kern_time.c revision 1.132 1 1.132 elad /* $NetBSD: kern_time.c,v 1.132 2007/11/25 00:35:27 elad Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.131 ad * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.72 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 cgd * may be used to endorse or promote products derived from this software
53 1.1 cgd * without specific prior written permission.
54 1.1 cgd *
55 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 cgd * SUCH DAMAGE.
66 1.1 cgd *
67 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 1.1 cgd */
69 1.58 lukem
70 1.58 lukem #include <sys/cdefs.h>
71 1.132 elad __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.132 2007/11/25 00:35:27 elad Exp $");
72 1.1 cgd
73 1.5 mycroft #include <sys/param.h>
74 1.5 mycroft #include <sys/resourcevar.h>
75 1.5 mycroft #include <sys/kernel.h>
76 1.8 cgd #include <sys/systm.h>
77 1.5 mycroft #include <sys/proc.h>
78 1.8 cgd #include <sys/vnode.h>
79 1.17 christos #include <sys/signalvar.h>
80 1.25 perry #include <sys/syslog.h>
81 1.101 kardel #include <sys/timetc.h>
82 1.122 dsl #ifndef __HAVE_TIMECOUNTER
83 1.95 cube #include <sys/timevar.h>
84 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
85 1.99 elad #include <sys/kauth.h>
86 1.1 cgd
87 1.11 cgd #include <sys/mount.h>
88 1.11 cgd #include <sys/syscallargs.h>
89 1.19 christos
90 1.37 thorpej #include <uvm/uvm_extern.h>
91 1.37 thorpej
92 1.130 ad #include <sys/cpu.h>
93 1.23 cgd
94 1.131 ad kmutex_t time_lock;
95 1.131 ad
96 1.97 simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
97 1.118 ad &pool_allocator_nointr, IPL_NONE);
98 1.97 simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
99 1.118 ad &pool_allocator_nointr, IPL_NONE);
100 1.97 simonb
101 1.131 ad /*
102 1.131 ad * Initialize timekeeping.
103 1.131 ad */
104 1.131 ad void
105 1.131 ad time_init(void)
106 1.131 ad {
107 1.131 ad
108 1.131 ad mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
109 1.131 ad }
110 1.131 ad
111 1.63 thorpej /* Time of day and interval timer support.
112 1.1 cgd *
113 1.1 cgd * These routines provide the kernel entry points to get and set
114 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
115 1.1 cgd * here provide support for adding and subtracting timeval structures
116 1.1 cgd * and decrementing interval timers, optionally reloading the interval
117 1.1 cgd * timers when they expire.
118 1.1 cgd */
119 1.1 cgd
120 1.22 jtc /* This function is used by clock_settime and settimeofday */
121 1.132 elad static int
122 1.132 elad settime1(struct proc *p, struct timespec *ts, bool check_kauth)
123 1.22 jtc {
124 1.98 christos struct timeval delta, tv;
125 1.101 kardel #ifdef __HAVE_TIMECOUNTER
126 1.101 kardel struct timeval now;
127 1.101 kardel struct timespec ts1;
128 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
129 1.129 ad lwp_t *l;
130 1.129 ad int s;
131 1.22 jtc
132 1.98 christos TIMESPEC_TO_TIMEVAL(&tv, ts);
133 1.98 christos
134 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
135 1.129 ad s = splclock();
136 1.101 kardel #ifdef __HAVE_TIMECOUNTER
137 1.101 kardel microtime(&now);
138 1.101 kardel timersub(&tv, &now, &delta);
139 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
140 1.98 christos timersub(&tv, &time, &delta);
141 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
142 1.132 elad
143 1.132 elad if (check_kauth && kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
144 1.132 elad KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
145 1.132 elad KAUTH_ARG(check_kauth ? false : true)) != 0) {
146 1.129 ad splx(s);
147 1.29 tls return (EPERM);
148 1.55 tron }
149 1.132 elad
150 1.29 tls #ifdef notyet
151 1.109 elad if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
152 1.129 ad splx(s);
153 1.29 tls return (EPERM);
154 1.55 tron }
155 1.29 tls #endif
156 1.103 kardel
157 1.101 kardel #ifdef __HAVE_TIMECOUNTER
158 1.103 kardel TIMEVAL_TO_TIMESPEC(&tv, &ts1);
159 1.101 kardel tc_setclock(&ts1);
160 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
161 1.98 christos time = tv;
162 1.103 kardel #endif /* !__HAVE_TIMECOUNTER */
163 1.103 kardel
164 1.22 jtc timeradd(&boottime, &delta, &boottime);
165 1.103 kardel
166 1.47 thorpej /*
167 1.129 ad * XXXSMP: There is a short race between setting the time above
168 1.129 ad * and adjusting LWP's run times. Fixing this properly means
169 1.129 ad * pausing all CPUs while we adjust the clock.
170 1.47 thorpej */
171 1.129 ad mutex_enter(&proclist_lock);
172 1.129 ad LIST_FOREACH(l, &alllwp, l_list) {
173 1.129 ad lwp_lock(l);
174 1.129 ad timeradd(&l->l_stime, &delta, &l->l_stime);
175 1.129 ad lwp_unlock(l);
176 1.129 ad }
177 1.129 ad mutex_exit(&proclist_lock);
178 1.22 jtc resettodr();
179 1.129 ad splx(s);
180 1.129 ad
181 1.29 tls return (0);
182 1.22 jtc }
183 1.22 jtc
184 1.132 elad int
185 1.132 elad settime(struct proc *p, struct timespec *ts)
186 1.132 elad {
187 1.132 elad return (settime1(p, ts, true));
188 1.132 elad }
189 1.132 elad
190 1.22 jtc /* ARGSUSED */
191 1.22 jtc int
192 1.110 yamt sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
193 1.22 jtc {
194 1.45 augustss struct sys_clock_gettime_args /* {
195 1.22 jtc syscallarg(clockid_t) clock_id;
196 1.23 cgd syscallarg(struct timespec *) tp;
197 1.23 cgd } */ *uap = v;
198 1.22 jtc clockid_t clock_id;
199 1.22 jtc struct timespec ats;
200 1.22 jtc
201 1.22 jtc clock_id = SCARG(uap, clock_id);
202 1.61 simonb switch (clock_id) {
203 1.61 simonb case CLOCK_REALTIME:
204 1.96 simonb nanotime(&ats);
205 1.61 simonb break;
206 1.61 simonb case CLOCK_MONOTONIC:
207 1.101 kardel nanouptime(&ats);
208 1.61 simonb break;
209 1.61 simonb default:
210 1.22 jtc return (EINVAL);
211 1.61 simonb }
212 1.22 jtc
213 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
214 1.22 jtc }
215 1.22 jtc
216 1.22 jtc /* ARGSUSED */
217 1.22 jtc int
218 1.110 yamt sys_clock_settime(struct lwp *l, void *v, register_t *retval)
219 1.22 jtc {
220 1.45 augustss struct sys_clock_settime_args /* {
221 1.22 jtc syscallarg(clockid_t) clock_id;
