Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.129
      1  1.129        ad /*	$NetBSD: kern_time.c,v 1.129 2007/10/08 20:06:19 ad Exp $	*/
      2   1.42       cgd 
      3   1.42       cgd /*-
      4   1.88   mycroft  * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
      5   1.42       cgd  * All rights reserved.
      6   1.42       cgd  *
      7   1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8   1.42       cgd  * by Christopher G. Demetriou.
      9   1.42       cgd  *
     10   1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11   1.42       cgd  * modification, are permitted provided that the following conditions
     12   1.42       cgd  * are met:
     13   1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14   1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15   1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17   1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18   1.42       cgd  * 3. All advertising materials mentioning features or use of this software
     19   1.42       cgd  *    must display the following acknowledgement:
     20   1.42       cgd  *	This product includes software developed by the NetBSD
     21   1.42       cgd  *	Foundation, Inc. and its contributors.
     22   1.42       cgd  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.42       cgd  *    contributors may be used to endorse or promote products derived
     24   1.42       cgd  *    from this software without specific prior written permission.
     25   1.42       cgd  *
     26   1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     37   1.42       cgd  */
     38    1.9       cgd 
     39    1.1       cgd /*
     40    1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     41    1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     42    1.1       cgd  *
     43    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     44    1.1       cgd  * modification, are permitted provided that the following conditions
     45    1.1       cgd  * are met:
     46    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     47    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     48    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     49    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     50    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     51   1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     52    1.1       cgd  *    may be used to endorse or promote products derived from this software
     53    1.1       cgd  *    without specific prior written permission.
     54    1.1       cgd  *
     55    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65    1.1       cgd  * SUCH DAMAGE.
     66    1.1       cgd  *
     67   1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68    1.1       cgd  */
     69   1.58     lukem 
     70   1.58     lukem #include <sys/cdefs.h>
     71  1.129        ad __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.129 2007/10/08 20:06:19 ad Exp $");
     72    1.1       cgd 
     73    1.5   mycroft #include <sys/param.h>
     74    1.5   mycroft #include <sys/resourcevar.h>
     75    1.5   mycroft #include <sys/kernel.h>
     76    1.8       cgd #include <sys/systm.h>
     77    1.5   mycroft #include <sys/proc.h>
     78    1.8       cgd #include <sys/vnode.h>
     79   1.17  christos #include <sys/signalvar.h>
     80   1.25     perry #include <sys/syslog.h>
     81  1.101    kardel #include <sys/timetc.h>
     82  1.122       dsl #ifndef __HAVE_TIMECOUNTER
     83   1.95      cube #include <sys/timevar.h>
     84  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
     85   1.99      elad #include <sys/kauth.h>
     86    1.1       cgd 
     87   1.11       cgd #include <sys/mount.h>
     88   1.11       cgd #include <sys/syscallargs.h>
     89   1.19  christos 
     90   1.37   thorpej #include <uvm/uvm_extern.h>
     91   1.37   thorpej 
     92    1.5   mycroft #include <machine/cpu.h>
     93   1.23       cgd 
     94   1.97    simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     95  1.118        ad     &pool_allocator_nointr, IPL_NONE);
     96   1.97    simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     97  1.118        ad     &pool_allocator_nointr, IPL_NONE);
     98   1.97    simonb 
     99   1.63   thorpej /* Time of day and interval timer support.
    100    1.1       cgd  *
    101    1.1       cgd  * These routines provide the kernel entry points to get and set
    102    1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    103    1.1       cgd  * here provide support for adding and subtracting timeval structures
    104    1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    105    1.1       cgd  * timers when they expire.
    106    1.1       cgd  */
    107    1.1       cgd 
    108   1.22       jtc /* This function is used by clock_settime and settimeofday */
    109   1.39      tron int
    110   1.98  christos settime(struct proc *p, struct timespec *ts)
    111   1.22       jtc {
    112   1.98  christos 	struct timeval delta, tv;
    113  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    114  1.101    kardel 	struct timeval now;
    115  1.101    kardel 	struct timespec ts1;
    116  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    117  1.129        ad 	lwp_t *l;
    118  1.129        ad 	int s;
    119   1.22       jtc 
    120   1.98  christos 	/*
    121   1.98  christos 	 * Don't allow the time to be set forward so far it will wrap
    122   1.98  christos 	 * and become negative, thus allowing an attacker to bypass
    123   1.98  christos 	 * the next check below.  The cutoff is 1 year before rollover
    124   1.98  christos 	 * occurs, so even if the attacker uses adjtime(2) to move
    125   1.98  christos 	 * the time past the cutoff, it will take a very long time
    126   1.98  christos 	 * to get to the wrap point.
    127   1.98  christos 	 *
    128   1.98  christos 	 * XXX: we check against INT_MAX since on 64-bit
    129   1.98  christos 	 *	platforms, sizeof(int) != sizeof(long) and
    130   1.98  christos 	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
    131   1.98  christos 	 */
    132   1.98  christos 	if (ts->tv_sec > INT_MAX - 365*24*60*60) {
    133  1.113        ad 		struct proc *pp;
    134  1.113        ad 
    135  1.117        ad 		mutex_enter(&proclist_lock);
    136  1.113        ad 		pp = p->p_pptr;
    137  1.113        ad 		mutex_enter(&pp->p_mutex);
    138   1.98  christos 		log(LOG_WARNING, "pid %d (%s) "
    139   1.98  christos 		    "invoked by uid %d ppid %d (%s) "
    140   1.98  christos 		    "tried to set clock forward to %ld\n",
    141   1.99      elad 		    p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
    142   1.98  christos 		    pp->p_pid, pp->p_comm, (long)ts->tv_sec);
    143  1.113        ad 		mutex_exit(&pp->p_mutex);
    144  1.117        ad 		mutex_exit(&proclist_lock);
    145   1.98  christos 		return (EPERM);
    146   1.98  christos 	}
    147   1.98  christos 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    148   1.98  christos 
    149   1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    150  1.129        ad 	s = splclock();
    151  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    152  1.101    kardel 	microtime(&now);
    153  1.101    kardel 	timersub(&tv, &now, &delta);
    154  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    155   1.98  christos 	timersub(&tv, &time, &delta);
    156  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    157  1.106      elad 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
    158  1.106      elad 	    kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
    159  1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
    160  1.129        ad 		splx(s);
    161   1.29       tls 		return (EPERM);
    162   1.55      tron 	}
    163   1.29       tls #ifdef notyet
    164  1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    165  1.129        ad 		splx(s);
    166   1.29       tls 		return (EPERM);
    167   1.55      tron 	}
    168   1.29       tls #endif
    169  1.103    kardel 
    170  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    171  1.103    kardel 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    172  1.101    kardel 	tc_setclock(&ts1);
    173  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    174   1.98  christos 	time = tv;
    175  1.103    kardel #endif /* !__HAVE_TIMECOUNTER */
    176  1.103    kardel 
    177   1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    178  1.103    kardel 
    179   1.47   thorpej 	/*
    180  1.129        ad 	 * XXXSMP: There is a short race between setting the time above
    181  1.129        ad 	 * and adjusting LWP's run times.  Fixing this properly means
    182  1.129        ad 	 * pausing all CPUs while we adjust the clock.
