kern_time.c revision 1.135 1 1.135 dsl /* $NetBSD: kern_time.c,v 1.135 2007/12/20 23:03:09 dsl Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.131 ad * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.72 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 cgd * may be used to endorse or promote products derived from this software
53 1.1 cgd * without specific prior written permission.
54 1.1 cgd *
55 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 cgd * SUCH DAMAGE.
66 1.1 cgd *
67 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 1.1 cgd */
69 1.58 lukem
70 1.58 lukem #include <sys/cdefs.h>
71 1.135 dsl __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.135 2007/12/20 23:03:09 dsl Exp $");
72 1.1 cgd
73 1.5 mycroft #include <sys/param.h>
74 1.5 mycroft #include <sys/resourcevar.h>
75 1.5 mycroft #include <sys/kernel.h>
76 1.8 cgd #include <sys/systm.h>
77 1.5 mycroft #include <sys/proc.h>
78 1.8 cgd #include <sys/vnode.h>
79 1.17 christos #include <sys/signalvar.h>
80 1.25 perry #include <sys/syslog.h>
81 1.101 kardel #include <sys/timetc.h>
82 1.122 dsl #ifndef __HAVE_TIMECOUNTER
83 1.95 cube #include <sys/timevar.h>
84 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
85 1.99 elad #include <sys/kauth.h>
86 1.1 cgd
87 1.11 cgd #include <sys/mount.h>
88 1.11 cgd #include <sys/syscallargs.h>
89 1.19 christos
90 1.37 thorpej #include <uvm/uvm_extern.h>
91 1.37 thorpej
92 1.130 ad #include <sys/cpu.h>
93 1.23 cgd
94 1.131 ad kmutex_t time_lock;
95 1.131 ad
96 1.97 simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
97 1.118 ad &pool_allocator_nointr, IPL_NONE);
98 1.97 simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
99 1.118 ad &pool_allocator_nointr, IPL_NONE);
100 1.97 simonb
101 1.131 ad /*
102 1.131 ad * Initialize timekeeping.
103 1.131 ad */
104 1.131 ad void
105 1.131 ad time_init(void)
106 1.131 ad {
107 1.131 ad
108 1.131 ad mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
109 1.131 ad }
110 1.131 ad
111 1.63 thorpej /* Time of day and interval timer support.
112 1.1 cgd *
113 1.1 cgd * These routines provide the kernel entry points to get and set
114 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
115 1.1 cgd * here provide support for adding and subtracting timeval structures
116 1.1 cgd * and decrementing interval timers, optionally reloading the interval
117 1.1 cgd * timers when they expire.
118 1.1 cgd */
119 1.1 cgd
120 1.22 jtc /* This function is used by clock_settime and settimeofday */
121 1.132 elad static int
122 1.132 elad settime1(struct proc *p, struct timespec *ts, bool check_kauth)
123 1.22 jtc {
124 1.98 christos struct timeval delta, tv;
125 1.101 kardel #ifdef __HAVE_TIMECOUNTER
126 1.101 kardel struct timeval now;
127 1.101 kardel struct timespec ts1;
128 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
129 1.129 ad lwp_t *l;
130 1.129 ad int s;
131 1.22 jtc
132 1.98 christos TIMESPEC_TO_TIMEVAL(&tv, ts);
133 1.98 christos
134 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
135 1.129 ad s = splclock();
136 1.101 kardel #ifdef __HAVE_TIMECOUNTER
137 1.101 kardel microtime(&now);
138 1.101 kardel timersub(&tv, &now, &delta);
139 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
140 1.98 christos timersub(&tv, &time, &delta);
141 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
142 1.132 elad
143 1.134 elad if (check_kauth && kauth_authorize_system(kauth_cred_get(),
144 1.134 elad KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
145 1.132 elad KAUTH_ARG(check_kauth ? false : true)) != 0) {
146 1.129 ad splx(s);
147 1.29 tls return (EPERM);
148 1.55 tron }
149 1.132 elad
150 1.29 tls #ifdef notyet
151 1.109 elad if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
152 1.129 ad splx(s);
153 1.29 tls return (EPERM);
154 1.55 tron }
155 1.29 tls #endif
156 1.103 kardel
157 1.101 kardel #ifdef __HAVE_TIMECOUNTER
158 1.103 kardel TIMEVAL_TO_TIMESPEC(&tv, &ts1);
159 1.101 kardel tc_setclock(&ts1);
160 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
161 1.98 christos time = tv;
162 1.103 kardel #endif /* !__HAVE_TIMECOUNTER */
163 1.103 kardel
164 1.22 jtc timeradd(&boottime, &delta, &boottime);
165 1.103 kardel
166 1.47 thorpej /*
167 1.129 ad * XXXSMP: There is a short race between setting the time above
168 1.129 ad * and adjusting LWP's run times. Fixing this properly means
169 1.129 ad * pausing all CPUs while we adjust the clock.
170 1.47 thorpej */
171 1.129 ad mutex_enter(&proclist_lock);
172 1.129 ad LIST_FOREACH(l, &alllwp, l_list) {
173 1.129 ad lwp_lock(l);
174 1.129 ad timeradd(&l->l_stime, &delta, &l->l_stime);
175 1.129 ad lwp_unlock(l);
176 1.129 ad }
177 1.129 ad mutex_exit(&proclist_lock);
178 1.22 jtc resettodr();
179 1.129 ad splx(s);
180 1.129 ad
181 1.29 tls return (0);
182 1.22 jtc }
183 1.22 jtc
184 1.132 elad int
185 1.132 elad settime(struct proc *p, struct timespec *ts)
186 1.132 elad {
187 1.132 elad return (settime1(p, ts, true));
188 1.132 elad }
189 1.132 elad
190 1.22 jtc /* ARGSUSED */
191 1.22 jtc int
192 1.135 dsl sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap, register_t *retval)
193 1.22 jtc {
194 1.135 dsl /* {
195 1.22 jtc syscallarg(clockid_t) clock_id;
196 1.23 cgd syscallarg(struct timespec *) tp;
197 1.135 dsl } */
198 1.22 jtc clockid_t clock_id;
199 1.22 jtc struct timespec ats;
200 1.22 jtc
201 1.22 jtc clock_id = SCARG(uap, clock_id);
202 1.61 simonb switch (clock_id) {
203 1.61 simonb case CLOCK_REALTIME:
204 1.96 simonb nanotime(&ats);
205 1.61 simonb break;
206 1.61 simonb case CLOCK_MONOTONIC:
207 1.101 kardel nanouptime(&ats);
208 1.61 simonb break;
209 1.61 simonb default:
210 1.22 jtc return (EINVAL);
211 1.61 simonb }
212 1.22 jtc
213 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
214 1.22 jtc }
215 1.22 jtc
216 1.22 jtc /* ARGSUSED */
217 1.22 jtc int
218 1.135 dsl sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap, register_t *retval)
219 1.22 jtc {
220 1.135 dsl /* {
