Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.136
      1  1.136      yamt /*	$NetBSD: kern_time.c,v 1.136 2007/12/22 00:35:32 yamt Exp $	*/
      2   1.42       cgd 
      3   1.42       cgd /*-
      4  1.131        ad  * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
      5   1.42       cgd  * All rights reserved.
      6   1.42       cgd  *
      7   1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8   1.42       cgd  * by Christopher G. Demetriou.
      9   1.42       cgd  *
     10   1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11   1.42       cgd  * modification, are permitted provided that the following conditions
     12   1.42       cgd  * are met:
     13   1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14   1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15   1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17   1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18   1.42       cgd  * 3. All advertising materials mentioning features or use of this software
     19   1.42       cgd  *    must display the following acknowledgement:
     20   1.42       cgd  *	This product includes software developed by the NetBSD
     21   1.42       cgd  *	Foundation, Inc. and its contributors.
     22   1.42       cgd  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.42       cgd  *    contributors may be used to endorse or promote products derived
     24   1.42       cgd  *    from this software without specific prior written permission.
     25   1.42       cgd  *
     26   1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     37   1.42       cgd  */
     38    1.9       cgd 
     39    1.1       cgd /*
     40    1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     41    1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     42    1.1       cgd  *
     43    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     44    1.1       cgd  * modification, are permitted provided that the following conditions
     45    1.1       cgd  * are met:
     46    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     47    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     48    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     49    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     50    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     51   1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     52    1.1       cgd  *    may be used to endorse or promote products derived from this software
     53    1.1       cgd  *    without specific prior written permission.
     54    1.1       cgd  *
     55    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65    1.1       cgd  * SUCH DAMAGE.
     66    1.1       cgd  *
     67   1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68    1.1       cgd  */
     69   1.58     lukem 
     70   1.58     lukem #include <sys/cdefs.h>
     71  1.136      yamt __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.136 2007/12/22 00:35:32 yamt Exp $");
     72    1.1       cgd 
     73    1.5   mycroft #include <sys/param.h>
     74    1.5   mycroft #include <sys/resourcevar.h>
     75    1.5   mycroft #include <sys/kernel.h>
     76    1.8       cgd #include <sys/systm.h>
     77    1.5   mycroft #include <sys/proc.h>
     78    1.8       cgd #include <sys/vnode.h>
     79   1.17  christos #include <sys/signalvar.h>
     80   1.25     perry #include <sys/syslog.h>
     81  1.101    kardel #include <sys/timetc.h>
     82   1.99      elad #include <sys/kauth.h>
     83    1.1       cgd 
     84   1.11       cgd #include <sys/mount.h>
     85   1.11       cgd #include <sys/syscallargs.h>
     86   1.19  christos 
     87   1.37   thorpej #include <uvm/uvm_extern.h>
     88   1.37   thorpej 
     89  1.130        ad #include <sys/cpu.h>
     90   1.23       cgd 
     91  1.131        ad kmutex_t	time_lock;
     92  1.131        ad 
     93   1.97    simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     94  1.118        ad     &pool_allocator_nointr, IPL_NONE);
     95   1.97    simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     96  1.118        ad     &pool_allocator_nointr, IPL_NONE);
     97   1.97    simonb 
     98  1.131        ad /*
     99  1.131        ad  * Initialize timekeeping.
    100  1.131        ad  */
    101  1.131        ad void
    102  1.131        ad time_init(void)
    103  1.131        ad {
    104  1.131        ad 
    105  1.131        ad 	mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
    106  1.131        ad }
    107  1.131        ad 
    108   1.63   thorpej /* Time of day and interval timer support.
    109    1.1       cgd  *
    110    1.1       cgd  * These routines provide the kernel entry points to get and set
    111    1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    112    1.1       cgd  * here provide support for adding and subtracting timeval structures
    113    1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    114    1.1       cgd  * timers when they expire.
    115    1.1       cgd  */
    116    1.1       cgd 
    117   1.22       jtc /* This function is used by clock_settime and settimeofday */
    118  1.132      elad static int
    119  1.132      elad settime1(struct proc *p, struct timespec *ts, bool check_kauth)
    120   1.22       jtc {
    121   1.98  christos 	struct timeval delta, tv;
    122  1.101    kardel 	struct timeval now;
    123  1.101    kardel 	struct timespec ts1;
    124  1.129        ad 	lwp_t *l;
    125  1.129        ad 	int s;
    126   1.22       jtc 
    127   1.98  christos 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    128   1.98  christos 
    129   1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    130  1.129        ad 	s = splclock();
    131  1.101    kardel 	microtime(&now);
    132  1.101    kardel 	timersub(&tv, &now, &delta);
    133  1.132      elad 
    134  1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    135  1.134      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
    136  1.132      elad 	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
    137  1.129        ad 		splx(s);
    138   1.29       tls 		return (EPERM);
    139   1.55      tron 	}
    140  1.132      elad 
    141   1.29       tls #ifdef notyet
    142  1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    143  1.129        ad 		splx(s);
    144   1.29       tls 		return (EPERM);
    145   1.55      tron 	}
    146   1.29       tls #endif
    147  1.103    kardel 
    148  1.103    kardel 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    149  1.101    kardel 	tc_setclock(&ts1);
    150  1.103    kardel 
    151   1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    152  1.103    kardel 
    153   1.47   thorpej 	/*
    154  1.129        ad 	 * XXXSMP: There is a short race between setting the time above
    155  1.129        ad 	 * and adjusting LWP's run times.  Fixing this properly means
    156  1.129        ad 	 * pausing all CPUs while we adjust the clock.