    183   1.47   thorpej 	 */
    184  1.129        ad 	mutex_enter(&proclist_lock);
    185  1.129        ad 	LIST_FOREACH(l, &alllwp, l_list) {
    186  1.129        ad 		lwp_lock(l);
    187  1.129        ad 		timeradd(&l->l_stime, &delta, &l->l_stime);
    188  1.129        ad 		lwp_unlock(l);
    189  1.129        ad 	}
    190  1.129        ad 	mutex_exit(&proclist_lock);
    191   1.22       jtc 	resettodr();
    192  1.129        ad 	splx(s);
    193  1.129        ad 
    194   1.29       tls 	return (0);
    195   1.22       jtc }
    196   1.22       jtc 
    197   1.22       jtc /* ARGSUSED */
    198   1.22       jtc int
    199  1.110      yamt sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
    200   1.22       jtc {
    201   1.45  augustss 	struct sys_clock_gettime_args /* {
    202   1.22       jtc 		syscallarg(clockid_t) clock_id;
    203   1.23       cgd 		syscallarg(struct timespec *) tp;
    204   1.23       cgd 	} */ *uap = v;
    205   1.22       jtc 	clockid_t clock_id;
    206   1.22       jtc 	struct timespec ats;
    207   1.22       jtc 
    208   1.22       jtc 	clock_id = SCARG(uap, clock_id);
    209   1.61    simonb 	switch (clock_id) {
    210   1.61    simonb 	case CLOCK_REALTIME:
    211   1.96    simonb 		nanotime(&ats);
    212   1.61    simonb 		break;
    213   1.61    simonb 	case CLOCK_MONOTONIC:
    214  1.101    kardel 		nanouptime(&ats);
    215   1.61    simonb 		break;
    216   1.61    simonb 	default:
    217   1.22       jtc 		return (EINVAL);
    218   1.61    simonb 	}
    219   1.22       jtc 
    220   1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    221   1.22       jtc }
    222   1.22       jtc 
    223   1.22       jtc /* ARGSUSED */
    224   1.22       jtc int
    225  1.110      yamt sys_clock_settime(struct lwp *l, void *v, register_t *retval)
    226   1.22       jtc {
    227   1.45  augustss 	struct sys_clock_settime_args /* {
    228   1.22       jtc 		syscallarg(clockid_t) clock_id;
    229   1.23       cgd 		syscallarg(const struct timespec *) tp;
    230   1.23       cgd 	} */ *uap = v;
    231   1.22       jtc 	int error;
    232   1.22       jtc 
    233  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    234  1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
    235   1.22       jtc 		return (error);
    236   1.22       jtc 
    237  1.105        ad 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
    238   1.56      manu }
    239   1.56      manu 
    240   1.56      manu 
    241   1.56      manu int
    242   1.98  christos clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
    243   1.56      manu {
    244   1.60      manu 	struct timespec ats;
    245   1.56      manu 	int error;
    246   1.56      manu 
    247   1.60      manu 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    248   1.60      manu 		return (error);
    249   1.60      manu 
    250   1.61    simonb 	switch (clock_id) {
    251   1.61    simonb 	case CLOCK_REALTIME:
    252   1.98  christos 		if ((error = settime(p, &ats)) != 0)
    253   1.61    simonb 			return (error);
    254   1.61    simonb 		break;
    255   1.61    simonb 	case CLOCK_MONOTONIC:
    256   1.61    simonb 		return (EINVAL);	/* read-only clock */
    257   1.61    simonb 	default:
    258   1.56      manu 		return (EINVAL);
    259   1.61    simonb 	}
    260   1.22       jtc 
    261   1.22       jtc 	return 0;
    262   1.22       jtc }
    263   1.22       jtc 
    264   1.22       jtc int
    265  1.110      yamt sys_clock_getres(struct lwp *l, void *v, register_t *retval)
    266   1.22       jtc {
    267   1.45  augustss 	struct sys_clock_getres_args /* {
    268   1.22       jtc 		syscallarg(clockid_t) clock_id;
    269   1.23       cgd 		syscallarg(struct timespec *) tp;
    270   1.23       cgd 	} */ *uap = v;
    271   1.22       jtc 	clockid_t clock_id;
    272   1.22       jtc 	struct timespec ts;
    273   1.22       jtc 	int error = 0;
    274   1.22       jtc 
    275   1.22       jtc 	clock_id = SCARG(uap, clock_id);
    276   1.61    simonb 	switch (clock_id) {
    277   1.61    simonb 	case CLOCK_REALTIME:
    278   1.61    simonb 	case CLOCK_MONOTONIC:
    279   1.22       jtc 		ts.tv_sec = 0;
    280  1.102    kardel 		if (tc_getfrequency() > 1000000000)
    281  1.102    kardel 			ts.tv_nsec = 1;
    282  1.102    kardel 		else
    283  1.102    kardel 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    284   1.61    simonb 		break;
    285   1.61    simonb 	default:
    286   1.61    simonb 		return (EINVAL);
    287   1.61    simonb 	}
    288   1.22       jtc 
    289   1.61    simonb 	if (SCARG(uap, tp))
    290   1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    291   1.22       jtc 
    292   1.22       jtc 	return error;
    293   1.22       jtc }
    294   1.22       jtc 
    295   1.27       jtc /* ARGSUSED */
    296   1.27       jtc int
    297  1.110      yamt sys_nanosleep(struct lwp *l, void *v, register_t *retval)
    298   1.27       jtc {
    299  1.101    kardel 	struct sys_nanosleep_args/* {
    300  1.101    kardel 		syscallarg(struct timespec *) rqtp;
    301  1.101    kardel 		syscallarg(struct timespec *) rmtp;
    302  1.101    kardel 	} */ *uap = v;
    303  1.101    kardel 	struct timespec rmt, rqt;
    304  1.120       dsl 	int error, error1;
    305  1.101    kardel 
    306  1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    307  1.101    kardel 	if (error)
    308  1.101    kardel 		return (error);
    309  1.101    kardel 
    310  1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    311  1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    312  1.120       dsl 		return error;
    313  1.120       dsl 
    314  1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    315  1.120       dsl 	return error1 ? error1 : error;
    316  1.120       dsl }
    317  1.120       dsl 
    318  1.120       dsl int
    319  1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    320  1.120       dsl {
    321  1.120       dsl #ifdef __HAVE_TIMECOUNTER
    322  1.120       dsl 	int error, timo;
    323  1.120       dsl 
    324  1.120       dsl 	if (itimespecfix(rqt))
    325  1.101    kardel 		return (EINVAL);
    326  1.101    kardel 
    327  1.120       dsl 	timo = tstohz(rqt);
    328  1.101    kardel 	/*
    329  1.101    kardel 	 * Avoid inadvertantly sleeping forever
    330  1.101    kardel 	 */
    331  1.101    kardel 	if (timo == 0)
    332  1.101    kardel 		timo = 1;
    333  1.101    kardel 
    334  1.123       dsl 	if (rmt != NULL)
    335  1.123       dsl 		getnanouptime(rmt);
    336  1.104    kardel 
    337  1.115   thorpej 	error = kpause("nanoslp", true, timo, NULL);
    338  1.101    kardel 	if (error == ERESTART)
    339  1.101    kardel 		error = EINTR;
    340  1.101    kardel 	if (error == EWOULDBLOCK)
    341  1.101    kardel 		error = 0;
    342  1.101    kardel 
    343  1.120       dsl 	if (rmt!= NULL) {
    344  1.104    kardel 		struct timespec rmtend;
    345  1.101    kardel 
    346  1.104    kardel 		getnanouptime(&rmtend);
    347  1.101    kardel 
    348  1.120       dsl 		timespecsub(&rmtend, rmt, rmt);
    349  1.120       dsl 		timespecsub(rqt, rmt, rmt);
    350  1.120       dsl 		if (rmt->tv_sec < 0)
    351  1.120       dsl 			timespecclear(rmt);
    352  1.101    kardel 	}
    353  1.101    kardel 
    354  1.101    kardel 	return error;
    355  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    356   1.27       jtc 	struct timeval atv, utv;
    357   1.27       jtc 	int error, s, timo;
    358   1.27       jtc 
    359  1.120       dsl 	TIMESPEC_TO_TIMEVAL(&atv, rqt);
    360   1.80  christos 	if (itimerfix(&atv))
    361   1.27       jtc 		return (EINVAL);
    362   1.27       jtc 
    363   1.27       jtc 	s = splclock();
    364   1.27       jtc 	timeradd(&atv,&time,&atv);
    365   1.27       jtc 	timo = hzto(&atv);
    366   1.63   thorpej 	/*
    367   1.27       jtc 	 * Avoid inadvertantly sleeping forever
    368   1.27       jtc 	 */
    369   1.27       jtc 	if (timo == 0)
    370   1.27       jtc 		timo = 1;
    371   1.27       jtc 	splx(s);
    372   1.27       jtc 
    373  1.115   thorpej 	error = kpause("nanoslp", true, timo, NULL);
    374   1.27       jtc 	if (error == ERESTART)
    375   1.27       jtc 		error = EINTR;
    376   1.27       jtc 	if (error == EWOULDBLOCK)
    377   1.27       jtc 		error = 0;
    378   1.27       jtc 
    379  1.120       dsl 	if (rmt != NULL) {
    380   1.27       jtc 		s = splclock();
    381   1.27       jtc 		utv = time;
    382   1.27       jtc 		splx(s);
    383   1.27       jtc 
    384   1.27       jtc 		timersub(&atv, &utv, &utv);
    385   1.27       jtc 		if (utv.tv_sec < 0)
    386   1.27       jtc 			timerclear(&utv);
    387   1.27       jtc 
    388  1.120       dsl 		TIMEVAL_TO_TIMESPEC(&utv, rmt);
    389   1.27       jtc 	}
    390   1.27       jtc 
    391   1.27       jtc 	return error;
    392  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    393   1.27       jtc }
    394   1.22       jtc 
    395    1.1       cgd /* ARGSUSED */
    396    1.3    andrew int
    397  1.110      yamt sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
    398   1.15   thorpej {
    399   1.45  augustss 	struct sys_gettimeofday_args /* {
    400   1.11       cgd 		syscallarg(struct timeval *) tp;
    401   1.84    simonb 		syscallarg(void *) tzp;		really "struct timezone *"
    402   1.15   thorpej 	} */ *uap = v;
    403    1.1       cgd 	struct timeval atv;
    404    1.1       cgd 	int error = 0;
    405   1.25     perry 	struct timezone tzfake;
    406    1.1       cgd 
    407   1.11       cgd 	if (SCARG(uap, tp)) {
    408    1.1       cgd 		microtime(&atv);
    409   1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    410   1.17  christos 		if (error)
    411    1.1       cgd 			return (error);
    412    1.1       cgd 	}
    413   1.25     perry 	if (SCARG(uap, tzp)) {
    414   1.25     perry 		/*
    415   1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    416   1.25     perry 		 * fake up a timezone struct and return it if demanded.
