kern_time.c revision 1.136 1 1.136 yamt /* $NetBSD: kern_time.c,v 1.136 2007/12/22 00:35:32 yamt Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.131 ad * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.72 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 cgd * may be used to endorse or promote products derived from this software
53 1.1 cgd * without specific prior written permission.
54 1.1 cgd *
55 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 cgd * SUCH DAMAGE.
66 1.1 cgd *
67 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 1.1 cgd */
69 1.58 lukem
70 1.58 lukem #include <sys/cdefs.h>
71 1.136 yamt __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.136 2007/12/22 00:35:32 yamt Exp $");
72 1.1 cgd
73 1.5 mycroft #include <sys/param.h>
74 1.5 mycroft #include <sys/resourcevar.h>
75 1.5 mycroft #include <sys/kernel.h>
76 1.8 cgd #include <sys/systm.h>
77 1.5 mycroft #include <sys/proc.h>
78 1.8 cgd #include <sys/vnode.h>
79 1.17 christos #include <sys/signalvar.h>
80 1.25 perry #include <sys/syslog.h>
81 1.101 kardel #include <sys/timetc.h>
82 1.99 elad #include <sys/kauth.h>
83 1.1 cgd
84 1.11 cgd #include <sys/mount.h>
85 1.11 cgd #include <sys/syscallargs.h>
86 1.19 christos
87 1.37 thorpej #include <uvm/uvm_extern.h>
88 1.37 thorpej
89 1.130 ad #include <sys/cpu.h>
90 1.23 cgd
91 1.131 ad kmutex_t time_lock;
92 1.131 ad
93 1.97 simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
94 1.118 ad &pool_allocator_nointr, IPL_NONE);
95 1.97 simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
96 1.118 ad &pool_allocator_nointr, IPL_NONE);
97 1.97 simonb
98 1.131 ad /*
99 1.131 ad * Initialize timekeeping.
100 1.131 ad */
101 1.131 ad void
102 1.131 ad time_init(void)
103 1.131 ad {
104 1.131 ad
105 1.131 ad mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
106 1.131 ad }
107 1.131 ad
108 1.63 thorpej /* Time of day and interval timer support.
109 1.1 cgd *
110 1.1 cgd * These routines provide the kernel entry points to get and set
111 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
112 1.1 cgd * here provide support for adding and subtracting timeval structures
113 1.1 cgd * and decrementing interval timers, optionally reloading the interval
114 1.1 cgd * timers when they expire.
115 1.1 cgd */
116 1.1 cgd
117 1.22 jtc /* This function is used by clock_settime and settimeofday */
118 1.132 elad static int
119 1.132 elad settime1(struct proc *p, struct timespec *ts, bool check_kauth)
120 1.22 jtc {
121 1.98 christos struct timeval delta, tv;
122 1.101 kardel struct timeval now;
123 1.101 kardel struct timespec ts1;
124 1.129 ad lwp_t *l;
125 1.129 ad int s;
126 1.22 jtc
127 1.98 christos TIMESPEC_TO_TIMEVAL(&tv, ts);
128 1.98 christos
129 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
130 1.129 ad s = splclock();
131 1.101 kardel microtime(&now);
132 1.101 kardel timersub(&tv, &now, &delta);
133 1.132 elad
134 1.134 elad if (check_kauth && kauth_authorize_system(kauth_cred_get(),
135 1.134 elad KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
136 1.132 elad KAUTH_ARG(check_kauth ? false : true)) != 0) {
137 1.129 ad splx(s);
138 1.29 tls return (EPERM);
139 1.55 tron }
140 1.132 elad
141 1.29 tls #ifdef notyet
142 1.109 elad if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
143 1.129 ad splx(s);
144 1.29 tls return (EPERM);
145 1.55 tron }
146 1.29 tls #endif
147 1.103 kardel
148 1.103 kardel TIMEVAL_TO_TIMESPEC(&tv, &ts1);
149 1.101 kardel tc_setclock(&ts1);
150 1.103 kardel
151 1.22 jtc timeradd(&boottime, &delta, &boottime);
152 1.103 kardel
153 1.47 thorpej /*
154 1.129 ad * XXXSMP: There is a short race between setting the time above
155 1.129 ad * and adjusting LWP's run times. Fixing this properly means
156 1.129 ad * pausing all CPUs while we adjust the clock.
157 1.47 thorpej */
158 1.129 ad mutex_enter(&proclist_lock);
159 1.129 ad LIST_FOREACH(l, &alllwp, l_list) {
160 1.129 ad lwp_lock(l);
161 1.129 ad timeradd(&l->l_stime, &delta, &l->l_stime);
162 1.129 ad lwp_unlock(l);
163 1.129 ad }
164 1.129 ad mutex_exit(&proclist_lock);
165 1.22 jtc resettodr();
166 1.129 ad splx(s);
167 1.129 ad
168 1.29 tls return (0);
169 1.22 jtc }
170 1.22 jtc
171 1.132 elad int
172 1.132 elad settime(struct proc *p, struct timespec *ts)
173 1.132 elad {
174 1.132 elad return (settime1(p, ts, true));
175 1.132 elad }
176 1.132 elad
177 1.22 jtc /* ARGSUSED */
178 1.22 jtc int
179 1.135 dsl sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap, register_t *retval)
180 1.22 jtc {
181 1.135 dsl /* {
182 1.22 jtc syscallarg(clockid_t) clock_id;
183 1.23 cgd syscallarg(struct timespec *) tp;
184 1.135 dsl } */
185 1.22 jtc clockid_t clock_id;
186 1.22 jtc struct timespec ats;
187 1.22 jtc
188 1.22 jtc clock_id = SCARG(uap, clock_id);
189 1.61 simonb switch (clock_id) {
190 1.61 simonb case CLOCK_REALTIME:
191 1.96 simonb nanotime(&ats);
192 1.61 simonb break;
193 1.61 simonb case CLOCK_MONOTONIC:
194 1.101 kardel nanouptime(&ats);
195 1.61 simonb break;
196 1.61 simonb default:
197 1.22 jtc return (EINVAL);
198 1.61 simonb }
199 1.22 jtc
200 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
201 1.22 jtc }
202 1.22 jtc
203 1.22 jtc /* ARGSUSED */
204 1.22 jtc int
205 1.135 dsl sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap, register_t *retval)
206 1.22 jtc {
207 1.135 dsl /* {
208 1.22 jtc syscallarg(clockid_t) clock_id;
209 1.23 cgd syscallarg(const struct timespec *) tp;
210 1.135 dsl } */
211 1.22 jtc
212 1.132 elad return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
213 1.132 elad true);
214 1.56 manu }
215 1.56 manu
216 1.56 manu
217 1.56 manu int