    157   1.47   thorpej 	 */
    158  1.129        ad 	mutex_enter(&proclist_lock);
    159  1.129        ad 	LIST_FOREACH(l, &alllwp, l_list) {
    160  1.129        ad 		lwp_lock(l);
    161  1.129        ad 		timeradd(&l->l_stime, &delta, &l->l_stime);
    162  1.129        ad 		lwp_unlock(l);
    163  1.129        ad 	}
    164  1.129        ad 	mutex_exit(&proclist_lock);
    165   1.22       jtc 	resettodr();
    166  1.129        ad 	splx(s);
    167  1.129        ad 
    168   1.29       tls 	return (0);
    169   1.22       jtc }
    170   1.22       jtc 
    171  1.132      elad int
    172  1.132      elad settime(struct proc *p, struct timespec *ts)
    173  1.132      elad {
    174  1.132      elad 	return (settime1(p, ts, true));
    175  1.132      elad }
    176  1.132      elad 
    177   1.22       jtc /* ARGSUSED */
    178   1.22       jtc int
    179  1.135       dsl sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap, register_t *retval)
    180   1.22       jtc {
    181  1.135       dsl 	/* {
    182   1.22       jtc 		syscallarg(clockid_t) clock_id;
    183   1.23       cgd 		syscallarg(struct timespec *) tp;
    184  1.135       dsl 	} */
    185   1.22       jtc 	clockid_t clock_id;
    186   1.22       jtc 	struct timespec ats;
    187   1.22       jtc 
    188   1.22       jtc 	clock_id = SCARG(uap, clock_id);
    189   1.61    simonb 	switch (clock_id) {
    190   1.61    simonb 	case CLOCK_REALTIME:
    191   1.96    simonb 		nanotime(&ats);
    192   1.61    simonb 		break;
    193   1.61    simonb 	case CLOCK_MONOTONIC:
    194  1.101    kardel 		nanouptime(&ats);
    195   1.61    simonb 		break;
    196   1.61    simonb 	default:
    197   1.22       jtc 		return (EINVAL);
    198   1.61    simonb 	}
    199   1.22       jtc 
    200   1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    201   1.22       jtc }
    202   1.22       jtc 
    203   1.22       jtc /* ARGSUSED */
    204   1.22       jtc int
    205  1.135       dsl sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap, register_t *retval)
    206   1.22       jtc {
    207  1.135       dsl 	/* {
    208   1.22       jtc 		syscallarg(clockid_t) clock_id;
    209   1.23       cgd 		syscallarg(const struct timespec *) tp;
    210  1.135       dsl 	} */
    211   1.22       jtc 
    212  1.132      elad 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
    213  1.132      elad 	    true);
    214   1.56      manu }
    215   1.56      manu 
    216   1.56      manu 
    217   1.56      manu int
    218  1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    219  1.132      elad     bool check_kauth)
    220   1.56      manu {
    221   1.60      manu 	struct timespec ats;
    222   1.56      manu 	int error;
    223   1.56      manu 
    224   1.60      manu 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    225   1.60      manu 		return (error);
    226   1.60      manu 
    227   1.61    simonb 	switch (clock_id) {
    228   1.61    simonb 	case CLOCK_REALTIME:
    229  1.132      elad 		if ((error = settime1(p, &ats, check_kauth)) != 0)
    230   1.61    simonb 			return (error);
    231   1.61    simonb 		break;
    232   1.61    simonb 	case CLOCK_MONOTONIC:
    233   1.61    simonb 		return (EINVAL);	/* read-only clock */
    234   1.61    simonb 	default:
    235   1.56      manu 		return (EINVAL);
    236   1.61    simonb 	}
    237   1.22       jtc 
    238   1.22       jtc 	return 0;
    239   1.22       jtc }
    240   1.22       jtc 
    241   1.22       jtc int
    242  1.135       dsl sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap, register_t *retval)
    243   1.22       jtc {
    244  1.135       dsl 	/* {
    245   1.22       jtc 		syscallarg(clockid_t) clock_id;
    246   1.23       cgd 		syscallarg(struct timespec *) tp;
    247  1.135       dsl 	} */
    248   1.22       jtc 	clockid_t clock_id;
    249   1.22       jtc 	struct timespec ts;
    250   1.22       jtc 	int error = 0;
    251   1.22       jtc 
    252   1.22       jtc 	clock_id = SCARG(uap, clock_id);
    253   1.61    simonb 	switch (clock_id) {
    254   1.61    simonb 	case CLOCK_REALTIME:
    255   1.61    simonb 	case CLOCK_MONOTONIC:
    256   1.22       jtc 		ts.tv_sec = 0;
    257  1.102    kardel 		if (tc_getfrequency() > 1000000000)
    258  1.102    kardel 			ts.tv_nsec = 1;
    259  1.102    kardel 		else
    260  1.102    kardel 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    261   1.61    simonb 		break;
    262   1.61    simonb 	default:
    263   1.61    simonb 		return (EINVAL);
    264   1.61    simonb 	}
    265   1.22       jtc 
    266   1.61    simonb 	if (SCARG(uap, tp))
    267   1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    268   1.22       jtc 
    269   1.22       jtc 	return error;
    270   1.22       jtc }
    271   1.22       jtc 
    272   1.27       jtc /* ARGSUSED */
    273   1.27       jtc int
    274  1.135       dsl sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap, register_t *retval)
    275   1.27       jtc {
    276  1.135       dsl 	/* {
    277  1.101    kardel 		syscallarg(struct timespec *) rqtp;
    278  1.101    kardel 		syscallarg(struct timespec *) rmtp;
    279  1.135       dsl 	} */
    280  1.101    kardel 	struct timespec rmt, rqt;
    281  1.120       dsl 	int error, error1;
    282  1.101    kardel 
    283  1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    284  1.101    kardel 	if (error)
    285  1.101    kardel 		return (error);
    286  1.101    kardel 
    287  1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    288  1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    289  1.120       dsl 		return error;
    290  1.120       dsl 
    291  1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    292  1.120       dsl 	return error1 ? error1 : error;
    293  1.120       dsl }
    294  1.120       dsl 
    295  1.120       dsl int
    296  1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    297  1.120       dsl {
    298  1.120       dsl 	int error, timo;
    299  1.120       dsl 
    300  1.120       dsl 	if (itimespecfix(rqt))
    301  1.101    kardel 		return (EINVAL);
    302  1.101    kardel 
    303  1.120       dsl 	timo = tstohz(rqt);
    304  1.101    kardel 	/*
    305  1.101    kardel 	 * Avoid inadvertantly sleeping forever
    306  1.101    kardel 	 */
    307  1.101    kardel 	if (timo == 0)
    308  1.101    kardel 		timo = 1;
    309  1.101    kardel 
    310  1.123       dsl 	if (rmt != NULL)
    311  1.123       dsl 		getnanouptime(rmt);
    312  1.104    kardel 
    313  1.115   thorpej 	error = kpause("nanoslp", true, timo, NULL);
    314  1.101    kardel 	if (error == ERESTART)
    315  1.101    kardel 		error = EINTR;
    316  1.101    kardel 	if (error == EWOULDBLOCK)
    317  1.101    kardel 		error = 0;
    318  1.101    kardel 
    319  1.120       dsl 	if (rmt!= NULL) {
    320  1.104    kardel 		struct timespec rmtend;
    321  1.101    kardel 
    322  1.104    kardel 		getnanouptime(&rmtend);
    323  1.101    kardel 
    324  1.120       dsl 		timespecsub(&rmtend, rmt, rmt);
    325  1.120       dsl 		timespecsub(rqt, rmt, rmt);
    326  1.120       dsl 		if (rmt->tv_sec < 0)
    327  1.120       dsl 			timespecclear(rmt);
    328  1.101    kardel 	}
    329  1.101    kardel 
    330  1.101    kardel 	return error;
    331   1.27       jtc }
    332   1.22       jtc 
    333    1.1       cgd /* ARGSUSED */
    334    1.3    andrew int
    335  1.135       dsl sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap, register_t *retval)
    336   1.15   thorpej {
    337  1.135       dsl 	/* {
    338   1.11       cgd 		syscallarg(struct timeval *) tp;
    339  1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    340  1.135       dsl 	} */
    341    1.1       cgd 	struct timeval atv;
    342    1.1       cgd 	int error = 0;
    343   1.25     perry 	struct timezone tzfake;
    344    1.1       cgd 
    345   1.11       cgd 	if (SCARG(uap, tp)) {
    346    1.1       cgd 		microtime(&atv);
    347   1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    348   1.17  christos 		if (error)
    349    1.1       cgd 			return (error);
    350    1.1       cgd 	}
    351   1.25     perry 	if (SCARG(uap, tzp)) {
    352   1.25     perry 		/*
    353   1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    354   1.25     perry 		 * fake up a timezone struct and return it if demanded.