221 1.22 jtc syscallarg(clockid_t) clock_id;
222 1.23 cgd syscallarg(const struct timespec *) tp;
223 1.135 dsl } */
224 1.22 jtc
225 1.132 elad return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
226 1.132 elad true);
227 1.56 manu }
228 1.56 manu
229 1.56 manu
230 1.56 manu int
231 1.132 elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
232 1.132 elad bool check_kauth)
233 1.56 manu {
234 1.60 manu struct timespec ats;
235 1.56 manu int error;
236 1.56 manu
237 1.60 manu if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
238 1.60 manu return (error);
239 1.60 manu
240 1.61 simonb switch (clock_id) {
241 1.61 simonb case CLOCK_REALTIME:
242 1.132 elad if ((error = settime1(p, &ats, check_kauth)) != 0)
243 1.61 simonb return (error);
244 1.61 simonb break;
245 1.61 simonb case CLOCK_MONOTONIC:
246 1.61 simonb return (EINVAL); /* read-only clock */
247 1.61 simonb default:
248 1.56 manu return (EINVAL);
249 1.61 simonb }
250 1.22 jtc
251 1.22 jtc return 0;
252 1.22 jtc }
253 1.22 jtc
254 1.22 jtc int
255 1.135 dsl sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap, register_t *retval)
256 1.22 jtc {
257 1.135 dsl /* {
258 1.22 jtc syscallarg(clockid_t) clock_id;
259 1.23 cgd syscallarg(struct timespec *) tp;
260 1.135 dsl } */
261 1.22 jtc clockid_t clock_id;
262 1.22 jtc struct timespec ts;
263 1.22 jtc int error = 0;
264 1.22 jtc
265 1.22 jtc clock_id = SCARG(uap, clock_id);
266 1.61 simonb switch (clock_id) {
267 1.61 simonb case CLOCK_REALTIME:
268 1.61 simonb case CLOCK_MONOTONIC:
269 1.22 jtc ts.tv_sec = 0;
270 1.102 kardel if (tc_getfrequency() > 1000000000)
271 1.102 kardel ts.tv_nsec = 1;
272 1.102 kardel else
273 1.102 kardel ts.tv_nsec = 1000000000 / tc_getfrequency();
274 1.61 simonb break;
275 1.61 simonb default:
276 1.61 simonb return (EINVAL);
277 1.61 simonb }
278 1.22 jtc
279 1.61 simonb if (SCARG(uap, tp))
280 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
281 1.22 jtc
282 1.22 jtc return error;
283 1.22 jtc }
284 1.22 jtc
285 1.27 jtc /* ARGSUSED */
286 1.27 jtc int
287 1.135 dsl sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap, register_t *retval)
288 1.27 jtc {
289 1.135 dsl /* {
290 1.101 kardel syscallarg(struct timespec *) rqtp;
291 1.101 kardel syscallarg(struct timespec *) rmtp;
292 1.135 dsl } */
293 1.101 kardel struct timespec rmt, rqt;
294 1.120 dsl int error, error1;
295 1.101 kardel
296 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
297 1.101 kardel if (error)
298 1.101 kardel return (error);
299 1.101 kardel
300 1.120 dsl error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
301 1.120 dsl if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
302 1.120 dsl return error;
303 1.120 dsl
304 1.120 dsl error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
305 1.120 dsl return error1 ? error1 : error;
306 1.120 dsl }
307 1.120 dsl
308 1.120 dsl int
309 1.120 dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
310 1.120 dsl {
311 1.120 dsl #ifdef __HAVE_TIMECOUNTER
312 1.120 dsl int error, timo;
313 1.120 dsl
314 1.120 dsl if (itimespecfix(rqt))
315 1.101 kardel return (EINVAL);
316 1.101 kardel
317 1.120 dsl timo = tstohz(rqt);
318 1.101 kardel /*
319 1.101 kardel * Avoid inadvertantly sleeping forever
320 1.101 kardel */
321 1.101 kardel if (timo == 0)
322 1.101 kardel timo = 1;
323 1.101 kardel
324 1.123 dsl if (rmt != NULL)
325 1.123 dsl getnanouptime(rmt);
326 1.104 kardel
327 1.115 thorpej error = kpause("nanoslp", true, timo, NULL);
328 1.101 kardel if (error == ERESTART)
329 1.101 kardel error = EINTR;
330 1.101 kardel if (error == EWOULDBLOCK)
331 1.101 kardel error = 0;
332 1.101 kardel
333 1.120 dsl if (rmt!= NULL) {
334 1.104 kardel struct timespec rmtend;
335 1.101 kardel
336 1.104 kardel getnanouptime(&rmtend);
337 1.101 kardel
338 1.120 dsl timespecsub(&rmtend, rmt, rmt);
339 1.120 dsl timespecsub(rqt, rmt, rmt);
340 1.120 dsl if (rmt->tv_sec < 0)
341 1.120 dsl timespecclear(rmt);
342 1.101 kardel }
343 1.101 kardel
344 1.101 kardel return error;
345 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
346 1.27 jtc struct timeval atv, utv;
347 1.27 jtc int error, s, timo;
348 1.27 jtc
349 1.120 dsl TIMESPEC_TO_TIMEVAL(&atv, rqt);
350 1.80 christos if (itimerfix(&atv))
351 1.27 jtc return (EINVAL);
352 1.27 jtc
353 1.27 jtc s = splclock();
354 1.27 jtc timeradd(&atv,&time,&atv);
355 1.27 jtc timo = hzto(&atv);
356 1.63 thorpej /*
357 1.27 jtc * Avoid inadvertantly sleeping forever
358 1.27 jtc */
359 1.27 jtc if (timo == 0)
360 1.27 jtc timo = 1;
361 1.27 jtc splx(s);
362 1.27 jtc
363 1.115 thorpej error = kpause("nanoslp", true, timo, NULL);
364 1.27 jtc if (error == ERESTART)
365 1.27 jtc error = EINTR;
366 1.27 jtc if (error == EWOULDBLOCK)
367 1.27 jtc error = 0;
368 1.27 jtc
369 1.120 dsl if (rmt != NULL) {
370 1.27 jtc s = splclock();
371 1.27 jtc utv = time;
372 1.27 jtc splx(s);
373 1.27 jtc
374 1.27 jtc timersub(&atv, &utv, &utv);
375 1.27 jtc if (utv.tv_sec < 0)
376 1.27 jtc timerclear(&utv);
377 1.27 jtc
378 1.120 dsl TIMEVAL_TO_TIMESPEC(&utv, rmt);
379 1.27 jtc }
380 1.27 jtc
381 1.27 jtc return error;
382 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
383 1.27 jtc }
384 1.22 jtc
385 1.1 cgd /* ARGSUSED */
386 1.3 andrew int
387 1.135 dsl sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap, register_t *retval)
388 1.15 thorpej {
389 1.135 dsl /* {
390 1.11 cgd syscallarg(struct timeval *) tp;
391 1.135 dsl syscallarg(void *) tzp; really "struct timezone *";
392 1.135 dsl } */
393 1.1 cgd struct timeval atv;
394 1.1 cgd int error = 0;
395 1.25 perry struct timezone tzfake;
396 1.1 cgd
397 1.11 cgd if (SCARG(uap, tp)) {
398 1.1 cgd microtime(&atv);
399 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
400 1.17 christos if (error)
401 1.1 cgd return (error);
402 1.1 cgd }
403 1.25 perry if (SCARG(uap, tzp)) {
404 1.25 perry /*
405 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
406 1.25 perry * fake up a timezone struct and return it if demanded.
