Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.141
      1  1.141      yamt /*	$NetBSD: kern_time.c,v 1.141 2008/02/25 12:25:03 yamt Exp $	*/
      2   1.42       cgd 
      3   1.42       cgd /*-
      4  1.131        ad  * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
      5   1.42       cgd  * All rights reserved.
      6   1.42       cgd  *
      7   1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8   1.42       cgd  * by Christopher G. Demetriou.
      9   1.42       cgd  *
     10   1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11   1.42       cgd  * modification, are permitted provided that the following conditions
     12   1.42       cgd  * are met:
     13   1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14   1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15   1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17   1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18   1.42       cgd  * 3. All advertising materials mentioning features or use of this software
     19   1.42       cgd  *    must display the following acknowledgement:
     20   1.42       cgd  *	This product includes software developed by the NetBSD
     21   1.42       cgd  *	Foundation, Inc. and its contributors.
     22   1.42       cgd  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.42       cgd  *    contributors may be used to endorse or promote products derived
     24   1.42       cgd  *    from this software without specific prior written permission.
     25   1.42       cgd  *
     26   1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     37   1.42       cgd  */
     38    1.9       cgd 
     39    1.1       cgd /*
     40    1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     41    1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     42    1.1       cgd  *
     43    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     44    1.1       cgd  * modification, are permitted provided that the following conditions
     45    1.1       cgd  * are met:
     46    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     47    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     48    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     49    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     50    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     51   1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     52    1.1       cgd  *    may be used to endorse or promote products derived from this software
     53    1.1       cgd  *    without specific prior written permission.
     54    1.1       cgd  *
     55    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65    1.1       cgd  * SUCH DAMAGE.
     66    1.1       cgd  *
     67   1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68    1.1       cgd  */
     69   1.58     lukem 
     70   1.58     lukem #include <sys/cdefs.h>
     71  1.141      yamt __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.141 2008/02/25 12:25:03 yamt Exp $");
     72    1.1       cgd 
     73    1.5   mycroft #include <sys/param.h>
     74    1.5   mycroft #include <sys/resourcevar.h>
     75    1.5   mycroft #include <sys/kernel.h>
     76    1.8       cgd #include <sys/systm.h>
     77    1.5   mycroft #include <sys/proc.h>
     78    1.8       cgd #include <sys/vnode.h>
     79   1.17  christos #include <sys/signalvar.h>
     80   1.25     perry #include <sys/syslog.h>
     81  1.101    kardel #include <sys/timetc.h>
     82   1.99      elad #include <sys/kauth.h>
     83    1.1       cgd 
     84   1.11       cgd #include <sys/mount.h>
     85   1.11       cgd #include <sys/syscallargs.h>
     86   1.19  christos 
     87   1.37   thorpej #include <uvm/uvm_extern.h>
     88   1.37   thorpej 
     89  1.130        ad #include <sys/cpu.h>
     90   1.23       cgd 
     91  1.131        ad kmutex_t	time_lock;
     92  1.131        ad 
     93   1.97    simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     94  1.118        ad     &pool_allocator_nointr, IPL_NONE);
     95   1.97    simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     96  1.118        ad     &pool_allocator_nointr, IPL_NONE);
     97   1.97    simonb 
     98  1.131        ad /*
     99  1.131        ad  * Initialize timekeeping.
    100  1.131        ad  */
    101  1.131        ad void
    102  1.131        ad time_init(void)
    103  1.131        ad {
    104  1.131        ad 
    105  1.131        ad 	mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
    106  1.131        ad }
    107  1.131        ad 
    108   1.63   thorpej /* Time of day and interval timer support.
    109    1.1       cgd  *
    110    1.1       cgd  * These routines provide the kernel entry points to get and set
    111    1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    112    1.1       cgd  * here provide support for adding and subtracting timeval structures
    113    1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    114    1.1       cgd  * timers when they expire.
    115    1.1       cgd  */
    116    1.1       cgd 
    117   1.22       jtc /* This function is used by clock_settime and settimeofday */
    118  1.132      elad static int
    119  1.132      elad settime1(struct proc *p, struct timespec *ts, bool check_kauth)
    120   1.22       jtc {
    121   1.98  christos 	struct timeval delta, tv;
    122  1.101    kardel 	struct timeval now;
    123  1.101    kardel 	struct timespec ts1;
    124  1.137      yamt 	struct bintime btdelta;
    125  1.129        ad 	lwp_t *l;
    126  1.129        ad 	int s;
    127   1.22       jtc 
    128   1.98  christos 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    129   1.98  christos 
    130   1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    131  1.129        ad 	s = splclock();
    132  1.101    kardel 	microtime(&now);
    133  1.101    kardel 	timersub(&tv, &now, &delta);
    134  1.132      elad 
    135  1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    136  1.134      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
    137  1.132      elad 	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
    138  1.129        ad 		splx(s);
    139   1.29       tls 		return (EPERM);
    140   1.55      tron 	}
    141  1.132      elad 
    142   1.29       tls #ifdef notyet
    143  1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    144  1.129        ad 		splx(s);
    145   1.29       tls 		return (EPERM);
    146   1.55      tron 	}
    147   1.29       tls #endif
    148  1.103    kardel 
    149  1.103    kardel 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    150  1.101    kardel 	tc_setclock(&ts1);
    151  1.103    kardel 
    152   1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    153  1.103    kardel 
    154   1.47   thorpej 	/*
    155  1.129        ad 	 * XXXSMP: There is a short race between setting the time above
    156  1.129        ad 	 * and adjusting LWP's run times.  Fixing this properly means
    157  1.129        ad 	 * pausing all CPUs while we adjust the clock.