    355   1.25     perry 		 */
    356   1.25     perry 		tzfake.tz_minuteswest = 0;
    357   1.25     perry 		tzfake.tz_dsttime = 0;
    358   1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    359   1.25     perry 	}
    360    1.1       cgd 	return (error);
    361    1.1       cgd }
    362    1.1       cgd 
    363    1.1       cgd /* ARGSUSED */
    364    1.3    andrew int
    365  1.135       dsl sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap, register_t *retval)
    366   1.15   thorpej {
    367  1.135       dsl 	/* {
    368   1.24       cgd 		syscallarg(const struct timeval *) tv;
    369  1.135       dsl 		syscallarg(const void *) tzp;	really "const struct timezone *";
    370  1.135       dsl 	} */
    371   1.60      manu 
    372  1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    373   1.60      manu }
    374   1.60      manu 
    375   1.60      manu int
    376  1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    377  1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    378   1.60      manu {
    379   1.22       jtc 	struct timeval atv;
    380   1.98  christos 	struct timespec ts;
    381   1.22       jtc 	int error;
    382    1.1       cgd 
    383    1.8       cgd 	/* Verify all parameters before changing time. */
    384  1.119       dsl 
    385   1.25     perry 	/*
    386   1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    387   1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    388   1.25     perry 	 */
    389   1.98  christos 	if (utzp)
    390   1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    391  1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    392   1.98  christos 
    393   1.98  christos 	if (utv == NULL)
    394   1.98  christos 		return 0;
    395   1.98  christos 
    396  1.119       dsl 	if (userspace) {
    397  1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    398  1.119       dsl 			return error;
    399  1.119       dsl 		utv = &atv;
    400  1.119       dsl 	}
    401  1.119       dsl 
    402  1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    403  1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    404    1.1       cgd }
    405    1.1       cgd 
    406  1.101    kardel #ifndef __HAVE_TIMECOUNTER
    407    1.1       cgd int	tickdelta;			/* current clock skew, us. per tick */
    408    1.1       cgd long	timedelta;			/* unapplied time correction, us. */
    409    1.1       cgd long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
    410  1.101    kardel #endif
    411  1.101    kardel 
    412   1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    413    1.1       cgd 
    414    1.1       cgd /* ARGSUSED */
    415    1.3    andrew int
    416  1.135       dsl sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap, register_t *retval)
    417   1.15   thorpej {
    418  1.135       dsl 	/* {
    419   1.24       cgd 		syscallarg(const struct timeval *) delta;
    420   1.11       cgd 		syscallarg(struct timeval *) olddelta;
    421  1.135       dsl 	} */
    422   1.56      manu 	int error;
    423    1.1       cgd 
    424  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    425  1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    426    1.1       cgd 		return (error);
    427   1.17  christos 
    428  1.105        ad 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    429   1.56      manu }
    430   1.56      manu 
    431   1.56      manu int
    432  1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    433   1.56      manu {
    434   1.60      manu 	struct timeval atv;
    435  1.101    kardel 	int error = 0;
    436  1.101    kardel 
    437  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    438  1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    439  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    440   1.56      manu 	long ndelta, ntickdelta, odelta;
    441   1.56      manu 	int s;
    442  1.101    kardel #endif /* !__HAVE_TIMECOUNTER */
    443  1.101    kardel 
    444  1.101    kardel #ifdef __HAVE_TIMECOUNTER
    445  1.101    kardel 	if (olddelta) {
    446  1.101    kardel 		atv.tv_sec = time_adjtime / 1000000;
    447  1.101    kardel 		atv.tv_usec = time_adjtime % 1000000;
    448  1.101    kardel 		if (atv.tv_usec < 0) {
    449  1.101    kardel 			atv.tv_usec += 1000000;
    450  1.101    kardel 			atv.tv_sec--;
    451  1.101    kardel 		}
    452  1.101    kardel 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    453  1.101    kardel 		if (error)
    454  1.101    kardel 			return (error);
    455  1.101    kardel 	}
    456  1.101    kardel 
    457  1.101    kardel 	if (delta) {
    458  1.101    kardel 		error = copyin(delta, &atv, sizeof(struct timeval));
    459  1.101    kardel 		if (error)
    460  1.101    kardel 			return (error);
    461  1.101    kardel 
    462  1.101    kardel 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    463  1.101    kardel 			atv.tv_usec;
    464    1.8       cgd 
    465  1.101    kardel 		if (time_adjtime)
    466  1.101    kardel 			/* We need to save the system time during shutdown */
    467  1.101    kardel 			time_adjusted |= 1;
    468  1.101    kardel 	}
    469  1.101    kardel #else /* !__HAVE_TIMECOUNTER */
    470   1.60      manu 	error = copyin(delta, &atv, sizeof(struct timeval));
    471   1.60      manu 	if (error)
    472   1.60      manu 		return (error);
    473   1.60      manu 
    474    1.8       cgd 	/*
    475    1.8       cgd 	 * Compute the total correction and the rate at which to apply it.
    476    1.8       cgd 	 * Round the adjustment down to a whole multiple of the per-tick
    477    1.8       cgd 	 * delta, so that after some number of incremental changes in
    478    1.8       cgd 	 * hardclock(), tickdelta will become zero, lest the correction
    479    1.8       cgd 	 * overshoot and start taking us away from the desired final time.
    480    1.8       cgd 	 */
    481   1.60      manu 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    482   1.41       hwr 	if (ndelta > bigadj || ndelta < -bigadj)
    483    1.8       cgd 		ntickdelta = 10 * tickadj;
    484    1.8       cgd 	else
    485    1.8       cgd 		ntickdelta = tickadj;
    486    1.8       cgd 	if (ndelta % ntickdelta)
    487    1.8       cgd 		ndelta = ndelta / ntickdelta * ntickdelta;
    488    1.8       cgd 
    489    1.8       cgd 	/*
    490    1.8       cgd 	 * To make hardclock()'s job easier, make the per-tick delta negative
    491    1.8       cgd 	 * if we want time to run slower; then hardclock can simply compute
    492    1.8       cgd 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    493    1.8       cgd 	 */
    494    1.8       cgd 	if (ndelta < 0)
    495    1.8       cgd 		ntickdelta = -ntickdelta;
    496   1.68       dsl 	if (ndelta != 0)
    497   1.68       dsl 		/* We need to save the system clock time during shutdown */
    498   1.68       dsl 		time_adjusted |= 1;
    499    1.1       cgd 	s = splclock();
    500    1.8       cgd 	odelta = timedelta;
    501    1.1       cgd 	timedelta = ndelta;
    502    1.8       cgd 	tickdelta = ntickdelta;
    503    1.1       cgd 	splx(s);
    504    1.1       cgd 
    505   1.56      manu 	if (olddelta) {
    506   1.60      manu 		atv.tv_sec = odelta / 1000000;
    507   1.60      manu 		atv.tv_usec = odelta % 1000000;
    508   1.79       chs 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    509    1.8       cgd 	}
    510  1.101    kardel #endif /* __HAVE_TIMECOUNTER */
    511  1.101    kardel 
    512   1.79       chs 	return error;
    513    1.1       cgd }
    514    1.1       cgd 
    515    1.1       cgd /*
    516   1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    517   1.63   thorpej  * timer_*() family of routines are supported.
    518    1.1       cgd  *
    519   1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    520   1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    521   1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    522   1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    523   1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    524   1.63   thorpej  * syscall.
