Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.130.2.3
      1  1.130.2.3       mjf /*	$NetBSD: kern_time.c,v 1.130.2.3 2007/12/27 00:46:04 mjf Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4  1.130.2.1       mjf  * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8       1.42       cgd  * by Christopher G. Demetriou.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  * 3. All advertising materials mentioning features or use of this software
     19       1.42       cgd  *    must display the following acknowledgement:
     20       1.42       cgd  *	This product includes software developed by the NetBSD
     21       1.42       cgd  *	Foundation, Inc. and its contributors.
     22       1.42       cgd  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23       1.42       cgd  *    contributors may be used to endorse or promote products derived
     24       1.42       cgd  *    from this software without specific prior written permission.
     25       1.42       cgd  *
     26       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     37       1.42       cgd  */
     38        1.9       cgd 
     39        1.1       cgd /*
     40        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     41        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     42        1.1       cgd  *
     43        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     44        1.1       cgd  * modification, are permitted provided that the following conditions
     45        1.1       cgd  * are met:
     46        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     47        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     48        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     49        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     50        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     51       1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     52        1.1       cgd  *    may be used to endorse or promote products derived from this software
     53        1.1       cgd  *    without specific prior written permission.
     54        1.1       cgd  *
     55        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65        1.1       cgd  * SUCH DAMAGE.
     66        1.1       cgd  *
     67       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68        1.1       cgd  */
     69       1.58     lukem 
     70       1.58     lukem #include <sys/cdefs.h>
     71  1.130.2.3       mjf __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.130.2.3 2007/12/27 00:46:04 mjf Exp $");
     72        1.1       cgd 
     73        1.5   mycroft #include <sys/param.h>
     74        1.5   mycroft #include <sys/resourcevar.h>
     75        1.5   mycroft #include <sys/kernel.h>
     76        1.8       cgd #include <sys/systm.h>
     77        1.5   mycroft #include <sys/proc.h>
     78        1.8       cgd #include <sys/vnode.h>
     79       1.17  christos #include <sys/signalvar.h>
     80       1.25     perry #include <sys/syslog.h>
     81      1.101    kardel #include <sys/timetc.h>
     82       1.99      elad #include <sys/kauth.h>
     83        1.1       cgd 
     84       1.11       cgd #include <sys/mount.h>
     85       1.11       cgd #include <sys/syscallargs.h>
     86       1.19  christos 
     87       1.37   thorpej #include <uvm/uvm_extern.h>
     88       1.37   thorpej 
     89      1.130        ad #include <sys/cpu.h>
     90       1.23       cgd 
     91  1.130.2.1       mjf kmutex_t	time_lock;
     92  1.130.2.1       mjf 
     93       1.97    simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     94      1.118        ad     &pool_allocator_nointr, IPL_NONE);
     95       1.97    simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     96      1.118        ad     &pool_allocator_nointr, IPL_NONE);
     97       1.97    simonb 
     98  1.130.2.1       mjf /*
     99  1.130.2.1       mjf  * Initialize timekeeping.
    100  1.130.2.1       mjf  */
    101  1.130.2.1       mjf void
    102  1.130.2.1       mjf time_init(void)
    103  1.130.2.1       mjf {
    104  1.130.2.1       mjf 
    105  1.130.2.1       mjf 	mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
    106  1.130.2.1       mjf }
    107  1.130.2.1       mjf 
    108       1.63   thorpej /* Time of day and interval timer support.
    109        1.1       cgd  *
    110        1.1       cgd  * These routines provide the kernel entry points to get and set
    111        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    112        1.1       cgd  * here provide support for adding and subtracting timeval structures
    113        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    114        1.1       cgd  * timers when they expire.
    115        1.1       cgd  */
    116        1.1       cgd 
    117       1.22       jtc /* This function is used by clock_settime and settimeofday */
    118  1.130.2.2       mjf static int
    119  1.130.2.2       mjf settime1(struct proc *p, struct timespec *ts, bool check_kauth)
    120       1.22       jtc {
    121       1.98  christos 	struct timeval delta, tv;
    122      1.101    kardel 	struct timeval now;
    123      1.101    kardel 	struct timespec ts1;
    124  1.130.2.3       mjf 	struct bintime btdelta;
    125      1.129        ad 	lwp_t *l;
    126      1.129        ad 	int s;
    127       1.22       jtc 
    128       1.98  christos 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    129       1.98  christos 
    130       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    131      1.129        ad 	s = splclock();
    132      1.101    kardel 	microtime(&now);
    133      1.101    kardel 	timersub(&tv, &now, &delta);
    134  1.130.2.2       mjf 
    135  1.130.2.3       mjf 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    136  1.130.2.3       mjf 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
    137  1.130.2.2       mjf 	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
    138      1.129        ad 		splx(s);
    139       1.29       tls 		return (EPERM);
    140       1.55      tron 	}
    141  1.130.2.2       mjf 
    142       1.29       tls #ifdef notyet
    143      1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    144      1.129        ad 		splx(s);
    145       1.29       tls 		return (EPERM);
    146       1.55      tron 	}
    147       1.29       tls #endif
    148      1.103    kardel 
    149      1.103    kardel 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    150      1.101    kardel 	tc_setclock(&ts1);
    151      1.103    kardel 
    152       1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    153      1.103    kardel 
    154       1.47   thorpej 	/*
    155      1.129        ad 	 * XXXSMP: There is a short race between setting the time above
    156      1.129        ad 	 * and adjusting LWP's run times.  Fixing this properly means
    157      1.129        ad 	 * pausing all CPUs while we adjust the clock.