407 1.25 perry */
408 1.25 perry tzfake.tz_minuteswest = 0;
409 1.25 perry tzfake.tz_dsttime = 0;
410 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
411 1.25 perry }
412 1.1 cgd return (error);
413 1.1 cgd }
414 1.1 cgd
415 1.1 cgd /* ARGSUSED */
416 1.3 andrew int
417 1.135 dsl sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap, register_t *retval)
418 1.15 thorpej {
419 1.135 dsl /* {
420 1.24 cgd syscallarg(const struct timeval *) tv;
421 1.135 dsl syscallarg(const void *) tzp; really "const struct timezone *";
422 1.135 dsl } */
423 1.60 manu
424 1.119 dsl return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
425 1.60 manu }
426 1.60 manu
427 1.60 manu int
428 1.119 dsl settimeofday1(const struct timeval *utv, bool userspace,
429 1.119 dsl const void *utzp, struct lwp *l, bool check_kauth)
430 1.60 manu {
431 1.22 jtc struct timeval atv;
432 1.98 christos struct timespec ts;
433 1.22 jtc int error;
434 1.1 cgd
435 1.8 cgd /* Verify all parameters before changing time. */
436 1.119 dsl
437 1.25 perry /*
438 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
439 1.25 perry * obsolete program would try to set it, so we log a warning.
440 1.25 perry */
441 1.98 christos if (utzp)
442 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
443 1.119 dsl "(obsolete) kernel time zone\n", l->l_proc->p_pid);
444 1.98 christos
445 1.98 christos if (utv == NULL)
446 1.98 christos return 0;
447 1.98 christos
448 1.119 dsl if (userspace) {
449 1.119 dsl if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
450 1.119 dsl return error;
451 1.119 dsl utv = &atv;
452 1.119 dsl }
453 1.119 dsl
454 1.119 dsl TIMEVAL_TO_TIMESPEC(utv, &ts);
455 1.133 elad return settime1(l->l_proc, &ts, check_kauth);
456 1.1 cgd }
457 1.1 cgd
458 1.101 kardel #ifndef __HAVE_TIMECOUNTER
459 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
460 1.1 cgd long timedelta; /* unapplied time correction, us. */
461 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
462 1.101 kardel #endif
463 1.101 kardel
464 1.68 dsl int time_adjusted; /* set if an adjustment is made */
465 1.1 cgd
466 1.1 cgd /* ARGSUSED */
467 1.3 andrew int
468 1.135 dsl sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap, register_t *retval)
469 1.15 thorpej {
470 1.135 dsl /* {
471 1.24 cgd syscallarg(const struct timeval *) delta;
472 1.11 cgd syscallarg(struct timeval *) olddelta;
473 1.135 dsl } */
474 1.56 manu int error;
475 1.1 cgd
476 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
477 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
478 1.1 cgd return (error);
479 1.17 christos
480 1.105 ad return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
481 1.56 manu }
482 1.56 manu
483 1.56 manu int
484 1.110 yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
485 1.56 manu {
486 1.60 manu struct timeval atv;
487 1.101 kardel int error = 0;
488 1.101 kardel
489 1.101 kardel #ifdef __HAVE_TIMECOUNTER
490 1.101 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
491 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
492 1.56 manu long ndelta, ntickdelta, odelta;
493 1.56 manu int s;
494 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
495 1.101 kardel
496 1.101 kardel #ifdef __HAVE_TIMECOUNTER
497 1.101 kardel if (olddelta) {
498 1.101 kardel atv.tv_sec = time_adjtime / 1000000;
499 1.101 kardel atv.tv_usec = time_adjtime % 1000000;
500 1.101 kardel if (atv.tv_usec < 0) {
501 1.101 kardel atv.tv_usec += 1000000;
502 1.101 kardel atv.tv_sec--;
503 1.101 kardel }
504 1.101 kardel error = copyout(&atv, olddelta, sizeof(struct timeval));
505 1.101 kardel if (error)
506 1.101 kardel return (error);
507 1.101 kardel }
508 1.101 kardel
509 1.101 kardel if (delta) {
510 1.101 kardel error = copyin(delta, &atv, sizeof(struct timeval));
511 1.101 kardel if (error)
512 1.101 kardel return (error);
513 1.101 kardel
514 1.101 kardel time_adjtime = (int64_t)atv.tv_sec * 1000000 +
515 1.101 kardel atv.tv_usec;
516 1.8 cgd
517 1.101 kardel if (time_adjtime)
518 1.101 kardel /* We need to save the system time during shutdown */
519 1.101 kardel time_adjusted |= 1;
520 1.101 kardel }
521 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
522 1.60 manu error = copyin(delta, &atv, sizeof(struct timeval));
523 1.60 manu if (error)
524 1.60 manu return (error);
525 1.60 manu
526 1.8 cgd /*
527 1.8 cgd * Compute the total correction and the rate at which to apply it.
528 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
529 1.8 cgd * delta, so that after some number of incremental changes in
530 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
531 1.8 cgd * overshoot and start taking us away from the desired final time.
532 1.8 cgd */
533 1.60 manu ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
534 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
535 1.8 cgd ntickdelta = 10 * tickadj;
536 1.8 cgd else
537 1.8 cgd ntickdelta = tickadj;
538 1.8 cgd if (ndelta % ntickdelta)
539 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
540 1.8 cgd
541 1.8 cgd /*
542 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
543 1.8 cgd * if we want time to run slower; then hardclock can simply compute
544 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
545 1.8 cgd */
546 1.8 cgd if (ndelta < 0)
547 1.8 cgd ntickdelta = -ntickdelta;
548 1.68 dsl if (ndelta != 0)
549 1.68 dsl /* We need to save the system clock time during shutdown */
550 1.68 dsl time_adjusted |= 1;
551 1.1 cgd s = splclock();
552 1.8 cgd odelta = timedelta;
553 1.1 cgd timedelta = ndelta;
554 1.8 cgd tickdelta = ntickdelta;
555 1.1 cgd splx(s);
556 1.1 cgd
557 1.56 manu if (olddelta) {
558 1.60 manu atv.tv_sec = odelta / 1000000;
559 1.60 manu atv.tv_usec = odelta % 1000000;
560 1.79 chs error = copyout(&atv, olddelta, sizeof(struct timeval));
561 1.8 cgd }
562 1.101 kardel #endif /* __HAVE_TIMECOUNTER */
563 1.101 kardel
564 1.79 chs return error;
565 1.1 cgd }
566 1.1 cgd
567 1.1 cgd /*
568 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
569 1.63 thorpej * timer_*() family of routines are supported.
570 1.1 cgd *
571 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
572 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
573 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
574 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
575 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
576 1.63 thorpej * syscall.