218 1.132 elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
219 1.132 elad bool check_kauth)
220 1.56 manu {
221 1.60 manu struct timespec ats;
222 1.56 manu int error;
223 1.56 manu
224 1.60 manu if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
225 1.60 manu return (error);
226 1.60 manu
227 1.61 simonb switch (clock_id) {
228 1.61 simonb case CLOCK_REALTIME:
229 1.132 elad if ((error = settime1(p, &ats, check_kauth)) != 0)
230 1.61 simonb return (error);
231 1.61 simonb break;
232 1.61 simonb case CLOCK_MONOTONIC:
233 1.61 simonb return (EINVAL); /* read-only clock */
234 1.61 simonb default:
235 1.56 manu return (EINVAL);
236 1.61 simonb }
237 1.22 jtc
238 1.22 jtc return 0;
239 1.22 jtc }
240 1.22 jtc
241 1.22 jtc int
242 1.135 dsl sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap, register_t *retval)
243 1.22 jtc {
244 1.135 dsl /* {
245 1.22 jtc syscallarg(clockid_t) clock_id;
246 1.23 cgd syscallarg(struct timespec *) tp;
247 1.135 dsl } */
248 1.22 jtc clockid_t clock_id;
249 1.22 jtc struct timespec ts;
250 1.22 jtc int error = 0;
251 1.22 jtc
252 1.22 jtc clock_id = SCARG(uap, clock_id);
253 1.61 simonb switch (clock_id) {
254 1.61 simonb case CLOCK_REALTIME:
255 1.61 simonb case CLOCK_MONOTONIC:
256 1.22 jtc ts.tv_sec = 0;
257 1.102 kardel if (tc_getfrequency() > 1000000000)
258 1.102 kardel ts.tv_nsec = 1;
259 1.102 kardel else
260 1.102 kardel ts.tv_nsec = 1000000000 / tc_getfrequency();
261 1.61 simonb break;
262 1.61 simonb default:
263 1.61 simonb return (EINVAL);
264 1.61 simonb }
265 1.22 jtc
266 1.61 simonb if (SCARG(uap, tp))
267 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
268 1.22 jtc
269 1.22 jtc return error;
270 1.22 jtc }
271 1.22 jtc
272 1.27 jtc /* ARGSUSED */
273 1.27 jtc int
274 1.135 dsl sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap, register_t *retval)
275 1.27 jtc {
276 1.135 dsl /* {
277 1.101 kardel syscallarg(struct timespec *) rqtp;
278 1.101 kardel syscallarg(struct timespec *) rmtp;
279 1.135 dsl } */
280 1.101 kardel struct timespec rmt, rqt;
281 1.120 dsl int error, error1;
282 1.101 kardel
283 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
284 1.101 kardel if (error)
285 1.101 kardel return (error);
286 1.101 kardel
287 1.120 dsl error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
288 1.120 dsl if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
289 1.120 dsl return error;
290 1.120 dsl
291 1.120 dsl error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
292 1.120 dsl return error1 ? error1 : error;
293 1.120 dsl }
294 1.120 dsl
295 1.120 dsl int
296 1.120 dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
297 1.120 dsl {
298 1.120 dsl int error, timo;
299 1.120 dsl
300 1.120 dsl if (itimespecfix(rqt))
301 1.101 kardel return (EINVAL);
302 1.101 kardel
303 1.120 dsl timo = tstohz(rqt);
304 1.101 kardel /*
305 1.101 kardel * Avoid inadvertantly sleeping forever
306 1.101 kardel */
307 1.101 kardel if (timo == 0)
308 1.101 kardel timo = 1;
309 1.101 kardel
310 1.123 dsl if (rmt != NULL)
311 1.123 dsl getnanouptime(rmt);
312 1.104 kardel
313 1.115 thorpej error = kpause("nanoslp", true, timo, NULL);
314 1.101 kardel if (error == ERESTART)
315 1.101 kardel error = EINTR;
316 1.101 kardel if (error == EWOULDBLOCK)
317 1.101 kardel error = 0;
318 1.101 kardel
319 1.120 dsl if (rmt!= NULL) {
320 1.104 kardel struct timespec rmtend;
321 1.101 kardel
322 1.104 kardel getnanouptime(&rmtend);
323 1.101 kardel
324 1.120 dsl timespecsub(&rmtend, rmt, rmt);
325 1.120 dsl timespecsub(rqt, rmt, rmt);
326 1.120 dsl if (rmt->tv_sec < 0)
327 1.120 dsl timespecclear(rmt);
328 1.101 kardel }
329 1.101 kardel
330 1.101 kardel return error;
331 1.27 jtc }
332 1.22 jtc
333 1.1 cgd /* ARGSUSED */
334 1.3 andrew int
335 1.135 dsl sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap, register_t *retval)
336 1.15 thorpej {
337 1.135 dsl /* {
338 1.11 cgd syscallarg(struct timeval *) tp;
339 1.135 dsl syscallarg(void *) tzp; really "struct timezone *";
340 1.135 dsl } */
341 1.1 cgd struct timeval atv;
342 1.1 cgd int error = 0;
343 1.25 perry struct timezone tzfake;
344 1.1 cgd
345 1.11 cgd if (SCARG(uap, tp)) {
346 1.1 cgd microtime(&atv);
347 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
348 1.17 christos if (error)
349 1.1 cgd return (error);
350 1.1 cgd }
351 1.25 perry if (SCARG(uap, tzp)) {
352 1.25 perry /*
353 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
354 1.25 perry * fake up a timezone struct and return it if demanded.
355 1.25 perry */
356 1.25 perry tzfake.tz_minuteswest = 0;
357 1.25 perry tzfake.tz_dsttime = 0;
358 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
359 1.25 perry }
360 1.1 cgd return (error);
361 1.1 cgd }
362 1.1 cgd
363 1.1 cgd /* ARGSUSED */
364 1.3 andrew int
365 1.135 dsl sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap, register_t *retval)
366 1.15 thorpej {
367 1.135 dsl /* {
368 1.24 cgd syscallarg(const struct timeval *) tv;
369 1.135 dsl syscallarg(const void *) tzp; really "const struct timezone *";
370 1.135 dsl } */
371 1.60 manu
372 1.119 dsl return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
373 1.60 manu }
374 1.60 manu
375 1.60 manu int
376 1.119 dsl settimeofday1(const struct timeval *utv, bool userspace,
377 1.119 dsl const void *utzp, struct lwp *l, bool check_kauth)
378 1.60 manu {
379 1.22 jtc struct timeval atv;
380 1.98 christos struct timespec ts;
381 1.22 jtc int error;
382 1.1 cgd
383 1.8 cgd /* Verify all parameters before changing time. */
384 1.119 dsl
385 1.25 perry /*
386 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
387 1.25 perry * obsolete program would try to set it, so we log a warning.
