kern_time.c revision 1.141.2.1 1 1.141.2.1 christos /* $NetBSD: kern_time.c,v 1.141.2.1 2008/03/29 20:47:00 christos Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.131 ad * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.72 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 cgd * may be used to endorse or promote products derived from this software
53 1.1 cgd * without specific prior written permission.
54 1.1 cgd *
55 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 cgd * SUCH DAMAGE.
66 1.1 cgd *
67 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 1.1 cgd */
69 1.58 lukem
70 1.58 lukem #include <sys/cdefs.h>
71 1.141.2.1 christos __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.141.2.1 2008/03/29 20:47:00 christos Exp $");
72 1.1 cgd
73 1.5 mycroft #include <sys/param.h>
74 1.5 mycroft #include <sys/resourcevar.h>
75 1.5 mycroft #include <sys/kernel.h>
76 1.8 cgd #include <sys/systm.h>
77 1.5 mycroft #include <sys/proc.h>
78 1.8 cgd #include <sys/vnode.h>
79 1.17 christos #include <sys/signalvar.h>
80 1.25 perry #include <sys/syslog.h>
81 1.101 kardel #include <sys/timetc.h>
82 1.99 elad #include <sys/kauth.h>
83 1.1 cgd
84 1.11 cgd #include <sys/mount.h>
85 1.11 cgd #include <sys/syscallargs.h>
86 1.19 christos
87 1.37 thorpej #include <uvm/uvm_extern.h>
88 1.37 thorpej
89 1.130 ad #include <sys/cpu.h>
90 1.23 cgd
91 1.131 ad kmutex_t time_lock;
92 1.131 ad
93 1.97 simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
94 1.118 ad &pool_allocator_nointr, IPL_NONE);
95 1.97 simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
96 1.118 ad &pool_allocator_nointr, IPL_NONE);
97 1.97 simonb
98 1.131 ad /*
99 1.131 ad * Initialize timekeeping.
100 1.131 ad */
101 1.131 ad void
102 1.131 ad time_init(void)
103 1.131 ad {
104 1.131 ad
105 1.131 ad mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
106 1.131 ad }
107 1.131 ad
108 1.63 thorpej /* Time of day and interval timer support.
109 1.1 cgd *
110 1.1 cgd * These routines provide the kernel entry points to get and set
111 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
112 1.1 cgd * here provide support for adding and subtracting timeval structures
113 1.1 cgd * and decrementing interval timers, optionally reloading the interval
114 1.1 cgd * timers when they expire.
115 1.1 cgd */
116 1.1 cgd
117 1.22 jtc /* This function is used by clock_settime and settimeofday */
118 1.132 elad static int
119 1.141.2.1 christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
120 1.22 jtc {
121 1.141.2.1 christos struct timespec delta, now;
122 1.137 yamt struct bintime btdelta;
123 1.129 ad lwp_t *l;
124 1.129 ad int s;
125 1.22 jtc
126 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
127 1.129 ad s = splclock();
128 1.141.2.1 christos nanotime(&now);
129 1.141.2.1 christos timespecsub(ts, &now, &delta);
130 1.132 elad
131 1.134 elad if (check_kauth && kauth_authorize_system(kauth_cred_get(),
132 1.141.2.1 christos KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
133 1.141.2.1 christos &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
134 1.129 ad splx(s);
135 1.29 tls return (EPERM);
136 1.55 tron }
137 1.132 elad
138 1.29 tls #ifdef notyet
139 1.109 elad if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
140 1.129 ad splx(s);
141 1.29 tls return (EPERM);
142 1.55 tron }
143 1.29 tls #endif
144 1.103 kardel
145 1.141.2.1 christos tc_setclock(ts);
146 1.103 kardel
147 1.141.2.1 christos timespecadd(&boottime, &delta, &boottime);
148 1.103 kardel
149 1.47 thorpej /*
150 1.129 ad * XXXSMP: There is a short race between setting the time above
151 1.129 ad * and adjusting LWP's run times. Fixing this properly means
152 1.129 ad * pausing all CPUs while we adjust the clock.