577 1.1 cgd *
578 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
579 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
580 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
581 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
582 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
583 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
584 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
585 1.63 thorpej * given below), to be delayed in real time past when it is supposed
586 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
587 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
588 1.63 thorpej * compute the next time in absolute time the timer should go off. */
589 1.63 thorpej
590 1.63 thorpej /* Allocate a POSIX realtime timer. */
591 1.63 thorpej int
592 1.135 dsl sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap, register_t *retval)
593 1.63 thorpej {
594 1.135 dsl /* {
595 1.63 thorpej syscallarg(clockid_t) clock_id;
596 1.63 thorpej syscallarg(struct sigevent *) evp;
597 1.63 thorpej syscallarg(timer_t *) timerid;
598 1.135 dsl } */
599 1.92 cube
600 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
601 1.105 ad SCARG(uap, evp), copyin, l);
602 1.92 cube }
603 1.92 cube
604 1.92 cube int
605 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
606 1.105 ad copyin_t fetch_event, struct lwp *l)
607 1.92 cube {
608 1.92 cube int error;
609 1.92 cube timer_t timerid;
610 1.63 thorpej struct ptimer *pt;
611 1.105 ad struct proc *p;
612 1.105 ad
613 1.105 ad p = l->l_proc;
614 1.63 thorpej
615 1.63 thorpej if (id < CLOCK_REALTIME ||
616 1.63 thorpej id > CLOCK_PROF)
617 1.63 thorpej return (EINVAL);
618 1.63 thorpej
619 1.63 thorpej if (p->p_timers == NULL)
620 1.63 thorpej timers_alloc(p);
621 1.63 thorpej
622 1.63 thorpej /* Find a free timer slot, skipping those reserved for setitimer(). */
623 1.63 thorpej for (timerid = 3; timerid < TIMER_MAX; timerid++)
624 1.63 thorpej if (p->p_timers->pts_timers[timerid] == NULL)
625 1.63 thorpej break;
626 1.63 thorpej
627 1.63 thorpej if (timerid == TIMER_MAX)
628 1.63 thorpej return EAGAIN;
629 1.63 thorpej
630 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
631 1.63 thorpej if (evp) {
632 1.63 thorpej if (((error =
633 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
634 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
635 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
636 1.63 thorpej pool_put(&ptimer_pool, pt);
637 1.63 thorpej return (error ? error : EINVAL);
638 1.63 thorpej }
639 1.63 thorpej } else {
640 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
641 1.63 thorpej switch (id) {
642 1.63 thorpej case CLOCK_REALTIME:
643 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
644 1.63 thorpej break;
645 1.63 thorpej case CLOCK_VIRTUAL:
646 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
647 1.63 thorpej break;
648 1.63 thorpej case CLOCK_PROF:
649 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
650 1.63 thorpej break;
651 1.63 thorpej }
652 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
653 1.63 thorpej }
654 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
655 1.73 christos pt->pt_info.ksi_errno = 0;
656 1.73 christos pt->pt_info.ksi_code = 0;
657 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
658 1.105 ad pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
659 1.124 christos pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
660 1.63 thorpej
661 1.63 thorpej pt->pt_type = id;
662 1.63 thorpej pt->pt_proc = p;
663 1.63 thorpej pt->pt_overruns = 0;
664 1.63 thorpej pt->pt_poverruns = 0;
665 1.64 nathanw pt->pt_entry = timerid;
666 1.63 thorpej timerclear(&pt->pt_time.it_value);
667 1.63 thorpej if (id == CLOCK_REALTIME)
668 1.125 ad callout_init(&pt->pt_ch, 0);
669 1.63 thorpej else
670 1.63 thorpej pt->pt_active = 0;
671 1.63 thorpej
672 1.63 thorpej p->p_timers->pts_timers[timerid] = pt;
673 1.63 thorpej
674 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
675 1.63 thorpej }
676 1.63 thorpej
677 1.63 thorpej /* Delete a POSIX realtime timer */
678 1.3 andrew int
679 1.135 dsl sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap, register_t *retval)
680 1.15 thorpej {
681 1.135 dsl /* {
682 1.63 thorpej syscallarg(timer_t) timerid;
683 1.135 dsl } */
684 1.63 thorpej struct proc *p = l->l_proc;
685 1.65 jdolecek timer_t timerid;
686 1.63 thorpej struct ptimer *pt, *ptn;
687 1.1 cgd int s;
688 1.1 cgd
689 1.63 thorpej timerid = SCARG(uap, timerid);
690 1.63 thorpej
691 1.63 thorpej if ((p->p_timers == NULL) ||
692 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
693 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
694 1.1 cgd return (EINVAL);
695 1.63 thorpej
696 1.125 ad if (pt->pt_type == CLOCK_REALTIME) {
697 1.63 thorpej callout_stop(&pt->pt_ch);
698 1.125 ad callout_destroy(&pt->pt_ch);
699 1.125 ad } else if (pt->pt_active) {
700 1.63 thorpej s = splclock();
701 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
702 1.63 thorpej LIST_REMOVE(pt, pt_list);
703 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
704 1.63 thorpej timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
705 1.63 thorpej &ptn->pt_time.it_value);
706 1.63 thorpej splx(s);
707 1.63 thorpej }
708 1.63 thorpej
709 1.63 thorpej p->p_timers->pts_timers[timerid] = NULL;
710 1.63 thorpej pool_put(&ptimer_pool, pt);
711 1.63 thorpej
712 1.63 thorpej return (0);
713 1.63 thorpej }
714 1.63 thorpej
715 1.63 thorpej /*
716 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
717 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
718 1.67 nathanw * time for virtual timers.
719 1.63 thorpej * Must be called at splclock().
720 1.63 thorpej */
721 1.63 thorpej void
722 1.63 thorpej timer_settime(struct ptimer *pt)
723 1.63 thorpej {
724 1.63 thorpej struct ptimer *ptn, *pptn;
725 1.63 thorpej struct ptlist *ptl;
726 1.63 thorpej
727 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
728 1.63 thorpej callout_stop(&pt->pt_ch);
729 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
730 1.63 thorpej /*
731 1.63 thorpej * Don't need to check hzto() return value, here.
732 1.63 thorpej * callout_reset() does it for us.