    158       1.47   thorpej 	 */
    159  1.130.2.3       mjf 	timeval2bintime(&delta, &btdelta);
    160      1.129        ad 	mutex_enter(&proclist_lock);
    161      1.129        ad 	LIST_FOREACH(l, &alllwp, l_list) {
    162      1.129        ad 		lwp_lock(l);
    163  1.130.2.3       mjf 		bintime_add(&l->l_stime, &btdelta);
    164      1.129        ad 		lwp_unlock(l);
    165      1.129        ad 	}
    166      1.129        ad 	mutex_exit(&proclist_lock);
    167       1.22       jtc 	resettodr();
    168      1.129        ad 	splx(s);
    169      1.129        ad 
    170       1.29       tls 	return (0);
    171       1.22       jtc }
    172       1.22       jtc 
    173  1.130.2.2       mjf int
    174  1.130.2.2       mjf settime(struct proc *p, struct timespec *ts)
    175  1.130.2.2       mjf {
    176  1.130.2.2       mjf 	return (settime1(p, ts, true));
    177  1.130.2.2       mjf }
    178  1.130.2.2       mjf 
    179       1.22       jtc /* ARGSUSED */
    180       1.22       jtc int
    181  1.130.2.3       mjf sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap, register_t *retval)
    182       1.22       jtc {
    183  1.130.2.3       mjf 	/* {
    184       1.22       jtc 		syscallarg(clockid_t) clock_id;
    185       1.23       cgd 		syscallarg(struct timespec *) tp;
    186  1.130.2.3       mjf 	} */
    187       1.22       jtc 	clockid_t clock_id;
    188       1.22       jtc 	struct timespec ats;
    189       1.22       jtc 
    190       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    191       1.61    simonb 	switch (clock_id) {
    192       1.61    simonb 	case CLOCK_REALTIME:
    193       1.96    simonb 		nanotime(&ats);
    194       1.61    simonb 		break;
    195       1.61    simonb 	case CLOCK_MONOTONIC:
    196      1.101    kardel 		nanouptime(&ats);
    197       1.61    simonb 		break;
    198       1.61    simonb 	default:
    199       1.22       jtc 		return (EINVAL);
    200       1.61    simonb 	}
    201       1.22       jtc 
    202       1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    203       1.22       jtc }
    204       1.22       jtc 
    205       1.22       jtc /* ARGSUSED */
    206       1.22       jtc int
    207  1.130.2.3       mjf sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap, register_t *retval)
    208       1.22       jtc {
    209  1.130.2.3       mjf 	/* {
    210       1.22       jtc 		syscallarg(clockid_t) clock_id;
    211       1.23       cgd 		syscallarg(const struct timespec *) tp;
    212  1.130.2.3       mjf 	} */
    213       1.22       jtc 
    214  1.130.2.2       mjf 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
    215  1.130.2.2       mjf 	    true);
    216       1.56      manu }
    217       1.56      manu 
    218       1.56      manu 
    219       1.56      manu int
    220  1.130.2.2       mjf clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    221  1.130.2.2       mjf     bool check_kauth)
    222       1.56      manu {
    223       1.60      manu 	struct timespec ats;
    224       1.56      manu 	int error;
    225       1.56      manu 
    226       1.60      manu 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    227       1.60      manu 		return (error);
    228       1.60      manu 
    229       1.61    simonb 	switch (clock_id) {
    230       1.61    simonb 	case CLOCK_REALTIME:
    231  1.130.2.2       mjf 		if ((error = settime1(p, &ats, check_kauth)) != 0)
    232       1.61    simonb 			return (error);
    233       1.61    simonb 		break;
    234       1.61    simonb 	case CLOCK_MONOTONIC:
    235       1.61    simonb 		return (EINVAL);	/* read-only clock */
    236       1.61    simonb 	default:
    237       1.56      manu 		return (EINVAL);
    238       1.61    simonb 	}
    239       1.22       jtc 
    240       1.22       jtc 	return 0;
    241       1.22       jtc }
    242       1.22       jtc 
    243       1.22       jtc int
    244  1.130.2.3       mjf sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap, register_t *retval)
    245       1.22       jtc {
    246  1.130.2.3       mjf 	/* {
    247       1.22       jtc 		syscallarg(clockid_t) clock_id;
    248       1.23       cgd 		syscallarg(struct timespec *) tp;
    249  1.130.2.3       mjf 	} */
    250       1.22       jtc 	clockid_t clock_id;
    251       1.22       jtc 	struct timespec ts;
    252       1.22       jtc 	int error = 0;
    253       1.22       jtc 
    254       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    255       1.61    simonb 	switch (clock_id) {
    256       1.61    simonb 	case CLOCK_REALTIME:
    257       1.61    simonb 	case CLOCK_MONOTONIC:
    258       1.22       jtc 		ts.tv_sec = 0;
    259      1.102    kardel 		if (tc_getfrequency() > 1000000000)
    260      1.102    kardel 			ts.tv_nsec = 1;
    261      1.102    kardel 		else
    262      1.102    kardel 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    263       1.61    simonb 		break;
    264       1.61    simonb 	default:
    265       1.61    simonb 		return (EINVAL);
    266       1.61    simonb 	}
    267       1.22       jtc 
    268       1.61    simonb 	if (SCARG(uap, tp))
    269       1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    270       1.22       jtc 
    271       1.22       jtc 	return error;
    272       1.22       jtc }
    273       1.22       jtc 
    274       1.27       jtc /* ARGSUSED */
    275       1.27       jtc int
    276  1.130.2.3       mjf sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap, register_t *retval)
    277       1.27       jtc {
    278  1.130.2.3       mjf 	/* {
    279      1.101    kardel 		syscallarg(struct timespec *) rqtp;
    280      1.101    kardel 		syscallarg(struct timespec *) rmtp;
    281  1.130.2.3       mjf 	} */
    282      1.101    kardel 	struct timespec rmt, rqt;
    283      1.120       dsl 	int error, error1;
    284      1.101    kardel 
    285      1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    286      1.101    kardel 	if (error)
    287      1.101    kardel 		return (error);
    288      1.101    kardel 
    289      1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    290      1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    291      1.120       dsl 		return error;
    292      1.120       dsl 
    293      1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    294      1.120       dsl 	return error1 ? error1 : error;
    295      1.120       dsl }
    296      1.120       dsl 
    297      1.120       dsl int
    298      1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    299      1.120       dsl {
    300      1.120       dsl 	int error, timo;
    301      1.120       dsl 
    302      1.120       dsl 	if (itimespecfix(rqt))
    303      1.101    kardel 		return (EINVAL);
    304      1.101    kardel 
    305      1.120       dsl 	timo = tstohz(rqt);
    306      1.101    kardel 	/*
    307      1.101    kardel 	 * Avoid inadvertantly sleeping forever
    308      1.101    kardel 	 */
    309      1.101    kardel 	if (timo == 0)
    310      1.101    kardel 		timo = 1;
    311      1.101    kardel 
    312      1.123       dsl 	if (rmt != NULL)
    313      1.123       dsl 		getnanouptime(rmt);
    314      1.104    kardel 
    315      1.115   thorpej 	error = kpause("nanoslp", true, timo, NULL);
    316      1.101    kardel 	if (error == ERESTART)
    317      1.101    kardel 		error = EINTR;
    318      1.101    kardel 	if (error == EWOULDBLOCK)
    319      1.101    kardel 		error = 0;
    320      1.101    kardel 
    321      1.120       dsl 	if (rmt!= NULL) {
    322      1.104    kardel 		struct timespec rmtend;
    323      1.101    kardel 
    324      1.104    kardel 		getnanouptime(&rmtend);
    325      1.101    kardel 
    326      1.120       dsl 		timespecsub(&rmtend, rmt, rmt);
    327      1.120       dsl 		timespecsub(rqt, rmt, rmt);
    328      1.120       dsl 		if (rmt->tv_sec < 0)
    329      1.120       dsl 			timespecclear(rmt);
    330      1.101    kardel 	}
    331      1.101    kardel 
    332      1.101    kardel 	return error;
    333       1.27       jtc }
    334       1.22       jtc 
    335        1.1       cgd /* ARGSUSED */
    336        1.3    andrew int
    337  1.130.2.3       mjf sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap, register_t *retval)
    338       1.15   thorpej {
    339  1.130.2.3       mjf 	/* {
    340       1.11       cgd 		syscallarg(struct timeval *) tp;
    341  1.130.2.3       mjf 		syscallarg(void *) tzp;		really "struct timezone *";
    342  1.130.2.3       mjf 	} */
    343        1.1       cgd 	struct timeval atv;
    344        1.1       cgd 	int error = 0;
    345       1.25     perry 	struct timezone tzfake;
    346        1.1       cgd 
    347       1.11       cgd 	if (SCARG(uap, tp)) {
    348        1.1       cgd 		microtime(&atv);
    349       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    350       1.17  christos 		if (error)
    351        1.1       cgd 			return (error);
    352        1.1       cgd 	}