153 1.47 thorpej */
154 1.141.2.1 christos timespec2bintime(&delta, &btdelta);
155 1.129 ad mutex_enter(&proclist_lock);
156 1.129 ad LIST_FOREACH(l, &alllwp, l_list) {
157 1.129 ad lwp_lock(l);
158 1.137 yamt bintime_add(&l->l_stime, &btdelta);
159 1.129 ad lwp_unlock(l);
160 1.129 ad }
161 1.129 ad mutex_exit(&proclist_lock);
162 1.22 jtc resettodr();
163 1.129 ad splx(s);
164 1.129 ad
165 1.29 tls return (0);
166 1.22 jtc }
167 1.22 jtc
168 1.132 elad int
169 1.132 elad settime(struct proc *p, struct timespec *ts)
170 1.132 elad {
171 1.132 elad return (settime1(p, ts, true));
172 1.132 elad }
173 1.132 elad
174 1.22 jtc /* ARGSUSED */
175 1.22 jtc int
176 1.141.2.1 christos sys___clock_gettime50(struct lwp *l,
177 1.141.2.1 christos const struct sys___clock_gettime50_args *uap, register_t *retval)
178 1.22 jtc {
179 1.135 dsl /* {
180 1.22 jtc syscallarg(clockid_t) clock_id;
181 1.23 cgd syscallarg(struct timespec *) tp;
182 1.135 dsl } */
183 1.22 jtc clockid_t clock_id;
184 1.22 jtc struct timespec ats;
185 1.22 jtc
186 1.22 jtc clock_id = SCARG(uap, clock_id);
187 1.61 simonb switch (clock_id) {
188 1.61 simonb case CLOCK_REALTIME:
189 1.96 simonb nanotime(&ats);
190 1.61 simonb break;
191 1.61 simonb case CLOCK_MONOTONIC:
192 1.101 kardel nanouptime(&ats);
193 1.61 simonb break;
194 1.61 simonb default:
195 1.22 jtc return (EINVAL);
196 1.61 simonb }
197 1.22 jtc
198 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
199 1.22 jtc }
200 1.22 jtc
201 1.22 jtc /* ARGSUSED */
202 1.22 jtc int
203 1.141.2.1 christos sys___clock_settime50(struct lwp *l,
204 1.141.2.1 christos const struct sys___clock_settime50_args *uap, register_t *retval)
205 1.22 jtc {
206 1.135 dsl /* {
207 1.22 jtc syscallarg(clockid_t) clock_id;
208 1.23 cgd syscallarg(const struct timespec *) tp;
209 1.135 dsl } */
210 1.141.2.1 christos int error;
211 1.141.2.1 christos struct timespec ats;
212 1.141.2.1 christos
213 1.141.2.1 christos if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
214 1.141.2.1 christos return error;
215 1.22 jtc
216 1.141.2.1 christos return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
217 1.56 manu }
218 1.56 manu
219 1.56 manu
220 1.56 manu int
221 1.132 elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
222 1.132 elad bool check_kauth)
223 1.56 manu {
224 1.56 manu int error;
225 1.56 manu
226 1.61 simonb switch (clock_id) {
227 1.61 simonb case CLOCK_REALTIME:
228 1.141.2.1 christos if ((error = settime1(p, tp, check_kauth)) != 0)
229 1.61 simonb return (error);
230 1.61 simonb break;
231 1.61 simonb case CLOCK_MONOTONIC:
232 1.61 simonb return (EINVAL); /* read-only clock */
233 1.61 simonb default:
234 1.56 manu return (EINVAL);
235 1.61 simonb }
236 1.22 jtc
237 1.22 jtc return 0;
238 1.22 jtc }
239 1.22 jtc
240 1.22 jtc int
241 1.141.2.1 christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
242 1.140 yamt register_t *retval)
243 1.22 jtc {
244 1.135 dsl /* {
245 1.22 jtc syscallarg(clockid_t) clock_id;
246 1.23 cgd syscallarg(struct timespec *) tp;
247 1.135 dsl } */
248 1.22 jtc clockid_t clock_id;
249 1.22 jtc struct timespec ts;
250 1.22 jtc int error = 0;
251 1.22 jtc
252 1.22 jtc clock_id = SCARG(uap, clock_id);
253 1.61 simonb switch (clock_id) {
254 1.61 simonb case CLOCK_REALTIME:
255 1.61 simonb case CLOCK_MONOTONIC:
256 1.22 jtc ts.tv_sec = 0;
257 1.102 kardel if (tc_getfrequency() > 1000000000)