222 1.23 cgd syscallarg(const struct timespec *) tp;
223 1.23 cgd } */ *uap = v;
224 1.22 jtc
225 1.132 elad return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
226 1.132 elad true);
227 1.56 manu }
228 1.56 manu
229 1.56 manu
230 1.56 manu int
231 1.132 elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
232 1.132 elad bool check_kauth)
233 1.56 manu {
234 1.60 manu struct timespec ats;
235 1.56 manu int error;
236 1.56 manu
237 1.60 manu if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
238 1.60 manu return (error);
239 1.60 manu
240 1.61 simonb switch (clock_id) {
241 1.61 simonb case CLOCK_REALTIME:
242 1.132 elad if ((error = settime1(p, &ats, check_kauth)) != 0)
243 1.61 simonb return (error);
244 1.61 simonb break;
245 1.61 simonb case CLOCK_MONOTONIC:
246 1.61 simonb return (EINVAL); /* read-only clock */
247 1.61 simonb default:
248 1.56 manu return (EINVAL);
249 1.61 simonb }
250 1.22 jtc
251 1.22 jtc return 0;
252 1.22 jtc }
253 1.22 jtc
254 1.22 jtc int
255 1.110 yamt sys_clock_getres(struct lwp *l, void *v, register_t *retval)
256 1.22 jtc {
257 1.45 augustss struct sys_clock_getres_args /* {
258 1.22 jtc syscallarg(clockid_t) clock_id;
259 1.23 cgd syscallarg(struct timespec *) tp;
260 1.23 cgd } */ *uap = v;
261 1.22 jtc clockid_t clock_id;
262 1.22 jtc struct timespec ts;
263 1.22 jtc int error = 0;
264 1.22 jtc
265 1.22 jtc clock_id = SCARG(uap, clock_id);
266 1.61 simonb switch (clock_id) {
267 1.61 simonb case CLOCK_REALTIME:
268 1.61 simonb case CLOCK_MONOTONIC:
269 1.22 jtc ts.tv_sec = 0;
270 1.102 kardel if (tc_getfrequency() > 1000000000)
271 1.102 kardel ts.tv_nsec = 1;
272 1.102 kardel else
273 1.102 kardel ts.tv_nsec = 1000000000 / tc_getfrequency();
274 1.61 simonb break;
275 1.61 simonb default:
276 1.61 simonb return (EINVAL);
277 1.61 simonb }
278 1.22 jtc
279 1.61 simonb if (SCARG(uap, tp))
280 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
281 1.22 jtc
282 1.22 jtc return error;
283 1.22 jtc }
284 1.22 jtc
285 1.27 jtc /* ARGSUSED */
286 1.27 jtc int
287 1.110 yamt sys_nanosleep(struct lwp *l, void *v, register_t *retval)
288 1.27 jtc {
289 1.101 kardel struct sys_nanosleep_args/* {
290 1.101 kardel syscallarg(struct timespec *) rqtp;
291 1.101 kardel syscallarg(struct timespec *) rmtp;
292 1.101 kardel } */ *uap = v;
293 1.101 kardel struct timespec rmt, rqt;
294 1.120 dsl int error, error1;
295 1.101 kardel
296 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
297 1.101 kardel if (error)
298 1.101 kardel return (error);
299 1.101 kardel
300 1.120 dsl error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
301 1.120 dsl if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
302 1.120 dsl return error;
303 1.120 dsl
304 1.120 dsl error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
305 1.120 dsl return error1 ? error1 : error;
306 1.120 dsl }
307 1.120 dsl
308 1.120 dsl int
309 1.120 dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
310 1.120 dsl {
311 1.120 dsl #ifdef __HAVE_TIMECOUNTER
312 1.120 dsl int error, timo;
313 1.120 dsl
314 1.120 dsl if (itimespecfix(rqt))
315 1.101 kardel return (EINVAL);
316 1.101 kardel
317 1.120 dsl timo = tstohz(rqt);
318 1.101 kardel /*
319 1.101 kardel * Avoid inadvertantly sleeping forever
320 1.101 kardel */
321 1.101 kardel if (timo == 0)
322 1.101 kardel timo = 1;
323 1.101 kardel
324 1.123 dsl if (rmt != NULL)
325 1.123 dsl getnanouptime(rmt);
326 1.104 kardel
327 1.115 thorpej error = kpause("nanoslp", true, timo, NULL);
328 1.101 kardel if (error == ERESTART)
329 1.101 kardel error = EINTR;
330 1.101 kardel if (error == EWOULDBLOCK)
331 1.101 kardel error = 0;
332 1.101 kardel
333 1.120 dsl if (rmt!= NULL) {
334 1.104 kardel struct timespec rmtend;
335 1.101 kardel
336 1.104 kardel getnanouptime(&rmtend);
337 1.101 kardel
338 1.120 dsl timespecsub(&rmtend, rmt, rmt);
339 1.120 dsl timespecsub(rqt, rmt, rmt);
340 1.120 dsl if (rmt->tv_sec < 0)
341 1.120 dsl timespecclear(rmt);
342 1.101 kardel }
343 1.101 kardel
344 1.101 kardel return error;
345 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
346 1.27 jtc struct timeval atv, utv;
347 1.27 jtc int error, s, timo;
348 1.27 jtc
349 1.120 dsl TIMESPEC_TO_TIMEVAL(&atv, rqt);
350 1.80 christos if (itimerfix(&atv))
351 1.27 jtc return (EINVAL);
352 1.27 jtc
353 1.27 jtc s = splclock();
354 1.27 jtc timeradd(&atv,&time,&atv);
355 1.27 jtc timo = hzto(&atv);
356 1.63 thorpej /*
357 1.27 jtc * Avoid inadvertantly sleeping forever
358 1.27 jtc */
359 1.27 jtc if (timo == 0)
360 1.27 jtc timo = 1;
361 1.27 jtc splx(s);
362 1.27 jtc
363 1.115 thorpej error = kpause("nanoslp", true, timo, NULL);
364 1.27 jtc if (error == ERESTART)
365 1.27 jtc error = EINTR;
366 1.27 jtc if (error == EWOULDBLOCK)
367 1.27 jtc error = 0;
368 1.27 jtc
369 1.120 dsl if (rmt != NULL) {
370 1.27 jtc s = splclock();
371 1.27 jtc utv = time;
372 1.27 jtc splx(s);
373 1.27 jtc
374 1.27 jtc timersub(&atv, &utv, &utv);
375 1.27 jtc if (utv.tv_sec < 0)
376 1.27 jtc timerclear(&utv);
377 1.27 jtc
378 1.120 dsl TIMEVAL_TO_TIMESPEC(&utv, rmt);
379 1.27 jtc }
380 1.27 jtc
381 1.27 jtc return error;
382 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
383 1.27 jtc }
384 1.22 jtc
385 1.1 cgd /* ARGSUSED */
386 1.3 andrew int
387 1.110 yamt sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
388 1.15 thorpej {
389 1.45 augustss struct sys_gettimeofday_args /* {
390 1.11 cgd syscallarg(struct timeval *) tp;
391 1.84 simonb syscallarg(void *) tzp; really "struct timezone *"
392 1.15 thorpej } */ *uap = v;
393 1.1 cgd struct timeval atv;
394 1.1 cgd int error = 0;
395 1.25 perry struct timezone tzfake;
396 1.1 cgd
397 1.11 cgd if (SCARG(uap, tp)) {
398 1.1 cgd microtime(&atv);
399 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
400 1.17 christos if (error)
401 1.1 cgd return (error);
402 1.1 cgd }
403 1.25 perry if (SCARG(uap, tzp)) {
404 1.25 perry /*
405 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
406 1.25 perry * fake up a timezone struct and return it if demanded.