388 1.25 perry */
389 1.98 christos if (utzp)
390 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
391 1.119 dsl "(obsolete) kernel time zone\n", l->l_proc->p_pid);
392 1.98 christos
393 1.98 christos if (utv == NULL)
394 1.98 christos return 0;
395 1.98 christos
396 1.119 dsl if (userspace) {
397 1.119 dsl if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
398 1.119 dsl return error;
399 1.119 dsl utv = &atv;
400 1.119 dsl }
401 1.119 dsl
402 1.119 dsl TIMEVAL_TO_TIMESPEC(utv, &ts);
403 1.133 elad return settime1(l->l_proc, &ts, check_kauth);
404 1.1 cgd }
405 1.1 cgd
406 1.101 kardel #ifndef __HAVE_TIMECOUNTER
407 1.1 cgd int tickdelta; /* current clock skew, us. per tick */
408 1.1 cgd long timedelta; /* unapplied time correction, us. */
409 1.1 cgd long bigadj = 1000000; /* use 10x skew above bigadj us. */
410 1.101 kardel #endif
411 1.101 kardel
412 1.68 dsl int time_adjusted; /* set if an adjustment is made */
413 1.1 cgd
414 1.1 cgd /* ARGSUSED */
415 1.3 andrew int
416 1.135 dsl sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap, register_t *retval)
417 1.15 thorpej {
418 1.135 dsl /* {
419 1.24 cgd syscallarg(const struct timeval *) delta;
420 1.11 cgd syscallarg(struct timeval *) olddelta;
421 1.135 dsl } */
422 1.56 manu int error;
423 1.1 cgd
424 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
425 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
426 1.1 cgd return (error);
427 1.17 christos
428 1.105 ad return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
429 1.56 manu }
430 1.56 manu
431 1.56 manu int
432 1.110 yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
433 1.56 manu {
434 1.60 manu struct timeval atv;
435 1.101 kardel int error = 0;
436 1.101 kardel
437 1.101 kardel #ifdef __HAVE_TIMECOUNTER
438 1.101 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
439 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
440 1.56 manu long ndelta, ntickdelta, odelta;
441 1.56 manu int s;
442 1.101 kardel #endif /* !__HAVE_TIMECOUNTER */
443 1.101 kardel
444 1.101 kardel #ifdef __HAVE_TIMECOUNTER
445 1.101 kardel if (olddelta) {
446 1.101 kardel atv.tv_sec = time_adjtime / 1000000;
447 1.101 kardel atv.tv_usec = time_adjtime % 1000000;
448 1.101 kardel if (atv.tv_usec < 0) {
449 1.101 kardel atv.tv_usec += 1000000;
450 1.101 kardel atv.tv_sec--;
451 1.101 kardel }
452 1.101 kardel error = copyout(&atv, olddelta, sizeof(struct timeval));
453 1.101 kardel if (error)
454 1.101 kardel return (error);
455 1.101 kardel }
456 1.101 kardel
457 1.101 kardel if (delta) {
458 1.101 kardel error = copyin(delta, &atv, sizeof(struct timeval));
459 1.101 kardel if (error)
460 1.101 kardel return (error);
461 1.101 kardel
462 1.101 kardel time_adjtime = (int64_t)atv.tv_sec * 1000000 +
463 1.101 kardel atv.tv_usec;
464 1.8 cgd
465 1.101 kardel if (time_adjtime)
466 1.101 kardel /* We need to save the system time during shutdown */
467 1.101 kardel time_adjusted |= 1;
468 1.101 kardel }
469 1.101 kardel #else /* !__HAVE_TIMECOUNTER */
470 1.60 manu error = copyin(delta, &atv, sizeof(struct timeval));
471 1.60 manu if (error)
472 1.60 manu return (error);
473 1.60 manu
474 1.8 cgd /*
475 1.8 cgd * Compute the total correction and the rate at which to apply it.
476 1.8 cgd * Round the adjustment down to a whole multiple of the per-tick
477 1.8 cgd * delta, so that after some number of incremental changes in
478 1.8 cgd * hardclock(), tickdelta will become zero, lest the correction
479 1.8 cgd * overshoot and start taking us away from the desired final time.
480 1.8 cgd */
481 1.60 manu ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
482 1.41 hwr if (ndelta > bigadj || ndelta < -bigadj)
483 1.8 cgd ntickdelta = 10 * tickadj;
484 1.8 cgd else
485 1.8 cgd ntickdelta = tickadj;
486 1.8 cgd if (ndelta % ntickdelta)
487 1.8 cgd ndelta = ndelta / ntickdelta * ntickdelta;
488 1.8 cgd
489 1.8 cgd /*
490 1.8 cgd * To make hardclock()'s job easier, make the per-tick delta negative
491 1.8 cgd * if we want time to run slower; then hardclock can simply compute
492 1.8 cgd * tick + tickdelta, and subtract tickdelta from timedelta.
493 1.8 cgd */
494 1.8 cgd if (ndelta < 0)
495 1.8 cgd ntickdelta = -ntickdelta;
496 1.68 dsl if (ndelta != 0)
497 1.68 dsl /* We need to save the system clock time during shutdown */
498 1.68 dsl time_adjusted |= 1;
499 1.1 cgd s = splclock();
500 1.8 cgd odelta = timedelta;
501 1.1 cgd timedelta = ndelta;
502 1.8 cgd tickdelta = ntickdelta;
503 1.1 cgd splx(s);
504 1.1 cgd
505 1.56 manu if (olddelta) {
506 1.60 manu atv.tv_sec = odelta / 1000000;
507 1.60 manu atv.tv_usec = odelta % 1000000;
508 1.79 chs error = copyout(&atv, olddelta, sizeof(struct timeval));
509 1.8 cgd }
510 1.101 kardel #endif /* __HAVE_TIMECOUNTER */
511 1.101 kardel
512 1.79 chs return error;
513 1.1 cgd }
514 1.1 cgd
515 1.1 cgd /*
516 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
517 1.63 thorpej * timer_*() family of routines are supported.