    158   1.47   thorpej 	 */
    159  1.137      yamt 	timeval2bintime(&delta, &btdelta);
    160  1.129        ad 	mutex_enter(&proclist_lock);
    161  1.129        ad 	LIST_FOREACH(l, &alllwp, l_list) {
    162  1.129        ad 		lwp_lock(l);
    163  1.137      yamt 		bintime_add(&l->l_stime, &btdelta);
    164  1.129        ad 		lwp_unlock(l);
    165  1.129        ad 	}
    166  1.129        ad 	mutex_exit(&proclist_lock);
    167   1.22       jtc 	resettodr();
    168  1.129        ad 	splx(s);
    169  1.129        ad 
    170   1.29       tls 	return (0);
    171   1.22       jtc }
    172   1.22       jtc 
    173  1.132      elad int
    174  1.132      elad settime(struct proc *p, struct timespec *ts)
    175  1.132      elad {
    176  1.132      elad 	return (settime1(p, ts, true));
    177  1.132      elad }
    178  1.132      elad 
    179   1.22       jtc /* ARGSUSED */
    180   1.22       jtc int
    181  1.140      yamt sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
    182  1.140      yamt     register_t *retval)
    183   1.22       jtc {
    184  1.135       dsl 	/* {
    185   1.22       jtc 		syscallarg(clockid_t) clock_id;
    186   1.23       cgd 		syscallarg(struct timespec *) tp;
    187  1.135       dsl 	} */
    188   1.22       jtc 	clockid_t clock_id;
    189   1.22       jtc 	struct timespec ats;
    190   1.22       jtc 
    191   1.22       jtc 	clock_id = SCARG(uap, clock_id);
    192   1.61    simonb 	switch (clock_id) {
    193   1.61    simonb 	case CLOCK_REALTIME:
    194   1.96    simonb 		nanotime(&ats);
    195   1.61    simonb 		break;
    196   1.61    simonb 	case CLOCK_MONOTONIC:
    197  1.101    kardel 		nanouptime(&ats);
    198   1.61    simonb 		break;
    199   1.61    simonb 	default:
    200   1.22       jtc 		return (EINVAL);
    201   1.61    simonb 	}
    202   1.22       jtc 
    203   1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    204   1.22       jtc }
    205   1.22       jtc 
    206   1.22       jtc /* ARGSUSED */
    207   1.22       jtc int
    208  1.140      yamt sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
    209  1.140      yamt     register_t *retval)
    210   1.22       jtc {
    211  1.135       dsl 	/* {
    212   1.22       jtc 		syscallarg(clockid_t) clock_id;
    213   1.23       cgd 		syscallarg(const struct timespec *) tp;
    214  1.135       dsl 	} */
    215   1.22       jtc 
    216  1.132      elad 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
    217  1.132      elad 	    true);
    218   1.56      manu }
    219   1.56      manu 
    220   1.56      manu 
    221   1.56      manu int
    222  1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    223  1.132      elad     bool check_kauth)
    224   1.56      manu {
    225   1.60      manu 	struct timespec ats;
    226   1.56      manu 	int error;
    227   1.56      manu 
    228   1.60      manu 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    229   1.60      manu 		return (error);
    230   1.60      manu 
    231   1.61    simonb 	switch (clock_id) {
    232   1.61    simonb 	case CLOCK_REALTIME:
    233  1.132      elad 		if ((error = settime1(p, &ats, check_kauth)) != 0)
    234   1.61    simonb 			return (error);
    235   1.61    simonb 		break;
    236   1.61    simonb 	case CLOCK_MONOTONIC:
    237   1.61    simonb 		return (EINVAL);	/* read-only clock */
    238   1.61    simonb 	default:
    239   1.56      manu 		return (EINVAL);
    240   1.61    simonb 	}
    241   1.22       jtc 
    242   1.22       jtc 	return 0;
    243   1.22       jtc }
    244   1.22       jtc 
    245   1.22       jtc int
    246  1.140      yamt sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
    247  1.140      yamt     register_t *retval)
    248   1.22       jtc {
    249  1.135       dsl 	/* {
    250   1.22       jtc 		syscallarg(clockid_t) clock_id;
    251   1.23       cgd 		syscallarg(struct timespec *) tp;
    252  1.135       dsl 	} */
    253   1.22       jtc 	clockid_t clock_id;
    254   1.22       jtc 	struct timespec ts;
    255   1.22       jtc 	int error = 0;
    256   1.22       jtc 
    257   1.22       jtc 	clock_id = SCARG(uap, clock_id);
    258   1.61    simonb 	switch (clock_id) {
    259   1.61    simonb 	case CLOCK_REALTIME:
    260   1.61    simonb 	case CLOCK_MONOTONIC:
    261   1.22       jtc 		ts.tv_sec = 0;
    262  1.102    kardel 		if (tc_getfrequency() > 1000000000)
    263  1.102    kardel 			ts.tv_nsec = 1;
    264  1.102    kardel 		else
    265  1.102    kardel 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    266   1.61    simonb 		break;
    267   1.61    simonb 	default:
    268   1.61    simonb 		return (EINVAL);
    269   1.61    simonb 	}
    270   1.22       jtc 
    271   1.61    simonb 	if (SCARG(uap, tp))
    272   1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    273   1.22       jtc 
    274   1.22       jtc 	return error;
    275   1.22       jtc }
    276   1.22       jtc 
    277   1.27       jtc /* ARGSUSED */
    278   1.27       jtc int
    279  1.140      yamt sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
    280  1.140      yamt     register_t *retval)
    281   1.27       jtc {
    282  1.135       dsl 	/* {
    283  1.101    kardel 		syscallarg(struct timespec *) rqtp;
    284  1.101    kardel 		syscallarg(struct timespec *) rmtp;
    285  1.135       dsl 	} */
    286  1.101    kardel 	struct timespec rmt, rqt;
    287  1.120       dsl 	int error, error1;
    288  1.101    kardel 
    289  1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    290  1.101    kardel 	if (error)
    291  1.101    kardel 		return (error);
    292  1.101    kardel 
    293  1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    294  1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    295  1.120       dsl 		return error;
    296  1.120       dsl 
    297  1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    298  1.120       dsl 	return error1 ? error1 : error;
    299  1.120       dsl }
    300  1.120       dsl 
    301  1.120       dsl int
    302  1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    303  1.120       dsl {
    304  1.141      yamt 	struct timespec rmtstart;
    305  1.120       dsl 	int error, timo;
    306  1.120       dsl 
    307  1.120       dsl 	if (itimespecfix(rqt))
    308  1.101    kardel 		return (EINVAL);
    309  1.101    kardel 
    310  1.120       dsl 	timo = tstohz(rqt);
    311  1.101    kardel 	/*
    312  1.101    kardel 	 * Avoid inadvertantly sleeping forever
    313  1.101    kardel 	 */
    314  1.101    kardel 	if (timo == 0)
    315  1.101    kardel 		timo = 1;
    316  1.141      yamt 	getnanouptime(&rmtstart);
    317  1.141      yamt again:
    318  1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    319  1.141      yamt 	if (rmt != NULL || error == 0) {
    320  1.141      yamt 		struct timespec rmtend;
    321  1.141      yamt 		struct timespec t0;
    322  1.141      yamt 		struct timespec *t;
    323  1.101    kardel 
    324  1.141      yamt 		getnanouptime(&rmtend);
    325  1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    326  1.141      yamt 		timespecsub(&rmtend, &rmtstart, t);
    327  1.141      yamt 		timespecsub(rqt, t, t);
    328  1.141      yamt 		if (t->tv_sec < 0)
    329  1.141      yamt 			timespecclear(t);
    330  1.141      yamt 		if (error == 0) {
    331  1.141      yamt 			timo = tstohz(t);
    332  1.141      yamt 			if (timo > 0)
    333  1.141      yamt 				goto again;
    334  1.141      yamt 		}
    335  1.141      yamt 	}
    336  1.104    kardel 
    337  1.101    kardel 	if (error == ERESTART)
    338  1.101    kardel 		error = EINTR;
    339  1.101    kardel 	if (error == EWOULDBLOCK)
    340  1.101    kardel 		error = 0;
    341  1.101    kardel 
    342  1.101    kardel 	return error;
    343   1.27       jtc }
    344   1.22       jtc 
    345    1.1       cgd /* ARGSUSED */
    346    1.3    andrew int
    347  1.140      yamt sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
    348  1.140      yamt     register_t *retval)
    349   1.15   thorpej {
    350  1.135       dsl 	/* {
    351   1.11       cgd 		syscallarg(struct timeval *) tp;
    352  1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    353  1.135       dsl 	} */
    354    1.1       cgd 	struct timeval atv;
    355    1.1       cgd 	int error = 0;
    356   1.25     perry 	struct timezone tzfake;
    357    1.1       cgd 
    358   1.11       cgd 	if (SCARG(uap, tp)) {
    359    1.1       cgd 		microtime(&atv);
    360   1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    361   1.17  christos 		if (error)
    362    1.1       cgd 			return (error);
    363    1.1       cgd 	}
    364   1.25     perry 	if (SCARG(uap, tzp)) {
    365   1.25     perry 		/*
    366   1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    367   1.25     perry 		 * fake up a timezone struct and return it if demanded.