407 1.25 perry */
408 1.25 perry tzfake.tz_minuteswest = 0;
409 1.25 perry tzfake.tz_dsttime = 0;
410 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
411 1.25 perry }
412 1.1 cgd return (error);
413 1.1 cgd }
414 1.1 cgd
415 1.1 cgd /* ARGSUSED */
416 1.3 andrew int
417 1.110 yamt sys_settimeofday(struct lwp *l, void *v, register_t *retval)
418 1.15 thorpej {
419 1.16 mycroft struct sys_settimeofday_args /* {
420 1.24 cgd syscallarg(const struct timeval *) tv;
421 1.84 simonb syscallarg(const void *) tzp; really "const struct timezone *"
422 1.15 thorpej } */ *uap = v;
423 1.60 manu
424 1.119 dsl return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
425 1.60 manu }
426 1.60 manu
427 1.60 manu int
428 1.119 dsl settimeofday1(const struct timeval *utv, bool userspace,
429 1.119 dsl const void *utzp, struct lwp *l, bool check_kauth)
430 1.60 manu {
431 1.22 jtc struct timeval atv;
432 1.98 christos struct timespec ts;
433 1.22 jtc int error;
434 1.1 cgd
435 1.8 cgd /* Verify all parameters before changing time. */
436 1.119 dsl
437 1.119 dsl if (check_kauth) {
438 1.119 dsl error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
439 1.119 dsl KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL);
440 1.119 dsl if (error != 0)
441 1.119 dsl return (error);
442 1.119 dsl }
443 1.119 dsl
444 1.25 perry /*
445 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
446 1.25 perry * obsolete program would try to set it, so we log a warning.
447 1.25 perry */
448 1.98 christos if (utzp)
449 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
450 1.119 dsl "(obsolete) kernel time zone\n", l->l_proc->p_pid);
451 1.98 christos
452 1.98 christos if (utv == NULL)
453 1.98 christos return 0;
454 1.98 christos
455 1.119 dsl if (userspace) {
456 1.119 dsl if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
457 1.119 dsl return error;
458 1.119 dsl utv = &atv;
459 1.119 dsl }
460 1.119 dsl
461 1.119 dsl TIMEVAL_TO_TIMESPEC(utv, &ts);
462 1.119 dsl return settime(l->l_proc, &ts);
463 1.1 cgd }
464 1.1 cgd
465 1.101 kardel #ifndef __HAVE_TIMECOUNTER
466 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
467 1.1 cgd long timedelta; /* unapplied time correction, us. */
468 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
469 1.101 kardel #endif
470 1.101 kardel
471 1.68 dsl int time_adjusted; /* set if an adjustment is made */
472 1.1 cgd
473 1.1 cgd /* ARGSUSED */
474 1.3 andrew int
475 1.110 yamt sys_adjtime(struct lwp *l, void *v, register_t *retval)
476 1.15 thorpej {
477 1.45 augustss struct sys_adjtime_args /* {
478 1.24 cgd syscallarg(const struct timeval *) delta;
479 1.11 cgd syscallarg(struct timeval *) olddelta;
480 1.15 thorpej } */ *uap = v;
481 1.56 manu int error;
482 1.1 cgd
483 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
484 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
485 1.1 cgd return (error);
486 1.17 christos
487 1.105 ad return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
488 1.56 manu }
489 1.56 manu
490 1.56 manu int
491 1.110 yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
492 1.56 manu {
493 1.60 manu struct timeval atv;
494 1.101 kardel int error = 0;
495 1.101 kardel
496 1.101 kardel #ifdef __HAVE_TIMECOUNTER
497 1.101 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
498 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
499 1.56 manu long ndelta, ntickdelta, odelta;
500 1.56 manu int s;
501 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
502 1.101 kardel
503 1.101 kardel #ifdef __HAVE_TIMECOUNTER
504 1.101 kardel if (olddelta) {
505 1.101 kardel atv.tv_sec = time_adjtime / 1000000;
506 1.101 kardel atv.tv_usec = time_adjtime % 1000000;
507 1.101 kardel if (atv.tv_usec < 0) {
508 1.101 kardel atv.tv_usec += 1000000;
509 1.101 kardel atv.tv_sec--;
510 1.101 kardel }
511 1.101 kardel error = copyout(&atv, olddelta, sizeof(struct timeval));
512 1.101 kardel if (error)
513 1.101 kardel return (error);
514 1.101 kardel }
515 1.101 kardel
516 1.101 kardel if (delta) {
517 1.101 kardel error = copyin(delta, &atv, sizeof(struct timeval));
518 1.101 kardel if (error)
519 1.101 kardel return (error);
520 1.101 kardel
521 1.101 kardel time_adjtime = (int64_t)atv.tv_sec * 1000000 +
522 1.101 kardel atv.tv_usec;
523 1.8 cgd
524 1.101 kardel if (time_adjtime)
525 1.101 kardel /* We need to save the system time during shutdown */
526 1.101 kardel time_adjusted |= 1;
527 1.101 kardel }
528 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
529 1.60 manu error = copyin(delta, &atv, sizeof(struct timeval));
530 1.60 manu if (error)
531 1.60 manu return (error);
532 1.60 manu
533 1.8 cgd /*
534 1.8 cgd * Compute the total correction and the rate at which to apply it.
535 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
536 1.8 cgd * delta, so that after some number of incremental changes in
537 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
538 1.8 cgd * overshoot and start taking us away from the desired final time.
539 1.8 cgd */
540 1.60 manu ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
541 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
542 1.8 cgd ntickdelta = 10 * tickadj;
543 1.8 cgd else
544 1.8 cgd ntickdelta = tickadj;
545 1.8 cgd if (ndelta % ntickdelta)
546 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
547 1.8 cgd
548 1.8 cgd /*
549 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
550 1.8 cgd * if we want time to run slower; then hardclock can simply compute
551 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
552 1.8 cgd */
553 1.8 cgd if (ndelta < 0)
554 1.8 cgd ntickdelta = -ntickdelta;
555 1.68 dsl if (ndelta != 0)
556 1.68 dsl /* We need to save the system clock time during shutdown */
557 1.68 dsl time_adjusted |= 1;
558 1.1 cgd s = splclock();
559 1.8 cgd odelta = timedelta;
560 1.1 cgd timedelta = ndelta;
561 1.8 cgd tickdelta = ntickdelta;
562 1.1 cgd splx(s);
563 1.1 cgd
564 1.56 manu if (olddelta) {
565 1.60 manu atv.tv_sec = odelta / 1000000;
566 1.60 manu atv.tv_usec = odelta % 1000000;
567 1.79 chs error = copyout(&atv, olddelta, sizeof(struct timeval));
568 1.8 cgd }
569 1.101 kardel #endif /* __HAVE_TIMECOUNTER */
570 1.101 kardel
571 1.79 chs return error;
572 1.1 cgd }
573 1.1 cgd
574 1.1 cgd /*
575 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
576 1.63 thorpej * timer_*() family of routines are supported.