    417   1.25     perry 		 */
    418   1.25     perry 		tzfake.tz_minuteswest = 0;
    419   1.25     perry 		tzfake.tz_dsttime = 0;
    420   1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    421   1.25     perry 	}
    422    1.1       cgd 	return (error);
    423    1.1       cgd }
    424    1.1       cgd 
    425    1.1       cgd /* ARGSUSED */
    426    1.3    andrew int
    427  1.110      yamt sys_settimeofday(struct lwp *l, void *v, register_t *retval)
    428   1.15   thorpej {
    429   1.16   mycroft 	struct sys_settimeofday_args /* {
    430   1.24       cgd 		syscallarg(const struct timeval *) tv;
    431   1.84    simonb 		syscallarg(const void *) tzp;	really "const struct timezone *"
    432   1.15   thorpej 	} */ *uap = v;
    433   1.60      manu 
    434  1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    435   1.60      manu }
    436   1.60      manu 
    437   1.60      manu int
    438  1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    439  1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    440   1.60      manu {
    441   1.22       jtc 	struct timeval atv;
    442   1.98  christos 	struct timespec ts;
    443   1.22       jtc 	int error;
    444    1.1       cgd 
    445    1.8       cgd 	/* Verify all parameters before changing time. */
    446  1.119       dsl 
    447  1.119       dsl 	if (check_kauth) {
    448  1.119       dsl 		error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    449  1.119       dsl 		    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL);
    450  1.119       dsl 		if (error != 0)
    451  1.119       dsl 			return (error);
    452  1.119       dsl 	}
    453  1.119       dsl 
    454   1.25     perry 	/*
    455   1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    456   1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    457   1.25     perry 	 */
    458   1.98  christos 	if (utzp)
    459   1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    460  1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    461   1.98  christos 
    462   1.98  christos 	if (utv == NULL)
    463   1.98  christos 		return 0;
    464   1.98  christos 
    465  1.119       dsl 	if (userspace) {
    466  1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    467  1.119       dsl 			return error;
    468  1.119       dsl 		utv = &atv;
    469  1.119       dsl 	}
    470  1.119       dsl 
    471  1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    472  1.119       dsl 	return settime(l->l_proc, &ts);
    473    1.1       cgd }
    474    1.1       cgd 
    475  1.101    kardel #ifndef __HAVE_TIMECOUNTER
    476    1.1       cgd int	tickdelta;			/* current clock skew, us. per tick */
    477    1.1       cgd long	timedelta;			/* unapplied time correction, us. */
    478    1.1       cgd long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    479  1.101    kardel #endif
    480  1.101    kardel 
    481   1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    482    1.1       cgd 
    483    1.1       cgd /* ARGSUSED */
    484    1.3    andrew int
    485  1.110      yamt sys_adjtime(struct lwp *l, void *v, register_t *retval)
    486   1.15   thorpej {
    487   1.45  augustss 	struct sys_adjtime_args /* {
    488   1.24       cgd 		syscallarg(const struct timeval *) delta;
    489   1.11       cgd 		syscallarg(struct timeval *) olddelta;
    490   1.15   thorpej 	} */ *uap = v;
    491   1.56      manu 	int error;
    492    1.1       cgd 
    493  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    494  1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    495    1.1       cgd 		return (error);
    496   1.17  christos 
    497  1.105        ad 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    498   1.56      manu }
    499   1.56      manu 
    500   1.56      manu int
    501  1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    502   1.56      manu {
    503   1.60      manu 	struct timeval atv;
    504  1.101    kardel 	int error = 0;
    505  1.101    kardel 
    506  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    507  1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    508  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    509   1.56      manu 	long ndelta, ntickdelta, odelta;
    510   1.56      manu 	int s;
    511  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    512  1.101    kardel 
    513  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    514  1.101    kardel 	if (olddelta) {
    515  1.101    kardel 		atv.tv_sec = time_adjtime / 1000000;
    516  1.101    kardel 		atv.tv_usec = time_adjtime % 1000000;
    517  1.101    kardel 		if (atv.tv_usec < 0) {
    518  1.101    kardel 			atv.tv_usec += 1000000;
    519  1.101    kardel 			atv.tv_sec--;
    520  1.101    kardel 		}
    521  1.101    kardel 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    522  1.101    kardel 		if (error)
    523  1.101    kardel 			return (error);
    524  1.101    kardel 	}
    525  1.101    kardel 
    526  1.101    kardel 	if (delta) {
    527  1.101    kardel 		error = copyin(delta, &atv, sizeof(struct timeval));
    528  1.101    kardel 		if (error)
    529  1.101    kardel 			return (error);
    530  1.101    kardel 
    531  1.101    kardel 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    532  1.101    kardel 			atv.tv_usec;
    533    1.8       cgd 
    534  1.101    kardel 		if (time_adjtime)
    535  1.101    kardel 			/* We need to save the system time during shutdown */
    536  1.101    kardel 			time_adjusted |= 1;
    537  1.101    kardel 	}
    538  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    539   1.60      manu 	error = copyin(delta, &atv, sizeof(struct timeval));
    540   1.60      manu 	if (error)
    541   1.60      manu 		return (error);
    542   1.60      manu 
    543    1.8       cgd 	/*
    544    1.8       cgd 	 * Compute the total correction and the rate at which to apply it.
    545    1.8       cgd 	 * Round the adjustment down to a whole multiple of the per-tick
    546    1.8       cgd 	 * delta, so that after some number of incremental changes in
    547    1.8       cgd 	 * hardclock(), tickdelta will become zero, lest the correction
    548    1.8       cgd 	 * overshoot and start taking us away from the desired final time.