    525    1.1       cgd  *
    526   1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    527   1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    528    1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    529   1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    530   1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    531   1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    532   1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    533   1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    534   1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    535   1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    536   1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    537   1.63   thorpej 
    538   1.63   thorpej /* Allocate a POSIX realtime timer. */
    539   1.63   thorpej int
    540  1.135       dsl sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap, register_t *retval)
    541   1.63   thorpej {
    542  1.135       dsl 	/* {
    543   1.63   thorpej 		syscallarg(clockid_t) clock_id;
    544   1.63   thorpej 		syscallarg(struct sigevent *) evp;
    545   1.63   thorpej 		syscallarg(timer_t *) timerid;
    546  1.135       dsl 	} */
    547   1.92      cube 
    548   1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    549  1.105        ad 	    SCARG(uap, evp), copyin, l);
    550   1.92      cube }
    551   1.92      cube 
    552   1.92      cube int
    553   1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    554  1.105        ad     copyin_t fetch_event, struct lwp *l)
    555   1.92      cube {
    556   1.92      cube 	int error;
    557   1.92      cube 	timer_t timerid;
    558   1.63   thorpej 	struct ptimer *pt;
    559  1.105        ad 	struct proc *p;
    560  1.105        ad 
    561  1.105        ad 	p = l->l_proc;
    562   1.63   thorpej 
    563   1.63   thorpej 	if (id < CLOCK_REALTIME ||
    564   1.63   thorpej 	    id > CLOCK_PROF)
    565   1.63   thorpej 		return (EINVAL);
    566   1.63   thorpej 
    567   1.63   thorpej 	if (p->p_timers == NULL)
    568   1.63   thorpej 		timers_alloc(p);
    569   1.63   thorpej 
    570   1.63   thorpej 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    571   1.63   thorpej 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    572   1.63   thorpej 		if (p->p_timers->pts_timers[timerid] == NULL)
    573   1.63   thorpej 			break;
    574   1.63   thorpej 
    575   1.63   thorpej 	if (timerid == TIMER_MAX)
    576   1.63   thorpej 		return EAGAIN;
    577   1.63   thorpej 
    578   1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    579   1.63   thorpej 	if (evp) {
    580   1.63   thorpej 		if (((error =
    581   1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    582   1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    583   1.63   thorpej 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    584   1.63   thorpej 			pool_put(&ptimer_pool, pt);
    585   1.63   thorpej 			return (error ? error : EINVAL);
    586   1.63   thorpej 		}
    587   1.63   thorpej 	} else {
    588   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    589   1.63   thorpej 		switch (id) {
    590   1.63   thorpej 		case CLOCK_REALTIME:
    591   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    592   1.63   thorpej 			break;
    593   1.63   thorpej 		case CLOCK_VIRTUAL:
    594   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    595   1.63   thorpej 			break;
    596   1.63   thorpej 		case CLOCK_PROF:
    597   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    598   1.63   thorpej 			break;
    599   1.63   thorpej 		}
    600   1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    601   1.63   thorpej 	}
    602   1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    603   1.73  christos 	pt->pt_info.ksi_errno = 0;
    604   1.73  christos 	pt->pt_info.ksi_code = 0;
    605   1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    606  1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    607  1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    608   1.63   thorpej 
    609   1.63   thorpej 	pt->pt_type = id;
    610   1.63   thorpej 	pt->pt_proc = p;
    611   1.63   thorpej 	pt->pt_overruns = 0;
    612   1.63   thorpej 	pt->pt_poverruns = 0;
    613   1.64   nathanw 	pt->pt_entry = timerid;
    614   1.63   thorpej 	timerclear(&pt->pt_time.it_value);
    615   1.63   thorpej 	if (id == CLOCK_REALTIME)
    616  1.125        ad 		callout_init(&pt->pt_ch, 0);
    617   1.63   thorpej 	else
    618   1.63   thorpej 		pt->pt_active = 0;
    619   1.63   thorpej 
    620   1.63   thorpej 	p->p_timers->pts_timers[timerid] = pt;
    621   1.63   thorpej 
    622   1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    623   1.63   thorpej }
    624   1.63   thorpej 
    625   1.63   thorpej /* Delete a POSIX realtime timer */
    626    1.3    andrew int
    627  1.135       dsl sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap, register_t *retval)
    628   1.15   thorpej {
    629  1.135       dsl 	/* {
    630   1.63   thorpej 		syscallarg(timer_t) timerid;
    631  1.135       dsl 	} */
    632   1.63   thorpej 	struct proc *p = l->l_proc;
    633   1.65  jdolecek 	timer_t timerid;
    634   1.63   thorpej 	struct ptimer *pt, *ptn;
    635    1.1       cgd 	int s;
    636    1.1       cgd 
    637   1.63   thorpej 	timerid = SCARG(uap, timerid);
    638   1.63   thorpej 
    639   1.63   thorpej 	if ((p->p_timers == NULL) ||
    640   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    641   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    642    1.1       cgd 		return (EINVAL);
    643   1.63   thorpej 
    644  1.125        ad 	if (pt->pt_type == CLOCK_REALTIME) {
    645   1.63   thorpej 		callout_stop(&pt->pt_ch);
    646  1.125        ad 		callout_destroy(&pt->pt_ch);
    647  1.125        ad 	} else if (pt->pt_active) {
    648   1.63   thorpej 		s = splclock();
    649   1.63   thorpej 		ptn = LIST_NEXT(pt, pt_list);
    650   1.63   thorpej 		LIST_REMOVE(pt, pt_list);
    651   1.63   thorpej 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    652   1.63   thorpej 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    653   1.63   thorpej 			    &ptn->pt_time.it_value);
    654   1.63   thorpej 		splx(s);
    655   1.63   thorpej 	}
    656   1.63   thorpej 
    657   1.63   thorpej 	p->p_timers->pts_timers[timerid] = NULL;
    658   1.63   thorpej 	pool_put(&ptimer_pool, pt);
    659   1.63   thorpej 
    660   1.63   thorpej 	return (0);
    661   1.63   thorpej }
    662   1.63   thorpej 
    663   1.63   thorpej /*
    664   1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    665   1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    666   1.67   nathanw  * time for virtual timers.
    667   1.63   thorpej  * Must be called at splclock().
    668   1.63   thorpej  */
    669   1.63   thorpej void
    670   1.63   thorpej timer_settime(struct ptimer *pt)
    671   1.63   thorpej {
    672   1.63   thorpej 	struct ptimer *ptn, *pptn;
    673   1.63   thorpej 	struct ptlist *ptl;
    674   1.63   thorpej 
    675   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    676   1.63   thorpej 		callout_stop(&pt->pt_ch);
    677   1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    678   1.63   thorpej 			/*
    679   1.63   thorpej 			 * Don't need to check hzto() return value, here.
    680   1.63   thorpej 			 * callout_reset() does it for us.