577 1.1 cgd *
578 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
579 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
580 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
581 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
582 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
583 1.63 thorpej * syscall.
584 1.1 cgd *
585 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
586 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
587 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
588 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
589 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
590 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
591 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
592 1.63 thorpej * given below), to be delayed in real time past when it is supposed
593 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
594 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
595 1.63 thorpej * compute the next time in absolute time the timer should go off. */
596 1.63 thorpej
597 1.63 thorpej /* Allocate a POSIX realtime timer. */
598 1.63 thorpej int
599 1.110 yamt sys_timer_create(struct lwp *l, void *v, register_t *retval)
600 1.63 thorpej {
601 1.63 thorpej struct sys_timer_create_args /* {
602 1.63 thorpej syscallarg(clockid_t) clock_id;
603 1.63 thorpej syscallarg(struct sigevent *) evp;
604 1.63 thorpej syscallarg(timer_t *) timerid;
605 1.63 thorpej } */ *uap = v;
606 1.92 cube
607 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
608 1.105 ad SCARG(uap, evp), copyin, l);
609 1.92 cube }
610 1.92 cube
611 1.92 cube int
612 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
613 1.105 ad copyin_t fetch_event, struct lwp *l)
614 1.92 cube {
615 1.92 cube int error;
616 1.92 cube timer_t timerid;
617 1.63 thorpej struct ptimer *pt;
618 1.105 ad struct proc *p;
619 1.105 ad
620 1.105 ad p = l->l_proc;
621 1.63 thorpej
622 1.63 thorpej if (id < CLOCK_REALTIME ||
623 1.63 thorpej id > CLOCK_PROF)
624 1.63 thorpej return (EINVAL);
625 1.63 thorpej
626 1.63 thorpej if (p->p_timers == NULL)
627 1.63 thorpej timers_alloc(p);
628 1.63 thorpej
629 1.63 thorpej /* Find a free timer slot, skipping those reserved for setitimer(). */
630 1.63 thorpej for (timerid = 3; timerid < TIMER_MAX; timerid++)
631 1.63 thorpej if (p->p_timers->pts_timers[timerid] == NULL)
632 1.63 thorpej break;
633 1.63 thorpej
634 1.63 thorpej if (timerid == TIMER_MAX)
635 1.63 thorpej return EAGAIN;
636 1.63 thorpej
637 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
638 1.63 thorpej if (evp) {
639 1.63 thorpej if (((error =
640 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
641 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
642 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
643 1.63 thorpej pool_put(&ptimer_pool, pt);
644 1.63 thorpej return (error ? error : EINVAL);
645 1.63 thorpej }
646 1.63 thorpej } else {
647 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
648 1.63 thorpej switch (id) {
649 1.63 thorpej case CLOCK_REALTIME:
650 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
651 1.63 thorpej break;
652 1.63 thorpej case CLOCK_VIRTUAL:
653 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
654 1.63 thorpej break;
655 1.63 thorpej case CLOCK_PROF:
656 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
657 1.63 thorpej break;
658 1.63 thorpej }
659 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
660 1.63 thorpej }
661 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
662 1.73 christos pt->pt_info.ksi_errno = 0;
663 1.73 christos pt->pt_info.ksi_code = 0;
664 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
665 1.105 ad pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
666 1.124 christos pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
667 1.63 thorpej
668 1.63 thorpej pt->pt_type = id;
669 1.63 thorpej pt->pt_proc = p;
670 1.63 thorpej pt->pt_overruns = 0;
671 1.63 thorpej pt->pt_poverruns = 0;
672 1.64 nathanw pt->pt_entry = timerid;
673 1.63 thorpej timerclear(&pt->pt_time.it_value);
674 1.63 thorpej if (id == CLOCK_REALTIME)
675 1.125 ad callout_init(&pt->pt_ch, 0);
676 1.63 thorpej else
677 1.63 thorpej pt->pt_active = 0;
678 1.63 thorpej
679 1.63 thorpej p->p_timers->pts_timers[timerid] = pt;
680 1.63 thorpej
681 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
682 1.63 thorpej }
683 1.63 thorpej
684 1.63 thorpej /* Delete a POSIX realtime timer */
685 1.3 andrew int
686 1.110 yamt sys_timer_delete(struct lwp *l, void *v, register_t *retval)
687 1.15 thorpej {
688 1.63 thorpej struct sys_timer_delete_args /* {
689 1.63 thorpej syscallarg(timer_t) timerid;
690 1.15 thorpej } */ *uap = v;
691 1.63 thorpej struct proc *p = l->l_proc;
692 1.65 jdolecek timer_t timerid;
693 1.63 thorpej struct ptimer *pt, *ptn;
694 1.1 cgd int s;
695 1.1 cgd
696 1.63 thorpej timerid = SCARG(uap, timerid);
697 1.63 thorpej
698 1.63 thorpej if ((p->p_timers == NULL) ||
699 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
700 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
701 1.1 cgd return (EINVAL);
702 1.63 thorpej
703 1.125 ad if (pt->pt_type == CLOCK_REALTIME) {
704 1.63 thorpej callout_stop(&pt->pt_ch);
705 1.125 ad callout_destroy(&pt->pt_ch);
706 1.125 ad } else if (pt->pt_active) {
707 1.63 thorpej s = splclock();
708 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
709 1.63 thorpej LIST_REMOVE(pt, pt_list);
710 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
711 1.63 thorpej timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
712 1.63 thorpej &ptn->pt_time.it_value);
713 1.63 thorpej splx(s);
714 1.63 thorpej }
715 1.63 thorpej
716 1.63 thorpej p->p_timers->pts_timers[timerid] = NULL;
717 1.63 thorpej pool_put(&ptimer_pool, pt);
718 1.63 thorpej
719 1.63 thorpej return (0);
720 1.63 thorpej }
721 1.63 thorpej
722 1.63 thorpej /*
723 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
724 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
725 1.67 nathanw * time for virtual timers.
726 1.63 thorpej * Must be called at splclock().
727 1.63 thorpej */
728 1.63 thorpej void
729 1.63 thorpej timer_settime(struct ptimer *pt)
730 1.63 thorpej {
731 1.63 thorpej struct ptimer *ptn, *pptn;
732 1.63 thorpej struct ptlist *ptl;
733 1.63 thorpej
734 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
735 1.63 thorpej callout_stop(&pt->pt_ch);
736 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
737 1.63 thorpej /*
738 1.63 thorpej * Don't need to check hzto() return value, here.
739 1.63 thorpej * callout_reset() does it for us.