    549    1.8       cgd 	 */
    550   1.60      manu 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    551   1.41       hwr 	if (ndelta > bigadj || ndelta < -bigadj)
    552    1.8       cgd 		ntickdelta = 10 * tickadj;
    553    1.8       cgd 	else
    554    1.8       cgd 		ntickdelta = tickadj;
    555    1.8       cgd 	if (ndelta % ntickdelta)
    556    1.8       cgd 		ndelta = ndelta / ntickdelta * ntickdelta;
    557    1.8       cgd 
    558    1.8       cgd 	/*
    559    1.8       cgd 	 * To make hardclock()'s job easier, make the per-tick delta negative
    560    1.8       cgd 	 * if we want time to run slower; then hardclock can simply compute
    561    1.8       cgd 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    562    1.8       cgd 	 */
    563    1.8       cgd 	if (ndelta < 0)
    564    1.8       cgd 		ntickdelta = -ntickdelta;
    565   1.68       dsl 	if (ndelta != 0)
    566   1.68       dsl 		/* We need to save the system clock time during shutdown */
    567   1.68       dsl 		time_adjusted |= 1;
    568    1.1       cgd 	s = splclock();
    569    1.8       cgd 	odelta = timedelta;
    570    1.1       cgd 	timedelta = ndelta;
    571    1.8       cgd 	tickdelta = ntickdelta;
    572    1.1       cgd 	splx(s);
    573    1.1       cgd 
    574   1.56      manu 	if (olddelta) {
    575   1.60      manu 		atv.tv_sec = odelta / 1000000;
    576   1.60      manu 		atv.tv_usec = odelta % 1000000;
    577   1.79       chs 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    578    1.8       cgd 	}
    579  1.101    kardel #endif /* __HAVE_TIMECOUNTER */
    580  1.101    kardel 
    581   1.79       chs 	return error;
    582    1.1       cgd }
    583    1.1       cgd 
    584    1.1       cgd /*
    585   1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    586   1.63   thorpej  * timer_*() family of routines are supported.
    587    1.1       cgd  *
    588   1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    589   1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    590   1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    591   1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    592   1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    593   1.63   thorpej  * syscall.
    594    1.1       cgd  *
    595   1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    596   1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    597    1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    598   1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    599   1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    600   1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    601   1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    602   1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    603   1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    604   1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    605   1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    606   1.63   thorpej 
    607   1.63   thorpej /* Allocate a POSIX realtime timer. */
    608   1.63   thorpej int
    609  1.110      yamt sys_timer_create(struct lwp *l, void *v, register_t *retval)
    610   1.63   thorpej {
    611   1.63   thorpej 	struct sys_timer_create_args /* {
    612   1.63   thorpej 		syscallarg(clockid_t) clock_id;
    613   1.63   thorpej 		syscallarg(struct sigevent *) evp;
    614   1.63   thorpej 		syscallarg(timer_t *) timerid;
    615   1.63   thorpej 	} */ *uap = v;
    616   1.92      cube 
    617   1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    618  1.105        ad 	    SCARG(uap, evp), copyin, l);
    619   1.92      cube }
    620   1.92      cube 
    621   1.92      cube int
    622   1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    623  1.105        ad     copyin_t fetch_event, struct lwp *l)
    624   1.92      cube {
    625   1.92      cube 	int error;
    626   1.92      cube 	timer_t timerid;
    627   1.63   thorpej 	struct ptimer *pt;
    628  1.105        ad 	struct proc *p;
    629  1.105        ad 
    630  1.105        ad 	p = l->l_proc;
    631   1.63   thorpej 
    632   1.63   thorpej 	if (id < CLOCK_REALTIME ||
    633   1.63   thorpej 	    id > CLOCK_PROF)
    634   1.63   thorpej 		return (EINVAL);
    635   1.63   thorpej 
    636   1.63   thorpej 	if (p->p_timers == NULL)
    637   1.63   thorpej 		timers_alloc(p);
    638   1.63   thorpej 
    639   1.63   thorpej 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    640   1.63   thorpej 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    641   1.63   thorpej 		if (p->p_timers->pts_timers[timerid] == NULL)
    642   1.63   thorpej 			break;
    643   1.63   thorpej 
    644   1.63   thorpej 	if (timerid == TIMER_MAX)
    645   1.63   thorpej 		return EAGAIN;
    646   1.63   thorpej 
    647   1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    648   1.63   thorpej 	if (evp) {
    649   1.63   thorpej 		if (((error =
    650   1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    651   1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    652   1.63   thorpej 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    653   1.63   thorpej 			pool_put(&ptimer_pool, pt);
    654   1.63   thorpej 			return (error ? error : EINVAL);
    655   1.63   thorpej 		}
    656   1.63   thorpej 	} else {
    657   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    658   1.63   thorpej 		switch (id) {
    659   1.63   thorpej 		case CLOCK_REALTIME:
    660   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    661   1.63   thorpej 			break;
    662   1.63   thorpej 		case CLOCK_VIRTUAL:
    663   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    664   1.63   thorpej 			break;
    665   1.63   thorpej 		case CLOCK_PROF:
    666   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    667   1.63   thorpej 			break;
    668   1.63   thorpej 		}
    669   1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    670   1.63   thorpej 	}
    671   1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    672   1.73  christos 	pt->pt_info.ksi_errno = 0;
    673   1.73  christos 	pt->pt_info.ksi_code = 0;
    674   1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    675  1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    676  1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    677   1.63   thorpej 
    678   1.63   thorpej 	pt->pt_type = id;
    679   1.63   thorpej 	pt->pt_proc = p;
    680   1.63   thorpej 	pt->pt_overruns = 0;
    681   1.63   thorpej 	pt->pt_poverruns = 0;
    682   1.64   nathanw 	pt->pt_entry = timerid;
    683   1.63   thorpej 	timerclear(&pt->pt_time.it_value);
    684   1.63   thorpej 	if (id == CLOCK_REALTIME)
    685  1.125        ad 		callout_init(&pt->pt_ch, 0);
    686   1.63   thorpej 	else
    687   1.63   thorpej 		pt->pt_active = 0;
    688   1.63   thorpej 
    689   1.63   thorpej 	p->p_timers->pts_timers[timerid] = pt;
    690   1.63   thorpej 
    691   1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    692   1.63   thorpej }
    693   1.63   thorpej 
    694   1.63   thorpej /* Delete a POSIX realtime timer */
    695    1.3    andrew int
    696  1.110      yamt sys_timer_delete(struct lwp *l, void *v, register_t *retval)
    697   1.15   thorpej {
    698   1.63   thorpej 	struct sys_timer_delete_args /*  {
    699   1.63   thorpej 		syscallarg(timer_t) timerid;
    700   1.15   thorpej 	} */ *uap = v;
    701   1.63   thorpej 	struct proc *p = l->l_proc;
    702   1.65  jdolecek 	timer_t timerid;
    703   1.63   thorpej 	struct ptimer *pt, *ptn;
    704    1.1       cgd 	int s;
    705    1.1       cgd 
    706   1.63   thorpej 	timerid = SCARG(uap, timerid);
    707   1.63   thorpej 
    708   1.63   thorpej 	if ((p->p_timers == NULL) ||
    709   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    710   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    711    1.1       cgd 		return (EINVAL);
    712   1.63   thorpej 
    713  1.125        ad 	if (pt->pt_type == CLOCK_REALTIME) {
    714   1.63   thorpej 		callout_stop(&pt->pt_ch);
    715  1.125        ad 		callout_destroy(&pt->pt_ch);
    716  1.125        ad 	} else if (pt->pt_active) {
    717   1.63   thorpej 		s = splclock();
    718   1.63   thorpej 		ptn = LIST_NEXT(pt, pt_list);
    719   1.63   thorpej 		LIST_REMOVE(pt, pt_list);
    720   1.63   thorpej 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    721   1.63   thorpej 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    722   1.63   thorpej 			    &ptn->pt_time.it_value);
    723   1.63   thorpej 		splx(s);
    724   1.63   thorpej 	}
    725   1.63   thorpej 
    726   1.63   thorpej 	p->p_timers->pts_timers[timerid] = NULL;
    727   1.63   thorpej 	pool_put(&ptimer_pool, pt);
    728   1.63   thorpej 
    729   1.63   thorpej 	return (0);
    730   1.63   thorpej }
    731   1.63   thorpej 
    732   1.63   thorpej /*
    733   1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    734   1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    735   1.67   nathanw  * time for virtual timers.
    736   1.63   thorpej  * Must be called at splclock().
    737   1.63   thorpej  */
    738   1.63   thorpej void
    739   1.63   thorpej timer_settime(struct ptimer *pt)
    740   1.63   thorpej {
    741   1.63   thorpej 	struct ptimer *ptn, *pptn;
    742   1.63   thorpej 	struct ptlist *ptl;
    743   1.63   thorpej 
    744   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    745   1.63   thorpej 		callout_stop(&pt->pt_ch);
    746   1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    747   1.63   thorpej 			/*
    748   1.63   thorpej 			 * Don't need to check hzto() return value, here.