258 1.102 kardel ts.tv_nsec = 1;
259 1.102 kardel else
260 1.102 kardel ts.tv_nsec = 1000000000 / tc_getfrequency();
261 1.61 simonb break;
262 1.61 simonb default:
263 1.61 simonb return (EINVAL);
264 1.61 simonb }
265 1.22 jtc
266 1.61 simonb if (SCARG(uap, tp))
267 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
268 1.22 jtc
269 1.22 jtc return error;
270 1.22 jtc }
271 1.22 jtc
272 1.27 jtc /* ARGSUSED */
273 1.27 jtc int
274 1.141.2.1 christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
275 1.140 yamt register_t *retval)
276 1.27 jtc {
277 1.135 dsl /* {
278 1.101 kardel syscallarg(struct timespec *) rqtp;
279 1.101 kardel syscallarg(struct timespec *) rmtp;
280 1.135 dsl } */
281 1.101 kardel struct timespec rmt, rqt;
282 1.120 dsl int error, error1;
283 1.101 kardel
284 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
285 1.101 kardel if (error)
286 1.101 kardel return (error);
287 1.101 kardel
288 1.120 dsl error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
289 1.120 dsl if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
290 1.120 dsl return error;
291 1.120 dsl
292 1.120 dsl error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
293 1.120 dsl return error1 ? error1 : error;
294 1.120 dsl }
295 1.120 dsl
296 1.120 dsl int
297 1.120 dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
298 1.120 dsl {
299 1.141 yamt struct timespec rmtstart;
300 1.120 dsl int error, timo;
301 1.120 dsl
302 1.120 dsl if (itimespecfix(rqt))
303 1.101 kardel return (EINVAL);
304 1.101 kardel
305 1.120 dsl timo = tstohz(rqt);
306 1.101 kardel /*
307 1.101 kardel * Avoid inadvertantly sleeping forever
308 1.101 kardel */
309 1.101 kardel if (timo == 0)
310 1.101 kardel timo = 1;
311 1.141 yamt getnanouptime(&rmtstart);
312 1.141 yamt again:
313 1.141 yamt error = kpause("nanoslp", true, timo, NULL);
314 1.141 yamt if (rmt != NULL || error == 0) {
315 1.141 yamt struct timespec rmtend;
316 1.141 yamt struct timespec t0;
317 1.141 yamt struct timespec *t;
318 1.101 kardel
319 1.141 yamt getnanouptime(&rmtend);
320 1.141 yamt t = (rmt != NULL) ? rmt : &t0;
321 1.141 yamt timespecsub(&rmtend, &rmtstart, t);
322 1.141 yamt timespecsub(rqt, t, t);
323 1.141 yamt if (t->tv_sec < 0)
324 1.141 yamt timespecclear(t);
325 1.141 yamt if (error == 0) {
326 1.141 yamt timo = tstohz(t);
327 1.141 yamt if (timo > 0)
328 1.141 yamt goto again;
329 1.141 yamt }
330 1.141 yamt }
331 1.104 kardel
332 1.101 kardel if (error == ERESTART)
333 1.101 kardel error = EINTR;
334 1.101 kardel if (error == EWOULDBLOCK)
335 1.101 kardel error = 0;
336 1.101 kardel
337 1.101 kardel return error;
338 1.27 jtc }
339 1.22 jtc
340 1.1 cgd /* ARGSUSED */
341 1.3 andrew int
342 1.141.2.1 christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
343 1.140 yamt register_t *retval)
344 1.15 thorpej {
345 1.135 dsl /* {
346 1.11 cgd syscallarg(struct timeval *) tp;
347 1.135 dsl syscallarg(void *) tzp; really "struct timezone *";
348 1.135 dsl } */
349 1.1 cgd struct timeval atv;
350 1.1 cgd int error = 0;
351 1.25 perry struct timezone tzfake;
352 1.1 cgd
353 1.11 cgd if (SCARG(uap, tp)) {
354 1.1 cgd microtime(&atv);
355 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
356 1.17 christos if (error)
357 1.1 cgd return (error);
358 1.1 cgd }
359 1.25 perry if (SCARG(uap, tzp)) {
360 1.25 perry /*
361 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