    353       1.25     perry 	if (SCARG(uap, tzp)) {
    354       1.25     perry 		/*
    355       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    356       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    357       1.25     perry 		 */
    358       1.25     perry 		tzfake.tz_minuteswest = 0;
    359       1.25     perry 		tzfake.tz_dsttime = 0;
    360       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    361       1.25     perry 	}
    362        1.1       cgd 	return (error);
    363        1.1       cgd }
    364        1.1       cgd 
    365        1.1       cgd /* ARGSUSED */
    366        1.3    andrew int
    367  1.130.2.3       mjf sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap, register_t *retval)
    368       1.15   thorpej {
    369  1.130.2.3       mjf 	/* {
    370       1.24       cgd 		syscallarg(const struct timeval *) tv;
    371  1.130.2.3       mjf 		syscallarg(const void *) tzp;	really "const struct timezone *";
    372  1.130.2.3       mjf 	} */
    373       1.60      manu 
    374      1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    375       1.60      manu }
    376       1.60      manu 
    377       1.60      manu int
    378      1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    379      1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    380       1.60      manu {
    381       1.22       jtc 	struct timeval atv;
    382       1.98  christos 	struct timespec ts;
    383       1.22       jtc 	int error;
    384        1.1       cgd 
    385        1.8       cgd 	/* Verify all parameters before changing time. */
    386      1.119       dsl 
    387       1.25     perry 	/*
    388       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    389       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    390       1.25     perry 	 */
    391       1.98  christos 	if (utzp)
    392       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    393      1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    394       1.98  christos 
    395       1.98  christos 	if (utv == NULL)
    396       1.98  christos 		return 0;
    397       1.98  christos 
    398      1.119       dsl 	if (userspace) {
    399      1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    400      1.119       dsl 			return error;
    401      1.119       dsl 		utv = &atv;
    402      1.119       dsl 	}
    403      1.119       dsl 
    404      1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    405  1.130.2.2       mjf 	return settime1(l->l_proc, &ts, check_kauth);
    406        1.1       cgd }
    407        1.1       cgd 
    408      1.101    kardel #ifndef __HAVE_TIMECOUNTER
    409        1.1       cgd int	tickdelta;			/* current clock skew, us. per tick */
    410        1.1       cgd long	timedelta;			/* unapplied time correction, us. */
    411        1.1       cgd long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    412      1.101    kardel #endif
    413      1.101    kardel 
    414       1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    415        1.1       cgd 
    416        1.1       cgd /* ARGSUSED */
    417        1.3    andrew int
    418  1.130.2.3       mjf sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap, register_t *retval)
    419       1.15   thorpej {
    420  1.130.2.3       mjf 	/* {
    421       1.24       cgd 		syscallarg(const struct timeval *) delta;
    422       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    423  1.130.2.3       mjf 	} */
    424       1.56      manu 	int error;
    425        1.1       cgd 
    426      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    427      1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    428        1.1       cgd 		return (error);
    429       1.17  christos 
    430      1.105        ad 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    431       1.56      manu }
    432       1.56      manu 
    433       1.56      manu int
    434      1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    435       1.56      manu {
    436       1.60      manu 	struct timeval atv;
    437      1.101    kardel 	int error = 0;
    438      1.101    kardel 
    439      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    440      1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    441      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    442       1.56      manu 	long ndelta, ntickdelta, odelta;
    443       1.56      manu 	int s;
    444      1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    445      1.101    kardel 
    446      1.101    kardel #ifdef __HAVE_TIMECOUNTER
    447      1.101    kardel 	if (olddelta) {
    448      1.101    kardel 		atv.tv_sec = time_adjtime / 1000000;
    449      1.101    kardel 		atv.tv_usec = time_adjtime % 1000000;
    450      1.101    kardel 		if (atv.tv_usec < 0) {
    451      1.101    kardel 			atv.tv_usec += 1000000;
    452      1.101    kardel 			atv.tv_sec--;
    453      1.101    kardel 		}
    454      1.101    kardel 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    455      1.101    kardel 		if (error)
    456      1.101    kardel 			return (error);
    457      1.101    kardel 	}
    458      1.101    kardel 
    459      1.101    kardel 	if (delta) {
    460      1.101    kardel 		error = copyin(delta, &atv, sizeof(struct timeval));
    461      1.101    kardel 		if (error)
    462      1.101    kardel 			return (error);
    463      1.101    kardel 
    464      1.101    kardel 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    465      1.101    kardel 			atv.tv_usec;
    466        1.8       cgd 
    467      1.101    kardel 		if (time_adjtime)
    468      1.101    kardel 			/* We need to save the system time during shutdown */
    469      1.101    kardel 			time_adjusted |= 1;
    470      1.101    kardel 	}
    471      1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    472       1.60      manu 	error = copyin(delta, &atv, sizeof(struct timeval));
    473       1.60      manu 	if (error)
    474       1.60      manu 		return (error);
    475       1.60      manu 
    476        1.8       cgd 	/*
    477        1.8       cgd 	 * Compute the total correction and the rate at which to apply it.
    478        1.8       cgd 	 * Round the adjustment down to a whole multiple of the per-tick
    479        1.8       cgd 	 * delta, so that after some number of incremental changes in
    480        1.8       cgd 	 * hardclock(), tickdelta will become zero, lest the correction
    481        1.8       cgd 	 * overshoot and start taking us away from the desired final time.
    482        1.8       cgd 	 */
    483       1.60      manu 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    484       1.41       hwr 	if (ndelta > bigadj || ndelta < -bigadj)
    485        1.8       cgd 		ntickdelta = 10 * tickadj;
    486        1.8       cgd 	else
    487        1.8       cgd 		ntickdelta = tickadj;
    488        1.8       cgd 	if (ndelta % ntickdelta)
    489        1.8       cgd 		ndelta = ndelta / ntickdelta * ntickdelta;
    490        1.8       cgd 
    491        1.8       cgd 	/*
    492        1.8       cgd 	 * To make hardclock()'s job easier, make the per-tick delta negative
    493        1.8       cgd 	 * if we want time to run slower; then hardclock can simply compute
    494        1.8       cgd 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    495        1.8       cgd 	 */
    496        1.8       cgd 	if (ndelta < 0)
    497        1.8       cgd 		ntickdelta = -ntickdelta;
    498       1.68       dsl 	if (ndelta != 0)
    499       1.68       dsl 		/* We need to save the system clock time during shutdown */
    500       1.68       dsl 		time_adjusted |= 1;
    501        1.1       cgd 	s = splclock();
    502        1.8       cgd 	odelta = timedelta;
    503        1.1       cgd 	timedelta = ndelta;
    504        1.8       cgd 	tickdelta = ntickdelta;
    505        1.1       cgd 	splx(s);
    506        1.1       cgd 
    507       1.56      manu 	if (olddelta) {
    508       1.60      manu 		atv.tv_sec = odelta / 1000000;
    509       1.60      manu 		atv.tv_usec = odelta % 1000000;
    510       1.79       chs 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    511        1.8       cgd 	}
    512      1.101    kardel #endif /* __HAVE_TIMECOUNTER */
    513      1.101    kardel 
    514       1.79       chs 	return error;
    515        1.1       cgd }
    516        1.1       cgd 
    517        1.1       cgd /*
    518       1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    519       1.63   thorpej  * timer_*() family of routines are supported.
    520        1.1       cgd  *
    521       1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    522       1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    523       1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    524       1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    525       1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    526       1.63   thorpej  * syscall.