740 1.63 thorpej */
741 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
742 1.63 thorpej realtimerexpire, pt);
743 1.63 thorpej }
744 1.63 thorpej } else {
745 1.63 thorpej if (pt->pt_active) {
746 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
747 1.63 thorpej LIST_REMOVE(pt, pt_list);
748 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
749 1.63 thorpej timeradd(&pt->pt_time.it_value,
750 1.63 thorpej &ptn->pt_time.it_value,
751 1.63 thorpej &ptn->pt_time.it_value);
752 1.63 thorpej }
753 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
754 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
755 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
756 1.63 thorpej else
757 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
758 1.63 thorpej
759 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
760 1.63 thorpej ptn && timercmp(&pt->pt_time.it_value,
761 1.63 thorpej &ptn->pt_time.it_value, >);
762 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
763 1.63 thorpej timersub(&pt->pt_time.it_value,
764 1.63 thorpej &ptn->pt_time.it_value,
765 1.63 thorpej &pt->pt_time.it_value);
766 1.63 thorpej
767 1.63 thorpej if (pptn)
768 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
769 1.63 thorpej else
770 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
771 1.63 thorpej
772 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
773 1.63 thorpej timersub(&ptn->pt_time.it_value,
774 1.63 thorpej &pt->pt_time.it_value,
775 1.63 thorpej &ptn->pt_time.it_value);
776 1.63 thorpej
777 1.63 thorpej pt->pt_active = 1;
778 1.63 thorpej } else
779 1.63 thorpej pt->pt_active = 0;
780 1.63 thorpej }
781 1.63 thorpej }
782 1.63 thorpej
783 1.63 thorpej void
784 1.63 thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
785 1.63 thorpej {
786 1.101 kardel #ifdef __HAVE_TIMECOUNTER
787 1.101 kardel struct timeval now;
788 1.101 kardel #endif
789 1.63 thorpej struct ptimer *ptn;
790 1.63 thorpej
791 1.63 thorpej *aitv = pt->pt_time;
792 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
793 1.1 cgd /*
794 1.12 mycroft * Convert from absolute to relative time in .it_value
795 1.63 thorpej * part of real time timer. If time for real time
796 1.63 thorpej * timer has passed return 0, else return difference
797 1.63 thorpej * between current time and time for the timer to go
798 1.63 thorpej * off.
799 1.1 cgd */
800 1.63 thorpej if (timerisset(&aitv->it_value)) {
801 1.101 kardel #ifdef __HAVE_TIMECOUNTER
802 1.101 kardel getmicrotime(&now);
803 1.101 kardel if (timercmp(&aitv->it_value, &now, <))
804 1.101 kardel timerclear(&aitv->it_value);
805 1.101 kardel else
806 1.101 kardel timersub(&aitv->it_value, &now,
807 1.101 kardel &aitv->it_value);
808 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
809 1.63 thorpej if (timercmp(&aitv->it_value, &time, <))
810 1.63 thorpej timerclear(&aitv->it_value);
811 1.1 cgd else
812 1.63 thorpej timersub(&aitv->it_value, &time,
813 1.63 thorpej &aitv->it_value);
814 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
815 1.36 thorpej }
816 1.63 thorpej } else if (pt->pt_active) {
817 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
818 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
819 1.63 thorpej else
820 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
821 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
822 1.63 thorpej timeradd(&aitv->it_value,
823 1.63 thorpej &ptn->pt_time.it_value, &aitv->it_value);
824 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
825 1.1 cgd } else
826 1.63 thorpej timerclear(&aitv->it_value);
827 1.63 thorpej }
828 1.63 thorpej
829 1.63 thorpej
830 1.63 thorpej
831 1.63 thorpej /* Set and arm a POSIX realtime timer */
832 1.63 thorpej int
833 1.110 yamt sys_timer_settime(struct lwp *l, void *v, register_t *retval)
834 1.63 thorpej {
835 1.63 thorpej struct sys_timer_settime_args /* {
836 1.63 thorpej syscallarg(timer_t) timerid;
837 1.63 thorpej syscallarg(int) flags;
838 1.63 thorpej syscallarg(const struct itimerspec *) value;
839 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
840 1.63 thorpej } */ *uap = v;
841 1.92 cube int error;
842 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
843 1.92 cube
844 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
845 1.92 cube sizeof(struct itimerspec))) != 0)
846 1.92 cube return (error);
847 1.92 cube
848 1.92 cube if (SCARG(uap, ovalue))
849 1.92 cube ovp = &ovalue;
850 1.92 cube
851 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
852 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
853 1.92 cube return error;
854 1.92 cube
855 1.92 cube if (ovp)
856 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
857 1.92 cube sizeof(struct itimerspec));
858 1.92 cube return 0;
859 1.92 cube }
860 1.92 cube
861 1.92 cube int
862 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
863 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
864 1.92 cube {
865 1.101 kardel #ifdef __HAVE_TIMECOUNTER
866 1.101 kardel struct timeval now;
867 1.101 kardel #endif
868 1.63 thorpej struct itimerval val, oval;
869 1.63 thorpej struct ptimer *pt;
870 1.101 kardel int s;
871 1.63 thorpej
872 1.63 thorpej if ((p->p_timers == NULL) ||
873 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
874 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
875 1.63 thorpej return (EINVAL);
876 1.63 thorpej
877 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
878 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
879 1.63 thorpej if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
880 1.63 thorpej return (EINVAL);
881 1.63 thorpej
882 1.63 thorpej oval = pt->pt_time;
883 1.63 thorpej pt->pt_time = val;
884 1.63 thorpej
885 1.63 thorpej s = splclock();
886 1.67 nathanw /*
887 1.67 nathanw * If we've been passed a relative time for a realtime timer,
888 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
889 1.67 nathanw * timer, convert it to relative and make sure we don't set it
890 1.67 nathanw * to zero, which would cancel the timer, or let it go
891 1.67 nathanw * negative, which would confuse the comparison tests.
892 1.67 nathanw */
893 1.67 nathanw if (timerisset(&pt->pt_time.it_value)) {
894 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
895 1.101 kardel #ifdef __HAVE_TIMECOUNTER
896 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
897 1.101 kardel getmicrotime(&now);
898 1.101 kardel timeradd(&pt->pt_time.it_value, &now,
899 1.101 kardel &pt->pt_time.it_value);
900 1.101 kardel }
901 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
902 1.92 cube if ((flags & TIMER_ABSTIME) == 0)
903 1.67 nathanw timeradd(&pt->pt_time.it_value, &time,
904 1.67 nathanw &pt->pt_time.it_value);
905 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
906 1.67 nathanw } else {
907 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
908 1.101 kardel #ifdef __HAVE_TIMECOUNTER
909 1.101 kardel getmicrotime(&now);
910 1.101 kardel timersub(&pt->pt_time.it_value, &now,
911 1.101 kardel &pt->pt_time.it_value);
912 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
913 1.67 nathanw timersub(&pt->pt_time.it_value, &time,
914 1.67 nathanw &pt->pt_time.it_value);
915 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
916 1.67 nathanw if (!timerisset(&pt->pt_time.it_value) ||
917 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
918 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
919 1.67 nathanw pt->pt_time.it_value.tv_usec = 1;
920 1.67 nathanw }
921 1.67 nathanw }
922 1.67 nathanw }
923 1.67 nathanw }
924 1.67 nathanw
925 1.63 thorpej timer_settime(pt);
926 1.63 thorpej splx(s);
927 1.63 thorpej
928 1.92 cube if (ovalue) {
929 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
930 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
931 1.63 thorpej }
932 1.63 thorpej
933 1.63 thorpej return (0);
934 1.63 thorpej }
935 1.63 thorpej
936 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
937 1.63 thorpej int
938 1.110 yamt sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
939 1.63 thorpej {
940 1.63 thorpej struct sys_timer_gettime_args /* {
941 1.63 thorpej syscallarg(timer_t) timerid;
942 1.63 thorpej syscallarg(struct itimerspec *) value;
943 1.63 thorpej } */ *uap = v;
944 1.63 thorpej struct itimerspec its;
945 1.92 cube int error;
946 1.92 cube
947 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
948 1.92 cube &its)) != 0)
949 1.92 cube return error;
950 1.92 cube
951 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
952 1.92 cube }
953 1.92 cube
954 1.92 cube int
955 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
956 1.92 cube {
957 1.92 cube int s;
958 1.63 thorpej struct ptimer *pt;
959 1.92 cube struct itimerval aitv;
960 1.63 thorpej
961 1.63 thorpej if ((p->p_timers == NULL) ||
962 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
963 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
964 1.63 thorpej return (EINVAL);
965 1.63 thorpej
966 1.63 thorpej s = splclock();
967 1.63 thorpej timer_gettime(pt, &aitv);
968 1.1 cgd splx(s);
969 1.63 thorpej
970 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
971 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
972 1.63 thorpej
973 1.92 cube return 0;
974 1.63 thorpej }
975 1.63 thorpej
976 1.63 thorpej /*
977 1.63 thorpej * Return the count of the number of times a periodic timer expired
978 1.63 thorpej * while a notification was already pending. The counter is reset when
979 1.63 thorpej * a timer expires and a notification can be posted.