    368   1.25     perry 		 */
    369   1.25     perry 		tzfake.tz_minuteswest = 0;
    370   1.25     perry 		tzfake.tz_dsttime = 0;
    371   1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    372   1.25     perry 	}
    373    1.1       cgd 	return (error);
    374    1.1       cgd }
    375    1.1       cgd 
    376    1.1       cgd /* ARGSUSED */
    377    1.3    andrew int
    378  1.140      yamt sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
    379  1.140      yamt     register_t *retval)
    380   1.15   thorpej {
    381  1.135       dsl 	/* {
    382   1.24       cgd 		syscallarg(const struct timeval *) tv;
    383  1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    384  1.135       dsl 	} */
    385   1.60      manu 
    386  1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    387   1.60      manu }
    388   1.60      manu 
    389   1.60      manu int
    390  1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    391  1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    392   1.60      manu {
    393   1.22       jtc 	struct timeval atv;
    394   1.98  christos 	struct timespec ts;
    395   1.22       jtc 	int error;
    396    1.1       cgd 
    397    1.8       cgd 	/* Verify all parameters before changing time. */
    398  1.119       dsl 
    399   1.25     perry 	/*
    400   1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    401   1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    402   1.25     perry 	 */
    403   1.98  christos 	if (utzp)
    404   1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    405  1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    406   1.98  christos 
    407   1.98  christos 	if (utv == NULL)
    408   1.98  christos 		return 0;
    409   1.98  christos 
    410  1.119       dsl 	if (userspace) {
    411  1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    412  1.119       dsl 			return error;
    413  1.119       dsl 		utv = &atv;
    414  1.119       dsl 	}
    415  1.119       dsl 
    416  1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    417  1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    418    1.1       cgd }
    419    1.1       cgd 
    420   1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    421    1.1       cgd 
    422    1.1       cgd /* ARGSUSED */
    423    1.3    andrew int
    424  1.140      yamt sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
    425  1.140      yamt     register_t *retval)
    426   1.15   thorpej {
    427  1.135       dsl 	/* {
    428   1.24       cgd 		syscallarg(const struct timeval *) delta;
    429   1.11       cgd 		syscallarg(struct timeval *) olddelta;
    430  1.135       dsl 	} */
    431   1.56      manu 	int error;
    432    1.1       cgd 
    433  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    434  1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    435    1.1       cgd 		return (error);
    436   1.17  christos 
    437  1.105        ad 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    438   1.56      manu }
    439   1.56      manu 
    440   1.56      manu int
    441  1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    442   1.56      manu {
    443   1.60      manu 	struct timeval atv;
    444  1.101    kardel 	int error = 0;
    445  1.101    kardel 
    446  1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    447  1.101    kardel 
    448  1.101    kardel 	if (olddelta) {
    449  1.101    kardel 		atv.tv_sec = time_adjtime / 1000000;
    450  1.101    kardel 		atv.tv_usec = time_adjtime % 1000000;
    451  1.101    kardel 		if (atv.tv_usec < 0) {
    452  1.101    kardel 			atv.tv_usec += 1000000;
    453  1.101    kardel 			atv.tv_sec--;
    454  1.101    kardel 		}
    455  1.101    kardel 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    456  1.101    kardel 		if (error)
    457  1.101    kardel 			return (error);
    458  1.101    kardel 	}
    459  1.101    kardel 
    460  1.101    kardel 	if (delta) {
    461  1.101    kardel 		error = copyin(delta, &atv, sizeof(struct timeval));
    462  1.101    kardel 		if (error)
    463  1.101    kardel 			return (error);
    464  1.101    kardel 
    465  1.101    kardel 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    466  1.101    kardel 			atv.tv_usec;
    467    1.8       cgd 
    468  1.101    kardel 		if (time_adjtime)
    469  1.101    kardel 			/* We need to save the system time during shutdown */
    470  1.101    kardel 			time_adjusted |= 1;
    471  1.101    kardel 	}
    472  1.101    kardel 
    473   1.79       chs 	return error;
    474    1.1       cgd }
    475    1.1       cgd 
    476    1.1       cgd /*
    477   1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    478   1.63   thorpej  * timer_*() family of routines are supported.
    479    1.1       cgd  *
    480   1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    481   1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    482   1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    483   1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    484   1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    485   1.63   thorpej  * syscall.