518 1.1 cgd *
519 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
520 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
521 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
522 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
523 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
524 1.63 thorpej * syscall.
525 1.1 cgd *
526 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
527 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
528 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
529 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
530 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
531 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
532 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
533 1.63 thorpej * given below), to be delayed in real time past when it is supposed
534 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
535 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
536 1.63 thorpej * compute the next time in absolute time the timer should go off. */
537 1.63 thorpej
538 1.63 thorpej /* Allocate a POSIX realtime timer. */
539 1.63 thorpej int
540 1.135 dsl sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap, register_t *retval)
541 1.63 thorpej {
542 1.135 dsl /* {
543 1.63 thorpej syscallarg(clockid_t) clock_id;
544 1.63 thorpej syscallarg(struct sigevent *) evp;
545 1.63 thorpej syscallarg(timer_t *) timerid;
546 1.135 dsl } */
547 1.92 cube
548 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
549 1.105 ad SCARG(uap, evp), copyin, l);
550 1.92 cube }
551 1.92 cube
552 1.92 cube int
553 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
554 1.105 ad copyin_t fetch_event, struct lwp *l)
555 1.92 cube {
556 1.92 cube int error;
557 1.92 cube timer_t timerid;
558 1.63 thorpej struct ptimer *pt;
559 1.105 ad struct proc *p;
560 1.105 ad
561 1.105 ad p = l->l_proc;
562 1.63 thorpej
563 1.63 thorpej if (id < CLOCK_REALTIME ||
564 1.63 thorpej id > CLOCK_PROF)
565 1.63 thorpej return (EINVAL);
566 1.63 thorpej
567 1.63 thorpej if (p->p_timers == NULL)
568 1.63 thorpej timers_alloc(p);
569 1.63 thorpej
570 1.63 thorpej /* Find a free timer slot, skipping those reserved for setitimer(). */
571 1.63 thorpej for (timerid = 3; timerid < TIMER_MAX; timerid++)
572 1.63 thorpej if (p->p_timers->pts_timers[timerid] == NULL)
573 1.63 thorpej break;
574 1.63 thorpej
575 1.63 thorpej if (timerid == TIMER_MAX)
576 1.63 thorpej return EAGAIN;
577 1.63 thorpej
578 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
579 1.63 thorpej if (evp) {
580 1.63 thorpej if (((error =
581 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
582 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
583 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
584 1.63 thorpej pool_put(&ptimer_pool, pt);
585 1.63 thorpej return (error ? error : EINVAL);
586 1.63 thorpej }
587 1.63 thorpej } else {
588 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
589 1.63 thorpej switch (id) {
590 1.63 thorpej case CLOCK_REALTIME:
591 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
592 1.63 thorpej break;
593 1.63 thorpej case CLOCK_VIRTUAL:
594 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
595 1.63 thorpej break;
596 1.63 thorpej case CLOCK_PROF:
597 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
598 1.63 thorpej break;
599 1.63 thorpej }
600 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
601 1.63 thorpej }
602 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
603 1.73 christos pt->pt_info.ksi_errno = 0;
604 1.73 christos pt->pt_info.ksi_code = 0;
605 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
606 1.105 ad pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
607 1.124 christos pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
608 1.63 thorpej
609 1.63 thorpej pt->pt_type = id;
610 1.63 thorpej pt->pt_proc = p;
611 1.63 thorpej pt->pt_overruns = 0;
612 1.63 thorpej pt->pt_poverruns = 0;
613 1.64 nathanw pt->pt_entry = timerid;
614 1.63 thorpej timerclear(&pt->pt_time.it_value);
615 1.63 thorpej if (id == CLOCK_REALTIME)
616 1.125 ad callout_init(&pt->pt_ch, 0);
617 1.63 thorpej else
618 1.63 thorpej pt->pt_active = 0;
619 1.63 thorpej
620 1.63 thorpej p->p_timers->pts_timers[timerid] = pt;
621 1.63 thorpej
622 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
623 1.63 thorpej }
624 1.63 thorpej
625 1.63 thorpej /* Delete a POSIX realtime timer */
626 1.3 andrew int
627 1.135 dsl sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap, register_t *retval)
628 1.15 thorpej {
629 1.135 dsl /* {
630 1.63 thorpej syscallarg(timer_t) timerid;
631 1.135 dsl } */
632 1.63 thorpej struct proc *p = l->l_proc;
633 1.65 jdolecek timer_t timerid;
634 1.63 thorpej struct ptimer *pt, *ptn;
635 1.1 cgd int s;
636 1.1 cgd
637 1.63 thorpej timerid = SCARG(uap, timerid);
638 1.63 thorpej
639 1.63 thorpej if ((p->p_timers == NULL) ||
640 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
641 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
642 1.1 cgd return (EINVAL);
643 1.63 thorpej
644 1.125 ad if (pt->pt_type == CLOCK_REALTIME) {
645 1.63 thorpej callout_stop(&pt->pt_ch);
646 1.125 ad callout_destroy(&pt->pt_ch);
647 1.125 ad } else if (pt->pt_active) {
648 1.63 thorpej s = splclock();
649 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
650 1.63 thorpej LIST_REMOVE(pt, pt_list);
651 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
652 1.63 thorpej timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
653 1.63 thorpej &ptn->pt_time.it_value);
654 1.63 thorpej splx(s);
655 1.63 thorpej }
656 1.63 thorpej
657 1.63 thorpej p->p_timers->pts_timers[timerid] = NULL;
658 1.63 thorpej pool_put(&ptimer_pool, pt);
659 1.63 thorpej
660 1.63 thorpej return (0);
661 1.63 thorpej }
662 1.63 thorpej
663 1.63 thorpej /*
664 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
665 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
666 1.67 nathanw * time for virtual timers.
667 1.63 thorpej * Must be called at splclock().
668 1.63 thorpej */
669 1.63 thorpej void
670 1.63 thorpej timer_settime(struct ptimer *pt)
671 1.63 thorpej {
672 1.63 thorpej struct ptimer *ptn, *pptn;
673 1.63 thorpej struct ptlist *ptl;
674 1.63 thorpej
675 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
676 1.63 thorpej callout_stop(&pt->pt_ch);
677 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
678 1.63 thorpej /*
679 1.63 thorpej * Don't need to check hzto() return value, here.
680 1.63 thorpej * callout_reset() does it for us.