980 1.63 thorpej */
981 1.63 thorpej int
982 1.63 thorpej sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
983 1.63 thorpej {
984 1.63 thorpej struct sys_timer_getoverrun_args /* {
985 1.63 thorpej syscallarg(timer_t) timerid;
986 1.63 thorpej } */ *uap = v;
987 1.63 thorpej struct proc *p = l->l_proc;
988 1.63 thorpej int timerid;
989 1.63 thorpej struct ptimer *pt;
990 1.63 thorpej
991 1.63 thorpej timerid = SCARG(uap, timerid);
992 1.63 thorpej
993 1.63 thorpej if ((p->p_timers == NULL) ||
994 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
995 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
996 1.63 thorpej return (EINVAL);
997 1.63 thorpej
998 1.63 thorpej *retval = pt->pt_poverruns;
999 1.63 thorpej
1000 1.63 thorpej return (0);
1001 1.63 thorpej }
1002 1.63 thorpej
1003 1.63 thorpej /*
1004 1.63 thorpej * Real interval timer expired:
1005 1.63 thorpej * send process whose timer expired an alarm signal.
1006 1.63 thorpej * If time is not set up to reload, then just return.
1007 1.63 thorpej * Else compute next time timer should go off which is > current time.
1008 1.63 thorpej * This is where delay in processing this timeout causes multiple
1009 1.63 thorpej * SIGALRM calls to be compressed into one.
1010 1.63 thorpej */
1011 1.63 thorpej void
1012 1.63 thorpej realtimerexpire(void *arg)
1013 1.63 thorpej {
1014 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1015 1.101 kardel struct timeval now;
1016 1.101 kardel #endif
1017 1.63 thorpej struct ptimer *pt;
1018 1.63 thorpej int s;
1019 1.63 thorpej
1020 1.63 thorpej pt = (struct ptimer *)arg;
1021 1.63 thorpej
1022 1.63 thorpej itimerfire(pt);
1023 1.63 thorpej
1024 1.63 thorpej if (!timerisset(&pt->pt_time.it_interval)) {
1025 1.63 thorpej timerclear(&pt->pt_time.it_value);
1026 1.63 thorpej return;
1027 1.63 thorpej }
1028 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1029 1.101 kardel for (;;) {
1030 1.101 kardel s = splclock(); /* XXX need spl now? */
1031 1.101 kardel timeradd(&pt->pt_time.it_value,
1032 1.101 kardel &pt->pt_time.it_interval, &pt->pt_time.it_value);
1033 1.101 kardel getmicrotime(&now);
1034 1.101 kardel if (timercmp(&pt->pt_time.it_value, &now, >)) {
1035 1.101 kardel /*
1036 1.101 kardel * Don't need to check hzto() return value, here.
1037 1.101 kardel * callout_reset() does it for us.
1038 1.101 kardel */
1039 1.101 kardel callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1040 1.101 kardel realtimerexpire, pt);
1041 1.101 kardel splx(s);
1042 1.101 kardel return;
1043 1.101 kardel }
1044 1.101 kardel splx(s);
1045 1.101 kardel pt->pt_overruns++;
1046 1.101 kardel }
1047 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1048 1.63 thorpej for (;;) {
1049 1.63 thorpej s = splclock();
1050 1.63 thorpej timeradd(&pt->pt_time.it_value,
1051 1.63 thorpej &pt->pt_time.it_interval, &pt->pt_time.it_value);
1052 1.63 thorpej if (timercmp(&pt->pt_time.it_value, &time, >)) {
1053 1.63 thorpej /*
1054 1.63 thorpej * Don't need to check hzto() return value, here.
1055 1.63 thorpej * callout_reset() does it for us.
1056 1.63 thorpej */
1057 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1058 1.63 thorpej realtimerexpire, pt);
1059 1.63 thorpej splx(s);
1060 1.63 thorpej return;
1061 1.63 thorpej }
1062 1.63 thorpej splx(s);
1063 1.63 thorpej pt->pt_overruns++;
1064 1.63 thorpej }
1065 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1066 1.63 thorpej }
1067 1.63 thorpej
1068 1.63 thorpej /* BSD routine to get the value of an interval timer. */
1069 1.63 thorpej /* ARGSUSED */
1070 1.63 thorpej int
1071 1.110 yamt sys_getitimer(struct lwp *l, void *v, register_t *retval)
1072 1.63 thorpej {
1073 1.63 thorpej struct sys_getitimer_args /* {
1074 1.63 thorpej syscallarg(int) which;
1075 1.63 thorpej syscallarg(struct itimerval *) itv;
1076 1.63 thorpej } */ *uap = v;
1077 1.63 thorpej struct proc *p = l->l_proc;
1078 1.63 thorpej struct itimerval aitv;
1079 1.91 cube int error;
1080 1.91 cube
1081 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
1082 1.91 cube if (error)
1083 1.91 cube return error;
1084 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1085 1.91 cube }
1086 1.63 thorpej
1087 1.91 cube int
1088 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1089 1.91 cube {
1090 1.91 cube int s;
1091 1.63 thorpej
1092 1.63 thorpej if ((u_int)which > ITIMER_PROF)
1093 1.63 thorpej return (EINVAL);
1094 1.63 thorpej
1095 1.63 thorpej if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1096 1.91 cube timerclear(&itvp->it_value);
1097 1.91 cube timerclear(&itvp->it_interval);
1098 1.63 thorpej } else {
1099 1.63 thorpej s = splclock();
1100 1.91 cube timer_gettime(p->p_timers->pts_timers[which], itvp);
1101 1.63 thorpej splx(s);
1102 1.63 thorpej }
1103 1.63 thorpej
1104 1.91 cube return 0;
1105 1.1 cgd }
1106 1.1 cgd
1107 1.63 thorpej /* BSD routine to set/arm an interval timer. */
1108 1.1 cgd /* ARGSUSED */
1109 1.3 andrew int
1110 1.63 thorpej sys_setitimer(struct lwp *l, void *v, register_t *retval)
1111 1.15 thorpej {
1112 1.45 augustss struct sys_setitimer_args /* {
1113 1.30 mycroft syscallarg(int) which;
1114 1.24 cgd syscallarg(const struct itimerval *) itv;
1115 1.11 cgd syscallarg(struct itimerval *) oitv;
1116 1.15 thorpej } */ *uap = v;
1117 1.63 thorpej struct proc *p = l->l_proc;
1118 1.30 mycroft int which = SCARG(uap, which);
1119 1.21 cgd struct sys_getitimer_args getargs;
1120 1.91 cube const struct itimerval *itvp;
1121 1.1 cgd struct itimerval aitv;
1122 1.91 cube int error;
1123 1.1 cgd
1124 1.30 mycroft if ((u_int)which > ITIMER_PROF)
1125 1.1 cgd return (EINVAL);
1126 1.11 cgd itvp = SCARG(uap, itv);
1127 1.63 thorpej if (itvp &&
1128 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1129 1.1 cgd return (error);
1130 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1131 1.30 mycroft SCARG(&getargs, which) = which;
1132 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1133 1.63 thorpej if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1134 1.21 cgd return (error);
1135 1.21 cgd }
1136 1.1 cgd if (itvp == 0)
1137 1.1 cgd return (0);
1138 1.91 cube
1139 1.91 cube return dosetitimer(p, which, &aitv);
1140 1.91 cube }
1141 1.91 cube
1142 1.91 cube int
1143 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1144 1.91 cube {
1145 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1146 1.101 kardel struct timeval now;
1147 1.101 kardel #endif
1148 1.91 cube struct ptimer *pt;
1149 1.91 cube int s;
1150 1.91 cube
1151 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1152 1.1 cgd return (EINVAL);
1153 1.63 thorpej
1154 1.63 thorpej /*
1155 1.63 thorpej * Don't bother allocating data structures if the process just
1156 1.63 thorpej * wants to clear the timer.