    486    1.1       cgd  *
    487   1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    488   1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    489    1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    490   1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    491   1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    492   1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    493   1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    494   1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    495   1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    496   1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    497   1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    498   1.63   thorpej 
    499   1.63   thorpej /* Allocate a POSIX realtime timer. */
    500   1.63   thorpej int
    501  1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    502  1.140      yamt     register_t *retval)
    503   1.63   thorpej {
    504  1.135       dsl 	/* {
    505   1.63   thorpej 		syscallarg(clockid_t) clock_id;
    506   1.63   thorpej 		syscallarg(struct sigevent *) evp;
    507   1.63   thorpej 		syscallarg(timer_t *) timerid;
    508  1.135       dsl 	} */
    509   1.92      cube 
    510   1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    511  1.105        ad 	    SCARG(uap, evp), copyin, l);
    512   1.92      cube }
    513   1.92      cube 
    514   1.92      cube int
    515   1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    516  1.105        ad     copyin_t fetch_event, struct lwp *l)
    517   1.92      cube {
    518   1.92      cube 	int error;
    519   1.92      cube 	timer_t timerid;
    520   1.63   thorpej 	struct ptimer *pt;
    521  1.105        ad 	struct proc *p;
    522  1.105        ad 
    523  1.105        ad 	p = l->l_proc;
    524   1.63   thorpej 
    525   1.63   thorpej 	if (id < CLOCK_REALTIME ||
    526   1.63   thorpej 	    id > CLOCK_PROF)
    527   1.63   thorpej 		return (EINVAL);
    528   1.63   thorpej 
    529   1.63   thorpej 	if (p->p_timers == NULL)
    530   1.63   thorpej 		timers_alloc(p);
    531   1.63   thorpej 
    532   1.63   thorpej 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    533   1.63   thorpej 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    534   1.63   thorpej 		if (p->p_timers->pts_timers[timerid] == NULL)
    535   1.63   thorpej 			break;
    536   1.63   thorpej 
    537   1.63   thorpej 	if (timerid == TIMER_MAX)
    538   1.63   thorpej 		return EAGAIN;
    539   1.63   thorpej 
    540   1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    541   1.63   thorpej 	if (evp) {
    542   1.63   thorpej 		if (((error =
    543   1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    544   1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    545   1.63   thorpej 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    546   1.63   thorpej 			pool_put(&ptimer_pool, pt);
    547   1.63   thorpej 			return (error ? error : EINVAL);
    548   1.63   thorpej 		}
    549   1.63   thorpej 	} else {
    550   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    551   1.63   thorpej 		switch (id) {
    552   1.63   thorpej 		case CLOCK_REALTIME:
    553   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    554   1.63   thorpej 			break;
    555   1.63   thorpej 		case CLOCK_VIRTUAL:
    556   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    557   1.63   thorpej 			break;
    558   1.63   thorpej 		case CLOCK_PROF:
    559   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    560   1.63   thorpej 			break;
    561   1.63   thorpej 		}
    562   1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    563   1.63   thorpej 	}
    564   1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    565   1.73  christos 	pt->pt_info.ksi_errno = 0;
    566   1.73  christos 	pt->pt_info.ksi_code = 0;
    567   1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    568  1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    569  1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    570   1.63   thorpej 
    571   1.63   thorpej 	pt->pt_type = id;
    572   1.63   thorpej 	pt->pt_proc = p;
    573   1.63   thorpej 	pt->pt_overruns = 0;
    574   1.63   thorpej 	pt->pt_poverruns = 0;
    575   1.64   nathanw 	pt->pt_entry = timerid;
    576   1.63   thorpej 	timerclear(&pt->pt_time.it_value);
    577   1.63   thorpej 	if (id == CLOCK_REALTIME)
    578  1.125        ad 		callout_init(&pt->pt_ch, 0);
    579   1.63   thorpej 	else
    580   1.63   thorpej 		pt->pt_active = 0;
    581   1.63   thorpej 
    582   1.63   thorpej 	p->p_timers->pts_timers[timerid] = pt;
    583   1.63   thorpej 
    584   1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    585   1.63   thorpej }
    586   1.63   thorpej 
    587   1.63   thorpej /* Delete a POSIX realtime timer */
    588    1.3    andrew int
    589  1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    590  1.140      yamt     register_t *retval)
    591   1.15   thorpej {
    592  1.135       dsl 	/* {
    593   1.63   thorpej 		syscallarg(timer_t) timerid;
    594  1.135       dsl 	} */
    595   1.63   thorpej 	struct proc *p = l->l_proc;
    596   1.65  jdolecek 	timer_t timerid;
    597   1.63   thorpej 	struct ptimer *pt, *ptn;
    598    1.1       cgd 	int s;
    599    1.1       cgd 
    600   1.63   thorpej 	timerid = SCARG(uap, timerid);
    601   1.63   thorpej 
    602   1.63   thorpej 	if ((p->p_timers == NULL) ||
    603   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    604   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    605    1.1       cgd 		return (EINVAL);
    606   1.63   thorpej 
    607  1.125        ad 	if (pt->pt_type == CLOCK_REALTIME) {
    608   1.63   thorpej 		callout_stop(&pt->pt_ch);
    609  1.125        ad 		callout_destroy(&pt->pt_ch);
    610  1.125        ad 	} else if (pt->pt_active) {
    611   1.63   thorpej 		s = splclock();
    612   1.63   thorpej 		ptn = LIST_NEXT(pt, pt_list);
    613   1.63   thorpej 		LIST_REMOVE(pt, pt_list);
    614   1.63   thorpej 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    615   1.63   thorpej 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    616   1.63   thorpej 			    &ptn->pt_time.it_value);
    617   1.63   thorpej 		splx(s);
    618   1.63   thorpej 	}
    619   1.63   thorpej 
    620   1.63   thorpej 	p->p_timers->pts_timers[timerid] = NULL;
    621   1.63   thorpej 	pool_put(&ptimer_pool, pt);
    622   1.63   thorpej 
    623   1.63   thorpej 	return (0);
    624   1.63   thorpej }
    625   1.63   thorpej 
    626   1.63   thorpej /*
    627   1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    628   1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    629   1.67   nathanw  * time for virtual timers.
    630   1.63   thorpej  * Must be called at splclock().
    631   1.63   thorpej  */
    632   1.63   thorpej void
    633   1.63   thorpej timer_settime(struct ptimer *pt)
    634   1.63   thorpej {
    635   1.63   thorpej 	struct ptimer *ptn, *pptn;
    636   1.63   thorpej 	struct ptlist *ptl;
    637   1.63   thorpej 
    638   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    639   1.63   thorpej 		callout_stop(&pt->pt_ch);
    640   1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    641   1.63   thorpej 			/*
    642   1.63   thorpej 			 * Don't need to check hzto() return value, here.
    643   1.63   thorpej 			 * callout_reset() does it for us.
    644   1.63   thorpej 			 */
    645   1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    646   1.63   thorpej 			    realtimerexpire, pt);
    647   1.63   thorpej 		}
    648   1.63   thorpej 	} else {
    649   1.63   thorpej 		if (pt->pt_active) {
    650   1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    651   1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    652   1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    653   1.63   thorpej 				timeradd(&pt->pt_time.it_value,
    654   1.63   thorpej 				    &ptn->pt_time.it_value,
    655   1.63   thorpej 				    &ptn->pt_time.it_value);
    656   1.63   thorpej 		}
    657   1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    658   1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    659   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    660   1.63   thorpej 			else
    661   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    662   1.63   thorpej 
    663   1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    664   1.63   thorpej 			     ptn && timercmp(&pt->pt_time.it_value,
    665   1.63   thorpej 				 &ptn->pt_time.it_value, >);
    666   1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    667   1.63   thorpej 				timersub(&pt->pt_time.it_value,
    668   1.63   thorpej 				    &ptn->pt_time.it_value,
    669   1.63   thorpej 				    &pt->pt_time.it_value);
    670   1.63   thorpej 
    671   1.63   thorpej 			if (pptn)
    672   1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    673   1.63   thorpej 			else
    674   1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    675   1.63   thorpej 
    676   1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    677   1.63   thorpej 				timersub(&ptn->pt_time.it_value,
    678   1.63   thorpej 				    &pt->pt_time.it_value,
    679   1.63   thorpej 				    &ptn->pt_time.it_value);
    680   1.63   thorpej 
    681   1.63   thorpej 			pt->pt_active = 1;
    682   1.63   thorpej 		} else
    683   1.63   thorpej 			pt->pt_active = 0;
    684   1.63   thorpej 	}
    685   1.63   thorpej }
    686   1.63   thorpej 
    687   1.63   thorpej void
    688   1.63   thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    689   1.63   thorpej {
    690  1.101    kardel 	struct timeval now;
    691   1.63   thorpej 	struct ptimer *ptn;
    692   1.63   thorpej 
    693   1.63   thorpej 	*aitv = pt->pt_time;
    694   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    695    1.1       cgd 		/*
    696   1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    697   1.63   thorpej 		 * part of real time timer.  If time for real time
    698   1.63   thorpej 		 * timer has passed return 0, else return difference
    699   1.63   thorpej 		 * between current time and time for the timer to go
    700   1.63   thorpej 		 * off.