362 1.25 perry * fake up a timezone struct and return it if demanded.
363 1.25 perry */
364 1.25 perry tzfake.tz_minuteswest = 0;
365 1.25 perry tzfake.tz_dsttime = 0;
366 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
367 1.25 perry }
368 1.1 cgd return (error);
369 1.1 cgd }
370 1.1 cgd
371 1.1 cgd /* ARGSUSED */
372 1.3 andrew int
373 1.141.2.1 christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
374 1.140 yamt register_t *retval)
375 1.15 thorpej {
376 1.135 dsl /* {
377 1.24 cgd syscallarg(const struct timeval *) tv;
378 1.140 yamt syscallarg(const void *) tzp; really "const struct timezone *";
379 1.135 dsl } */
380 1.60 manu
381 1.119 dsl return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
382 1.60 manu }
383 1.60 manu
384 1.60 manu int
385 1.119 dsl settimeofday1(const struct timeval *utv, bool userspace,
386 1.119 dsl const void *utzp, struct lwp *l, bool check_kauth)
387 1.60 manu {
388 1.22 jtc struct timeval atv;
389 1.98 christos struct timespec ts;
390 1.22 jtc int error;
391 1.1 cgd
392 1.8 cgd /* Verify all parameters before changing time. */
393 1.119 dsl
394 1.25 perry /*
395 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
396 1.25 perry * obsolete program would try to set it, so we log a warning.
397 1.25 perry */
398 1.98 christos if (utzp)
399 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
400 1.119 dsl "(obsolete) kernel time zone\n", l->l_proc->p_pid);
401 1.98 christos
402 1.98 christos if (utv == NULL)
403 1.98 christos return 0;
404 1.98 christos
405 1.119 dsl if (userspace) {
406 1.119 dsl if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
407 1.119 dsl return error;
408 1.119 dsl utv = &atv;
409 1.119 dsl }
410 1.119 dsl
411 1.119 dsl TIMEVAL_TO_TIMESPEC(utv, &ts);
412 1.133 elad return settime1(l->l_proc, &ts, check_kauth);
413 1.1 cgd }
414 1.1 cgd
415 1.68 dsl int time_adjusted; /* set if an adjustment is made */
416 1.1 cgd
417 1.1 cgd /* ARGSUSED */
418 1.3 andrew int
419 1.141.2.1 christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
420 1.140 yamt register_t *retval)
421 1.15 thorpej {
422 1.135 dsl /* {
423 1.24 cgd syscallarg(const struct timeval *) delta;
424 1.11 cgd syscallarg(struct timeval *) olddelta;
425 1.135 dsl } */
426 1.141.2.1 christos int error = 0;
427 1.141.2.1 christos struct timeval atv, oldatv;
428 1.1 cgd
429 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
430 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
431 1.141.2.1 christos return error;
432 1.17 christos
433 1.141.2.1 christos if (SCARG(uap, delta)) {
434 1.141.2.1 christos error = copyin(SCARG(uap, delta), &atv,
435 1.141.2.1 christos sizeof(*SCARG(uap, delta)));
436 1.141.2.1 christos if (error)
437 1.141.2.1 christos return (error);
438 1.141.2.1 christos }
439 1.141.2.1 christos adjtime1(SCARG(uap, delta) ? &atv : NULL,
440 1.141.2.1 christos SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
441 1.141.2.1 christos if (SCARG(uap, olddelta))
442 1.141.2.1 christos error = copyout(&oldatv, SCARG(uap, olddelta),
443 1.141.2.1 christos sizeof(*SCARG(uap, olddelta)));
444 1.141.2.1 christos return error;
445 1.56 manu }
446 1.56 manu
447 1.141.2.1 christos void
448 1.110 yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
449 1.56 manu {
450 1.60 manu struct timeval atv;
451 1.101 kardel
452 1.101 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
453 1.101 kardel