    681   1.63   thorpej 			 */
    682   1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    683   1.63   thorpej 			    realtimerexpire, pt);
    684   1.63   thorpej 		}
    685   1.63   thorpej 	} else {
    686   1.63   thorpej 		if (pt->pt_active) {
    687   1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    688   1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    689   1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    690   1.63   thorpej 				timeradd(&pt->pt_time.it_value,
    691   1.63   thorpej 				    &ptn->pt_time.it_value,
    692   1.63   thorpej 				    &ptn->pt_time.it_value);
    693   1.63   thorpej 		}
    694   1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    695   1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    696   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    697   1.63   thorpej 			else
    698   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    699   1.63   thorpej 
    700   1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    701   1.63   thorpej 			     ptn && timercmp(&pt->pt_time.it_value,
    702   1.63   thorpej 				 &ptn->pt_time.it_value, >);
    703   1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    704   1.63   thorpej 				timersub(&pt->pt_time.it_value,
    705   1.63   thorpej 				    &ptn->pt_time.it_value,
    706   1.63   thorpej 				    &pt->pt_time.it_value);
    707   1.63   thorpej 
    708   1.63   thorpej 			if (pptn)
    709   1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    710   1.63   thorpej 			else
    711   1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    712   1.63   thorpej 
    713   1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    714   1.63   thorpej 				timersub(&ptn->pt_time.it_value,
    715   1.63   thorpej 				    &pt->pt_time.it_value,
    716   1.63   thorpej 				    &ptn->pt_time.it_value);
    717   1.63   thorpej 
    718   1.63   thorpej 			pt->pt_active = 1;
    719   1.63   thorpej 		} else
    720   1.63   thorpej 			pt->pt_active = 0;
    721   1.63   thorpej 	}
    722   1.63   thorpej }
    723   1.63   thorpej 
    724   1.63   thorpej void
    725   1.63   thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    726   1.63   thorpej {
    727  1.101    kardel 	struct timeval now;
    728   1.63   thorpej 	struct ptimer *ptn;
    729   1.63   thorpej 
    730   1.63   thorpej 	*aitv = pt->pt_time;
    731   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    732    1.1       cgd 		/*
    733   1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    734   1.63   thorpej 		 * part of real time timer.  If time for real time
    735   1.63   thorpej 		 * timer has passed return 0, else return difference
    736   1.63   thorpej 		 * between current time and time for the timer to go
    737   1.63   thorpej 		 * off.
    738    1.1       cgd 		 */
    739   1.63   thorpej 		if (timerisset(&aitv->it_value)) {
    740  1.101    kardel 			getmicrotime(&now);
    741  1.101    kardel 			if (timercmp(&aitv->it_value, &now, <))
    742  1.101    kardel 				timerclear(&aitv->it_value);
    743  1.101    kardel 			else
    744  1.101    kardel 				timersub(&aitv->it_value, &now,
    745  1.101    kardel 				    &aitv->it_value);
    746   1.36   thorpej 		}
    747   1.63   thorpej 	} else if (pt->pt_active) {
    748   1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    749   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    750   1.63   thorpej 		else
    751   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    752   1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    753   1.63   thorpej 			timeradd(&aitv->it_value,
    754   1.63   thorpej 			    &ptn->pt_time.it_value, &aitv->it_value);
    755   1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    756    1.1       cgd 	} else
    757   1.63   thorpej 		timerclear(&aitv->it_value);
    758   1.63   thorpej }
    759   1.63   thorpej 
    760   1.63   thorpej 
    761   1.63   thorpej 
    762   1.63   thorpej /* Set and arm a POSIX realtime timer */
    763   1.63   thorpej int
    764  1.135       dsl sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap, register_t *retval)
    765   1.63   thorpej {
    766  1.135       dsl 	/* {
    767   1.63   thorpej 		syscallarg(timer_t) timerid;
    768   1.63   thorpej 		syscallarg(int) flags;
    769   1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    770   1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    771  1.135       dsl 	} */
    772   1.92      cube 	int error;
    773   1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    774   1.92      cube 
    775   1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    776   1.92      cube 	    sizeof(struct itimerspec))) != 0)
    777   1.92      cube 		return (error);
    778   1.92      cube 
    779   1.92      cube 	if (SCARG(uap, ovalue))
    780   1.92      cube 		ovp = &ovalue;
    781   1.92      cube 
    782   1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    783   1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    784   1.92      cube 		return error;
    785   1.92      cube 
    786   1.92      cube 	if (ovp)
    787   1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    788   1.92      cube 		    sizeof(struct itimerspec));
    789   1.92      cube 	return 0;
    790   1.92      cube }
    791   1.92      cube 
    792   1.92      cube int
    793   1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    794   1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    795   1.92      cube {
    796  1.101    kardel 	struct timeval now;
    797   1.63   thorpej 	struct itimerval val, oval;
    798   1.63   thorpej 	struct ptimer *pt;
    799  1.101    kardel 	int s;
    800   1.63   thorpej 
    801   1.63   thorpej 	if ((p->p_timers == NULL) ||
    802   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    803   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    804   1.63   thorpej 		return (EINVAL);
    805   1.63   thorpej 
    806   1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    807   1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    808   1.63   thorpej 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    809   1.63   thorpej 		return (EINVAL);
    810   1.63   thorpej 
    811   1.63   thorpej 	oval = pt->pt_time;
    812   1.63   thorpej 	pt->pt_time = val;
    813   1.63   thorpej 
    814   1.63   thorpej 	s = splclock();
    815   1.67   nathanw 	/*
    816   1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    817   1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    818   1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    819   1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    820   1.67   nathanw 	 * negative, which would confuse the comparison tests.
    821   1.67   nathanw 	 */
    822   1.67   nathanw 	if (timerisset(&pt->pt_time.it_value)) {
    823   1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    824  1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    825  1.101    kardel 				getmicrotime(&now);
    826  1.101    kardel 				timeradd(&pt->pt_time.it_value, &now,
    827  1.101    kardel 				    &pt->pt_time.it_value);
    828  1.101    kardel 			}
    829   1.67   nathanw 		} else {
    830   1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    831  1.101    kardel 				getmicrotime(&now);
    832  1.101    kardel 				timersub(&pt->pt_time.it_value, &now,
    833  1.101    kardel 				    &pt->pt_time.it_value);
    834   1.67   nathanw 				if (!timerisset(&pt->pt_time.it_value) ||
    835   1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    836   1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    837   1.67   nathanw 					pt->pt_time.it_value.tv_usec = 1;
    838   1.67   nathanw 				}
    839   1.67   nathanw 			}
    840   1.67   nathanw 		}
    841   1.67   nathanw 	}
    842   1.67   nathanw 
    843   1.63   thorpej 	timer_settime(pt);
    844   1.63   thorpej 	splx(s);
    845   1.63   thorpej 
    846   1.92      cube 	if (ovalue) {
    847   1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    848   1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    849   1.63   thorpej 	}
    850   1.63   thorpej 
    851   1.63   thorpej 	return (0);
    852   1.63   thorpej }
    853   1.63   thorpej 
    854   1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    855   1.63   thorpej int
    856  1.135       dsl sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap, register_t *retval)
    857   1.63   thorpej {
    858  1.135       dsl 	/* {
    859   1.63   thorpej 		syscallarg(timer_t) timerid;
    860   1.63   thorpej 		syscallarg(struct itimerspec *) value;
    861  1.135       dsl 	} */
    862   1.63   thorpej 	struct itimerspec its;
    863   1.92      cube 	int error;
    864   1.92      cube 
    865   1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    866   1.92      cube 	    &its)) != 0)
    867   1.92      cube 		return error;
    868   1.92      cube 
    869   1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    870   1.92      cube }
    871   1.92      cube 
    872   1.92      cube int
    873   1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    874   1.92      cube {
    875   1.92      cube 	int s;
    876   1.63   thorpej 	struct ptimer *pt;
    877   1.92      cube 	struct itimerval aitv;
    878   1.63   thorpej 
    879   1.63   thorpej 	if ((p->p_timers == NULL) ||
    880   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    881   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    882   1.63   thorpej 		return (EINVAL);
    883   1.63   thorpej 
    884   1.63   thorpej 	s = splclock();
    885   1.63   thorpej 	timer_gettime(pt, &aitv);
    886    1.1       cgd 	splx(s);
    887   1.63   thorpej 
    888   1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    889   1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    890   1.63   thorpej 
    891   1.92      cube 	return 0;
    892   1.63   thorpej }
    893   1.63   thorpej 
    894   1.63   thorpej /*
    895   1.63   thorpej  * Return the count of the number of times a periodic timer expired
    896   1.63   thorpej  * while a notification was already pending. The counter is reset when
    897   1.63   thorpej  * a timer expires and a notification can be posted.