681 1.63 thorpej */
682 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
683 1.63 thorpej realtimerexpire, pt);
684 1.63 thorpej }
685 1.63 thorpej } else {
686 1.63 thorpej if (pt->pt_active) {
687 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
688 1.63 thorpej LIST_REMOVE(pt, pt_list);
689 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
690 1.63 thorpej timeradd(&pt->pt_time.it_value,
691 1.63 thorpej &ptn->pt_time.it_value,
692 1.63 thorpej &ptn->pt_time.it_value);
693 1.63 thorpej }
694 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
695 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
696 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
697 1.63 thorpej else
698 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
699 1.63 thorpej
700 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
701 1.63 thorpej ptn && timercmp(&pt->pt_time.it_value,
702 1.63 thorpej &ptn->pt_time.it_value, >);
703 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
704 1.63 thorpej timersub(&pt->pt_time.it_value,
705 1.63 thorpej &ptn->pt_time.it_value,
706 1.63 thorpej &pt->pt_time.it_value);
707 1.63 thorpej
708 1.63 thorpej if (pptn)
709 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
710 1.63 thorpej else
711 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
712 1.63 thorpej
713 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
714 1.63 thorpej timersub(&ptn->pt_time.it_value,
715 1.63 thorpej &pt->pt_time.it_value,
716 1.63 thorpej &ptn->pt_time.it_value);
717 1.63 thorpej
718 1.63 thorpej pt->pt_active = 1;
719 1.63 thorpej } else
720 1.63 thorpej pt->pt_active = 0;
721 1.63 thorpej }
722 1.63 thorpej }
723 1.63 thorpej
724 1.63 thorpej void
725 1.63 thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
726 1.63 thorpej {
727 1.101 kardel struct timeval now;
728 1.63 thorpej struct ptimer *ptn;
729 1.63 thorpej
730 1.63 thorpej *aitv = pt->pt_time;
731 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
732 1.1 cgd /*
733 1.12 mycroft * Convert from absolute to relative time in .it_value
734 1.63 thorpej * part of real time timer. If time for real time
735 1.63 thorpej * timer has passed return 0, else return difference
736 1.63 thorpej * between current time and time for the timer to go
737 1.63 thorpej * off.
738 1.1 cgd */
739 1.63 thorpej if (timerisset(&aitv->it_value)) {
740 1.101 kardel getmicrotime(&now);
741 1.101 kardel if (timercmp(&aitv->it_value, &now, <))
742 1.101 kardel timerclear(&aitv->it_value);
743 1.101 kardel else
744 1.101 kardel timersub(&aitv->it_value, &now,
745 1.101 kardel &aitv->it_value);
746 1.36 thorpej }
747 1.63 thorpej } else if (pt->pt_active) {
748 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
749 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
750 1.63 thorpej else
751 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
752 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
753 1.63 thorpej timeradd(&aitv->it_value,
754 1.63 thorpej &ptn->pt_time.it_value, &aitv->it_value);
755 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
756 1.1 cgd } else
757 1.63 thorpej timerclear(&aitv->it_value);
758 1.63 thorpej }
759 1.63 thorpej
760 1.63 thorpej
761 1.63 thorpej
762 1.63 thorpej /* Set and arm a POSIX realtime timer */
763 1.63 thorpej int
764 1.135 dsl sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap, register_t *retval)
765 1.63 thorpej {
766 1.135 dsl /* {
767 1.63 thorpej syscallarg(timer_t) timerid;
768 1.63 thorpej syscallarg(int) flags;
769 1.63 thorpej syscallarg(const struct itimerspec *) value;
770 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
771 1.135 dsl } */
772 1.92 cube int error;
773 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
774 1.92 cube
775 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
776 1.92 cube sizeof(struct itimerspec))) != 0)
777 1.92 cube return (error);
778 1.92 cube
779 1.92 cube if (SCARG(uap, ovalue))
780 1.92 cube ovp = &ovalue;
781 1.92 cube
782 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
783 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
784 1.92 cube return error;
785 1.92 cube
786 1.92 cube if (ovp)
787 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
788 1.92 cube sizeof(struct itimerspec));
789 1.92 cube return 0;
790 1.92 cube }
791 1.92 cube
792 1.92 cube int
793 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
794 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
795 1.92 cube {
796 1.101 kardel struct timeval now;
797 1.63 thorpej struct itimerval val, oval;
798 1.63 thorpej struct ptimer *pt;
799 1.101 kardel int s;
800 1.63 thorpej
801 1.63 thorpej if ((p->p_timers == NULL) ||
802 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
803 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
804 1.63 thorpej return (EINVAL);
805 1.63 thorpej
806 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
807 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
808 1.63 thorpej if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
809 1.63 thorpej return (EINVAL);
810 1.63 thorpej
811 1.63 thorpej oval = pt->pt_time;
812 1.63 thorpej pt->pt_time = val;
813 1.63 thorpej
814 1.63 thorpej s = splclock();
815 1.67 nathanw /*
816 1.67 nathanw * If we've been passed a relative time for a realtime timer,
817 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
818 1.67 nathanw * timer, convert it to relative and make sure we don't set it
819 1.67 nathanw * to zero, which would cancel the timer, or let it go
820 1.67 nathanw * negative, which would confuse the comparison tests.
821 1.67 nathanw */
822 1.67 nathanw if (timerisset(&pt->pt_time.it_value)) {
823 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
824 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
825 1.101 kardel getmicrotime(&now);
826 1.101 kardel timeradd(&pt->pt_time.it_value, &now,
827 1.101 kardel &pt->pt_time.it_value);
828 1.101 kardel }
829 1.67 nathanw } else {
830 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
831 1.101 kardel getmicrotime(&now);
832 1.101 kardel timersub(&pt->pt_time.it_value, &now,
833 1.101 kardel &pt->pt_time.it_value);
834 1.67 nathanw if (!timerisset(&pt->pt_time.it_value) ||
835 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
836 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
837 1.67 nathanw pt->pt_time.it_value.tv_usec = 1;
838 1.67 nathanw }
839 1.67 nathanw }
840 1.67 nathanw }
841 1.67 nathanw }
842 1.67 nathanw
843 1.63 thorpej timer_settime(pt);
844 1.63 thorpej splx(s);
845 1.63 thorpej
846 1.92 cube if (ovalue) {
847 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
848 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
849 1.63 thorpej }
850 1.63 thorpej
851 1.63 thorpej return (0);
852 1.63 thorpej }
853 1.63 thorpej
854 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
855 1.63 thorpej int
856 1.135 dsl sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap, register_t *retval)
857 1.63 thorpej {
858 1.135 dsl /* {
859 1.63 thorpej syscallarg(timer_t) timerid;
860 1.63 thorpej syscallarg(struct itimerspec *) value;
861 1.135 dsl } */
862 1.63 thorpej struct itimerspec its;
863 1.92 cube int error;
864 1.92 cube
865 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
866 1.92 cube &its)) != 0)
867 1.92 cube return error;
868 1.92 cube
869 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
870 1.92 cube }
871 1.92 cube
872 1.92 cube int
873 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
874 1.92 cube {
875 1.92 cube int s;
876 1.63 thorpej struct ptimer *pt;
877 1.92 cube struct itimerval aitv;
878 1.63 thorpej
879 1.63 thorpej if ((p->p_timers == NULL) ||
880 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
881 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
882 1.63 thorpej return (EINVAL);
883 1.63 thorpej
884 1.63 thorpej s = splclock();
885 1.63 thorpej timer_gettime(pt, &aitv);
886 1.1 cgd splx(s);
887 1.63 thorpej
888 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
889 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
890 1.63 thorpej
891 1.92 cube return 0;
892 1.63 thorpej }
893 1.63 thorpej
894 1.63 thorpej /*
895 1.63 thorpej * Return the count of the number of times a periodic timer expired
896 1.63 thorpej * while a notification was already pending. The counter is reset when
897 1.63 thorpej * a timer expires and a notification can be posted.