733 1.63 thorpej */
734 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
735 1.63 thorpej realtimerexpire, pt);
736 1.63 thorpej }
737 1.63 thorpej } else {
738 1.63 thorpej if (pt->pt_active) {
739 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
740 1.63 thorpej LIST_REMOVE(pt, pt_list);
741 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
742 1.63 thorpej timeradd(&pt->pt_time.it_value,
743 1.63 thorpej &ptn->pt_time.it_value,
744 1.63 thorpej &ptn->pt_time.it_value);
745 1.63 thorpej }
746 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
747 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
748 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
749 1.63 thorpej else
750 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
751 1.63 thorpej
752 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
753 1.63 thorpej ptn && timercmp(&pt->pt_time.it_value,
754 1.63 thorpej &ptn->pt_time.it_value, >);
755 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
756 1.63 thorpej timersub(&pt->pt_time.it_value,
757 1.63 thorpej &ptn->pt_time.it_value,
758 1.63 thorpej &pt->pt_time.it_value);
759 1.63 thorpej
760 1.63 thorpej if (pptn)
761 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
762 1.63 thorpej else
763 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
764 1.63 thorpej
765 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
766 1.63 thorpej timersub(&ptn->pt_time.it_value,
767 1.63 thorpej &pt->pt_time.it_value,
768 1.63 thorpej &ptn->pt_time.it_value);
769 1.63 thorpej
770 1.63 thorpej pt->pt_active = 1;
771 1.63 thorpej } else
772 1.63 thorpej pt->pt_active = 0;
773 1.63 thorpej }
774 1.63 thorpej }
775 1.63 thorpej
776 1.63 thorpej void
777 1.63 thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
778 1.63 thorpej {
779 1.101 kardel #ifdef __HAVE_TIMECOUNTER
780 1.101 kardel struct timeval now;
781 1.101 kardel #endif
782 1.63 thorpej struct ptimer *ptn;
783 1.63 thorpej
784 1.63 thorpej *aitv = pt->pt_time;
785 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
786 1.1 cgd /*
787 1.12 mycroft * Convert from absolute to relative time in .it_value
788 1.63 thorpej * part of real time timer. If time for real time
789 1.63 thorpej * timer has passed return 0, else return difference
790 1.63 thorpej * between current time and time for the timer to go
791 1.63 thorpej * off.
792 1.1 cgd */
793 1.63 thorpej if (timerisset(&aitv->it_value)) {
794 1.101 kardel #ifdef __HAVE_TIMECOUNTER
795 1.101 kardel getmicrotime(&now);
796 1.101 kardel if (timercmp(&aitv->it_value, &now, <))
797 1.101 kardel timerclear(&aitv->it_value);
798 1.101 kardel else
799 1.101 kardel timersub(&aitv->it_value, &now,
800 1.101 kardel &aitv->it_value);
801 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
802 1.63 thorpej if (timercmp(&aitv->it_value, &time, <))
803 1.63 thorpej timerclear(&aitv->it_value);
804 1.1 cgd else
805 1.63 thorpej timersub(&aitv->it_value, &time,
806 1.63 thorpej &aitv->it_value);
807 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
808 1.36 thorpej }
809 1.63 thorpej } else if (pt->pt_active) {
810 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
811 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
812 1.63 thorpej else
813 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
814 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
815 1.63 thorpej timeradd(&aitv->it_value,
816 1.63 thorpej &ptn->pt_time.it_value, &aitv->it_value);
817 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
818 1.1 cgd } else
819 1.63 thorpej timerclear(&aitv->it_value);
820 1.63 thorpej }
821 1.63 thorpej
822 1.63 thorpej
823 1.63 thorpej
824 1.63 thorpej /* Set and arm a POSIX realtime timer */
825 1.63 thorpej int
826 1.135 dsl sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap, register_t *retval)
827 1.63 thorpej {
828 1.135 dsl /* {
829 1.63 thorpej syscallarg(timer_t) timerid;
830 1.63 thorpej syscallarg(int) flags;
831 1.63 thorpej syscallarg(const struct itimerspec *) value;
832 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
833 1.135 dsl } */
834 1.92 cube int error;
835 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
836 1.92 cube
837 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
838 1.92 cube sizeof(struct itimerspec))) != 0)
839 1.92 cube return (error);
840 1.92 cube
841 1.92 cube if (SCARG(uap, ovalue))
842 1.92 cube ovp = &ovalue;
843 1.92 cube
844 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
845 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
846 1.92 cube return error;
847 1.92 cube
848 1.92 cube if (ovp)
849 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
850 1.92 cube sizeof(struct itimerspec));
851 1.92 cube return 0;
852 1.92 cube }
853 1.92 cube
854 1.92 cube int
855 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
856 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
857 1.92 cube {
858 1.101 kardel #ifdef __HAVE_TIMECOUNTER
859 1.101 kardel struct timeval now;
860 1.101 kardel #endif
861 1.63 thorpej struct itimerval val, oval;
862 1.63 thorpej struct ptimer *pt;
863 1.101 kardel int s;
864 1.63 thorpej
865 1.63 thorpej if ((p->p_timers == NULL) ||
866 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
867 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
868 1.63 thorpej return (EINVAL);
869 1.63 thorpej
870 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
871 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
872 1.63 thorpej if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
873 1.63 thorpej return (EINVAL);
874 1.63 thorpej
875 1.63 thorpej oval = pt->pt_time;
876 1.63 thorpej pt->pt_time = val;
877 1.63 thorpej
878 1.63 thorpej s = splclock();
879 1.67 nathanw /*
880 1.67 nathanw * If we've been passed a relative time for a realtime timer,
881 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
882 1.67 nathanw * timer, convert it to relative and make sure we don't set it
883 1.67 nathanw * to zero, which would cancel the timer, or let it go
884 1.67 nathanw * negative, which would confuse the comparison tests.
885 1.67 nathanw */
886 1.67 nathanw if (timerisset(&pt->pt_time.it_value)) {
887 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
888 1.101 kardel #ifdef __HAVE_TIMECOUNTER
889 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
890 1.101 kardel getmicrotime(&now);
891 1.101 kardel timeradd(&pt->pt_time.it_value, &now,
892 1.101 kardel &pt->pt_time.it_value);
893 1.101 kardel }
894 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
895 1.92 cube if ((flags & TIMER_ABSTIME) == 0)
896 1.67 nathanw timeradd(&pt->pt_time.it_value, &time,
897 1.67 nathanw &pt->pt_time.it_value);
898 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
899 1.67 nathanw } else {
900 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
901 1.101 kardel #ifdef __HAVE_TIMECOUNTER
902 1.101 kardel getmicrotime(&now);
903 1.101 kardel timersub(&pt->pt_time.it_value, &now,
904 1.101 kardel &pt->pt_time.it_value);
905 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
906 1.67 nathanw timersub(&pt->pt_time.it_value, &time,
907 1.67 nathanw &pt->pt_time.it_value);
908 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
909 1.67 nathanw if (!timerisset(&pt->pt_time.it_value) ||
910 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
911 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
912 1.67 nathanw pt->pt_time.it_value.tv_usec = 1;
913 1.67 nathanw }
914 1.67 nathanw }
915 1.67 nathanw }
916 1.67 nathanw }
917 1.67 nathanw
918 1.63 thorpej timer_settime(pt);
919 1.63 thorpej splx(s);
920 1.63 thorpej
921 1.92 cube if (ovalue) {
922 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
923 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
924 1.63 thorpej }
925 1.63 thorpej
926 1.63 thorpej return (0);
927 1.63 thorpej }
928 1.63 thorpej
929 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
930 1.63 thorpej int
931 1.135 dsl sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap, register_t *retval)
932 1.63 thorpej {
933 1.135 dsl /* {
934 1.63 thorpej syscallarg(timer_t) timerid;
935 1.63 thorpej syscallarg(struct itimerspec *) value;
936 1.135 dsl } */
937 1.63 thorpej struct itimerspec its;
938 1.92 cube int error;
939 1.92 cube
940 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
941 1.92 cube &its)) != 0)
942 1.92 cube return error;
943 1.92 cube
944 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
945 1.92 cube }
946 1.92 cube
947 1.92 cube int
948 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
949 1.92 cube {
950 1.92 cube int s;
951 1.63 thorpej struct ptimer *pt;
952 1.92 cube struct itimerval aitv;
953 1.63 thorpej
954 1.63 thorpej if ((p->p_timers == NULL) ||
955 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
956 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
957 1.63 thorpej return (EINVAL);
958 1.63 thorpej
959 1.63 thorpej s = splclock();
960 1.63 thorpej timer_gettime(pt, &aitv);
961 1.1 cgd splx(s);
962 1.63 thorpej
963 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
964 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
965 1.63 thorpej
966 1.92 cube return 0;
967 1.63 thorpej }
968 1.63 thorpej
969 1.63 thorpej /*
970 1.63 thorpej * Return the count of the number of times a periodic timer expired
971 1.63 thorpej * while a notification was already pending. The counter is reset when
972 1.63 thorpej * a timer expires and a notification can be posted.