    701    1.1       cgd 		 */
    702   1.63   thorpej 		if (timerisset(&aitv->it_value)) {
    703  1.101    kardel 			getmicrotime(&now);
    704  1.101    kardel 			if (timercmp(&aitv->it_value, &now, <))
    705  1.101    kardel 				timerclear(&aitv->it_value);
    706  1.101    kardel 			else
    707  1.101    kardel 				timersub(&aitv->it_value, &now,
    708  1.101    kardel 				    &aitv->it_value);
    709   1.36   thorpej 		}
    710   1.63   thorpej 	} else if (pt->pt_active) {
    711   1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    712   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    713   1.63   thorpej 		else
    714   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    715   1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    716   1.63   thorpej 			timeradd(&aitv->it_value,
    717   1.63   thorpej 			    &ptn->pt_time.it_value, &aitv->it_value);
    718   1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    719    1.1       cgd 	} else
    720   1.63   thorpej 		timerclear(&aitv->it_value);
    721   1.63   thorpej }
    722   1.63   thorpej 
    723   1.63   thorpej 
    724   1.63   thorpej 
    725   1.63   thorpej /* Set and arm a POSIX realtime timer */
    726   1.63   thorpej int
    727  1.140      yamt sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
    728  1.140      yamt     register_t *retval)
    729   1.63   thorpej {
    730  1.135       dsl 	/* {
    731   1.63   thorpej 		syscallarg(timer_t) timerid;
    732   1.63   thorpej 		syscallarg(int) flags;
    733   1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    734   1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    735  1.135       dsl 	} */
    736   1.92      cube 	int error;
    737   1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    738   1.92      cube 
    739   1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    740   1.92      cube 	    sizeof(struct itimerspec))) != 0)
    741   1.92      cube 		return (error);
    742   1.92      cube 
    743   1.92      cube 	if (SCARG(uap, ovalue))
    744   1.92      cube 		ovp = &ovalue;
    745   1.92      cube 
    746   1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    747   1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    748   1.92      cube 		return error;
    749   1.92      cube 
    750   1.92      cube 	if (ovp)
    751   1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    752   1.92      cube 		    sizeof(struct itimerspec));
    753   1.92      cube 	return 0;
    754   1.92      cube }
    755   1.92      cube 
    756   1.92      cube int
    757   1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    758   1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    759   1.92      cube {
    760  1.101    kardel 	struct timeval now;
    761   1.63   thorpej 	struct itimerval val, oval;
    762   1.63   thorpej 	struct ptimer *pt;
    763  1.101    kardel 	int s;
    764   1.63   thorpej 
    765   1.63   thorpej 	if ((p->p_timers == NULL) ||
    766   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    767   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    768   1.63   thorpej 		return (EINVAL);
    769   1.63   thorpej 
    770   1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    771   1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    772   1.63   thorpej 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    773   1.63   thorpej 		return (EINVAL);
    774   1.63   thorpej 
    775   1.63   thorpej 	oval = pt->pt_time;
    776   1.63   thorpej 	pt->pt_time = val;
    777   1.63   thorpej 
    778   1.63   thorpej 	s = splclock();
    779   1.67   nathanw 	/*
    780   1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    781   1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    782   1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    783   1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    784   1.67   nathanw 	 * negative, which would confuse the comparison tests.
    785   1.67   nathanw 	 */
    786   1.67   nathanw 	if (timerisset(&pt->pt_time.it_value)) {
    787   1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    788  1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    789  1.101    kardel 				getmicrotime(&now);
    790  1.101    kardel 				timeradd(&pt->pt_time.it_value, &now,
    791  1.101    kardel 				    &pt->pt_time.it_value);
    792  1.101    kardel 			}
    793   1.67   nathanw 		} else {
    794   1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    795  1.101    kardel 				getmicrotime(&now);
    796  1.101    kardel 				timersub(&pt->pt_time.it_value, &now,
    797  1.101    kardel 				    &pt->pt_time.it_value);
    798   1.67   nathanw 				if (!timerisset(&pt->pt_time.it_value) ||
    799   1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    800   1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    801   1.67   nathanw 					pt->pt_time.it_value.tv_usec = 1;
    802   1.67   nathanw 				}
    803   1.67   nathanw 			}
    804   1.67   nathanw 		}
    805   1.67   nathanw 	}
    806   1.67   nathanw 
    807   1.63   thorpej 	timer_settime(pt);
    808   1.63   thorpej 	splx(s);
    809   1.63   thorpej 
    810   1.92      cube 	if (ovalue) {
    811   1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    812   1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    813   1.63   thorpej 	}
    814   1.63   thorpej 
    815   1.63   thorpej 	return (0);
    816   1.63   thorpej }
    817   1.63   thorpej 
    818   1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    819   1.63   thorpej int
    820  1.140      yamt sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
    821  1.140      yamt     register_t *retval)
    822   1.63   thorpej {
    823  1.135       dsl 	/* {
    824   1.63   thorpej 		syscallarg(timer_t) timerid;
    825   1.63   thorpej 		syscallarg(struct itimerspec *) value;
    826  1.135       dsl 	} */
    827   1.63   thorpej 	struct itimerspec its;
    828   1.92      cube 	int error;
    829   1.92      cube 
    830   1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    831   1.92      cube 	    &its)) != 0)
    832   1.92      cube 		return error;
    833   1.92      cube 
    834   1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    835   1.92      cube }
    836   1.92      cube 
    837   1.92      cube int
    838   1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    839   1.92      cube {
    840   1.92      cube 	int s;
    841   1.63   thorpej 	struct ptimer *pt;
    842   1.92      cube 	struct itimerval aitv;
    843   1.63   thorpej 
    844   1.63   thorpej 	if ((p->p_timers == NULL) ||
    845   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    846   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    847   1.63   thorpej 		return (EINVAL);
    848   1.63   thorpej 
    849   1.63   thorpej 	s = splclock();
    850   1.63   thorpej 	timer_gettime(pt, &aitv);
    851    1.1       cgd 	splx(s);
    852   1.63   thorpej 
    853   1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    854   1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    855   1.63   thorpej 
    856   1.92      cube 	return 0;
    857   1.63   thorpej }
    858   1.63   thorpej 
    859   1.63   thorpej /*
    860   1.63   thorpej  * Return the count of the number of times a periodic timer expired
    861   1.63   thorpej  * while a notification was already pending. The counter is reset when
    862   1.63   thorpej  * a timer expires and a notification can be posted.