454 1.101 kardel if (olddelta) {
455 1.141.2.1 christos olddelta->tv_sec = time_adjtime / 1000000;
456 1.141.2.1 christos olddelta->tv_usec = time_adjtime % 1000000;
457 1.141.2.1 christos if (olddelta->tv_usec < 0) {
458 1.141.2.1 christos olddelta->tv_usec += 1000000;
459 1.141.2.1 christos olddelta->tv_sec--;
460 1.101 kardel }
461 1.101 kardel }
462 1.101 kardel
463 1.101 kardel if (delta) {
464 1.141.2.1 christos time_adjtime = delta->tv_sec * 1000000 + atv.tv_usec;
465 1.8 cgd
466 1.101 kardel if (time_adjtime)
467 1.101 kardel /* We need to save the system time during shutdown */
468 1.101 kardel time_adjusted |= 1;
469 1.101 kardel }
470 1.1 cgd }
471 1.1 cgd
472 1.1 cgd /*
473 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
474 1.63 thorpej * timer_*() family of routines are supported.
475 1.1 cgd *
476 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
477 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
478 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
479 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
480 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
481 1.63 thorpej * syscall.
482 1.1 cgd *
483 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
484 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
485 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
486 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
487 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
488 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
489 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
490 1.63 thorpej * given below), to be delayed in real time past when it is supposed
491 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
492 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
493 1.63 thorpej * compute the next time in absolute time the timer should go off. */
494 1.63 thorpej
495 1.63 thorpej /* Allocate a POSIX realtime timer. */
496 1.63 thorpej int
497 1.140 yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
498 1.140 yamt register_t *retval)
499 1.63 thorpej {
500 1.135 dsl /* {
501 1.63 thorpej syscallarg(clockid_t) clock_id;
502 1.63 thorpej syscallarg(struct sigevent *) evp;
503 1.63 thorpej syscallarg(timer_t *) timerid;
504 1.135 dsl } */
505 1.92 cube
506 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
507 1.105 ad SCARG(uap, evp), copyin, l);
508 1.92 cube }
509 1.92 cube
510 1.92 cube int
511 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
512 1.105 ad copyin_t fetch_event, struct lwp *l)
513 1.92 cube {
514 1.92 cube int error;
515 1.92 cube timer_t timerid;
516 1.63 thorpej struct ptimer *pt;
517 1.105 ad struct proc *p;
518 1.105 ad
519 1.105 ad p = l->l_proc;
520 1.63 thorpej
521 1.63 thorpej if (id < CLOCK_REALTIME ||
522 1.63 thorpej id > CLOCK_PROF)
523 1.63 thorpej return (EINVAL);
524 1.63 thorpej
525 1.63 thorpej if (p->p_timers == NULL)
526 1.63 thorpej timers_alloc(p);
527 1.63 thorpej
528 1.63 thorpej /* Find a free timer slot, skipping those reserved for setitimer(). */
529 1.63 thorpej for (timerid = 3; timerid < TIMER_MAX; timerid++)
530 1.63 thorpej if (p->p_timers->pts_timers[timerid] == NULL)
531 1.63 thorpej break;
532 1.63 thorpej
533 1.63 thorpej if (timerid == TIMER_MAX)
534 1.63 thorpej return EAGAIN;
535 1.63 thorpej
536 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
537 1.63 thorpej if (evp) {
538 1.63 thorpej if (((error =