    527        1.1       cgd  *
    528       1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    529       1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    530        1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    531       1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    532       1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    533       1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    534       1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    535       1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    536       1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    537       1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    538       1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    539       1.63   thorpej 
    540       1.63   thorpej /* Allocate a POSIX realtime timer. */
    541       1.63   thorpej int
    542  1.130.2.3       mjf sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap, register_t *retval)
    543       1.63   thorpej {
    544  1.130.2.3       mjf 	/* {
    545       1.63   thorpej 		syscallarg(clockid_t) clock_id;
    546       1.63   thorpej 		syscallarg(struct sigevent *) evp;
    547       1.63   thorpej 		syscallarg(timer_t *) timerid;
    548  1.130.2.3       mjf 	} */
    549       1.92      cube 
    550       1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    551      1.105        ad 	    SCARG(uap, evp), copyin, l);
    552       1.92      cube }
    553       1.92      cube 
    554       1.92      cube int
    555       1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    556      1.105        ad     copyin_t fetch_event, struct lwp *l)
    557       1.92      cube {
    558       1.92      cube 	int error;
    559       1.92      cube 	timer_t timerid;
    560       1.63   thorpej 	struct ptimer *pt;
    561      1.105        ad 	struct proc *p;
    562      1.105        ad 
    563      1.105        ad 	p = l->l_proc;
    564       1.63   thorpej 
    565       1.63   thorpej 	if (id < CLOCK_REALTIME ||
    566       1.63   thorpej 	    id > CLOCK_PROF)
    567       1.63   thorpej 		return (EINVAL);
    568       1.63   thorpej 
    569       1.63   thorpej 	if (p->p_timers == NULL)
    570       1.63   thorpej 		timers_alloc(p);
    571       1.63   thorpej 
    572       1.63   thorpej 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    573       1.63   thorpej 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    574       1.63   thorpej 		if (p->p_timers->pts_timers[timerid] == NULL)
    575       1.63   thorpej 			break;
    576       1.63   thorpej 
    577       1.63   thorpej 	if (timerid == TIMER_MAX)
    578       1.63   thorpej 		return EAGAIN;
    579       1.63   thorpej 
    580       1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    581       1.63   thorpej 	if (evp) {
    582       1.63   thorpej 		if (((error =
    583       1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    584       1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    585       1.63   thorpej 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    586       1.63   thorpej 			pool_put(&ptimer_pool, pt);
    587       1.63   thorpej 			return (error ? error : EINVAL);
    588       1.63   thorpej 		}
    589       1.63   thorpej 	} else {
    590       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    591       1.63   thorpej 		switch (id) {
    592       1.63   thorpej 		case CLOCK_REALTIME:
    593       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    594       1.63   thorpej 			break;
    595       1.63   thorpej 		case CLOCK_VIRTUAL:
    596       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    597       1.63   thorpej 			break;
    598       1.63   thorpej 		case CLOCK_PROF:
    599       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    600       1.63   thorpej 			break;
    601       1.63   thorpej 		}
    602       1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    603       1.63   thorpej 	}
    604       1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    605       1.73  christos 	pt->pt_info.ksi_errno = 0;
    606       1.73  christos 	pt->pt_info.ksi_code = 0;
    607       1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    608      1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    609      1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    610       1.63   thorpej 
    611       1.63   thorpej 	pt->pt_type = id;
    612       1.63   thorpej 	pt->pt_proc = p;
    613       1.63   thorpej 	pt->pt_overruns = 0;
    614       1.63   thorpej 	pt->pt_poverruns = 0;
    615       1.64   nathanw 	pt->pt_entry = timerid;
    616       1.63   thorpej 	timerclear(&pt->pt_time.it_value);
    617       1.63   thorpej 	if (id == CLOCK_REALTIME)
    618      1.125        ad 		callout_init(&pt->pt_ch, 0);
    619       1.63   thorpej 	else
    620       1.63   thorpej 		pt->pt_active = 0;
    621       1.63   thorpej 
    622       1.63   thorpej 	p->p_timers->pts_timers[timerid] = pt;
    623       1.63   thorpej 
    624       1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    625       1.63   thorpej }
    626       1.63   thorpej 
    627       1.63   thorpej /* Delete a POSIX realtime timer */
    628        1.3    andrew int
    629  1.130.2.3       mjf sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap, register_t *retval)
    630       1.15   thorpej {
    631  1.130.2.3       mjf 	/* {
    632       1.63   thorpej 		syscallarg(timer_t) timerid;
    633  1.130.2.3       mjf 	} */
    634       1.63   thorpej 	struct proc *p = l->l_proc;
    635       1.65  jdolecek 	timer_t timerid;
    636       1.63   thorpej 	struct ptimer *pt, *ptn;
    637        1.1       cgd 	int s;
    638        1.1       cgd 
    639       1.63   thorpej 	timerid = SCARG(uap, timerid);
    640       1.63   thorpej 
    641       1.63   thorpej 	if ((p->p_timers == NULL) ||
    642       1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    643       1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    644        1.1       cgd 		return (EINVAL);
    645       1.63   thorpej 
    646      1.125        ad 	if (pt->pt_type == CLOCK_REALTIME) {
    647       1.63   thorpej 		callout_stop(&pt->pt_ch);
    648      1.125        ad 		callout_destroy(&pt->pt_ch);
    649      1.125        ad 	} else if (pt->pt_active) {
    650       1.63   thorpej 		s = splclock();
    651       1.63   thorpej 		ptn = LIST_NEXT(pt, pt_list);
    652       1.63   thorpej 		LIST_REMOVE(pt, pt_list);
    653       1.63   thorpej 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    654       1.63   thorpej 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    655       1.63   thorpej 			    &ptn->pt_time.it_value);
    656       1.63   thorpej 		splx(s);
    657       1.63   thorpej 	}
    658       1.63   thorpej 
    659       1.63   thorpej 	p->p_timers->pts_timers[timerid] = NULL;
    660       1.63   thorpej 	pool_put(&ptimer_pool, pt);
    661       1.63   thorpej 
    662       1.63   thorpej 	return (0);
    663       1.63   thorpej }
    664       1.63   thorpej 
    665       1.63   thorpej /*
    666       1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    667       1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    668       1.67   nathanw  * time for virtual timers.
    669       1.63   thorpej  * Must be called at splclock().
    670       1.63   thorpej  */
    671       1.63   thorpej void
    672       1.63   thorpej timer_settime(struct ptimer *pt)
    673       1.63   thorpej {
    674       1.63   thorpej 	struct ptimer *ptn, *pptn;
    675       1.63   thorpej 	struct ptlist *ptl;
    676       1.63   thorpej 
    677       1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    678       1.63   thorpej 		callout_stop(&pt->pt_ch);
    679       1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    680       1.63   thorpej 			/*
    681       1.63   thorpej 			 * Don't need to check hzto() return value, here.
    682       1.63   thorpej 			 * callout_reset() does it for us.