    863   1.63   thorpej  */
    864   1.63   thorpej int
    865  1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    866  1.140      yamt     register_t *retval)
    867   1.63   thorpej {
    868  1.135       dsl 	/* {
    869   1.63   thorpej 		syscallarg(timer_t) timerid;
    870  1.135       dsl 	} */
    871   1.63   thorpej 	struct proc *p = l->l_proc;
    872   1.63   thorpej 	int timerid;
    873   1.63   thorpej 	struct ptimer *pt;
    874   1.63   thorpej 
    875   1.63   thorpej 	timerid = SCARG(uap, timerid);
    876   1.63   thorpej 
    877   1.63   thorpej 	if ((p->p_timers == NULL) ||
    878   1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    879   1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    880   1.63   thorpej 		return (EINVAL);
    881   1.63   thorpej 
    882   1.63   thorpej 	*retval = pt->pt_poverruns;
    883   1.63   thorpej 
    884   1.63   thorpej 	return (0);
    885   1.63   thorpej }
    886   1.63   thorpej 
    887   1.63   thorpej /*
    888   1.63   thorpej  * Real interval timer expired:
    889   1.63   thorpej  * send process whose timer expired an alarm signal.
    890   1.63   thorpej  * If time is not set up to reload, then just return.
    891   1.63   thorpej  * Else compute next time timer should go off which is > current time.
    892   1.63   thorpej  * This is where delay in processing this timeout causes multiple
    893   1.63   thorpej  * SIGALRM calls to be compressed into one.
    894   1.63   thorpej  */
    895   1.63   thorpej void
    896   1.63   thorpej realtimerexpire(void *arg)
    897   1.63   thorpej {
    898  1.101    kardel 	struct timeval now;
    899   1.63   thorpej 	struct ptimer *pt;
    900   1.63   thorpej 	int s;
    901   1.63   thorpej 
    902   1.63   thorpej 	pt = (struct ptimer *)arg;
    903   1.63   thorpej 
    904   1.63   thorpej 	itimerfire(pt);
    905   1.63   thorpej 
    906   1.63   thorpej 	if (!timerisset(&pt->pt_time.it_interval)) {
    907   1.63   thorpej 		timerclear(&pt->pt_time.it_value);
    908   1.63   thorpej 		return;
    909   1.63   thorpej 	}
    910  1.101    kardel 	for (;;) {
    911  1.101    kardel 		s = splclock();	/* XXX need spl now? */
    912  1.101    kardel 		timeradd(&pt->pt_time.it_value,
    913  1.101    kardel 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    914  1.101    kardel 		getmicrotime(&now);
    915  1.101    kardel 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
    916  1.101    kardel 			/*
    917  1.101    kardel 			 * Don't need to check hzto() return value, here.
    918  1.101    kardel 			 * callout_reset() does it for us.
    919  1.101    kardel 			 */
    920  1.101    kardel 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    921  1.101    kardel 			    realtimerexpire, pt);
    922  1.101    kardel 			splx(s);
    923  1.101    kardel 			return;
    924  1.101    kardel 		}
    925  1.101    kardel 		splx(s);
    926  1.101    kardel 		pt->pt_overruns++;
    927  1.101    kardel 	}
    928   1.63   thorpej }
    929   1.63   thorpej 
    930   1.63   thorpej /* BSD routine to get the value of an interval timer. */
    931   1.63   thorpej /* ARGSUSED */
    932   1.63   thorpej int
    933  1.140      yamt sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
    934  1.140      yamt     register_t *retval)
    935   1.63   thorpej {
    936  1.135       dsl 	/* {
    937   1.63   thorpej 		syscallarg(int) which;
    938   1.63   thorpej 		syscallarg(struct itimerval *) itv;
    939  1.135       dsl 	} */
    940   1.63   thorpej 	struct proc *p = l->l_proc;
    941   1.63   thorpej 	struct itimerval aitv;
    942   1.91      cube 	int error;
    943   1.91      cube 
    944   1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
    945   1.91      cube 	if (error)
    946   1.91      cube 		return error;
    947   1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    948   1.91      cube }
    949   1.63   thorpej 
    950   1.91      cube int
    951   1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
    952   1.91      cube {
    953   1.91      cube 	int s;
    954   1.63   thorpej 
    955   1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
    956   1.63   thorpej 		return (EINVAL);
    957   1.63   thorpej 
    958   1.63   thorpej 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
    959   1.91      cube 		timerclear(&itvp->it_value);
    960   1.91      cube 		timerclear(&itvp->it_interval);
    961   1.63   thorpej 	} else {
    962   1.63   thorpej 		s = splclock();
    963   1.91      cube 		timer_gettime(p->p_timers->pts_timers[which], itvp);
    964   1.63   thorpej 		splx(s);
    965   1.63   thorpej 	}
    966   1.63   thorpej 
    967   1.91      cube 	return 0;
    968    1.1       cgd }
    969    1.1       cgd 
    970   1.63   thorpej /* BSD routine to set/arm an interval timer. */
    971    1.1       cgd /* ARGSUSED */
    972    1.3    andrew int
    973  1.140      yamt sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
    974  1.140      yamt     register_t *retval)
    975   1.15   thorpej {
    976  1.135       dsl 	/* {
    977   1.30   mycroft 		syscallarg(int) which;
    978   1.24       cgd 		syscallarg(const struct itimerval *) itv;
    979   1.11       cgd 		syscallarg(struct itimerval *) oitv;
    980  1.135       dsl 	} */
    981   1.63   thorpej 	struct proc *p = l->l_proc;
    982   1.30   mycroft 	int which = SCARG(uap, which);
    983   1.21       cgd 	struct sys_getitimer_args getargs;
    984   1.91      cube 	const struct itimerval *itvp;
    985    1.1       cgd 	struct itimerval aitv;
    986   1.91      cube 	int error;
    987    1.1       cgd 
    988   1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
    989    1.1       cgd 		return (EINVAL);
    990   1.11       cgd 	itvp = SCARG(uap, itv);
    991   1.63   thorpej 	if (itvp &&
    992   1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
    993    1.1       cgd 		return (error);
    994   1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
    995   1.30   mycroft 		SCARG(&getargs, which) = which;
    996   1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    997   1.63   thorpej 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
    998   1.21       cgd 			return (error);
    999   1.21       cgd 	}
   1000    1.1       cgd 	if (itvp == 0)
   1001    1.1       cgd 		return (0);
   1002   1.91      cube 
   1003   1.91      cube 	return dosetitimer(p, which, &aitv);
   1004   1.91      cube }
   1005   1.91      cube 
   1006   1.91      cube int
   1007   1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1008   1.91      cube {
   1009  1.101    kardel 	struct timeval now;
   1010   1.91      cube 	struct ptimer *pt;
   1011   1.91      cube 	int s;
   1012   1.91      cube 
   1013   1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1014    1.1       cgd 		return (EINVAL);
   1015   1.63   thorpej 
   1016   1.63   thorpej 	/*
   1017   1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1018   1.63   thorpej 	 * wants to clear the timer.