1157 1.63 thorpej */
1158 1.91 cube if (!timerisset(&itvp->it_value) &&
1159 1.63 thorpej ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1160 1.63 thorpej return (0);
1161 1.63 thorpej
1162 1.63 thorpej if (p->p_timers == NULL)
1163 1.63 thorpej timers_alloc(p);
1164 1.63 thorpej if (p->p_timers->pts_timers[which] == NULL) {
1165 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
1166 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1167 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1168 1.63 thorpej pt->pt_overruns = 0;
1169 1.63 thorpej pt->pt_proc = p;
1170 1.63 thorpej pt->pt_type = which;
1171 1.64 nathanw pt->pt_entry = which;
1172 1.63 thorpej switch (which) {
1173 1.63 thorpej case ITIMER_REAL:
1174 1.125 ad callout_init(&pt->pt_ch, 0);
1175 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1176 1.63 thorpej break;
1177 1.63 thorpej case ITIMER_VIRTUAL:
1178 1.63 thorpej pt->pt_active = 0;
1179 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1180 1.63 thorpej break;
1181 1.63 thorpej case ITIMER_PROF:
1182 1.63 thorpej pt->pt_active = 0;
1183 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1184 1.63 thorpej break;
1185 1.1 cgd }
1186 1.1 cgd } else
1187 1.63 thorpej pt = p->p_timers->pts_timers[which];
1188 1.63 thorpej
1189 1.91 cube pt->pt_time = *itvp;
1190 1.63 thorpej p->p_timers->pts_timers[which] = pt;
1191 1.63 thorpej
1192 1.63 thorpej s = splclock();
1193 1.67 nathanw if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1194 1.67 nathanw /* Convert to absolute time */
1195 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1196 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1197 1.101 kardel getmicrotime(&now);
1198 1.101 kardel timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1199 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1200 1.67 nathanw timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1201 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1202 1.67 nathanw }
1203 1.63 thorpej timer_settime(pt);
1204 1.1 cgd splx(s);
1205 1.63 thorpej
1206 1.1 cgd return (0);
1207 1.1 cgd }
1208 1.1 cgd
1209 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1210 1.63 thorpej void
1211 1.63 thorpej timers_alloc(struct proc *p)
1212 1.63 thorpej {
1213 1.63 thorpej int i;
1214 1.63 thorpej struct ptimers *pts;
1215 1.63 thorpej
1216 1.100 yamt pts = pool_get(&ptimers_pool, PR_WAITOK);
1217 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1218 1.63 thorpej LIST_INIT(&pts->pts_prof);
1219 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1220 1.63 thorpej pts->pts_timers[i] = NULL;
1221 1.64 nathanw pts->pts_fired = 0;
1222 1.63 thorpej p->p_timers = pts;
1223 1.63 thorpej }
1224 1.63 thorpej
1225 1.1 cgd /*
1226 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1227 1.63 thorpej * then clean up all timers and free all the data structures. If
1228 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1229 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1230 1.63 thorpej * structure if none of those remain.
1231 1.1 cgd */
1232 1.3 andrew void
1233 1.63 thorpej timers_free(struct proc *p, int which)
1234 1.6 cgd {
1235 1.63 thorpej int i, s;
1236 1.63 thorpej struct ptimers *pts;
1237 1.63 thorpej struct ptimer *pt, *ptn;
1238 1.63 thorpej struct timeval tv;
1239 1.63 thorpej
1240 1.63 thorpej if (p->p_timers) {
1241 1.63 thorpej pts = p->p_timers;
1242 1.63 thorpej if (which == TIMERS_ALL)
1243 1.63 thorpej i = 0;
1244 1.63 thorpej else {
1245 1.63 thorpej s = splclock();
1246 1.63 thorpej timerclear(&tv);
1247 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1248 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1249 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1250 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1251 1.63 thorpej LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1252 1.63 thorpej if (ptn) {
1253 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1254 1.63 thorpej &ptn->pt_time.it_value);
1255 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1256 1.63 thorpej ptn, pt_list);
1257 1.63 thorpej }
1258 1.63 thorpej
1259 1.63 thorpej timerclear(&tv);
1260 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1261 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_PROF];
1262 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1263 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1264 1.63 thorpej LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1265 1.63 thorpej if (ptn) {
1266 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1267 1.63 thorpej &ptn->pt_time.it_value);
1268 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1269 1.63 thorpej pt_list);
1270 1.63 thorpej }
1271 1.1 cgd splx(s);
1272 1.63 thorpej i = 3;
1273 1.63 thorpej }
1274 1.63 thorpej for ( ; i < TIMER_MAX; i++)
1275 1.63 thorpej if ((pt = pts->pts_timers[i]) != NULL) {
1276 1.125 ad if (pt->pt_type == CLOCK_REALTIME) {
1277 1.63 thorpej callout_stop(&pt->pt_ch);
1278 1.125 ad callout_destroy(&pt->pt_ch);
1279 1.125 ad }
1280 1.63 thorpej pts->pts_timers[i] = NULL;
1281 1.63 thorpej pool_put(&ptimer_pool, pt);
1282 1.63 thorpej }
1283 1.63 thorpej if ((pts->pts_timers[0] == NULL) &&
1284 1.63 thorpej (pts->pts_timers[1] == NULL) &&
1285 1.63 thorpej (pts->pts_timers[2] == NULL)) {
1286 1.63 thorpej p->p_timers = NULL;
1287 1.97 simonb pool_put(&ptimers_pool, pts);
1288 1.1 cgd }
1289 1.1 cgd }
1290 1.1 cgd }
1291 1.1 cgd
1292 1.1 cgd /*
1293 1.1 cgd * Decrement an interval timer by a specified number
1294 1.1 cgd * of microseconds, which must be less than a second,
1295 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1296 1.1 cgd * it. In this case, carry over (usec - old value) to
1297 1.8 cgd * reduce the value reloaded into the timer so that
1298 1.1 cgd * the timer does not drift. This routine assumes
1299 1.1 cgd * that it is called in a context where the timers
1300 1.1 cgd * on which it is operating cannot change in value.