    683       1.63   thorpej 			 */
    684       1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    685       1.63   thorpej 			    realtimerexpire, pt);
    686       1.63   thorpej 		}
    687       1.63   thorpej 	} else {
    688       1.63   thorpej 		if (pt->pt_active) {
    689       1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    690       1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    691       1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    692       1.63   thorpej 				timeradd(&pt->pt_time.it_value,
    693       1.63   thorpej 				    &ptn->pt_time.it_value,
    694       1.63   thorpej 				    &ptn->pt_time.it_value);
    695       1.63   thorpej 		}
    696       1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    697       1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    698       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    699       1.63   thorpej 			else
    700       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    701       1.63   thorpej 
    702       1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    703       1.63   thorpej 			     ptn && timercmp(&pt->pt_time.it_value,
    704       1.63   thorpej 				 &ptn->pt_time.it_value, >);
    705       1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    706       1.63   thorpej 				timersub(&pt->pt_time.it_value,
    707       1.63   thorpej 				    &ptn->pt_time.it_value,
    708       1.63   thorpej 				    &pt->pt_time.it_value);
    709       1.63   thorpej 
    710       1.63   thorpej 			if (pptn)
    711       1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    712       1.63   thorpej 			else
    713       1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    714       1.63   thorpej 
    715       1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    716       1.63   thorpej 				timersub(&ptn->pt_time.it_value,
    717       1.63   thorpej 				    &pt->pt_time.it_value,
    718       1.63   thorpej 				    &ptn->pt_time.it_value);
    719       1.63   thorpej 
    720       1.63   thorpej 			pt->pt_active = 1;
    721       1.63   thorpej 		} else
    722       1.63   thorpej 			pt->pt_active = 0;
    723       1.63   thorpej 	}
    724       1.63   thorpej }
    725       1.63   thorpej 
    726       1.63   thorpej void
    727       1.63   thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    728       1.63   thorpej {
    729      1.101    kardel 	struct timeval now;
    730       1.63   thorpej 	struct ptimer *ptn;
    731       1.63   thorpej 
    732       1.63   thorpej 	*aitv = pt->pt_time;
    733       1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    734        1.1       cgd 		/*
    735       1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    736       1.63   thorpej 		 * part of real time timer.  If time for real time
    737       1.63   thorpej 		 * timer has passed return 0, else return difference
    738       1.63   thorpej 		 * between current time and time for the timer to go
    739       1.63   thorpej 		 * off.
    740        1.1       cgd 		 */
    741       1.63   thorpej 		if (timerisset(&aitv->it_value)) {
    742      1.101    kardel 			getmicrotime(&now);
    743      1.101    kardel 			if (timercmp(&aitv->it_value, &now, <))
    744      1.101    kardel 				timerclear(&aitv->it_value);
    745      1.101    kardel 			else
    746      1.101    kardel 				timersub(&aitv->it_value, &now,
    747      1.101    kardel 				    &aitv->it_value);
    748       1.36   thorpej 		}
    749       1.63   thorpej 	} else if (pt->pt_active) {
    750       1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    751       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    752       1.63   thorpej 		else
    753       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    754       1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    755       1.63   thorpej 			timeradd(&aitv->it_value,
    756       1.63   thorpej 			    &ptn->pt_time.it_value, &aitv->it_value);
    757       1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    758        1.1       cgd 	} else
    759       1.63   thorpej 		timerclear(&aitv->it_value);
    760       1.63   thorpej }
    761       1.63   thorpej 
    762       1.63   thorpej 
    763       1.63   thorpej 
    764       1.63   thorpej /* Set and arm a POSIX realtime timer */
    765       1.63   thorpej int
    766  1.130.2.3       mjf sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap, register_t *retval)
    767       1.63   thorpej {
    768  1.130.2.3       mjf 	/* {
    769       1.63   thorpej 		syscallarg(timer_t) timerid;
    770       1.63   thorpej 		syscallarg(int) flags;
    771       1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    772       1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    773  1.130.2.3       mjf 	} */
    774       1.92      cube 	int error;
    775       1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    776       1.92      cube 
    777       1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    778       1.92      cube 	    sizeof(struct itimerspec))) != 0)
    779       1.92      cube 		return (error);
    780       1.92      cube 
    781       1.92      cube 	if (SCARG(uap, ovalue))
    782       1.92      cube 		ovp = &ovalue;
    783       1.92      cube 
    784       1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    785       1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    786       1.92      cube 		return error;
    787       1.92      cube 
    788       1.92      cube 	if (ovp)
    789       1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    790       1.92      cube 		    sizeof(struct itimerspec));
    791       1.92      cube 	return 0;
    792       1.92      cube }
    793       1.92      cube 
    794       1.92      cube int
    795       1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    796       1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    797       1.92      cube {
    798      1.101    kardel 	struct timeval now;
    799       1.63   thorpej 	struct itimerval val, oval;
    800       1.63   thorpej 	struct ptimer *pt;
    801      1.101    kardel 	int s;
    802       1.63   thorpej 
    803       1.63   thorpej 	if ((p->p_timers == NULL) ||
    804       1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    805       1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    806       1.63   thorpej 		return (EINVAL);
    807       1.63   thorpej 
    808       1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    809       1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    810       1.63   thorpej 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    811       1.63   thorpej 		return (EINVAL);
    812       1.63   thorpej 
    813       1.63   thorpej 	oval = pt->pt_time;
    814       1.63   thorpej 	pt->pt_time = val;
    815       1.63   thorpej 
    816       1.63   thorpej 	s = splclock();
    817       1.67   nathanw 	/*
    818       1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    819       1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    820       1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    821       1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    822       1.67   nathanw 	 * negative, which would confuse the comparison tests.
    823       1.67   nathanw 	 */
    824       1.67   nathanw 	if (timerisset(&pt->pt_time.it_value)) {
    825       1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    826      1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    827      1.101    kardel 				getmicrotime(&now);
    828      1.101    kardel 				timeradd(&pt->pt_time.it_value, &now,
    829      1.101    kardel 				    &pt->pt_time.it_value);
    830      1.101    kardel 			}
    831       1.67   nathanw 		} else {
    832       1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    833      1.101    kardel 				getmicrotime(&now);
    834      1.101    kardel 				timersub(&pt->pt_time.it_value, &now,
    835      1.101    kardel 				    &pt->pt_time.it_value);
    836       1.67   nathanw 				if (!timerisset(&pt->pt_time.it_value) ||
    837       1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    838       1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    839       1.67   nathanw 					pt->pt_time.it_value.tv_usec = 1;
    840       1.67   nathanw 				}
    841       1.67   nathanw 			}
    842       1.67   nathanw 		}
    843       1.67   nathanw 	}
    844       1.67   nathanw 
    845       1.63   thorpej 	timer_settime(pt);
    846       1.63   thorpej 	splx(s);
    847       1.63   thorpej 
    848       1.92      cube 	if (ovalue) {
    849       1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    850       1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    851       1.63   thorpej 	}
    852       1.63   thorpej 
    853       1.63   thorpej 	return (0);
    854       1.63   thorpej }
    855       1.63   thorpej 
    856       1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    857       1.63   thorpej int
    858  1.130.2.3       mjf sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap, register_t *retval)
    859       1.63   thorpej {
    860  1.130.2.3       mjf 	/* {
    861       1.63   thorpej 		syscallarg(timer_t) timerid;
    862       1.63   thorpej 		syscallarg(struct itimerspec *) value;
    863  1.130.2.3       mjf 	} */
    864       1.63   thorpej 	struct itimerspec its;
    865       1.92      cube 	int error;
    866       1.92      cube 
    867       1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    868       1.92      cube 	    &its)) != 0)
    869       1.92      cube 		return error;
    870       1.92      cube 
    871       1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    872       1.92      cube }
    873       1.92      cube 
    874       1.92      cube int
    875       1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    876       1.92      cube {
    877       1.92      cube 	int s;
    878       1.63   thorpej 	struct ptimer *pt;
    879       1.92      cube 	struct itimerval aitv;
    880       1.63   thorpej 
    881       1.63   thorpej 	if ((p->p_timers == NULL) ||
    882       1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    883       1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    884       1.63   thorpej 		return (EINVAL);
    885       1.63   thorpej 
    886       1.63   thorpej 	s = splclock();
    887       1.63   thorpej 	timer_gettime(pt, &aitv);
    888        1.1       cgd 	splx(s);
    889       1.63   thorpej 
    890       1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    891       1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    892       1.63   thorpej 
    893       1.92      cube 	return 0;
    894       1.63   thorpej }
    895       1.63   thorpej 
    896       1.63   thorpej /*
    897       1.63   thorpej  * Return the count of the number of times a periodic timer expired
    898       1.63   thorpej  * while a notification was already pending. The counter is reset when
    899       1.63   thorpej  * a timer expires and a notification can be posted.