    898   1.63   thorpej  */
    899   1.63   thorpej int
    900  1.135       dsl sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap, register_t *retval)
    901   1.63   thorpej {
    902  1.135       dsl 	/* {
    903   1.63   thorpej 		syscallarg(timer_t) timerid;
    904  1.135       dsl 	} */
    905   1.63   thorpej 	struct proc *p = l->l_proc;
    906   1.63   thorpej 	int timerid;
    907   1.63   thorpej 	struct ptimer *pt;
    908   1.63   thorpej 
    909   1.63   thorpej 	timerid = SCARG(uap, timerid);
    910   1.63   thorpej 
    911   1.63   thorpej 	if ((p->p_timers == NULL) ||
    912   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    913   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    914   1.63   thorpej 		return (EINVAL);
    915   1.63   thorpej 
    916   1.63   thorpej 	*retval = pt->pt_poverruns;
    917   1.63   thorpej 
    918   1.63   thorpej 	return (0);
    919   1.63   thorpej }
    920   1.63   thorpej 
    921   1.63   thorpej /*
    922   1.63   thorpej  * Real interval timer expired:
    923   1.63   thorpej  * send process whose timer expired an alarm signal.
    924   1.63   thorpej  * If time is not set up to reload, then just return.
    925   1.63   thorpej  * Else compute next time timer should go off which is > current time.
    926   1.63   thorpej  * This is where delay in processing this timeout causes multiple
    927   1.63   thorpej  * SIGALRM calls to be compressed into one.
    928   1.63   thorpej  */
    929   1.63   thorpej void
    930   1.63   thorpej realtimerexpire(void *arg)
    931   1.63   thorpej {
    932  1.101    kardel 	struct timeval now;
    933   1.63   thorpej 	struct ptimer *pt;
    934   1.63   thorpej 	int s;
    935   1.63   thorpej 
    936   1.63   thorpej 	pt = (struct ptimer *)arg;
    937   1.63   thorpej 
    938   1.63   thorpej 	itimerfire(pt);
    939   1.63   thorpej 
    940   1.63   thorpej 	if (!timerisset(&pt->pt_time.it_interval)) {
    941   1.63   thorpej 		timerclear(&pt->pt_time.it_value);
    942   1.63   thorpej 		return;
    943   1.63   thorpej 	}
    944  1.101    kardel 	for (;;) {
    945  1.101    kardel 		s = splclock();	/* XXX need spl now? */
    946  1.101    kardel 		timeradd(&pt->pt_time.it_value,
    947  1.101    kardel 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    948  1.101    kardel 		getmicrotime(&now);
    949  1.101    kardel 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
    950  1.101    kardel 			/*
    951  1.101    kardel 			 * Don't need to check hzto() return value, here.
    952  1.101    kardel 			 * callout_reset() does it for us.
    953  1.101    kardel 			 */
    954  1.101    kardel 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    955  1.101    kardel 			    realtimerexpire, pt);
    956  1.101    kardel 			splx(s);
    957  1.101    kardel 			return;
    958  1.101    kardel 		}
    959  1.101    kardel 		splx(s);
    960  1.101    kardel 		pt->pt_overruns++;
    961  1.101    kardel 	}
    962   1.63   thorpej }
    963   1.63   thorpej 
    964   1.63   thorpej /* BSD routine to get the value of an interval timer. */
    965   1.63   thorpej /* ARGSUSED */
    966   1.63   thorpej int
    967  1.135       dsl sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap, register_t *retval)
    968   1.63   thorpej {
    969  1.135       dsl 	/* {
    970   1.63   thorpej 		syscallarg(int) which;
    971   1.63   thorpej 		syscallarg(struct itimerval *) itv;
    972  1.135       dsl 	} */
    973   1.63   thorpej 	struct proc *p = l->l_proc;
    974   1.63   thorpej 	struct itimerval aitv;
    975   1.91      cube 	int error;
    976   1.91      cube 
    977   1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
    978   1.91      cube 	if (error)
    979   1.91      cube 		return error;
    980   1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    981   1.91      cube }
    982   1.63   thorpej 
    983   1.91      cube int
    984   1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
    985   1.91      cube {
    986   1.91      cube 	int s;
    987   1.63   thorpej 
    988   1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
    989   1.63   thorpej 		return (EINVAL);
    990   1.63   thorpej 
    991   1.63   thorpej 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
    992   1.91      cube 		timerclear(&itvp->it_value);
    993   1.91      cube 		timerclear(&itvp->it_interval);
    994   1.63   thorpej 	} else {
    995   1.63   thorpej 		s = splclock();
    996   1.91      cube 		timer_gettime(p->p_timers->pts_timers[which], itvp);
    997   1.63   thorpej 		splx(s);
    998   1.63   thorpej 	}
    999   1.63   thorpej 
   1000   1.91      cube 	return 0;
   1001    1.1       cgd }
   1002    1.1       cgd 
   1003   1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1004    1.1       cgd /* ARGSUSED */
   1005    1.3    andrew int
   1006  1.135       dsl sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap, register_t *retval)
   1007   1.15   thorpej {
   1008  1.135       dsl 	/* {
   1009   1.30   mycroft 		syscallarg(int) which;
   1010   1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1011   1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1012  1.135       dsl 	} */
   1013   1.63   thorpej 	struct proc *p = l->l_proc;
   1014   1.30   mycroft 	int which = SCARG(uap, which);
   1015   1.21       cgd 	struct sys_getitimer_args getargs;
   1016   1.91      cube 	const struct itimerval *itvp;
   1017    1.1       cgd 	struct itimerval aitv;
   1018   1.91      cube 	int error;
   1019    1.1       cgd 
   1020   1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1021    1.1       cgd 		return (EINVAL);
   1022   1.11       cgd 	itvp = SCARG(uap, itv);
   1023   1.63   thorpej 	if (itvp &&
   1024   1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1025    1.1       cgd 		return (error);
   1026   1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1027   1.30   mycroft 		SCARG(&getargs, which) = which;
   1028   1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1029   1.63   thorpej 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1030   1.21       cgd 			return (error);
   1031   1.21       cgd 	}
   1032    1.1       cgd 	if (itvp == 0)
   1033    1.1       cgd 		return (0);
   1034   1.91      cube 
   1035   1.91      cube 	return dosetitimer(p, which, &aitv);
   1036   1.91      cube }
   1037   1.91      cube 
   1038   1.91      cube int
   1039   1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1040   1.91      cube {
   1041  1.101    kardel 	struct timeval now;
   1042   1.91      cube 	struct ptimer *pt;
   1043   1.91      cube 	int s;
   1044   1.91      cube 
   1045   1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1046    1.1       cgd 		return (EINVAL);
   1047   1.63   thorpej 
   1048   1.63   thorpej 	/*
   1049   1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1050   1.63   thorpej 	 * wants to clear the timer.
