.50 itojun int
1440 1.63 thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1441 1.50 itojun {
1442 1.50 itojun struct timeval tv, delta;
1443 1.101 kardel int rv;
1444 1.101 kardel #ifndef __HAVE_TIMECOUNTER
1445 1.101 kardel int s;
1446 1.101 kardel #endif
1447 1.50 itojun
1448 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1449 1.101 kardel getmicrouptime(&tv);
1450 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1451 1.63 thorpej s = splclock();
1452 1.50 itojun tv = mono_time;
1453 1.50 itojun splx(s);
1454 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1455 1.50 itojun timersub(&tv, lasttime, &delta);
1456 1.50 itojun
1457 1.50 itojun /*
1458 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1459 1.50 itojun * if more than one second have passed since the last update of
1460 1.50 itojun * lasttime, reset the counter.
1461 1.50 itojun *
1462 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1463 1.50 itojun * try to use *curpps for stat purposes as well.
1464 1.50 itojun */
1465 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1466 1.50 itojun delta.tv_sec >= 1) {
1467 1.50 itojun *lasttime = tv;
1468 1.50 itojun *curpps = 0;
1469 1.69 dyoung }
1470 1.69 dyoung if (maxpps < 0)
1471 1.53 itojun rv = 1;
1472 1.53 itojun else if (*curpps < maxpps)
1473 1.50 itojun rv = 1;
1474 1.50 itojun else
1475 1.50 itojun rv = 0;
1476 1.50 itojun
1477 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1478 1.50 itojun /* be careful about wrap-around */
1479 1.50 itojun if (*curpps + 1 > *curpps)
1480 1.50 itojun *curpps = *curpps + 1;
1481 1.50 itojun #else
1482 1.50 itojun /*
1483 1.50 itojun * assume that there's not too many calls to this function.
1484 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1485 1.50 itojun * behavior, not the behavior of this function.
1486 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1487 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1488 1.50 itojun */
1489 1.50 itojun *curpps = *curpps + 1;
1490 1.50 itojun #endif
1491 1.42 cgd
1492 1.42 cgd return (rv);
1493 1.1 cgd }
1494