973 1.63 thorpej */
974 1.63 thorpej int
975 1.135 dsl sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap, register_t *retval)
976 1.63 thorpej {
977 1.135 dsl /* {
978 1.63 thorpej syscallarg(timer_t) timerid;
979 1.135 dsl } */
980 1.63 thorpej struct proc *p = l->l_proc;
981 1.63 thorpej int timerid;
982 1.63 thorpej struct ptimer *pt;
983 1.63 thorpej
984 1.63 thorpej timerid = SCARG(uap, timerid);
985 1.63 thorpej
986 1.63 thorpej if ((p->p_timers == NULL) ||
987 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
988 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
989 1.63 thorpej return (EINVAL);
990 1.63 thorpej
991 1.63 thorpej *retval = pt->pt_poverruns;
992 1.63 thorpej
993 1.63 thorpej return (0);
994 1.63 thorpej }
995 1.63 thorpej
996 1.63 thorpej /*
997 1.63 thorpej * Real interval timer expired:
998 1.63 thorpej * send process whose timer expired an alarm signal.
999 1.63 thorpej * If time is not set up to reload, then just return.
1000 1.63 thorpej * Else compute next time timer should go off which is > current time.
1001 1.63 thorpej * This is where delay in processing this timeout causes multiple
1002 1.63 thorpej * SIGALRM calls to be compressed into one.
1003 1.63 thorpej */
1004 1.63 thorpej void
1005 1.63 thorpej realtimerexpire(void *arg)
1006 1.63 thorpej {
1007 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1008 1.101 kardel struct timeval now;
1009 1.101 kardel #endif
1010 1.63 thorpej struct ptimer *pt;
1011 1.63 thorpej int s;
1012 1.63 thorpej
1013 1.63 thorpej pt = (struct ptimer *)arg;
1014 1.63 thorpej
1015 1.63 thorpej itimerfire(pt);
1016 1.63 thorpej
1017 1.63 thorpej if (!timerisset(&pt->pt_time.it_interval)) {
1018 1.63 thorpej timerclear(&pt->pt_time.it_value);
1019 1.63 thorpej return;
1020 1.63 thorpej }
1021 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1022 1.101 kardel for (;;) {
1023 1.101 kardel s = splclock(); /* XXX need spl now? */
1024 1.101 kardel timeradd(&pt->pt_time.it_value,
1025 1.101 kardel &pt->pt_time.it_interval, &pt->pt_time.it_value);
1026 1.101 kardel getmicrotime(&now);
1027 1.101 kardel if (timercmp(&pt->pt_time.it_value, &now, >)) {
1028 1.101 kardel /*
1029 1.101 kardel * Don't need to check hzto() return value, here.
1030 1.101 kardel * callout_reset() does it for us.
1031 1.101 kardel */
1032 1.101 kardel callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1033 1.101 kardel realtimerexpire, pt);
1034 1.101 kardel splx(s);
1035 1.101 kardel return;
1036 1.101 kardel }
1037 1.101 kardel splx(s);
1038 1.101 kardel pt->pt_overruns++;
1039 1.101 kardel }
1040 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1041 1.63 thorpej for (;;) {
1042 1.63 thorpej s = splclock();
1043 1.63 thorpej timeradd(&pt->pt_time.it_value,
1044 1.63 thorpej &pt->pt_time.it_interval, &pt->pt_time.it_value);
1045 1.63 thorpej if (timercmp(&pt->pt_time.it_value, &time, >)) {
1046 1.63 thorpej /*
1047 1.63 thorpej * Don't need to check hzto() return value, here.
1048 1.63 thorpej * callout_reset() does it for us.
1049 1.63 thorpej */
1050 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1051 1.63 thorpej realtimerexpire, pt);
1052 1.63 thorpej splx(s);
1053 1.63 thorpej return;
1054 1.63 thorpej }
1055 1.63 thorpej splx(s);
1056 1.63 thorpej pt->pt_overruns++;
1057 1.63 thorpej }
1058 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1059 1.63 thorpej }
1060 1.63 thorpej
1061 1.63 thorpej /* BSD routine to get the value of an interval timer. */
1062 1.63 thorpej /* ARGSUSED */
1063 1.63 thorpej int
1064 1.135 dsl sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap, register_t *retval)
1065 1.63 thorpej {
1066 1.135 dsl /* {
1067 1.63 thorpej syscallarg(int) which;
1068 1.63 thorpej syscallarg(struct itimerval *) itv;
1069 1.135 dsl } */
1070 1.63 thorpej struct proc *p = l->l_proc;
1071 1.63 thorpej struct itimerval aitv;
1072 1.91 cube int error;
1073 1.91 cube
1074 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
1075 1.91 cube if (error)
1076 1.91 cube return error;
1077 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1078 1.91 cube }
1079 1.63 thorpej
1080 1.91 cube int
1081 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1082 1.91 cube {
1083 1.91 cube int s;
1084 1.63 thorpej
1085 1.63 thorpej if ((u_int)which > ITIMER_PROF)
1086 1.63 thorpej return (EINVAL);
1087 1.63 thorpej
1088 1.63 thorpej if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1089 1.91 cube timerclear(&itvp->it_value);
1090 1.91 cube timerclear(&itvp->it_interval);
1091 1.63 thorpej } else {
1092 1.63 thorpej s = splclock();
1093 1.91 cube timer_gettime(p->p_timers->pts_timers[which], itvp);
1094 1.63 thorpej splx(s);
1095 1.63 thorpej }
1096 1.63 thorpej
1097 1.91 cube return 0;
1098 1.1 cgd }
1099 1.1 cgd
1100 1.63 thorpej /* BSD routine to set/arm an interval timer. */
1101 1.1 cgd /* ARGSUSED */
1102 1.3 andrew int
1103 1.135 dsl sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap, register_t *retval)
1104 1.15 thorpej {
1105 1.135 dsl /* {
1106 1.30 mycroft syscallarg(int) which;
1107 1.24 cgd syscallarg(const struct itimerval *) itv;
1108 1.11 cgd syscallarg(struct itimerval *) oitv;
1109 1.135 dsl } */
1110 1.63 thorpej struct proc *p = l->l_proc;
1111 1.30 mycroft int which = SCARG(uap, which);
1112 1.21 cgd struct sys_getitimer_args getargs;
1113 1.91 cube const struct itimerval *itvp;
1114 1.1 cgd struct itimerval aitv;
1115 1.91 cube int error;
1116 1.1 cgd
1117 1.30 mycroft if ((u_int)which > ITIMER_PROF)
1118 1.1 cgd return (EINVAL);
1119 1.11 cgd itvp = SCARG(uap, itv);
1120 1.63 thorpej if (itvp &&
1121 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1122 1.1 cgd return (error);
1123 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1124 1.30 mycroft SCARG(&getargs, which) = which;
1125 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1126 1.63 thorpej if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1127 1.21 cgd return (error);
1128 1.21 cgd }
1129 1.1 cgd if (itvp == 0)
1130 1.1 cgd return (0);
1131 1.91 cube
1132 1.91 cube return dosetitimer(p, which, &aitv);
1133 1.91 cube }
1134 1.91 cube
1135 1.91 cube int
1136 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1137 1.91 cube {
1138 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1139 1.101 kardel struct timeval now;
1140 1.101 kardel #endif
1141 1.91 cube struct ptimer *pt;
1142 1.91 cube int s;
1143 1.91 cube
1144 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1145 1.1 cgd return (EINVAL);
1146 1.63 thorpej
1147 1.63 thorpej /*
1148 1.63 thorpej * Don't bother allocating data structures if the process just
1149 1.63 thorpej * wants to clear the timer.