898 1.63 thorpej */
899 1.63 thorpej int
900 1.135 dsl sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap, register_t *retval)
901 1.63 thorpej {
902 1.135 dsl /* {
903 1.63 thorpej syscallarg(timer_t) timerid;
904 1.135 dsl } */
905 1.63 thorpej struct proc *p = l->l_proc;
906 1.63 thorpej int timerid;
907 1.63 thorpej struct ptimer *pt;
908 1.63 thorpej
909 1.63 thorpej timerid = SCARG(uap, timerid);
910 1.63 thorpej
911 1.63 thorpej if ((p->p_timers == NULL) ||
912 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
913 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
914 1.63 thorpej return (EINVAL);
915 1.63 thorpej
916 1.63 thorpej *retval = pt->pt_poverruns;
917 1.63 thorpej
918 1.63 thorpej return (0);
919 1.63 thorpej }
920 1.63 thorpej
921 1.63 thorpej /*
922 1.63 thorpej * Real interval timer expired:
923 1.63 thorpej * send process whose timer expired an alarm signal.
924 1.63 thorpej * If time is not set up to reload, then just return.
925 1.63 thorpej * Else compute next time timer should go off which is > current time.
926 1.63 thorpej * This is where delay in processing this timeout causes multiple
927 1.63 thorpej * SIGALRM calls to be compressed into one.
928 1.63 thorpej */
929 1.63 thorpej void
930 1.63 thorpej realtimerexpire(void *arg)
931 1.63 thorpej {
932 1.101 kardel struct timeval now;
933 1.63 thorpej struct ptimer *pt;
934 1.63 thorpej int s;
935 1.63 thorpej
936 1.63 thorpej pt = (struct ptimer *)arg;
937 1.63 thorpej
938 1.63 thorpej itimerfire(pt);
939 1.63 thorpej
940 1.63 thorpej if (!timerisset(&pt->pt_time.it_interval)) {
941 1.63 thorpej timerclear(&pt->pt_time.it_value);
942 1.63 thorpej return;
943 1.63 thorpej }
944 1.101 kardel for (;;) {
945 1.101 kardel s = splclock(); /* XXX need spl now? */
946 1.101 kardel timeradd(&pt->pt_time.it_value,
947 1.101 kardel &pt->pt_time.it_interval, &pt->pt_time.it_value);
948 1.101 kardel getmicrotime(&now);
949 1.101 kardel if (timercmp(&pt->pt_time.it_value, &now, >)) {
950 1.101 kardel /*
951 1.101 kardel * Don't need to check hzto() return value, here.
952 1.101 kardel * callout_reset() does it for us.
953 1.101 kardel */
954 1.101 kardel callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
955 1.101 kardel realtimerexpire, pt);
956 1.101 kardel splx(s);
957 1.101 kardel return;
958 1.101 kardel }
959 1.101 kardel splx(s);
960 1.101 kardel pt->pt_overruns++;
961 1.101 kardel }
962 1.63 thorpej }
963 1.63 thorpej
964 1.63 thorpej /* BSD routine to get the value of an interval timer. */
965 1.63 thorpej /* ARGSUSED */
966 1.63 thorpej int
967 1.135 dsl sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap, register_t *retval)
968 1.63 thorpej {
969 1.135 dsl /* {
970 1.63 thorpej syscallarg(int) which;
971 1.63 thorpej syscallarg(struct itimerval *) itv;
972 1.135 dsl } */
973 1.63 thorpej struct proc *p = l->l_proc;
974 1.63 thorpej struct itimerval aitv;
975 1.91 cube int error;
976 1.91 cube
977 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
978 1.91 cube if (error)
979 1.91 cube return error;
980 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
981 1.91 cube }
982 1.63 thorpej
983 1.91 cube int
984 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
985 1.91 cube {
986 1.91 cube int s;
987 1.63 thorpej
988 1.63 thorpej if ((u_int)which > ITIMER_PROF)
989 1.63 thorpej return (EINVAL);
990 1.63 thorpej
991 1.63 thorpej if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
992 1.91 cube timerclear(&itvp->it_value);
993 1.91 cube timerclear(&itvp->it_interval);
994 1.63 thorpej } else {
995 1.63 thorpej s = splclock();
996 1.91 cube timer_gettime(p->p_timers->pts_timers[which], itvp);
997 1.63 thorpej splx(s);
998 1.63 thorpej }
999 1.63 thorpej
1000 1.91 cube return 0;
1001 1.1 cgd }
1002 1.1 cgd
1003 1.63 thorpej /* BSD routine to set/arm an interval timer. */
1004 1.1 cgd /* ARGSUSED */
1005 1.3 andrew int
1006 1.135 dsl sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap, register_t *retval)
1007 1.15 thorpej {
1008 1.135 dsl /* {
1009 1.30 mycroft syscallarg(int) which;
1010 1.24 cgd syscallarg(const struct itimerval *) itv;
1011 1.11 cgd syscallarg(struct itimerval *) oitv;
1012 1.135 dsl } */
1013 1.63 thorpej struct proc *p = l->l_proc;
1014 1.30 mycroft int which = SCARG(uap, which);
1015 1.21 cgd struct sys_getitimer_args getargs;
1016 1.91 cube const struct itimerval *itvp;
1017 1.1 cgd struct itimerval aitv;
1018 1.91 cube int error;
1019 1.1 cgd
1020 1.30 mycroft if ((u_int)which > ITIMER_PROF)
1021 1.1 cgd return (EINVAL);
1022 1.11 cgd itvp = SCARG(uap, itv);
1023 1.63 thorpej if (itvp &&
1024 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1025 1.1 cgd return (error);
1026 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1027 1.30 mycroft SCARG(&getargs, which) = which;
1028 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1029 1.63 thorpej if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1030 1.21 cgd return (error);
1031 1.21 cgd }
1032 1.1 cgd if (itvp == 0)
1033 1.1 cgd return (0);
1034 1.91 cube
1035 1.91 cube return dosetitimer(p, which, &aitv);
1036 1.91 cube }
1037 1.91 cube
1038 1.91 cube int
1039 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1040 1.91 cube {
1041 1.101 kardel struct timeval now;
1042 1.91 cube struct ptimer *pt;
1043 1.91 cube int s;
1044 1.91 cube
1045 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1046 1.1 cgd return (EINVAL);
1047 1.63 thorpej
1048 1.63 thorpej /*
1049 1.63 thorpej * Don't bother allocating data structures if the process just
1050 1.63 thorpej * wants to clear the timer.