   1051   1.63   thorpej 	 */
   1052   1.91      cube 	if (!timerisset(&itvp->it_value) &&
   1053   1.63   thorpej 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1054   1.63   thorpej 		return (0);
   1055   1.63   thorpej 
   1056   1.63   thorpej 	if (p->p_timers == NULL)
   1057   1.63   thorpej 		timers_alloc(p);
   1058   1.63   thorpej 	if (p->p_timers->pts_timers[which] == NULL) {
   1059   1.63   thorpej 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1060   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1061   1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1062   1.63   thorpej 		pt->pt_overruns = 0;
   1063   1.63   thorpej 		pt->pt_proc = p;
   1064   1.63   thorpej 		pt->pt_type = which;
   1065   1.64   nathanw 		pt->pt_entry = which;
   1066   1.63   thorpej 		switch (which) {
   1067   1.63   thorpej 		case ITIMER_REAL:
   1068  1.125        ad 			callout_init(&pt->pt_ch, 0);
   1069   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1070   1.63   thorpej 			break;
   1071   1.63   thorpej 		case ITIMER_VIRTUAL:
   1072   1.63   thorpej 			pt->pt_active = 0;
   1073   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1074   1.63   thorpej 			break;
   1075   1.63   thorpej 		case ITIMER_PROF:
   1076   1.63   thorpej 			pt->pt_active = 0;
   1077   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1078   1.63   thorpej 			break;
   1079    1.1       cgd 		}
   1080    1.1       cgd 	} else
   1081   1.63   thorpej 		pt = p->p_timers->pts_timers[which];
   1082   1.63   thorpej 
   1083   1.91      cube 	pt->pt_time = *itvp;
   1084   1.63   thorpej 	p->p_timers->pts_timers[which] = pt;
   1085   1.63   thorpej 
   1086   1.63   thorpej 	s = splclock();
   1087   1.67   nathanw 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1088   1.67   nathanw 		/* Convert to absolute time */
   1089  1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1090  1.101    kardel 		getmicrotime(&now);
   1091  1.101    kardel 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1092   1.67   nathanw 	}
   1093   1.63   thorpej 	timer_settime(pt);
   1094    1.1       cgd 	splx(s);
   1095   1.63   thorpej 
   1096    1.1       cgd 	return (0);
   1097    1.1       cgd }
   1098    1.1       cgd 
   1099   1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1100   1.63   thorpej void
   1101   1.63   thorpej timers_alloc(struct proc *p)
   1102   1.63   thorpej {
   1103   1.63   thorpej 	int i;
   1104   1.63   thorpej 	struct ptimers *pts;
   1105   1.63   thorpej 
   1106  1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1107   1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1108   1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1109   1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1110   1.63   thorpej 		pts->pts_timers[i] = NULL;
   1111   1.64   nathanw 	pts->pts_fired = 0;
   1112   1.63   thorpej 	p->p_timers = pts;
   1113   1.63   thorpej }
   1114   1.63   thorpej 
   1115    1.1       cgd /*
   1116   1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1117   1.63   thorpej  * then clean up all timers and free all the data structures. If
   1118   1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1119   1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1120   1.63   thorpej  * structure if none of those remain.
   1121    1.1       cgd  */
   1122    1.3    andrew void
   1123   1.63   thorpej timers_free(struct proc *p, int which)
   1124    1.6       cgd {
   1125   1.63   thorpej 	int i, s;
   1126   1.63   thorpej 	struct ptimers *pts;
   1127   1.63   thorpej 	struct ptimer *pt, *ptn;
   1128   1.63   thorpej 	struct timeval tv;
   1129   1.63   thorpej 
   1130   1.63   thorpej 	if (p->p_timers) {
   1131   1.63   thorpej 		pts = p->p_timers;
   1132   1.63   thorpej 		if (which == TIMERS_ALL)
   1133   1.63   thorpej 			i = 0;
   1134   1.63   thorpej 		else {
   1135   1.63   thorpej 			s = splclock();
   1136   1.63   thorpej 			timerclear(&tv);
   1137   1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1138   1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1139   1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1140   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1141   1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1142   1.63   thorpej 			if (ptn) {
   1143   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1144   1.63   thorpej 				    &ptn->pt_time.it_value);
   1145   1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1146   1.63   thorpej 				    ptn, pt_list);
   1147   1.63   thorpej 			}
   1148   1.63   thorpej 
   1149   1.63   thorpej 			timerclear(&tv);
   1150   1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1151   1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1152   1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1153   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1154   1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1155   1.63   thorpej 			if (ptn) {
   1156   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1157   1.63   thorpej 				    &ptn->pt_time.it_value);
   1158   1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1159   1.63   thorpej 				    pt_list);
   1160   1.63   thorpej 			}
   1161    1.1       cgd 			splx(s);
   1162   1.63   thorpej 			i = 3;
   1163   1.63   thorpej 		}
   1164   1.63   thorpej 		for ( ; i < TIMER_MAX; i++)
   1165   1.63   thorpej 			if ((pt = pts->pts_timers[i]) != NULL) {
   1166  1.125        ad 				if (pt->pt_type == CLOCK_REALTIME) {
   1167   1.63   thorpej 					callout_stop(&pt->pt_ch);
   1168  1.125        ad 					callout_destroy(&pt->pt_ch);
   1169  1.125        ad 				}
   1170   1.63   thorpej 				pts->pts_timers[i] = NULL;
   1171   1.63   thorpej 				pool_put(&ptimer_pool, pt);
   1172   1.63   thorpej 			}
   1173   1.63   thorpej 		if ((pts->pts_timers[0] == NULL) &&
   1174   1.63   thorpej 		    (pts->pts_timers[1] == NULL) &&
   1175   1.63   thorpej 		    (pts->pts_timers[2] == NULL)) {
   1176   1.63   thorpej 			p->p_timers = NULL;
   1177   1.97    simonb 			pool_put(&ptimers_pool, pts);
   1178    1.1       cgd 		}
   1179    1.1       cgd 	}
   1180    1.1       cgd }
   1181    1.1       cgd 
   1182    1.1       cgd /*
   1183    1.1       cgd  * Decrement an interval timer by a specified number
   1184    1.1       cgd  * of microseconds, which must be less than a second,
   1185    1.1       cgd  * i.e. < 1000000.  If the timer expires, then reload
   1186    1.1       cgd  * it.  In this case, carry over (usec - old value) to
   1187    1.8       cgd  * reduce the value reloaded into the timer so that
   1188    1.1       cgd  * the timer does not drift.  This routine assumes
   1189    1.1       cgd  * that it is called in a context where the timers
   1190    1.1       cgd  * on which it is operating cannot change in value.