539 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
540 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
541 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
542 1.63 thorpej pool_put(&ptimer_pool, pt);
543 1.63 thorpej return (error ? error : EINVAL);
544 1.63 thorpej }
545 1.63 thorpej } else {
546 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
547 1.63 thorpej switch (id) {
548 1.63 thorpej case CLOCK_REALTIME:
549 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
550 1.63 thorpej break;
551 1.63 thorpej case CLOCK_VIRTUAL:
552 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
553 1.63 thorpej break;
554 1.63 thorpej case CLOCK_PROF:
555 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
556 1.63 thorpej break;
557 1.63 thorpej }
558 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
559 1.63 thorpej }
560 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
561 1.73 christos pt->pt_info.ksi_errno = 0;
562 1.73 christos pt->pt_info.ksi_code = 0;
563 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
564 1.105 ad pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
565 1.124 christos pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
566 1.63 thorpej
567 1.63 thorpej pt->pt_type = id;
568 1.63 thorpej pt->pt_proc = p;
569 1.63 thorpej pt->pt_overruns = 0;
570 1.63 thorpej pt->pt_poverruns = 0;
571 1.64 nathanw pt->pt_entry = timerid;
572 1.63 thorpej timerclear(&pt->pt_time.it_value);
573 1.63 thorpej if (id == CLOCK_REALTIME)
574 1.125 ad callout_init(&pt->pt_ch, 0);
575 1.63 thorpej else
576 1.63 thorpej pt->pt_active = 0;
577 1.63 thorpej
578 1.63 thorpej p->p_timers->pts_timers[timerid] = pt;
579 1.63 thorpej
580 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
581 1.63 thorpej }
582 1.63 thorpej
583 1.63 thorpej /* Delete a POSIX realtime timer */
584 1.3 andrew int
585 1.140 yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
586 1.140 yamt register_t *retval)
587 1.15 thorpej {
588 1.135 dsl /* {
589 1.63 thorpej syscallarg(timer_t) timerid;
590 1.135 dsl } */
591 1.63 thorpej struct proc *p = l->l_proc;
592 1.65 jdolecek timer_t timerid;
593 1.63 thorpej struct ptimer *pt, *ptn;
594 1.1 cgd int s;
595 1.1 cgd
596 1.63 thorpej timerid = SCARG(uap, timerid);
597 1.63 thorpej
598 1.63 thorpej if ((p->p_timers == NULL) ||
599 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
600 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
601 1.1 cgd return (EINVAL);
602 1.63 thorpej
603 1.125 ad if (pt->pt_type == CLOCK_REALTIME) {
604 1.63 thorpej callout_stop(&pt->pt_ch);
605 1.125 ad callout_destroy(&pt->pt_ch);
606 1.125 ad } else if (pt->pt_active) {
607 1.63 thorpej s = splclock();
608 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
609 1.63 thorpej LIST_REMOVE(pt, pt_list);
610 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
611 1.63 thorpej timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
612 1.63 thorpej &ptn->pt_time.it_value);
613 1.63 thorpej splx(s);
614 1.63 thorpej }
615 1.63 thorpej
616 1.63 thorpej p->p_timers->pts_timers[timerid] = NULL;
617 1.63 thorpej pool_put(&ptimer_pool, pt);
618 1.63 thorpej
619 1.63 thorpej return (0);
620 1.63 thorpej }
621 1.63 thorpej
622 1.63 thorpej /*
623 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
624 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
625 1.67 nathanw * time for virtual timers.