1150 1.63 thorpej */
1151 1.91 cube if (!timerisset(&itvp->it_value) &&
1152 1.63 thorpej ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1153 1.63 thorpej return (0);
1154 1.63 thorpej
1155 1.63 thorpej if (p->p_timers == NULL)
1156 1.63 thorpej timers_alloc(p);
1157 1.63 thorpej if (p->p_timers->pts_timers[which] == NULL) {
1158 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
1159 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1160 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1161 1.63 thorpej pt->pt_overruns = 0;
1162 1.63 thorpej pt->pt_proc = p;
1163 1.63 thorpej pt->pt_type = which;
1164 1.64 nathanw pt->pt_entry = which;
1165 1.63 thorpej switch (which) {
1166 1.63 thorpej case ITIMER_REAL:
1167 1.125 ad callout_init(&pt->pt_ch, 0);
1168 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1169 1.63 thorpej break;
1170 1.63 thorpej case ITIMER_VIRTUAL:
1171 1.63 thorpej pt->pt_active = 0;
1172 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1173 1.63 thorpej break;
1174 1.63 thorpej case ITIMER_PROF:
1175 1.63 thorpej pt->pt_active = 0;
1176 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1177 1.63 thorpej break;
1178 1.1 cgd }
1179 1.1 cgd } else
1180 1.63 thorpej pt = p->p_timers->pts_timers[which];
1181 1.63 thorpej
1182 1.91 cube pt->pt_time = *itvp;
1183 1.63 thorpej p->p_timers->pts_timers[which] = pt;
1184 1.63 thorpej
1185 1.63 thorpej s = splclock();
1186 1.67 nathanw if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1187 1.67 nathanw /* Convert to absolute time */
1188 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1189 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1190 1.101 kardel getmicrotime(&now);
1191 1.101 kardel timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1192 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1193 1.67 nathanw timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1194 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1195 1.67 nathanw }
1196 1.63 thorpej timer_settime(pt);
1197 1.1 cgd splx(s);
1198 1.63 thorpej
1199 1.1 cgd return (0);
1200 1.1 cgd }
1201 1.1 cgd
1202 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1203 1.63 thorpej void
1204 1.63 thorpej timers_alloc(struct proc *p)
1205 1.63 thorpej {
1206 1.63 thorpej int i;
1207 1.63 thorpej struct ptimers *pts;
1208 1.63 thorpej
1209 1.100 yamt pts = pool_get(&ptimers_pool, PR_WAITOK);
1210 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1211 1.63 thorpej LIST_INIT(&pts->pts_prof);
1212 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1213 1.63 thorpej pts->pts_timers[i] = NULL;
1214 1.64 nathanw pts->pts_fired = 0;
1215 1.63 thorpej p->p_timers = pts;
1216 1.63 thorpej }
1217 1.63 thorpej
1218 1.1 cgd /*
1219 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1220 1.63 thorpej * then clean up all timers and free all the data structures. If
1221 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1222 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1223 1.63 thorpej * structure if none of those remain.
1224 1.1 cgd */
1225 1.3 andrew void
1226 1.63 thorpej timers_free(struct proc *p, int which)
1227 1.6 cgd {
1228 1.63 thorpej int i, s;
1229 1.63 thorpej struct ptimers *pts;
1230 1.63 thorpej struct ptimer *pt, *ptn;
1231 1.63 thorpej struct timeval tv;
1232 1.63 thorpej
1233 1.63 thorpej if (p->p_timers) {
1234 1.63 thorpej pts = p->p_timers;
1235 1.63 thorpej if (which == TIMERS_ALL)
1236 1.63 thorpej i = 0;
1237 1.63 thorpej else {
1238 1.63 thorpej s = splclock();
1239 1.63 thorpej timerclear(&tv);
1240 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1241 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1242 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1243 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1244 1.63 thorpej LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1245 1.63 thorpej if (ptn) {
1246 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1247 1.63 thorpej &ptn->pt_time.it_value);
1248 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1249 1.63 thorpej ptn, pt_list);
1250 1.63 thorpej }
1251 1.63 thorpej
1252 1.63 thorpej timerclear(&tv);
1253 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1254 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_PROF];
1255 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1256 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1257 1.63 thorpej LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1258 1.63 thorpej if (ptn) {
1259 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1260 1.63 thorpej &ptn->pt_time.it_value);
1261 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1262 1.63 thorpej pt_list);
1263 1.63 thorpej }
1264 1.1 cgd splx(s);
1265 1.63 thorpej i = 3;
1266 1.63 thorpej }
1267 1.63 thorpej for ( ; i < TIMER_MAX; i++)
1268 1.63 thorpej if ((pt = pts->pts_timers[i]) != NULL) {
1269 1.125 ad if (pt->pt_type == CLOCK_REALTIME) {
1270 1.63 thorpej callout_stop(&pt->pt_ch);
1271 1.125 ad callout_destroy(&pt->pt_ch);
1272 1.125 ad }
1273 1.63 thorpej pts->pts_timers[i] = NULL;
1274 1.63 thorpej pool_put(&ptimer_pool, pt);
1275 1.63 thorpej }
1276 1.63 thorpej if ((pts->pts_timers[0] == NULL) &&
1277 1.63 thorpej (pts->pts_timers[1] == NULL) &&
1278 1.63 thorpej (pts->pts_timers[2] == NULL)) {
1279 1.63 thorpej p->p_timers = NULL;
1280 1.97 simonb pool_put(&ptimers_pool, pts);
1281 1.1 cgd }
1282 1.1 cgd }
1283 1.1 cgd }
1284 1.1 cgd
1285 1.1 cgd /*
1286 1.1 cgd * Decrement an interval timer by a specified number
1287 1.1 cgd * of microseconds, which must be less than a second,
1288 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1289 1.1 cgd * it. In this case, carry over (usec - old value) to
1290 1.8 cgd * reduce the value reloaded into the timer so that
1291 1.1 cgd * the timer does not drift. This routine assumes
1292 1.1 cgd * that it is called in a context where the timers
1293 1.1 cgd * on which it is operating cannot change in value.