   1019   1.63   thorpej 	 */
   1020   1.91      cube 	if (!timerisset(&itvp->it_value) &&
   1021   1.63   thorpej 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1022   1.63   thorpej 		return (0);
   1023   1.63   thorpej 
   1024   1.63   thorpej 	if (p->p_timers == NULL)
   1025   1.63   thorpej 		timers_alloc(p);
   1026   1.63   thorpej 	if (p->p_timers->pts_timers[which] == NULL) {
   1027   1.63   thorpej 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1028   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1029   1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1030   1.63   thorpej 		pt->pt_overruns = 0;
   1031   1.63   thorpej 		pt->pt_proc = p;
   1032   1.63   thorpej 		pt->pt_type = which;
   1033   1.64   nathanw 		pt->pt_entry = which;
   1034   1.63   thorpej 		switch (which) {
   1035   1.63   thorpej 		case ITIMER_REAL:
   1036  1.125        ad 			callout_init(&pt->pt_ch, 0);
   1037   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1038   1.63   thorpej 			break;
   1039   1.63   thorpej 		case ITIMER_VIRTUAL:
   1040   1.63   thorpej 			pt->pt_active = 0;
   1041   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1042   1.63   thorpej 			break;
   1043   1.63   thorpej 		case ITIMER_PROF:
   1044   1.63   thorpej 			pt->pt_active = 0;
   1045   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1046   1.63   thorpej 			break;
   1047    1.1       cgd 		}
   1048    1.1       cgd 	} else
   1049   1.63   thorpej 		pt = p->p_timers->pts_timers[which];
   1050   1.63   thorpej 
   1051   1.91      cube 	pt->pt_time = *itvp;
   1052   1.63   thorpej 	p->p_timers->pts_timers[which] = pt;
   1053   1.63   thorpej 
   1054   1.63   thorpej 	s = splclock();
   1055   1.67   nathanw 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1056   1.67   nathanw 		/* Convert to absolute time */
   1057  1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1058  1.101    kardel 		getmicrotime(&now);
   1059  1.101    kardel 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1060   1.67   nathanw 	}
   1061   1.63   thorpej 	timer_settime(pt);
   1062    1.1       cgd 	splx(s);
   1063   1.63   thorpej 
   1064    1.1       cgd 	return (0);
   1065    1.1       cgd }
   1066    1.1       cgd 
   1067   1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1068   1.63   thorpej void
   1069   1.63   thorpej timers_alloc(struct proc *p)
   1070   1.63   thorpej {
   1071   1.63   thorpej 	int i;
   1072   1.63   thorpej 	struct ptimers *pts;
   1073   1.63   thorpej 
   1074  1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1075   1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1076   1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1077   1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1078   1.63   thorpej 		pts->pts_timers[i] = NULL;
   1079   1.64   nathanw 	pts->pts_fired = 0;
   1080   1.63   thorpej 	p->p_timers = pts;
   1081   1.63   thorpej }
   1082   1.63   thorpej 
   1083    1.1       cgd /*
   1084   1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1085   1.63   thorpej  * then clean up all timers and free all the data structures. If
   1086   1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1087   1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1088   1.63   thorpej  * structure if none of those remain.
   1089    1.1       cgd  */
   1090    1.3    andrew void
   1091   1.63   thorpej timers_free(struct proc *p, int which)
   1092    1.6       cgd {
   1093   1.63   thorpej 	int i, s;
   1094   1.63   thorpej 	struct ptimers *pts;
   1095   1.63   thorpej 	struct ptimer *pt, *ptn;
   1096   1.63   thorpej 	struct timeval tv;
   1097   1.63   thorpej 
   1098   1.63   thorpej 	if (p->p_timers) {
   1099   1.63   thorpej 		pts = p->p_timers;
   1100   1.63   thorpej 		if (which == TIMERS_ALL)
   1101   1.63   thorpej 			i = 0;
   1102   1.63   thorpej 		else {
   1103   1.63   thorpej 			s = splclock();
   1104   1.63   thorpej 			timerclear(&tv);
   1105   1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1106   1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1107   1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1108   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1109   1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1110   1.63   thorpej 			if (ptn) {
   1111   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1112   1.63   thorpej 				    &ptn->pt_time.it_value);
   1113   1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1114   1.63   thorpej 				    ptn, pt_list);
   1115   1.63   thorpej 			}
   1116   1.63   thorpej 
   1117   1.63   thorpej 			timerclear(&tv);
   1118   1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1119   1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1120   1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1121   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1122   1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1123   1.63   thorpej 			if (ptn) {
   1124   1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1125   1.63   thorpej 				    &ptn->pt_time.it_value);
   1126   1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1127   1.63   thorpej 				    pt_list);
   1128   1.63   thorpej 			}
   1129    1.1       cgd 			splx(s);
   1130   1.63   thorpej 			i = 3;
   1131   1.63   thorpej 		}
   1132   1.63   thorpej 		for ( ; i < TIMER_MAX; i++)
   1133   1.63   thorpej 			if ((pt = pts->pts_timers[i]) != NULL) {
   1134  1.125        ad 				if (pt->pt_type == CLOCK_REALTIME) {
   1135   1.63   thorpej 					callout_stop(&pt->pt_ch);
   1136  1.125        ad 					callout_destroy(&pt->pt_ch);
   1137  1.125        ad 				}
   1138   1.63   thorpej 				pts->pts_timers[i] = NULL;
   1139   1.63   thorpej 				pool_put(&ptimer_pool, pt);
   1140   1.63   thorpej 			}
   1141   1.63   thorpej 		if ((pts->pts_timers[0] == NULL) &&
   1142   1.63   thorpej 		    (pts->pts_timers[1] == NULL) &&
   1143   1.63   thorpej 		    (pts->pts_timers[2] == NULL)) {
   1144   1.63   thorpej 			p->p_timers = NULL;
   1145   1.97    simonb 			pool_put(&ptimers_pool, pts);
   1146    1.1       cgd 		}
   1147    1.1       cgd 	}
   1148    1.1       cgd }
   1149    1.1       cgd 
   1150    1.1       cgd /*
   1151    1.1       cgd  * Decrement an interval timer by a specified number
   1152    1.1       cgd  * of microseconds, which must be less than a second,
   1153    1.1       cgd  * i.e. < 1000000.  If the timer expires, then reload
   1154    1.1       cgd  * it.  In this case, carry over (usec - old value) to
   1155    1.8       cgd  * reduce the value reloaded into the timer so that
   1156    1.1       cgd  * the timer does not drift.  This routine assumes
   1157    1.1       cgd  * that it is called in a context where the timers
   1158    1.1       cgd  * on which it is operating cannot change in value.