626 1.63 thorpej * Must be called at splclock().
627 1.63 thorpej */
628 1.63 thorpej void
629 1.63 thorpej timer_settime(struct ptimer *pt)
630 1.63 thorpej {
631 1.63 thorpej struct ptimer *ptn, *pptn;
632 1.63 thorpej struct ptlist *ptl;
633 1.63 thorpej
634 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
635 1.63 thorpej callout_stop(&pt->pt_ch);
636 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
637 1.63 thorpej /*
638 1.63 thorpej * Don't need to check hzto() return value, here.
639 1.63 thorpej * callout_reset() does it for us.
640 1.63 thorpej */
641 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
642 1.63 thorpej realtimerexpire, pt);
643 1.63 thorpej }
644 1.63 thorpej } else {
645 1.63 thorpej if (pt->pt_active) {
646 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
647 1.63 thorpej LIST_REMOVE(pt, pt_list);
648 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
649 1.63 thorpej timeradd(&pt->pt_time.it_value,
650 1.63 thorpej &ptn->pt_time.it_value,
651 1.63 thorpej &ptn->pt_time.it_value);
652 1.63 thorpej }
653 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
654 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
655 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
656 1.63 thorpej else
657 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
658 1.63 thorpej
659 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
660 1.63 thorpej ptn && timercmp(&pt->pt_time.it_value,
661 1.63 thorpej &ptn->pt_time.it_value, >);
662 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
663 1.63 thorpej timersub(&pt->pt_time.it_value,
664 1.63 thorpej &ptn->pt_time.it_value,
665 1.63 thorpej &pt->pt_time.it_value);
666 1.63 thorpej
667 1.63 thorpej if (pptn)
668 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
669 1.63 thorpej else
670 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
671 1.63 thorpej
672 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
673 1.63 thorpej timersub(&ptn->pt_time.it_value,
674 1.63 thorpej &pt->pt_time.it_value,
675 1.63 thorpej &ptn->pt_time.it_value);
676 1.63 thorpej
677 1.63 thorpej pt->pt_active = 1;
678 1.63 thorpej } else
679 1.63 thorpej pt->pt_active = 0;
680 1.63 thorpej }
681 1.63 thorpej }
682 1.63 thorpej
683 1.63 thorpej void
684 1.63 thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
685 1.63 thorpej {
686 1.101 kardel struct timeval now;
687 1.63 thorpej struct ptimer *ptn;
688 1.63 thorpej
689 1.63 thorpej *aitv = pt->pt_time;
690 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
691 1.1 cgd /*
692 1.12 mycroft * Convert from absolute to relative time in .it_value
693 1.63 thorpej * part of real time timer. If time for real time
694 1.63 thorpej * timer has passed return 0, else return difference
695 1.63 thorpej * between current time and time for the timer to go
696 1.63 thorpej * off.