    749   1.63   thorpej 			 * callout_reset() does it for us.
    750   1.63   thorpej 			 */
    751   1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    752   1.63   thorpej 			    realtimerexpire, pt);
    753   1.63   thorpej 		}
    754   1.63   thorpej 	} else {
    755   1.63   thorpej 		if (pt->pt_active) {
    756   1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    757   1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    758   1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    759   1.63   thorpej 				timeradd(&pt->pt_time.it_value,
    760   1.63   thorpej 				    &ptn->pt_time.it_value,
    761   1.63   thorpej 				    &ptn->pt_time.it_value);
    762   1.63   thorpej 		}
    763   1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    764   1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    765   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    766   1.63   thorpej 			else
    767   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    768   1.63   thorpej 
    769   1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    770   1.63   thorpej 			     ptn && timercmp(&pt->pt_time.it_value,
    771   1.63   thorpej 				 &ptn->pt_time.it_value, >);
    772   1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    773   1.63   thorpej 				timersub(&pt->pt_time.it_value,
    774   1.63   thorpej 				    &ptn->pt_time.it_value,
    775   1.63   thorpej 				    &pt->pt_time.it_value);
    776   1.63   thorpej 
    777   1.63   thorpej 			if (pptn)
    778   1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    779   1.63   thorpej 			else
    780   1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    781   1.63   thorpej 
    782   1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    783   1.63   thorpej 				timersub(&ptn->pt_time.it_value,
    784   1.63   thorpej 				    &pt->pt_time.it_value,
    785   1.63   thorpej 				    &ptn->pt_time.it_value);
    786   1.63   thorpej 
    787   1.63   thorpej 			pt->pt_active = 1;
    788   1.63   thorpej 		} else
    789   1.63   thorpej 			pt->pt_active = 0;
    790   1.63   thorpej 	}
    791   1.63   thorpej }
    792   1.63   thorpej 
    793   1.63   thorpej void
    794   1.63   thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    795   1.63   thorpej {
    796  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    797  1.101    kardel 	struct timeval now;
    798  1.101    kardel #endif
    799   1.63   thorpej 	struct ptimer *ptn;
    800   1.63   thorpej 
    801   1.63   thorpej 	*aitv = pt->pt_time;
    802   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    803    1.1       cgd 		/*
    804   1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    805   1.63   thorpej 		 * part of real time timer.  If time for real time
    806   1.63   thorpej 		 * timer has passed return 0, else return difference
    807   1.63   thorpej 		 * between current time and time for the timer to go
    808   1.63   thorpej 		 * off.
    809    1.1       cgd 		 */
    810   1.63   thorpej 		if (timerisset(&aitv->it_value)) {
    811  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    812  1.101    kardel 			getmicrotime(&now);
    813  1.101    kardel 			if (timercmp(&aitv->it_value, &now, <))
    814  1.101    kardel 				timerclear(&aitv->it_value);
    815  1.101    kardel 			else
    816  1.101    kardel 				timersub(&aitv->it_value, &now,
    817  1.101    kardel 				    &aitv->it_value);
    818  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    819   1.63   thorpej 			if (timercmp(&aitv->it_value, &time, <))
    820   1.63   thorpej 				timerclear(&aitv->it_value);
    821    1.1       cgd 			else
    822   1.63   thorpej 				timersub(&aitv->it_value, &time,
    823   1.63   thorpej 				    &aitv->it_value);
    824  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    825   1.36   thorpej 		}
    826   1.63   thorpej 	} else if (pt->pt_active) {
    827   1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    828   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    829   1.63   thorpej 		else
    830   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    831   1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    832   1.63   thorpej 			timeradd(&aitv->it_value,
    833   1.63   thorpej 			    &ptn->pt_time.it_value, &aitv->it_value);
    834   1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    835    1.1       cgd 	} else
    836   1.63   thorpej 		timerclear(&aitv->it_value);
    837   1.63   thorpej }
    838   1.63   thorpej 
    839   1.63   thorpej 
    840   1.63   thorpej 
    841   1.63   thorpej /* Set and arm a POSIX realtime timer */
    842   1.63   thorpej int
    843  1.110      yamt sys_timer_settime(struct lwp *l, void *v, register_t *retval)
    844   1.63   thorpej {
    845   1.63   thorpej 	struct sys_timer_settime_args /* {
    846   1.63   thorpej 		syscallarg(timer_t) timerid;
    847   1.63   thorpej 		syscallarg(int) flags;
    848   1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    849   1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    850   1.63   thorpej 	} */ *uap = v;
    851   1.92      cube 	int error;
    852   1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    853   1.92      cube 
    854   1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    855   1.92      cube 	    sizeof(struct itimerspec))) != 0)
    856   1.92      cube 		return (error);
    857   1.92      cube 
    858   1.92      cube 	if (SCARG(uap, ovalue))
    859   1.92      cube 		ovp = &ovalue;
    860   1.92      cube 
    861   1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    862   1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    863   1.92      cube 		return error;
    864   1.92      cube 
    865   1.92      cube 	if (ovp)
    866   1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    867   1.92      cube 		    sizeof(struct itimerspec));
    868   1.92      cube 	return 0;
    869   1.92      cube }
    870   1.92      cube 
    871   1.92      cube int
    872   1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    873   1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    874   1.92      cube {
    875  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    876  1.101    kardel 	struct timeval now;
    877  1.101    kardel #endif
    878   1.63   thorpej 	struct itimerval val, oval;
    879   1.63   thorpej 	struct ptimer *pt;
    880  1.101    kardel 	int s;
    881   1.63   thorpej 
    882   1.63   thorpej 	if ((p->p_timers == NULL) ||
    883   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    884   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    885   1.63   thorpej 		return (EINVAL);
    886   1.63   thorpej 
    887   1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    888   1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    889   1.63   thorpej 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    890   1.63   thorpej 		return (EINVAL);
    891   1.63   thorpej 
    892   1.63   thorpej 	oval = pt->pt_time;
    893   1.63   thorpej 	pt->pt_time = val;
    894   1.63   thorpej 
    895   1.63   thorpej 	s = splclock();
    896   1.67   nathanw 	/*
    897   1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    898   1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    899   1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    900   1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    901   1.67   nathanw 	 * negative, which would confuse the comparison tests.
    902   1.67   nathanw 	 */
    903   1.67   nathanw 	if (timerisset(&pt->pt_time.it_value)) {
    904   1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    905  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    906  1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    907  1.101    kardel 				getmicrotime(&now);
    908  1.101    kardel 				timeradd(&pt->pt_time.it_value, &now,
    909  1.101    kardel 				    &pt->pt_time.it_value);
    910  1.101    kardel 			}
    911  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    912   1.92      cube 			if ((flags & TIMER_ABSTIME) == 0)
    913   1.67   nathanw 				timeradd(&pt->pt_time.it_value, &time,
    914   1.67   nathanw 				    &pt->pt_time.it_value);
    915  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    916   1.67   nathanw 		} else {
    917   1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    918  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    919  1.101    kardel 				getmicrotime(&now);
    920  1.101    kardel 				timersub(&pt->pt_time.it_value, &now,
    921  1.101    kardel 				    &pt->pt_time.it_value);
    922  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    923   1.67   nathanw 				timersub(&pt->pt_time.it_value, &time,
    924   1.67   nathanw 				    &pt->pt_time.it_value);
    925  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    926   1.67   nathanw 				if (!timerisset(&pt->pt_time.it_value) ||
    927   1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    928   1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    929   1.67   nathanw 					pt->pt_time.it_value.tv_usec = 1;
    930   1.67   nathanw 				}
    931   1.67   nathanw 			}
    932   1.67   nathanw 		}
    933   1.67   nathanw 	}
    934   1.67   nathanw 
    935   1.63   thorpej 	timer_settime(pt);
    936   1.63   thorpej 	splx(s);
    937   1.63   thorpej 
    938   1.92      cube 	if (ovalue) {
    939   1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    940   1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    941   1.63   thorpej 	}
    942   1.63   thorpej 
    943   1.63   thorpej 	return (0);
    944   1.63   thorpej }
    945   1.63   thorpej 
    946   1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    947   1.63   thorpej int
    948  1.110      yamt sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
    949   1.63   thorpej {
    950   1.63   thorpej 	struct sys_timer_gettime_args /* {
    951   1.63   thorpej 		syscallarg(timer_t) timerid;
    952   1.63   thorpej 		syscallarg(struct itimerspec *) value;
    953   1.63   thorpej 	} */ *uap = v;
    954   1.63   thorpej 	struct itimerspec its;
    955   1.92      cube 	int error;
    956   1.92      cube 
    957   1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    958   1.92      cube 	    &its)) != 0)
    959   1.92      cube 		return error;
    960   1.92      cube 
    961   1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    962   1.92      cube }
    963   1.92      cube 
    964   1.92      cube int
    965   1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    966   1.92      cube {
    967   1.92      cube 	int s;
    968   1.63   thorpej 	struct ptimer *pt;
    969   1.92      cube 	struct itimerval aitv;
    970   1.63   thorpej 
    971   1.63   thorpej 	if ((p->p_timers == NULL) ||
    972   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    973   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    974   1.63   thorpej 		return (EINVAL);
    975   1.63   thorpej 
    976   1.63   thorpej 	s = splclock();
    977   1.63   thorpej 	timer_gettime(pt, &aitv);
    978    1.1       cgd 	splx(s);
    979   1.63   thorpej 
    980   1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    981   1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    982   1.63   thorpej 
    983   1.92      cube 	return 0;
    984   1.63   thorpej }
    985   1.63   thorpej 
    986   1.63   thorpej /*
    987   1.63   thorpej  * Return the count of the number of times a periodic timer expired
    988   1.63   thorpej  * while a notification was already pending. The counter is reset when
    989   1.63   thorpej  * a timer expires and a notification can be posted.