    900       1.63   thorpej  */
    901       1.63   thorpej int
    902  1.130.2.3       mjf sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap, register_t *retval)
    903       1.63   thorpej {
    904  1.130.2.3       mjf 	/* {
    905       1.63   thorpej 		syscallarg(timer_t) timerid;
    906  1.130.2.3       mjf 	} */
    907       1.63   thorpej 	struct proc *p = l->l_proc;
    908       1.63   thorpej 	int timerid;
    909       1.63   thorpej 	struct ptimer *pt;
    910       1.63   thorpej 
    911       1.63   thorpej 	timerid = SCARG(uap, timerid);
    912       1.63   thorpej 
    913       1.63   thorpej 	if ((p->p_timers == NULL) ||
    914       1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    915       1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    916       1.63   thorpej 		return (EINVAL);
    917       1.63   thorpej 
    918       1.63   thorpej 	*retval = pt->pt_poverruns;
    919       1.63   thorpej 
    920       1.63   thorpej 	return (0);
    921       1.63   thorpej }
    922       1.63   thorpej 
    923       1.63   thorpej /*
    924       1.63   thorpej  * Real interval timer expired:
    925       1.63   thorpej  * send process whose timer expired an alarm signal.
    926       1.63   thorpej  * If time is not set up to reload, then just return.
    927       1.63   thorpej  * Else compute next time timer should go off which is > current time.
    928       1.63   thorpej  * This is where delay in processing this timeout causes multiple
    929       1.63   thorpej  * SIGALRM calls to be compressed into one.
    930       1.63   thorpej  */
    931       1.63   thorpej void
    932       1.63   thorpej realtimerexpire(void *arg)
    933       1.63   thorpej {
    934      1.101    kardel 	struct timeval now;
    935       1.63   thorpej 	struct ptimer *pt;
    936       1.63   thorpej 	int s;
    937       1.63   thorpej 
    938       1.63   thorpej 	pt = (struct ptimer *)arg;
    939       1.63   thorpej 
    940       1.63   thorpej 	itimerfire(pt);
    941       1.63   thorpej 
    942       1.63   thorpej 	if (!timerisset(&pt->pt_time.it_interval)) {
    943       1.63   thorpej 		timerclear(&pt->pt_time.it_value);
    944       1.63   thorpej 		return;
    945       1.63   thorpej 	}
    946      1.101    kardel 	for (;;) {
    947      1.101    kardel 		s = splclock();	/* XXX need spl now? */
    948      1.101    kardel 		timeradd(&pt->pt_time.it_value,
    949      1.101    kardel 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    950      1.101    kardel 		getmicrotime(&now);
    951      1.101    kardel 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
    952      1.101    kardel 			/*
    953      1.101    kardel 			 * Don't need to check hzto() return value, here.
    954      1.101    kardel 			 * callout_reset() does it for us.
    955      1.101    kardel 			 */
    956      1.101    kardel 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    957      1.101    kardel 			    realtimerexpire, pt);
    958      1.101    kardel 			splx(s);
    959      1.101    kardel 			return;
    960      1.101    kardel 		}
    961      1.101    kardel 		splx(s);
    962      1.101    kardel 		pt->pt_overruns++;
    963      1.101    kardel 	}
    964       1.63   thorpej }
    965       1.63   thorpej 
    966       1.63   thorpej /* BSD routine to get the value of an interval timer. */
    967       1.63   thorpej /* ARGSUSED */
    968       1.63   thorpej int
    969  1.130.2.3       mjf sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap, register_t *retval)
    970       1.63   thorpej {
    971  1.130.2.3       mjf 	/* {
    972       1.63   thorpej 		syscallarg(int) which;
    973       1.63   thorpej 		syscallarg(struct itimerval *) itv;
    974  1.130.2.3       mjf 	} */
    975       1.63   thorpej 	struct proc *p = l->l_proc;
    976       1.63   thorpej 	struct itimerval aitv;
    977       1.91      cube 	int error;
    978       1.91      cube 
    979       1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
    980       1.91      cube 	if (error)
    981       1.91      cube 		return error;
    982       1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    983       1.91      cube }
    984       1.63   thorpej 
    985       1.91      cube int
    986       1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
    987       1.91      cube {
    988       1.91      cube 	int s;
    989       1.63   thorpej 
    990       1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
    991       1.63   thorpej 		return (EINVAL);
    992       1.63   thorpej 
    993       1.63   thorpej 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
    994       1.91      cube 		timerclear(&itvp->it_value);
    995       1.91      cube 		timerclear(&itvp->it_interval);
    996       1.63   thorpej 	} else {
    997       1.63   thorpej 		s = splclock();
    998       1.91      cube 		timer_gettime(p->p_timers->pts_timers[which], itvp);
    999       1.63   thorpej 		splx(s);
   1000       1.63   thorpej 	}
   1001       1.63   thorpej 
   1002       1.91      cube 	return 0;
   1003        1.1       cgd }
   1004        1.1       cgd 
   1005       1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1006        1.1       cgd /* ARGSUSED */
   1007        1.3    andrew int
   1008  1.130.2.3       mjf sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap, register_t *retval)
   1009       1.15   thorpej {
   1010  1.130.2.3       mjf 	/* {
   1011       1.30   mycroft 		syscallarg(int) which;
   1012       1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1013       1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1014  1.130.2.3       mjf 	} */
   1015       1.63   thorpej 	struct proc *p = l->l_proc;
   1016       1.30   mycroft 	int which = SCARG(uap, which);
   1017       1.21       cgd 	struct sys_getitimer_args getargs;
   1018       1.91      cube 	const struct itimerval *itvp;
   1019        1.1       cgd 	struct itimerval aitv;
   1020       1.91      cube 	int error;
   1021        1.1       cgd 
   1022       1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1023        1.1       cgd 		return (EINVAL);
   1024       1.11       cgd 	itvp = SCARG(uap, itv);
   1025       1.63   thorpej 	if (itvp &&
   1026       1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1027        1.1       cgd 		return (error);
   1028       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1029       1.30   mycroft 		SCARG(&getargs, which) = which;
   1030       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1031       1.63   thorpej 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1032       1.21       cgd 			return (error);
   1033       1.21       cgd 	}
   1034        1.1       cgd 	if (itvp == 0)
   1035        1.1       cgd 		return (0);
   1036       1.91      cube 
   1037       1.91      cube 	return dosetitimer(p, which, &aitv);
   1038       1.91      cube }
   1039       1.91      cube 
   1040       1.91      cube int
   1041       1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1042       1.91      cube {
   1043      1.101    kardel 	struct timeval now;
   1044       1.91      cube 	struct ptimer *pt;
   1045       1.91      cube 	int s;
   1046       1.91      cube 
   1047       1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1048        1.1       cgd 		return (EINVAL);
   1049       1.63   thorpej 
   1050       1.63   thorpej 	/*
   1051       1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1052       1.63   thorpej 	 * wants to clear the timer.