1301 1.1 cgd */
1302 1.3 andrew int
1303 1.63 thorpej itimerdecr(struct ptimer *pt, int usec)
1304 1.63 thorpej {
1305 1.45 augustss struct itimerval *itp;
1306 1.1 cgd
1307 1.63 thorpej itp = &pt->pt_time;
1308 1.1 cgd if (itp->it_value.tv_usec < usec) {
1309 1.1 cgd if (itp->it_value.tv_sec == 0) {
1310 1.1 cgd /* expired, and already in next interval */
1311 1.1 cgd usec -= itp->it_value.tv_usec;
1312 1.1 cgd goto expire;
1313 1.1 cgd }
1314 1.1 cgd itp->it_value.tv_usec += 1000000;
1315 1.1 cgd itp->it_value.tv_sec--;
1316 1.1 cgd }
1317 1.1 cgd itp->it_value.tv_usec -= usec;
1318 1.1 cgd usec = 0;
1319 1.1 cgd if (timerisset(&itp->it_value))
1320 1.1 cgd return (1);
1321 1.1 cgd /* expired, exactly at end of interval */
1322 1.1 cgd expire:
1323 1.1 cgd if (timerisset(&itp->it_interval)) {
1324 1.1 cgd itp->it_value = itp->it_interval;
1325 1.1 cgd itp->it_value.tv_usec -= usec;
1326 1.1 cgd if (itp->it_value.tv_usec < 0) {
1327 1.1 cgd itp->it_value.tv_usec += 1000000;
1328 1.1 cgd itp->it_value.tv_sec--;
1329 1.1 cgd }
1330 1.63 thorpej timer_settime(pt);
1331 1.1 cgd } else
1332 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1333 1.1 cgd return (0);
1334 1.42 cgd }
1335 1.42 cgd
1336 1.63 thorpej void
1337 1.63 thorpej itimerfire(struct ptimer *pt)
1338 1.63 thorpej {
1339 1.63 thorpej struct proc *p = pt->pt_proc;
1340 1.78 cl
1341 1.63 thorpej if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1342 1.63 thorpej /*
1343 1.63 thorpej * No RT signal infrastructure exists at this time;
1344 1.63 thorpej * just post the signal number and throw away the
1345 1.63 thorpej * value.
1346 1.63 thorpej */
1347 1.113 ad if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1348 1.63 thorpej pt->pt_overruns++;
1349 1.63 thorpej else {
1350 1.75 christos ksiginfo_t ksi;
1351 1.111 yamt KSI_INIT(&ksi);
1352 1.75 christos ksi.ksi_signo = pt->pt_ev.sigev_signo;
1353 1.75 christos ksi.ksi_code = SI_TIMER;
1354 1.124 christos ksi.ksi_value = pt->pt_ev.sigev_value;
1355 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1356 1.63 thorpej pt->pt_overruns = 0;
1357 1.113 ad mutex_enter(&proclist_mutex);
1358 1.75 christos kpsignal(p, &ksi, NULL);
1359 1.113 ad mutex_exit(&proclist_mutex);
1360 1.64 nathanw }
1361 1.63 thorpej }
1362 1.63 thorpej }
1363 1.63 thorpej
1364 1.42 cgd /*
1365 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1366 1.42 cgd * for usage and rationale.
1367 1.42 cgd */
1368 1.42 cgd int
1369 1.63 thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1370 1.42 cgd {
1371 1.49 itojun struct timeval tv, delta;
1372 1.101 kardel int rv = 0;
1373 1.101 kardel #ifndef __HAVE_TIMECOUNTER
1374 1.101 kardel int s;
1375 1.101 kardel #endif
1376 1.42 cgd
1377 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1378 1.101 kardel getmicrouptime(&tv);
1379 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1380 1.63 thorpej s = splclock();
1381 1.49 itojun tv = mono_time;
1382 1.49 itojun splx(s);
1383 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1384 1.49 itojun timersub(&tv, lasttime, &delta);
1385 1.42 cgd
1386 1.42 cgd /*
1387 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1388 1.42 cgd * even if interval is huge.
1389 1.42 cgd */
1390 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1391 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1392 1.49 itojun *lasttime = tv;
1393 1.42 cgd rv = 1;
1394 1.42 cgd }
1395 1.50 itojun
1396 1.50 itojun return (rv);
1397 1.50 itojun }
1398 1.50 itojun
1399 1.50 itojun /*
1400 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1401 1.50 itojun */
1402 1.50 itojun int
1403 1.63 thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1404 1.50 itojun {
1405 1.50 itojun struct timeval tv, delta;
1406 1.101 kardel int rv;
1407 1.101 kardel #ifndef __HAVE_TIMECOUNTER
1408 1.101 kardel int s;
1409 1.101 kardel #endif
1410 1.50 itojun
1411 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1412 1.101 kardel getmicrouptime(&tv);
1413 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1414 1.63 thorpej s = splclock();
1415 1.50 itojun tv = mono_time;
1416 1.50 itojun splx(s);
1417 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1418 1.50 itojun timersub(&tv, lasttime, &delta);
1419 1.50 itojun
1420 1.50 itojun /*
1421 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1422 1.50 itojun * if more than one second have passed since the last update of
1423 1.50 itojun * lasttime, reset the counter.
1424 1.50 itojun *
1425 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1426 1.50 itojun * try to use *curpps for stat purposes as well.
1427 1.50 itojun */
1428 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1429 1.50 itojun delta.tv_sec >= 1) {
1430 1.50 itojun *lasttime = tv;
1431 1.50 itojun *curpps = 0;
1432 1.69 dyoung }
1433 1.69 dyoung if (maxpps < 0)
1434 1.53 itojun rv = 1;
1435 1.53 itojun else if (*curpps < maxpps)
1436 1.50 itojun rv = 1;
1437 1.50 itojun else
1438 1.50 itojun rv = 0;
1439 1.50 itojun
1440 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1441 1.50 itojun /* be careful about wrap-around */
1442 1.50 itojun if (*curpps + 1 > *curpps)
1443 1.50 itojun *curpps = *curpps + 1;
1444 1.50 itojun #else
1445 1.50 itojun /*
1446 1.50 itojun * assume that there's not too many calls to this function.
1447 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1448 1.50 itojun * behavior, not the behavior of this function.
1449 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1450 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1451 1.50 itojun */
1452 1.50 itojun *curpps = *curpps + 1;
1453 1.50 itojun #endif
1454 1.42 cgd
1455 1.42 cgd return (rv);
1456 1.1 cgd }
1457