   1159    1.1       cgd  */
   1160    1.3    andrew int
   1161   1.63   thorpej itimerdecr(struct ptimer *pt, int usec)
   1162   1.63   thorpej {
   1163   1.45  augustss 	struct itimerval *itp;
   1164    1.1       cgd 
   1165   1.63   thorpej 	itp = &pt->pt_time;
   1166    1.1       cgd 	if (itp->it_value.tv_usec < usec) {
   1167    1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1168    1.1       cgd 			/* expired, and already in next interval */
   1169    1.1       cgd 			usec -= itp->it_value.tv_usec;
   1170    1.1       cgd 			goto expire;
   1171    1.1       cgd 		}
   1172    1.1       cgd 		itp->it_value.tv_usec += 1000000;
   1173    1.1       cgd 		itp->it_value.tv_sec--;
   1174    1.1       cgd 	}
   1175    1.1       cgd 	itp->it_value.tv_usec -= usec;
   1176    1.1       cgd 	usec = 0;
   1177    1.1       cgd 	if (timerisset(&itp->it_value))
   1178    1.1       cgd 		return (1);
   1179    1.1       cgd 	/* expired, exactly at end of interval */
   1180    1.1       cgd expire:
   1181    1.1       cgd 	if (timerisset(&itp->it_interval)) {
   1182    1.1       cgd 		itp->it_value = itp->it_interval;
   1183    1.1       cgd 		itp->it_value.tv_usec -= usec;
   1184    1.1       cgd 		if (itp->it_value.tv_usec < 0) {
   1185    1.1       cgd 			itp->it_value.tv_usec += 1000000;
   1186    1.1       cgd 			itp->it_value.tv_sec--;
   1187    1.1       cgd 		}
   1188   1.63   thorpej 		timer_settime(pt);
   1189    1.1       cgd 	} else
   1190    1.1       cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1191    1.1       cgd 	return (0);
   1192   1.42       cgd }
   1193   1.42       cgd 
   1194   1.63   thorpej void
   1195   1.63   thorpej itimerfire(struct ptimer *pt)
   1196   1.63   thorpej {
   1197   1.63   thorpej 	struct proc *p = pt->pt_proc;
   1198   1.78        cl 
   1199   1.63   thorpej 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1200   1.63   thorpej 		/*
   1201   1.63   thorpej 		 * No RT signal infrastructure exists at this time;
   1202   1.63   thorpej 		 * just post the signal number and throw away the
   1203   1.63   thorpej 		 * value.
   1204   1.63   thorpej 		 */
   1205  1.113        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
   1206   1.63   thorpej 			pt->pt_overruns++;
   1207   1.63   thorpej 		else {
   1208   1.75  christos 			ksiginfo_t ksi;
   1209  1.111      yamt 			KSI_INIT(&ksi);
   1210   1.75  christos 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1211   1.75  christos 			ksi.ksi_code = SI_TIMER;
   1212  1.124  christos 			ksi.ksi_value = pt->pt_ev.sigev_value;
   1213   1.63   thorpej 			pt->pt_poverruns = pt->pt_overruns;
   1214   1.63   thorpej 			pt->pt_overruns = 0;
   1215  1.113        ad 			mutex_enter(&proclist_mutex);
   1216   1.75  christos 			kpsignal(p, &ksi, NULL);
   1217  1.113        ad 			mutex_exit(&proclist_mutex);
   1218   1.64   nathanw 		}
   1219   1.63   thorpej 	}
   1220   1.63   thorpej }
   1221   1.63   thorpej 
   1222   1.42       cgd /*
   1223   1.42       cgd  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1224   1.42       cgd  * for usage and rationale.
   1225   1.42       cgd  */
   1226   1.42       cgd int
   1227   1.63   thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1228   1.42       cgd {
   1229   1.49    itojun 	struct timeval tv, delta;
   1230  1.101    kardel 	int rv = 0;
   1231   1.42       cgd 
   1232  1.101    kardel 	getmicrouptime(&tv);
   1233   1.49    itojun 	timersub(&tv, lasttime, &delta);
   1234   1.42       cgd 
   1235   1.42       cgd 	/*
   1236   1.42       cgd 	 * check for 0,0 is so that the message will be seen at least once,
   1237   1.42       cgd 	 * even if interval is huge.
   1238   1.42       cgd 	 */
   1239   1.42       cgd 	if (timercmp(&delta, mininterval, >=) ||
   1240   1.42       cgd 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1241   1.49    itojun 		*lasttime = tv;
   1242   1.42       cgd 		rv = 1;
   1243   1.42       cgd 	}
   1244   1.50    itojun 
   1245   1.50    itojun 	return (rv);
   1246   1.50    itojun }
   1247   1.50    itojun 
   1248   1.50    itojun /*
   1249   1.50    itojun  * ppsratecheck(): packets (or events) per second limitation.
   1250   1.50    itojun  */
   1251   1.50    itojun int
   1252   1.63   thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1253   1.50    itojun {
   1254   1.50    itojun 	struct timeval tv, delta;
   1255  1.101    kardel 	int rv;
   1256   1.50    itojun 
   1257  1.101    kardel 	getmicrouptime(&tv);
   1258   1.50    itojun 	timersub(&tv, lasttime, &delta);
   1259   1.50    itojun 
   1260   1.50    itojun 	/*
   1261   1.50    itojun 	 * check for 0,0 is so that the message will be seen at least once.
   1262   1.50    itojun 	 * if more than one second have passed since the last update of
   1263   1.50    itojun 	 * lasttime, reset the counter.
   1264   1.50    itojun 	 *
   1265   1.50    itojun 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1266   1.50    itojun 	 * try to use *curpps for stat purposes as well.
   1267   1.50    itojun 	 */
   1268   1.50    itojun 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1269   1.50    itojun 	    delta.tv_sec >= 1) {
   1270   1.50    itojun 		*lasttime = tv;
   1271   1.50    itojun 		*curpps = 0;
   1272   1.69    dyoung 	}
   1273   1.69    dyoung 	if (maxpps < 0)
   1274   1.53    itojun 		rv = 1;
   1275   1.53    itojun 	else if (*curpps < maxpps)
   1276   1.50    itojun 		rv = 1;
   1277   1.50    itojun 	else
   1278   1.50    itojun 		rv = 0;
   1279   1.50    itojun 
   1280   1.51     jhawk #if 1 /*DIAGNOSTIC?*/
   1281   1.50    itojun 	/* be careful about wrap-around */
   1282   1.50    itojun 	if (*curpps + 1 > *curpps)
   1283   1.50    itojun 		*curpps = *curpps + 1;
   1284   1.50    itojun #else
   1285   1.50    itojun 	/*
   1286   1.50    itojun 	 * assume that there's not too many calls to this function.
   1287   1.50    itojun 	 * not sure if the assumption holds, as it depends on *caller's*
   1288   1.50    itojun 	 * behavior, not the behavior of this function.
   1289   1.50    itojun 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1290   1.51     jhawk 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1291   1.50    itojun 	 */
   1292   1.50    itojun 	*curpps = *curpps + 1;
   1293   1.50    itojun #endif
   1294   1.42       cgd 
   1295   1.42       cgd 	return (rv);
   1296    1.1       cgd }
   1297