    990   1.63   thorpej  */
    991   1.63   thorpej int
    992   1.63   thorpej sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
    993   1.63   thorpej {
    994   1.63   thorpej 	struct sys_timer_getoverrun_args /* {
    995   1.63   thorpej 		syscallarg(timer_t) timerid;
    996   1.63   thorpej 	} */ *uap = v;
    997   1.63   thorpej 	struct proc *p = l->l_proc;
    998   1.63   thorpej 	int timerid;
    999   1.63   thorpej 	struct ptimer *pt;
   1000   1.63   thorpej 
   1001   1.63   thorpej 	timerid = SCARG(uap, timerid);
   1002   1.63   thorpej 
   1003   1.63   thorpej 	if ((p->p_timers == NULL) ||
   1004   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
   1005   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
   1006   1.63   thorpej 		return (EINVAL);
   1007   1.63   thorpej 
   1008   1.63   thorpej 	*retval = pt->pt_poverruns;
   1009   1.63   thorpej 
   1010   1.63   thorpej 	return (0);
   1011   1.63   thorpej }
   1012   1.63   thorpej 
   1013   1.63   thorpej /*
   1014   1.63   thorpej  * Real interval timer expired:
   1015   1.63   thorpej  * send process whose timer expired an alarm signal.
   1016   1.63   thorpej  * If time is not set up to reload, then just return.
   1017   1.63   thorpej  * Else compute next time timer should go off which is > current time.
   1018   1.63   thorpej  * This is where delay in processing this timeout causes multiple
   1019   1.63   thorpej  * SIGALRM calls to be compressed into one.
   1020   1.63   thorpej  */
   1021   1.63   thorpej void
   1022   1.63   thorpej realtimerexpire(void *arg)
   1023   1.63   thorpej {
   1024  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1025  1.101    kardel 	struct timeval now;
   1026  1.101    kardel #endif
   1027   1.63   thorpej 	struct ptimer *pt;
   1028   1.63   thorpej 	int s;
   1029   1.63   thorpej 
   1030   1.63   thorpej 	pt = (struct ptimer *)arg;
   1031   1.63   thorpej 
   1032   1.63   thorpej 	itimerfire(pt);
   1033   1.63   thorpej 
   1034   1.63   thorpej 	if (!timerisset(&pt->pt_time.it_interval)) {
   1035   1.63   thorpej 		timerclear(&pt->pt_time.it_value);
   1036   1.63   thorpej 		return;
   1037   1.63   thorpej 	}
   1038  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1039  1.101    kardel 	for (;;) {
   1040  1.101    kardel 		s = splclock();	/* XXX need spl now? */
   1041  1.101    kardel 		timeradd(&pt->pt_time.it_value,
   1042  1.101    kardel 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1043  1.101    kardel 		getmicrotime(&now);
   1044  1.101    kardel 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
   1045  1.101    kardel 			/*
   1046  1.101    kardel 			 * Don't need to check hzto() return value, here.
   1047  1.101    kardel 			 * callout_reset() does it for us.
   1048  1.101    kardel 			 */
   1049  1.101    kardel 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1050  1.101    kardel 			    realtimerexpire, pt);
   1051  1.101    kardel 			splx(s);
   1052  1.101    kardel 			return;
   1053  1.101    kardel 		}
   1054  1.101    kardel 		splx(s);
   1055  1.101    kardel 		pt->pt_overruns++;
   1056  1.101    kardel 	}
   1057  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1058   1.63   thorpej 	for (;;) {
   1059   1.63   thorpej 		s = splclock();
   1060   1.63   thorpej 		timeradd(&pt->pt_time.it_value,
   1061   1.63   thorpej 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
   1062   1.63   thorpej 		if (timercmp(&pt->pt_time.it_value, &time, >)) {
   1063   1.63   thorpej 			/*
   1064   1.63   thorpej 			 * Don't need to check hzto() return value, here.
   1065   1.63   thorpej 			 * callout_reset() does it for us.
   1066   1.63   thorpej 			 */
   1067   1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
   1068   1.63   thorpej 			    realtimerexpire, pt);
   1069   1.63   thorpej 			splx(s);
   1070   1.63   thorpej 			return;
   1071   1.63   thorpej 		}
   1072   1.63   thorpej 		splx(s);
   1073   1.63   thorpej 		pt->pt_overruns++;
   1074   1.63   thorpej 	}
   1075  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1076   1.63   thorpej }
   1077   1.63   thorpej 
   1078   1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1079   1.63   thorpej /* ARGSUSED */
   1080   1.63   thorpej int
   1081  1.110      yamt sys_getitimer(struct lwp *l, void *v, register_t *retval)
   1082   1.63   thorpej {
   1083   1.63   thorpej 	struct sys_getitimer_args /* {
   1084   1.63   thorpej 		syscallarg(int) which;
   1085   1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1086   1.63   thorpej 	} */ *uap = v;
   1087   1.63   thorpej 	struct proc *p = l->l_proc;
   1088   1.63   thorpej 	struct itimerval aitv;
   1089   1.91      cube 	int error;
   1090   1.91      cube 
   1091   1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1092   1.91      cube 	if (error)
   1093   1.91      cube 		return error;
   1094   1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1095   1.91      cube }
   1096   1.63   thorpej 
   1097   1.91      cube int
   1098   1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1099   1.91      cube {
   1100   1.91      cube 	int s;
   1101   1.63   thorpej 
   1102   1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
   1103   1.63   thorpej 		return (EINVAL);
   1104   1.63   thorpej 
   1105   1.63   thorpej 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
   1106   1.91      cube 		timerclear(&itvp->it_value);
   1107   1.91      cube 		timerclear(&itvp->it_interval);
   1108   1.63   thorpej 	} else {
   1109   1.63   thorpej 		s = splclock();
   1110   1.91      cube 		timer_gettime(p->p_timers->pts_timers[which], itvp);
   1111   1.63   thorpej 		splx(s);
   1112   1.63   thorpej 	}
   1113   1.63   thorpej 
   1114   1.91      cube 	return 0;
   1115    1.1       cgd }
   1116    1.1       cgd 
   1117   1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1118    1.1       cgd /* ARGSUSED */
   1119    1.3    andrew int
   1120   1.63   thorpej sys_setitimer(struct lwp *l, void *v, register_t *retval)
   1121   1.15   thorpej {
   1122   1.45  augustss 	struct sys_setitimer_args /* {
   1123   1.30   mycroft 		syscallarg(int) which;
   1124   1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1125   1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1126   1.15   thorpej 	} */ *uap = v;
   1127   1.63   thorpej 	struct proc *p = l->l_proc;
   1128   1.30   mycroft 	int which = SCARG(uap, which);
   1129   1.21       cgd 	struct sys_getitimer_args getargs;
   1130   1.91      cube 	const struct itimerval *itvp;
   1131    1.1       cgd 	struct itimerval aitv;
   1132   1.91      cube 	int error;
   1133    1.1       cgd 
   1134   1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1135    1.1       cgd 		return (EINVAL);
   1136   1.11       cgd 	itvp = SCARG(uap, itv);
   1137   1.63   thorpej 	if (itvp &&
   1138   1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1139    1.1       cgd 		return (error);
   1140   1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1141   1.30   mycroft 		SCARG(&getargs, which) = which;
   1142   1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1143   1.63   thorpej 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1144   1.21       cgd 			return (error);
   1145   1.21       cgd 	}
   1146    1.1       cgd 	if (itvp == 0)
   1147    1.1       cgd 		return (0);
   1148   1.91      cube 
   1149   1.91      cube 	return dosetitimer(p, which, &aitv);
   1150   1.91      cube }
   1151   1.91      cube 
   1152   1.91      cube int
   1153   1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1154   1.91      cube {
   1155  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1156  1.101    kardel 	struct timeval now;
   1157  1.101    kardel #endif
   1158   1.91      cube 	struct ptimer *pt;
   1159   1.91      cube 	int s;
   1160   1.91      cube 
   1161   1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1162    1.1       cgd 		return (EINVAL);
   1163   1.63   thorpej 
   1164   1.63   thorpej 	/*
   1165   1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1166   1.63   thorpej 	 * wants to clear the timer.