1051 1.63 thorpej */
1052 1.91 cube if (!timerisset(&itvp->it_value) &&
1053 1.63 thorpej ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1054 1.63 thorpej return (0);
1055 1.63 thorpej
1056 1.63 thorpej if (p->p_timers == NULL)
1057 1.63 thorpej timers_alloc(p);
1058 1.63 thorpej if (p->p_timers->pts_timers[which] == NULL) {
1059 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
1060 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1061 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1062 1.63 thorpej pt->pt_overruns = 0;
1063 1.63 thorpej pt->pt_proc = p;
1064 1.63 thorpej pt->pt_type = which;
1065 1.64 nathanw pt->pt_entry = which;
1066 1.63 thorpej switch (which) {
1067 1.63 thorpej case ITIMER_REAL:
1068 1.125 ad callout_init(&pt->pt_ch, 0);
1069 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1070 1.63 thorpej break;
1071 1.63 thorpej case ITIMER_VIRTUAL:
1072 1.63 thorpej pt->pt_active = 0;
1073 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1074 1.63 thorpej break;
1075 1.63 thorpej case ITIMER_PROF:
1076 1.63 thorpej pt->pt_active = 0;
1077 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1078 1.63 thorpej break;
1079 1.1 cgd }
1080 1.1 cgd } else
1081 1.63 thorpej pt = p->p_timers->pts_timers[which];
1082 1.63 thorpej
1083 1.91 cube pt->pt_time = *itvp;
1084 1.63 thorpej p->p_timers->pts_timers[which] = pt;
1085 1.63 thorpej
1086 1.63 thorpej s = splclock();
1087 1.67 nathanw if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1088 1.67 nathanw /* Convert to absolute time */
1089 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1090 1.101 kardel getmicrotime(&now);
1091 1.101 kardel timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1092 1.67 nathanw }
1093 1.63 thorpej timer_settime(pt);
1094 1.1 cgd splx(s);
1095 1.63 thorpej
1096 1.1 cgd return (0);
1097 1.1 cgd }
1098 1.1 cgd
1099 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1100 1.63 thorpej void
1101 1.63 thorpej timers_alloc(struct proc *p)
1102 1.63 thorpej {
1103 1.63 thorpej int i;
1104 1.63 thorpej struct ptimers *pts;
1105 1.63 thorpej
1106 1.100 yamt pts = pool_get(&ptimers_pool, PR_WAITOK);
1107 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1108 1.63 thorpej LIST_INIT(&pts->pts_prof);
1109 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1110 1.63 thorpej pts->pts_timers[i] = NULL;
1111 1.64 nathanw pts->pts_fired = 0;
1112 1.63 thorpej p->p_timers = pts;
1113 1.63 thorpej }
1114 1.63 thorpej
1115 1.1 cgd /*
1116 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1117 1.63 thorpej * then clean up all timers and free all the data structures. If
1118 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1119 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1120 1.63 thorpej * structure if none of those remain.
1121 1.1 cgd */
1122 1.3 andrew void
1123 1.63 thorpej timers_free(struct proc *p, int which)
1124 1.6 cgd {
1125 1.63 thorpej int i, s;
1126 1.63 thorpej struct ptimers *pts;
1127 1.63 thorpej struct ptimer *pt, *ptn;
1128 1.63 thorpej struct timeval tv;
1129 1.63 thorpej
1130 1.63 thorpej if (p->p_timers) {
1131 1.63 thorpej pts = p->p_timers;
1132 1.63 thorpej if (which == TIMERS_ALL)
1133 1.63 thorpej i = 0;
1134 1.63 thorpej else {
1135 1.63 thorpej s = splclock();
1136 1.63 thorpej timerclear(&tv);
1137 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1138 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1139 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1140 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1141 1.63 thorpej LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1142 1.63 thorpej if (ptn) {
1143 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1144 1.63 thorpej &ptn->pt_time.it_value);
1145 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1146 1.63 thorpej ptn, pt_list);
1147 1.63 thorpej }
1148 1.63 thorpej
1149 1.63 thorpej timerclear(&tv);
1150 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1151 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_PROF];
1152 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1153 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1154 1.63 thorpej LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1155 1.63 thorpej if (ptn) {
1156 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1157 1.63 thorpej &ptn->pt_time.it_value);
1158 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1159 1.63 thorpej pt_list);
1160 1.63 thorpej }
1161 1.1 cgd splx(s);
1162 1.63 thorpej i = 3;
1163 1.63 thorpej }
1164 1.63 thorpej for ( ; i < TIMER_MAX; i++)
1165 1.63 thorpej if ((pt = pts->pts_timers[i]) != NULL) {
1166 1.125 ad if (pt->pt_type == CLOCK_REALTIME) {
1167 1.63 thorpej callout_stop(&pt->pt_ch);
1168 1.125 ad callout_destroy(&pt->pt_ch);
1169 1.125 ad }
1170 1.63 thorpej pts->pts_timers[i] = NULL;
1171 1.63 thorpej pool_put(&ptimer_pool, pt);
1172 1.63 thorpej }
1173 1.63 thorpej if ((pts->pts_timers[0] == NULL) &&
1174 1.63 thorpej (pts->pts_timers[1] == NULL) &&
1175 1.63 thorpej (pts->pts_timers[2] == NULL)) {
1176 1.63 thorpej p->p_timers = NULL;
1177 1.97 simonb pool_put(&ptimers_pool, pts);
1178 1.1 cgd }
1179 1.1 cgd }
1180 1.1 cgd }
1181 1.1 cgd
1182 1.1 cgd /*
1183 1.1 cgd * Decrement an interval timer by a specified number
1184 1.1 cgd * of microseconds, which must be less than a second,
1185 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1186 1.1 cgd * it. In this case, carry over (usec - old value) to
1187 1.8 cgd * reduce the value reloaded into the timer so that
1188 1.1 cgd * the timer does not drift. This routine assumes
1189 1.1 cgd * that it is called in a context where the timers
1190 1.1 cgd * on which it is operating cannot change in value.