   1191    1.1       cgd  */
   1192    1.3    andrew int
   1193   1.63   thorpej itimerdecr(struct ptimer *pt, int usec)
   1194   1.63   thorpej {
   1195   1.45  augustss 	struct itimerval *itp;
   1196    1.1       cgd 
   1197   1.63   thorpej 	itp = &pt->pt_time;
   1198    1.1       cgd 	if (itp->it_value.tv_usec < usec) {
   1199    1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1200    1.1       cgd 			/* expired, and already in next interval */
   1201    1.1       cgd 			usec -= itp->it_value.tv_usec;
   1202    1.1       cgd 			goto expire;
   1203    1.1       cgd 		}
   1204    1.1       cgd 		itp->it_value.tv_usec += 1000000;
   1205    1.1       cgd 		itp->it_value.tv_sec--;
   1206    1.1       cgd 	}
   1207    1.1       cgd 	itp->it_value.tv_usec -= usec;
   1208    1.1       cgd 	usec = 0;
   1209    1.1       cgd 	if (timerisset(&itp->it_value))
   1210    1.1       cgd 		return (1);
   1211    1.1       cgd 	/* expired, exactly at end of interval */
   1212    1.1       cgd expire:
   1213    1.1       cgd 	if (timerisset(&itp->it_interval)) {
   1214    1.1       cgd 		itp->it_value = itp->it_interval;
   1215    1.1       cgd 		itp->it_value.tv_usec -= usec;
   1216    1.1       cgd 		if (itp->it_value.tv_usec < 0) {
   1217    1.1       cgd 			itp->it_value.tv_usec += 1000000;
   1218    1.1       cgd 			itp->it_value.tv_sec--;
   1219    1.1       cgd 		}
   1220   1.63   thorpej 		timer_settime(pt);
   1221    1.1       cgd 	} else
   1222    1.1       cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1223    1.1       cgd 	return (0);
   1224   1.42       cgd }
   1225   1.42       cgd 
   1226   1.63   thorpej void
   1227   1.63   thorpej itimerfire(struct ptimer *pt)
   1228   1.63   thorpej {
   1229   1.63   thorpej 	struct proc *p = pt->pt_proc;
   1230   1.78        cl 
   1231   1.63   thorpej 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1232   1.63   thorpej 		/*
   1233   1.63   thorpej 		 * No RT signal infrastructure exists at this time;
   1234   1.63   thorpej 		 * just post the signal number and throw away the
   1235   1.63   thorpej 		 * value.
   1236   1.63   thorpej 		 */
   1237  1.113        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
   1238   1.63   thorpej 			pt->pt_overruns++;
   1239   1.63   thorpej 		else {
   1240   1.75  christos 			ksiginfo_t ksi;
   1241  1.111      yamt 			KSI_INIT(&ksi);
   1242   1.75  christos 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1243   1.75  christos 			ksi.ksi_code = SI_TIMER;
   1244  1.124  christos 			ksi.ksi_value = pt->pt_ev.sigev_value;
   1245   1.63   thorpej 			pt->pt_poverruns = pt->pt_overruns;
   1246   1.63   thorpej 			pt->pt_overruns = 0;
   1247  1.113        ad 			mutex_enter(&proclist_mutex);
   1248   1.75  christos 			kpsignal(p, &ksi, NULL);
   1249  1.113        ad 			mutex_exit(&proclist_mutex);
   1250   1.64   nathanw 		}
   1251   1.63   thorpej 	}
   1252   1.63   thorpej }
   1253   1.63   thorpej 
   1254   1.42       cgd /*
   1255   1.42       cgd  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1256   1.42       cgd  * for usage and rationale.
   1257   1.42       cgd  */
   1258   1.42       cgd int
   1259   1.63   thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1260   1.42       cgd {
   1261   1.49    itojun 	struct timeval tv, delta;
   1262  1.101    kardel 	int rv = 0;
   1263   1.42       cgd 
   1264  1.101    kardel 	getmicrouptime(&tv);
   1265   1.49    itojun 	timersub(&tv, lasttime, &delta);
   1266   1.42       cgd 
   1267   1.42       cgd 	/*
   1268   1.42       cgd 	 * check for 0,0 is so that the message will be seen at least once,
   1269   1.42       cgd 	 * even if interval is huge.
   1270   1.42       cgd 	 */
   1271   1.42       cgd 	if (timercmp(&delta, mininterval, >=) ||
   1272   1.42       cgd 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1273   1.49    itojun 		*lasttime = tv;
   1274   1.42       cgd 		rv = 1;
   1275   1.42       cgd 	}
   1276   1.50    itojun 
   1277   1.50    itojun 	return (rv);
   1278   1.50    itojun }
   1279   1.50    itojun 
   1280   1.50    itojun /*
   1281   1.50    itojun  * ppsratecheck(): packets (or events) per second limitation.
   1282   1.50    itojun  */
   1283   1.50    itojun int
   1284   1.63   thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1285   1.50    itojun {
   1286   1.50    itojun 	struct timeval tv, delta;
   1287  1.101    kardel 	int rv;
   1288   1.50    itojun 
   1289  1.101    kardel 	getmicrouptime(&tv);
   1290   1.50    itojun 	timersub(&tv, lasttime, &delta);
   1291   1.50    itojun 
   1292   1.50    itojun 	/*
   1293   1.50    itojun 	 * check for 0,0 is so that the message will be seen at least once.
   1294   1.50    itojun 	 * if more than one second have passed since the last update of
   1295   1.50    itojun 	 * lasttime, reset the counter.
   1296   1.50    itojun 	 *
   1297   1.50    itojun 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1298   1.50    itojun 	 * try to use *curpps for stat purposes as well.
   1299   1.50    itojun 	 */
   1300   1.50    itojun 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1301   1.50    itojun 	    delta.tv_sec >= 1) {
   1302   1.50    itojun 		*lasttime = tv;
   1303   1.50    itojun 		*curpps = 0;
   1304   1.69    dyoung 	}
   1305   1.69    dyoung 	if (maxpps < 0)
   1306   1.53    itojun 		rv = 1;
   1307   1.53    itojun 	else if (*curpps < maxpps)
   1308   1.50    itojun 		rv = 1;
   1309   1.50    itojun 	else
   1310   1.50    itojun 		rv = 0;
   1311   1.50    itojun 
   1312   1.51     jhawk #if 1 /*DIAGNOSTIC?*/
   1313   1.50    itojun 	/* be careful about wrap-around */
   1314   1.50    itojun 	if (*curpps + 1 > *curpps)
   1315   1.50    itojun 		*curpps = *curpps + 1;
   1316   1.50    itojun #else
   1317   1.50    itojun 	/*
   1318   1.50    itojun 	 * assume that there's not too many calls to this function.
   1319   1.50    itojun 	 * not sure if the assumption holds, as it depends on *caller's*
   1320   1.50    itojun 	 * behavior, not the behavior of this function.
   1321   1.50    itojun 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1322   1.51     jhawk 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1323   1.50    itojun 	 */
   1324   1.50    itojun 	*curpps = *curpps + 1;
   1325   1.50    itojun #endif
   1326   1.42       cgd 
   1327   1.42       cgd 	return (rv);
   1328    1.1       cgd }
   1329