   1053       1.63   thorpej 	 */
   1054       1.91      cube 	if (!timerisset(&itvp->it_value) &&
   1055       1.63   thorpej 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1056       1.63   thorpej 		return (0);
   1057       1.63   thorpej 
   1058       1.63   thorpej 	if (p->p_timers == NULL)
   1059       1.63   thorpej 		timers_alloc(p);
   1060       1.63   thorpej 	if (p->p_timers->pts_timers[which] == NULL) {
   1061       1.63   thorpej 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1062       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1063       1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1064       1.63   thorpej 		pt->pt_overruns = 0;
   1065       1.63   thorpej 		pt->pt_proc = p;
   1066       1.63   thorpej 		pt->pt_type = which;
   1067       1.64   nathanw 		pt->pt_entry = which;
   1068       1.63   thorpej 		switch (which) {
   1069       1.63   thorpej 		case ITIMER_REAL:
   1070      1.125        ad 			callout_init(&pt->pt_ch, 0);
   1071       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1072       1.63   thorpej 			break;
   1073       1.63   thorpej 		case ITIMER_VIRTUAL:
   1074       1.63   thorpej 			pt->pt_active = 0;
   1075       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1076       1.63   thorpej 			break;
   1077       1.63   thorpej 		case ITIMER_PROF:
   1078       1.63   thorpej 			pt->pt_active = 0;
   1079       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1080       1.63   thorpej 			break;
   1081        1.1       cgd 		}
   1082        1.1       cgd 	} else
   1083       1.63   thorpej 		pt = p->p_timers->pts_timers[which];
   1084       1.63   thorpej 
   1085       1.91      cube 	pt->pt_time = *itvp;
   1086       1.63   thorpej 	p->p_timers->pts_timers[which] = pt;
   1087       1.63   thorpej 
   1088       1.63   thorpej 	s = splclock();
   1089       1.67   nathanw 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1090       1.67   nathanw 		/* Convert to absolute time */
   1091      1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1092      1.101    kardel 		getmicrotime(&now);
   1093      1.101    kardel 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1094       1.67   nathanw 	}
   1095       1.63   thorpej 	timer_settime(pt);
   1096        1.1       cgd 	splx(s);
   1097       1.63   thorpej 
   1098        1.1       cgd 	return (0);
   1099        1.1       cgd }
   1100        1.1       cgd 
   1101       1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1102       1.63   thorpej void
   1103       1.63   thorpej timers_alloc(struct proc *p)
   1104       1.63   thorpej {
   1105       1.63   thorpej 	int i;
   1106       1.63   thorpej 	struct ptimers *pts;
   1107       1.63   thorpej 
   1108      1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1109       1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1110       1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1111       1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1112       1.63   thorpej 		pts->pts_timers[i] = NULL;
   1113       1.64   nathanw 	pts->pts_fired = 0;
   1114       1.63   thorpej 	p->p_timers = pts;
   1115       1.63   thorpej }
   1116       1.63   thorpej 
   1117        1.1       cgd /*
   1118       1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1119       1.63   thorpej  * then clean up all timers and free all the data structures. If
   1120       1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1121       1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1122       1.63   thorpej  * structure if none of those remain.
   1123        1.1       cgd  */
   1124        1.3    andrew void
   1125       1.63   thorpej timers_free(struct proc *p, int which)
   1126        1.6       cgd {
   1127       1.63   thorpej 	int i, s;
   1128       1.63   thorpej 	struct ptimers *pts;
   1129       1.63   thorpej 	struct ptimer *pt, *ptn;
   1130       1.63   thorpej 	struct timeval tv;
   1131       1.63   thorpej 
   1132       1.63   thorpej 	if (p->p_timers) {
   1133       1.63   thorpej 		pts = p->p_timers;
   1134       1.63   thorpej 		if (which == TIMERS_ALL)
   1135       1.63   thorpej 			i = 0;
   1136       1.63   thorpej 		else {
   1137       1.63   thorpej 			s = splclock();
   1138       1.63   thorpej 			timerclear(&tv);
   1139       1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1140       1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1141       1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1142       1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1143       1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1144       1.63   thorpej 			if (ptn) {
   1145       1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1146       1.63   thorpej 				    &ptn->pt_time.it_value);
   1147       1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1148       1.63   thorpej 				    ptn, pt_list);
   1149       1.63   thorpej 			}
   1150       1.63   thorpej 
   1151       1.63   thorpej 			timerclear(&tv);
   1152       1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1153       1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1154       1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1155       1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1156       1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1157       1.63   thorpej 			if (ptn) {
   1158       1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1159       1.63   thorpej 				    &ptn->pt_time.it_value);
   1160       1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1161       1.63   thorpej 				    pt_list);
   1162       1.63   thorpej 			}
   1163        1.1       cgd 			splx(s);
   1164       1.63   thorpej 			i = 3;
   1165       1.63   thorpej 		}
   1166       1.63   thorpej 		for ( ; i < TIMER_MAX; i++)
   1167       1.63   thorpej 			if ((pt = pts->pts_timers[i]) != NULL) {
   1168      1.125        ad 				if (pt->pt_type == CLOCK_REALTIME) {
   1169       1.63   thorpej 					callout_stop(&pt->pt_ch);
   1170      1.125        ad 					callout_destroy(&pt->pt_ch);
   1171      1.125        ad 				}
   1172       1.63   thorpej 				pts->pts_timers[i] = NULL;
   1173       1.63   thorpej 				pool_put(&ptimer_pool, pt);
   1174       1.63   thorpej 			}
   1175       1.63   thorpej 		if ((pts->pts_timers[0] == NULL) &&
   1176       1.63   thorpej 		    (pts->pts_timers[1] == NULL) &&
   1177       1.63   thorpej 		    (pts->pts_timers[2] == NULL)) {
   1178       1.63   thorpej 			p->p_timers = NULL;
   1179       1.97    simonb 			pool_put(&ptimers_pool, pts);
   1180        1.1       cgd 		}
   1181        1.1       cgd 	}
   1182        1.1       cgd }
   1183        1.1       cgd 
   1184        1.1       cgd /*
   1185        1.1       cgd  * Decrement an interval timer by a specified number
   1186        1.1       cgd  * of microseconds, which must be less than a second,
   1187        1.1       cgd  * i.e. < 1000000.  If the timer expires, then reload
   1188        1.1       cgd  * it.  In this case, carry over (usec - old value) to
   1189        1.8       cgd  * reduce the value reloaded into the timer so that
   1190        1.1       cgd  * the timer does not drift.  This routine assumes
   1191        1.1       cgd  * that it is called in a context where the timers
   1192        1.1       cgd  * on which it is operating cannot change in value.