1294 1.1 cgd */
1295 1.3 andrew int
1296 1.63 thorpej itimerdecr(struct ptimer *pt, int usec)
1297 1.63 thorpej {
1298 1.45 augustss struct itimerval *itp;
1299 1.1 cgd
1300 1.63 thorpej itp = &pt->pt_time;
1301 1.1 cgd if (itp->it_value.tv_usec < usec) {
1302 1.1 cgd if (itp->it_value.tv_sec == 0) {
1303 1.1 cgd /* expired, and already in next interval */
1304 1.1 cgd usec -= itp->it_value.tv_usec;
1305 1.1 cgd goto expire;
1306 1.1 cgd }
1307 1.1 cgd itp->it_value.tv_usec += 1000000;
1308 1.1 cgd itp->it_value.tv_sec--;
1309 1.1 cgd }
1310 1.1 cgd itp->it_value.tv_usec -= usec;
1311 1.1 cgd usec = 0;
1312 1.1 cgd if (timerisset(&itp->it_value))
1313 1.1 cgd return (1);
1314 1.1 cgd /* expired, exactly at end of interval */
1315 1.1 cgd expire:
1316 1.1 cgd if (timerisset(&itp->it_interval)) {
1317 1.1 cgd itp->it_value = itp->it_interval;
1318 1.1 cgd itp->it_value.tv_usec -= usec;
1319 1.1 cgd if (itp->it_value.tv_usec < 0) {
1320 1.1 cgd itp->it_value.tv_usec += 1000000;
1321 1.1 cgd itp->it_value.tv_sec--;
1322 1.1 cgd }
1323 1.63 thorpej timer_settime(pt);
1324 1.1 cgd } else
1325 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1326 1.1 cgd return (0);
1327 1.42 cgd }
1328 1.42 cgd
1329 1.63 thorpej void
1330 1.63 thorpej itimerfire(struct ptimer *pt)
1331 1.63 thorpej {
1332 1.63 thorpej struct proc *p = pt->pt_proc;
1333 1.78 cl
1334 1.63 thorpej if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1335 1.63 thorpej /*
1336 1.63 thorpej * No RT signal infrastructure exists at this time;
1337 1.63 thorpej * just post the signal number and throw away the
1338 1.63 thorpej * value.
1339 1.63 thorpej */
1340 1.113 ad if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1341 1.63 thorpej pt->pt_overruns++;
1342 1.63 thorpej else {
1343 1.75 christos ksiginfo_t ksi;
1344 1.111 yamt KSI_INIT(&ksi);
1345 1.75 christos ksi.ksi_signo = pt->pt_ev.sigev_signo;
1346 1.75 christos ksi.ksi_code = SI_TIMER;
1347 1.124 christos ksi.ksi_value = pt->pt_ev.sigev_value;
1348 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1349 1.63 thorpej pt->pt_overruns = 0;
1350 1.113 ad mutex_enter(&proclist_mutex);
1351 1.75 christos kpsignal(p, &ksi, NULL);
1352 1.113 ad mutex_exit(&proclist_mutex);
1353 1.64 nathanw }
1354 1.63 thorpej }
1355 1.63 thorpej }
1356 1.63 thorpej
1357 1.42 cgd /*
1358 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1359 1.42 cgd * for usage and rationale.
1360 1.42 cgd */
1361 1.42 cgd int
1362 1.63 thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1363 1.42 cgd {
1364 1.49 itojun struct timeval tv, delta;
1365 1.101 kardel int rv = 0;
1366 1.101 kardel #ifndef __HAVE_TIMECOUNTER
1367 1.101 kardel int s;
1368 1.101 kardel #endif
1369 1.42 cgd
1370 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1371 1.101 kardel getmicrouptime(&tv);
1372 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1373 1.63 thorpej s = splclock();
1374 1.49 itojun tv = mono_time;
1375 1.49 itojun splx(s);
1376 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1377 1.49 itojun timersub(&tv, lasttime, &delta);
1378 1.42 cgd
1379 1.42 cgd /*
1380 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1381 1.42 cgd * even if interval is huge.
1382 1.42 cgd */
1383 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1384 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1385 1.49 itojun *lasttime = tv;
1386 1.42 cgd rv = 1;
1387 1.42 cgd }
1388 1.50 itojun
1389 1.50 itojun return (rv);
1390 1.50 itojun }
1391 1.50 itojun
1392 1.50 itojun /*
1393 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1394 1.50 itojun */
1395 1.50 itojun int
1396 1.63 thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1397 1.50 itojun {
1398 1.50 itojun struct timeval tv, delta;
1399 1.101 kardel int rv;
1400 1.101 kardel #ifndef __HAVE_TIMECOUNTER
1401 1.101 kardel int s;
1402 1.101 kardel #endif
1403 1.50 itojun
1404 1.101 kardel #ifdef __HAVE_TIMECOUNTER
1405 1.101 kardel getmicrouptime(&tv);
1406 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
1407 1.63 thorpej s = splclock();
1408 1.50 itojun tv = mono_time;
1409 1.50 itojun splx(s);
1410 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
1411 1.50 itojun timersub(&tv, lasttime, &delta);
1412 1.50 itojun
1413 1.50 itojun /*
1414 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1415 1.50 itojun * if more than one second have passed since the last update of
1416 1.50 itojun * lasttime, reset the counter.
1417 1.50 itojun *
1418 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1419 1.50 itojun * try to use *curpps for stat purposes as well.
1420 1.50 itojun */
1421 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1422 1.50 itojun delta.tv_sec >= 1) {
1423 1.50 itojun *lasttime = tv;
1424 1.50 itojun *curpps = 0;
1425 1.69 dyoung }
1426 1.69 dyoung if (maxpps < 0)
1427 1.53 itojun rv = 1;
1428 1.53 itojun else if (*curpps < maxpps)
1429 1.50 itojun rv = 1;
1430 1.50 itojun else
1431 1.50 itojun rv = 0;
1432 1.50 itojun
1433 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1434 1.50 itojun /* be careful about wrap-around */
1435 1.50 itojun if (*curpps + 1 > *curpps)
1436 1.50 itojun *curpps = *curpps + 1;
1437 1.50 itojun #else
1438 1.50 itojun /*
1439 1.50 itojun * assume that there's not too many calls to this function.
1440 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1441 1.50 itojun * behavior, not the behavior of this function.
1442 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1443 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1444 1.50 itojun */
1445 1.50 itojun *curpps = *curpps + 1;
1446 1.50 itojun #endif
1447 1.42 cgd
1448 1.42 cgd return (rv);
1449 1.1 cgd }
1450