   1167   1.63   thorpej 	 */
   1168   1.91      cube 	if (!timerisset(&itvp->it_value) &&
   1169   1.63   thorpej 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1170   1.63   thorpej 		return (0);
   1171   1.63   thorpej 
   1172   1.63   thorpej 	if (p->p_timers == NULL)
   1173   1.63   thorpej 		timers_alloc(p);
   1174   1.63   thorpej 	if (p->p_timers->pts_timers[which] == NULL) {
   1175   1.63   thorpej 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1176   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1177   1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1178   1.63   thorpej 		pt->pt_overruns = 0;
   1179   1.63   thorpej 		pt->pt_proc = p;
   1180   1.63   thorpej 		pt->pt_type = which;
   1181   1.64   nathanw 		pt->pt_entry = which;
   1182   1.63   thorpej 		switch (which) {
   1183   1.63   thorpej 		case ITIMER_REAL:
   1184  1.125        ad 			callout_init(&pt->pt_ch, 0);
   1185   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1186   1.63   thorpej 			break;
   1187   1.63   thorpej 		case ITIMER_VIRTUAL:
   1188   1.63   thorpej 			pt->pt_active = 0;
   1189   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1190   1.63   thorpej 			break;
   1191   1.63   thorpej 		case ITIMER_PROF:
   1192   1.63   thorpej 			pt->pt_active = 0;
   1193   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1194   1.63   thorpej 			break;
   1195    1.1       cgd 		}
   1196    1.1       cgd 	} else
   1197   1.63   thorpej 		pt = p->p_timers->pts_timers[which];
   1198   1.63   thorpej 
   1199   1.91      cube 	pt->pt_time = *itvp;
   1200   1.63   thorpej 	p->p_timers->pts_timers[which] = pt;
   1201   1.63   thorpej 
   1202   1.63   thorpej 	s = splclock();
   1203   1.67   nathanw 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1204   1.67   nathanw 		/* Convert to absolute time */
   1205  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1206  1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1207  1.101    kardel 		getmicrotime(&now);
   1208  1.101    kardel 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1209  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1210   1.67   nathanw 		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
   1211  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1212   1.67   nathanw 	}
   1213   1.63   thorpej 	timer_settime(pt);
   1214    1.1       cgd 	splx(s);
   1215   1.63   thorpej 
   1216    1.1       cgd 	return (0);
   1217    1.1       cgd }
   1218    1.1       cgd 
   1219   1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1220   1.63   thorpej void
   1221   1.63   thorpej timers_alloc(struct proc *p)
   1222   1.63   thorpej {
   1223   1.63   thorpej 	int i;
   1224   1.63   thorpej 	struct ptimers *pts;
   1225   1.63   thorpej 
   1226  1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1227   1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1228   1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1229   1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1230   1.63   thorpej 		pts->pts_timers[i] = NULL;
   1231   1.64   nathanw 	pts->pts_fired = 0;
   1232   1.63   thorpej 	p->p_timers = pts;
   1233   1.63   thorpej }
   1234   1.63   thorpej 
   1235    1.1       cgd /*
   1236   1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1237   1.63   thorpej  * then clean up all timers and free all the data structures. If
   1238   1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1239   1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1240   1.63   thorpej  * structure if none of those remain.
   1241    1.1       cgd  */
   1242    1.3    andrew void
   1243   1.63   thorpej timers_free(struct proc *p, int which)
   1244    1.6       cgd {
   1245   1.63   thorpej 	int i, s;
   1246   1.63   thorpej 	struct ptimers *pts;
   1247   1.63   thorpej 	struct ptimer *pt, *ptn;
   1248   1.63   thorpej 	struct timeval tv;
   1249   1.63   thorpej 
   1250   1.63   thorpej 	if (p->p_timers) {
   1251   1.63   thorpej 		pts = p->p_timers;
   1252   1.63   thorpej 		if (which == TIMERS_ALL)
   1253   1.63   thorpej 			i = 0;
   1254   1.63   thorpej 		else {
   1255   1.63   thorpej 			s = splclock();
   1256   1.63   thorpej 			timerclear(&tv);
   1257   1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1258   1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1259   1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1260   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1261   1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1262   1.63   thorpej 			if (ptn) {
   1263   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1264   1.63   thorpej 				    &ptn->pt_time.it_value);
   1265   1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1266   1.63   thorpej 				    ptn, pt_list);
   1267   1.63   thorpej 			}
   1268   1.63   thorpej 
   1269   1.63   thorpej 			timerclear(&tv);
   1270   1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1271   1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1272   1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1273   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1274   1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1275   1.63   thorpej 			if (ptn) {
   1276   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1277   1.63   thorpej 				    &ptn->pt_time.it_value);
   1278   1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1279   1.63   thorpej 				    pt_list);
   1280   1.63   thorpej 			}
   1281    1.1       cgd 			splx(s);
   1282   1.63   thorpej 			i = 3;
   1283   1.63   thorpej 		}
   1284   1.63   thorpej 		for ( ; i < TIMER_MAX; i++)
   1285   1.63   thorpej 			if ((pt = pts->pts_timers[i]) != NULL) {
   1286  1.125        ad 				if (pt->pt_type == CLOCK_REALTIME) {
   1287   1.63   thorpej 					callout_stop(&pt->pt_ch);
   1288  1.125        ad 					callout_destroy(&pt->pt_ch);
   1289  1.125        ad 				}
   1290   1.63   thorpej 				pts->pts_timers[i] = NULL;
   1291   1.63   thorpej 				pool_put(&ptimer_pool, pt);
   1292   1.63   thorpej 			}
   1293   1.63   thorpej 		if ((pts->pts_timers[0] == NULL) &&
   1294   1.63   thorpej 		    (pts->pts_timers[1] == NULL) &&
   1295   1.63   thorpej 		    (pts->pts_timers[2] == NULL)) {
   1296   1.63   thorpej 			p->p_timers = NULL;
   1297   1.97    simonb 			pool_put(&ptimers_pool, pts);
   1298    1.1       cgd 		}
   1299    1.1       cgd 	}
   1300    1.1       cgd }
   1301    1.1       cgd 
   1302    1.1       cgd /*
   1303    1.1       cgd  * Decrement an interval timer by a specified number
   1304    1.1       cgd  * of microseconds, which must be less than a second,
   1305    1.1       cgd  * i.e. < 1000000.  If the timer expires, then reload
   1306    1.1       cgd  * it.  In this case, carry over (usec - old value) to
   1307    1.8       cgd  * reduce the value reloaded into the timer so that
   1308    1.1       cgd  * the timer does not drift.  This routine assumes
   1309    1.1       cgd  * that it is called in a context where the timers
   1310    1.1       cgd  * on which it is operating cannot change in value.