   1193        1.1       cgd  */
   1194        1.3    andrew int
   1195       1.63   thorpej itimerdecr(struct ptimer *pt, int usec)
   1196       1.63   thorpej {
   1197       1.45  augustss 	struct itimerval *itp;
   1198        1.1       cgd 
   1199       1.63   thorpej 	itp = &pt->pt_time;
   1200        1.1       cgd 	if (itp->it_value.tv_usec < usec) {
   1201        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1202        1.1       cgd 			/* expired, and already in next interval */
   1203        1.1       cgd 			usec -= itp->it_value.tv_usec;
   1204        1.1       cgd 			goto expire;
   1205        1.1       cgd 		}
   1206        1.1       cgd 		itp->it_value.tv_usec += 1000000;
   1207        1.1       cgd 		itp->it_value.tv_sec--;
   1208        1.1       cgd 	}
   1209        1.1       cgd 	itp->it_value.tv_usec -= usec;
   1210        1.1       cgd 	usec = 0;
   1211        1.1       cgd 	if (timerisset(&itp->it_value))
   1212        1.1       cgd 		return (1);
   1213        1.1       cgd 	/* expired, exactly at end of interval */
   1214        1.1       cgd expire:
   1215        1.1       cgd 	if (timerisset(&itp->it_interval)) {
   1216        1.1       cgd 		itp->it_value = itp->it_interval;
   1217        1.1       cgd 		itp->it_value.tv_usec -= usec;
   1218        1.1       cgd 		if (itp->it_value.tv_usec < 0) {
   1219        1.1       cgd 			itp->it_value.tv_usec += 1000000;
   1220        1.1       cgd 			itp->it_value.tv_sec--;
   1221        1.1       cgd 		}
   1222       1.63   thorpej 		timer_settime(pt);
   1223        1.1       cgd 	} else
   1224        1.1       cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1225        1.1       cgd 	return (0);
   1226       1.42       cgd }
   1227       1.42       cgd 
   1228       1.63   thorpej void
   1229       1.63   thorpej itimerfire(struct ptimer *pt)
   1230       1.63   thorpej {
   1231       1.63   thorpej 	struct proc *p = pt->pt_proc;
   1232       1.78        cl 
   1233       1.63   thorpej 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1234       1.63   thorpej 		/*
   1235       1.63   thorpej 		 * No RT signal infrastructure exists at this time;
   1236       1.63   thorpej 		 * just post the signal number and throw away the
   1237       1.63   thorpej 		 * value.
   1238       1.63   thorpej 		 */
   1239      1.113        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
   1240       1.63   thorpej 			pt->pt_overruns++;
   1241       1.63   thorpej 		else {
   1242       1.75  christos 			ksiginfo_t ksi;
   1243      1.111      yamt 			KSI_INIT(&ksi);
   1244       1.75  christos 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1245       1.75  christos 			ksi.ksi_code = SI_TIMER;
   1246      1.124  christos 			ksi.ksi_value = pt->pt_ev.sigev_value;
   1247       1.63   thorpej 			pt->pt_poverruns = pt->pt_overruns;
   1248       1.63   thorpej 			pt->pt_overruns = 0;
   1249      1.113        ad 			mutex_enter(&proclist_mutex);
   1250       1.75  christos 			kpsignal(p, &ksi, NULL);
   1251      1.113        ad 			mutex_exit(&proclist_mutex);
   1252       1.64   nathanw 		}
   1253       1.63   thorpej 	}
   1254       1.63   thorpej }
   1255       1.63   thorpej 
   1256       1.42       cgd /*
   1257       1.42       cgd  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1258       1.42       cgd  * for usage and rationale.
   1259       1.42       cgd  */
   1260       1.42       cgd int
   1261       1.63   thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1262       1.42       cgd {
   1263       1.49    itojun 	struct timeval tv, delta;
   1264      1.101    kardel 	int rv = 0;
   1265       1.42       cgd 
   1266      1.101    kardel 	getmicrouptime(&tv);
   1267       1.49    itojun 	timersub(&tv, lasttime, &delta);
   1268       1.42       cgd 
   1269       1.42       cgd 	/*
   1270       1.42       cgd 	 * check for 0,0 is so that the message will be seen at least once,
   1271       1.42       cgd 	 * even if interval is huge.
   1272       1.42       cgd 	 */
   1273       1.42       cgd 	if (timercmp(&delta, mininterval, >=) ||
   1274       1.42       cgd 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1275       1.49    itojun 		*lasttime = tv;
   1276       1.42       cgd 		rv = 1;
   1277       1.42       cgd 	}
   1278       1.50    itojun 
   1279       1.50    itojun 	return (rv);
   1280       1.50    itojun }
   1281       1.50    itojun 
   1282       1.50    itojun /*
   1283       1.50    itojun  * ppsratecheck(): packets (or events) per second limitation.
   1284       1.50    itojun  */
   1285       1.50    itojun int
   1286       1.63   thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1287       1.50    itojun {
   1288       1.50    itojun 	struct timeval tv, delta;
   1289      1.101    kardel 	int rv;
   1290       1.50    itojun 
   1291      1.101    kardel 	getmicrouptime(&tv);
   1292       1.50    itojun 	timersub(&tv, lasttime, &delta);
   1293       1.50    itojun 
   1294       1.50    itojun 	/*
   1295       1.50    itojun 	 * check for 0,0 is so that the message will be seen at least once.
   1296       1.50    itojun 	 * if more than one second have passed since the last update of
   1297       1.50    itojun 	 * lasttime, reset the counter.
   1298       1.50    itojun 	 *
   1299       1.50    itojun 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1300       1.50    itojun 	 * try to use *curpps for stat purposes as well.
   1301       1.50    itojun 	 */
   1302       1.50    itojun 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1303       1.50    itojun 	    delta.tv_sec >= 1) {
   1304       1.50    itojun 		*lasttime = tv;
   1305       1.50    itojun 		*curpps = 0;
   1306       1.69    dyoung 	}
   1307       1.69    dyoung 	if (maxpps < 0)
   1308       1.53    itojun 		rv = 1;
   1309       1.53    itojun 	else if (*curpps < maxpps)
   1310       1.50    itojun 		rv = 1;
   1311       1.50    itojun 	else
   1312       1.50    itojun 		rv = 0;
   1313       1.50    itojun 
   1314       1.51     jhawk #if 1 /*DIAGNOSTIC?*/
   1315       1.50    itojun 	/* be careful about wrap-around */
   1316       1.50    itojun 	if (*curpps + 1 > *curpps)
   1317       1.50    itojun 		*curpps = *curpps + 1;
   1318       1.50    itojun #else
   1319       1.50    itojun 	/*
   1320       1.50    itojun 	 * assume that there's not too many calls to this function.
   1321       1.50    itojun 	 * not sure if the assumption holds, as it depends on *caller's*
   1322       1.50    itojun 	 * behavior, not the behavior of this function.
   1323       1.50    itojun 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1324       1.51     jhawk 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1325       1.50    itojun 	 */
   1326       1.50    itojun 	*curpps = *curpps + 1;
   1327       1.50    itojun #endif
   1328       1.42       cgd 
   1329       1.42       cgd 	return (rv);
   1330        1.1       cgd }
   1331