1191 1.1 cgd */
1192 1.3 andrew int
1193 1.63 thorpej itimerdecr(struct ptimer *pt, int usec)
1194 1.63 thorpej {
1195 1.45 augustss struct itimerval *itp;
1196 1.1 cgd
1197 1.63 thorpej itp = &pt->pt_time;
1198 1.1 cgd if (itp->it_value.tv_usec < usec) {
1199 1.1 cgd if (itp->it_value.tv_sec == 0) {
1200 1.1 cgd /* expired, and already in next interval */
1201 1.1 cgd usec -= itp->it_value.tv_usec;
1202 1.1 cgd goto expire;
1203 1.1 cgd }
1204 1.1 cgd itp->it_value.tv_usec += 1000000;
1205 1.1 cgd itp->it_value.tv_sec--;
1206 1.1 cgd }
1207 1.1 cgd itp->it_value.tv_usec -= usec;
1208 1.1 cgd usec = 0;
1209 1.1 cgd if (timerisset(&itp->it_value))
1210 1.1 cgd return (1);
1211 1.1 cgd /* expired, exactly at end of interval */
1212 1.1 cgd expire:
1213 1.1 cgd if (timerisset(&itp->it_interval)) {
1214 1.1 cgd itp->it_value = itp->it_interval;
1215 1.1 cgd itp->it_value.tv_usec -= usec;
1216 1.1 cgd if (itp->it_value.tv_usec < 0) {
1217 1.1 cgd itp->it_value.tv_usec += 1000000;
1218 1.1 cgd itp->it_value.tv_sec--;
1219 1.1 cgd }
1220 1.63 thorpej timer_settime(pt);
1221 1.1 cgd } else
1222 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1223 1.1 cgd return (0);
1224 1.42 cgd }
1225 1.42 cgd
1226 1.63 thorpej void
1227 1.63 thorpej itimerfire(struct ptimer *pt)
1228 1.63 thorpej {
1229 1.63 thorpej struct proc *p = pt->pt_proc;
1230 1.78 cl
1231 1.63 thorpej if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1232 1.63 thorpej /*
1233 1.63 thorpej * No RT signal infrastructure exists at this time;
1234 1.63 thorpej * just post the signal number and throw away the
1235 1.63 thorpej * value.
1236 1.63 thorpej */
1237 1.113 ad if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1238 1.63 thorpej pt->pt_overruns++;
1239 1.63 thorpej else {
1240 1.75 christos ksiginfo_t ksi;
1241 1.111 yamt KSI_INIT(&ksi);
1242 1.75 christos ksi.ksi_signo = pt->pt_ev.sigev_signo;
1243 1.75 christos ksi.ksi_code = SI_TIMER;
1244 1.124 christos ksi.ksi_value = pt->pt_ev.sigev_value;
1245 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1246 1.63 thorpej pt->pt_overruns = 0;
1247 1.113 ad mutex_enter(&proclist_mutex);
1248 1.75 christos kpsignal(p, &ksi, NULL);
1249 1.113 ad mutex_exit(&proclist_mutex);
1250 1.64 nathanw }
1251 1.63 thorpej }
1252 1.63 thorpej }
1253 1.63 thorpej
1254 1.42 cgd /*
1255 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1256 1.42 cgd * for usage and rationale.
1257 1.42 cgd */
1258 1.42 cgd int
1259 1.63 thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1260 1.42 cgd {
1261 1.49 itojun struct timeval tv, delta;
1262 1.101 kardel int rv = 0;
1263 1.42 cgd
1264 1.101 kardel getmicrouptime(&tv);
1265 1.49 itojun timersub(&tv, lasttime, &delta);
1266 1.42 cgd
1267 1.42 cgd /*
1268 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1269 1.42 cgd * even if interval is huge.
1270 1.42 cgd */
1271 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1272 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1273 1.49 itojun *lasttime = tv;
1274 1.42 cgd rv = 1;
1275 1.42 cgd }
1276 1.50 itojun
1277 1.50 itojun return (rv);
1278 1.50 itojun }
1279 1.50 itojun
1280 1.50 itojun /*
1281 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1282 1.50 itojun */
1283 1.50 itojun int
1284 1.63 thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1285 1.50 itojun {
1286 1.50 itojun struct timeval tv, delta;
1287 1.101 kardel int rv;
1288 1.50 itojun
1289 1.101 kardel getmicrouptime(&tv);
1290 1.50 itojun timersub(&tv, lasttime, &delta);
1291 1.50 itojun
1292 1.50 itojun /*
1293 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1294 1.50 itojun * if more than one second have passed since the last update of
1295 1.50 itojun * lasttime, reset the counter.
1296 1.50 itojun *
1297 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1298 1.50 itojun * try to use *curpps for stat purposes as well.
1299 1.50 itojun */
1300 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1301 1.50 itojun delta.tv_sec >= 1) {
1302 1.50 itojun *lasttime = tv;
1303 1.50 itojun *curpps = 0;
1304 1.69 dyoung }
1305 1.69 dyoung if (maxpps < 0)
1306 1.53 itojun rv = 1;
1307 1.53 itojun else if (*curpps < maxpps)
1308 1.50 itojun rv = 1;
1309 1.50 itojun else
1310 1.50 itojun rv = 0;
1311 1.50 itojun
1312 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1313 1.50 itojun /* be careful about wrap-around */
1314 1.50 itojun if (*curpps + 1 > *curpps)
1315 1.50 itojun *curpps = *curpps + 1;
1316 1.50 itojun #else
1317 1.50 itojun /*
1318 1.50 itojun * assume that there's not too many calls to this function.
1319 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1320 1.50 itojun * behavior, not the behavior of this function.
1321 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1322 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1323 1.50 itojun */
1324 1.50 itojun *curpps = *curpps + 1;
1325 1.50 itojun #endif
1326 1.42 cgd
1327 1.42 cgd return (rv);
1328 1.1 cgd }
1329