   1311    1.1       cgd  */
   1312    1.3    andrew int
   1313   1.63   thorpej itimerdecr(struct ptimer *pt, int usec)
   1314   1.63   thorpej {
   1315   1.45  augustss 	struct itimerval *itp;
   1316    1.1       cgd 
   1317   1.63   thorpej 	itp = &pt->pt_time;
   1318    1.1       cgd 	if (itp->it_value.tv_usec < usec) {
   1319    1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1320    1.1       cgd 			/* expired, and already in next interval */
   1321    1.1       cgd 			usec -= itp->it_value.tv_usec;
   1322    1.1       cgd 			goto expire;
   1323    1.1       cgd 		}
   1324    1.1       cgd 		itp->it_value.tv_usec += 1000000;
   1325    1.1       cgd 		itp->it_value.tv_sec--;
   1326    1.1       cgd 	}
   1327    1.1       cgd 	itp->it_value.tv_usec -= usec;
   1328    1.1       cgd 	usec = 0;
   1329    1.1       cgd 	if (timerisset(&itp->it_value))
   1330    1.1       cgd 		return (1);
   1331    1.1       cgd 	/* expired, exactly at end of interval */
   1332    1.1       cgd expire:
   1333    1.1       cgd 	if (timerisset(&itp->it_interval)) {
   1334    1.1       cgd 		itp->it_value = itp->it_interval;
   1335    1.1       cgd 		itp->it_value.tv_usec -= usec;
   1336    1.1       cgd 		if (itp->it_value.tv_usec < 0) {
   1337    1.1       cgd 			itp->it_value.tv_usec += 1000000;
   1338    1.1       cgd 			itp->it_value.tv_sec--;
   1339    1.1       cgd 		}
   1340   1.63   thorpej 		timer_settime(pt);
   1341    1.1       cgd 	} else
   1342    1.1       cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1343    1.1       cgd 	return (0);
   1344   1.42       cgd }
   1345   1.42       cgd 
   1346   1.63   thorpej void
   1347   1.63   thorpej itimerfire(struct ptimer *pt)
   1348   1.63   thorpej {
   1349   1.63   thorpej 	struct proc *p = pt->pt_proc;
   1350   1.78        cl 
   1351   1.63   thorpej 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1352   1.63   thorpej 		/*
   1353   1.63   thorpej 		 * No RT signal infrastructure exists at this time;
   1354   1.63   thorpej 		 * just post the signal number and throw away the
   1355   1.63   thorpej 		 * value.
   1356   1.63   thorpej 		 */
   1357  1.113        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
   1358   1.63   thorpej 			pt->pt_overruns++;
   1359   1.63   thorpej 		else {
   1360   1.75  christos 			ksiginfo_t ksi;
   1361  1.111      yamt 			KSI_INIT(&ksi);
   1362   1.75  christos 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1363   1.75  christos 			ksi.ksi_code = SI_TIMER;
   1364  1.124  christos 			ksi.ksi_value = pt->pt_ev.sigev_value;
   1365   1.63   thorpej 			pt->pt_poverruns = pt->pt_overruns;
   1366   1.63   thorpej 			pt->pt_overruns = 0;
   1367  1.113        ad 			mutex_enter(&proclist_mutex);
   1368   1.75  christos 			kpsignal(p, &ksi, NULL);
   1369  1.113        ad 			mutex_exit(&proclist_mutex);
   1370   1.64   nathanw 		}
   1371   1.63   thorpej 	}
   1372   1.63   thorpej }
   1373   1.63   thorpej 
   1374   1.42       cgd /*
   1375   1.42       cgd  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1376   1.42       cgd  * for usage and rationale.
   1377   1.42       cgd  */
   1378   1.42       cgd int
   1379   1.63   thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1380   1.42       cgd {
   1381   1.49    itojun 	struct timeval tv, delta;
   1382  1.101    kardel 	int rv = 0;
   1383  1.101    kardel #ifndef __HAVE_TIMECOUNTER
   1384  1.101    kardel 	int s;
   1385  1.101    kardel #endif
   1386   1.42       cgd 
   1387  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1388  1.101    kardel 	getmicrouptime(&tv);
   1389  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1390   1.63   thorpej 	s = splclock();
   1391   1.49    itojun 	tv = mono_time;
   1392   1.49    itojun 	splx(s);
   1393  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1394   1.49    itojun 	timersub(&tv, lasttime, &delta);
   1395   1.42       cgd 
   1396   1.42       cgd 	/*
   1397   1.42       cgd 	 * check for 0,0 is so that the message will be seen at least once,
   1398   1.42       cgd 	 * even if interval is huge.
   1399   1.42       cgd 	 */
   1400   1.42       cgd 	if (timercmp(&delta, mininterval, >=) ||
   1401   1.42       cgd 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1402   1.49    itojun 		*lasttime = tv;
   1403   1.42       cgd 		rv = 1;
   1404   1.42       cgd 	}
   1405   1.50    itojun 
   1406   1.50    itojun 	return (rv);
   1407   1.50    itojun }
   1408   1.50    itojun 
   1409   1.50    itojun /*
   1410   1.50    itojun  * ppsratecheck(): packets (or events) per second limitation.
   1411   1.50    itojun  */
   1412   1.50    itojun int
   1413   1.63   thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1414   1.50    itojun {
   1415   1.50    itojun 	struct timeval tv, delta;
   1416  1.101    kardel 	int rv;
   1417  1.101    kardel #ifndef __HAVE_TIMECOUNTER
   1418  1.101    kardel 	int s;
   1419  1.101    kardel #endif
   1420   1.50    itojun 
   1421  1.101    kardel #ifdef __HAVE_TIMECOUNTER
   1422  1.101    kardel 	getmicrouptime(&tv);
   1423  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
   1424   1.63   thorpej 	s = splclock();
   1425   1.50    itojun 	tv = mono_time;
   1426   1.50    itojun 	splx(s);
   1427  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
   1428   1.50    itojun 	timersub(&tv, lasttime, &delta);
   1429   1.50    itojun 
   1430   1.50    itojun 	/*
   1431   1.50    itojun 	 * check for 0,0 is so that the message will be seen at least once.
   1432   1.50    itojun 	 * if more than one second have passed since the last update of
   1433   1.50    itojun 	 * lasttime, reset the counter.
   1434   1.50    itojun 	 *
   1435   1.50    itojun 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1436   1.50    itojun 	 * try to use *curpps for stat purposes as well.
   1437   1.50    itojun 	 */
   1438   1.50    itojun 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1439   1.50    itojun 	    delta.tv_sec >= 1) {
   1440   1.50    itojun 		*lasttime = tv;
   1441   1.50    itojun 		*curpps = 0;
   1442   1.69    dyoung 	}
   1443   1.69    dyoung 	if (maxpps < 0)
   1444   1.53    itojun 		rv = 1;
   1445   1.53    itojun 	else if (*curpps < maxpps)
   1446   1.50    itojun 		rv = 1;
   1447   1.50    itojun 	else
   1448   1.50    itojun 		rv = 0;
   1449   1.50    itojun 
   1450   1.51     jhawk #if 1 /*DIAGNOSTIC?*/
   1451   1.50    itojun 	/* be careful about wrap-around */
   1452   1.50    itojun 	if (*curpps + 1 > *curpps)
   1453   1.50    itojun 		*curpps = *curpps + 1;
   1454   1.50    itojun #else
   1455   1.50    itojun 	/*
   1456   1.50    itojun 	 * assume that there's not too many calls to this function.
   1457   1.50    itojun 	 * not sure if the assumption holds, as it depends on *caller's*
   1458   1.50    itojun 	 * behavior, not the behavior of this function.
   1459   1.50    itojun 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1460   1.51     jhawk 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1461   1.50    itojun 	 */
   1462   1.50    itojun 	*curpps = *curpps + 1;
   1463   1.50    itojun #endif
   1464   1.42       cgd 
   1465   1.42       cgd 	return (rv);
   1466    1.1       cgd }
   1467