697 1.1 cgd */
698 1.63 thorpej if (timerisset(&aitv->it_value)) {
699 1.101 kardel getmicrotime(&now);
700 1.101 kardel if (timercmp(&aitv->it_value, &now, <))
701 1.101 kardel timerclear(&aitv->it_value);
702 1.101 kardel else
703 1.101 kardel timersub(&aitv->it_value, &now,
704 1.101 kardel &aitv->it_value);
705 1.36 thorpej }
706 1.63 thorpej } else if (pt->pt_active) {
707 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
708 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
709 1.63 thorpej else
710 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
711 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
712 1.63 thorpej timeradd(&aitv->it_value,
713 1.63 thorpej &ptn->pt_time.it_value, &aitv->it_value);
714 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
715 1.1 cgd } else
716 1.63 thorpej timerclear(&aitv->it_value);
717 1.63 thorpej }
718 1.63 thorpej
719 1.63 thorpej
720 1.63 thorpej
721 1.63 thorpej /* Set and arm a POSIX realtime timer */
722 1.63 thorpej int
723 1.141.2.1 christos sys___timer_settime50(struct lwp *l,
724 1.141.2.1 christos const struct sys___timer_settime50_args *uap,
725 1.140 yamt register_t *retval)
726 1.63 thorpej {
727 1.135 dsl /* {
728 1.63 thorpej syscallarg(timer_t) timerid;
729 1.63 thorpej syscallarg(int) flags;
730 1.63 thorpej syscallarg(const struct itimerspec *) value;
731 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
732 1.135 dsl } */
733 1.92 cube int error;
734 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
735 1.92 cube
736 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
737 1.92 cube sizeof(struct itimerspec))) != 0)
738 1.92 cube return (error);
739 1.92 cube
740 1.92 cube if (SCARG(uap, ovalue))
741 1.92 cube ovp = &ovalue;
742 1.92 cube
743 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
744 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
745 1.92 cube return error;
746 1.92 cube
747 1.92 cube if (ovp)
748 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
749 1.92 cube sizeof(struct itimerspec));
750 1.92 cube return 0;
751 1.92 cube }
752 1.92 cube
753 1.92 cube int
754 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
755 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
756 1.92 cube {
757 1.101 kardel struct timeval now;
758 1.63 thorpej struct itimerval val, oval;
759 1.63 thorpej struct ptimer *pt;
760 1.101 kardel int s;
761 1.63 thorpej
762 1.63 thorpej if ((p->p_timers == NULL) ||
763 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
764 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
765 1.63 thorpej return (EINVAL);
766 1.63 thorpej
767 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
768 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
769 1.63 thorpej if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
770 1.63 thorpej return (EINVAL);
771 1.63 thorpej
772 1.63 thorpej oval = pt->pt_time;
773 1.63 thorpej pt->pt_time = val;
774 1.63 thorpej
775 1.63 thorpej s = splclock();
776 1.67 nathanw /*
777 1.67 nathanw * If we've been passed a relative time for a realtime timer,
778 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
779 1.67 nathanw * timer, convert it to relative and make sure we don't set it
780 1.67 nathanw * to zero, which would cancel the timer, or let it go
781 1.67 nathanw * negative, which would confuse the comparison tests.
782 1.67 nathanw */
783 1.67 nathanw if (timerisset(&pt->pt_time.it_value)) {
784 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
785 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
786 1.101 kardel getmicrotime(&now);
787 1.101 kardel timeradd(&pt->pt_time.it_value, &now,
788 1.101 kardel &pt->pt_time.it_value);
789 1.101 kardel }
790 1.67 nathanw } else {
791 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
792 1.101 kardel getmicrotime(&now);
793 1.101 kardel timersub(&pt->pt_time.it_value, &now,
794 1.101 kardel &pt->pt_time.it_value);
795 1.67 nathanw if (!timerisset(&pt->pt_time.it_value) ||
796 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
797 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
798 1.67 nathanw pt->pt_time.it_value.tv_usec = 1;
799 1.67 nathanw }
800 1.67 nathanw }
801 1.67 nathanw }
802 1.67 nathanw }
803 1.67 nathanw
804 1.63 thorpej timer_settime(pt);
805 1.63 thorpej splx(s);
806 1.63 thorpej
807 1.92 cube if (ovalue) {
808 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
809 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
810 1.63 thorpej }
811 1.63 thorpej
812 1.63 thorpej return (0);
813 1.63 thorpej }
814 1.63 thorpej
815 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
816 1.63 thorpej int
817 1.141.2.1 christos sys___timer_gettime50(struct lwp *l,
818 1.141.2.1 christos const struct sys___timer_gettime50_args *uap, register_t *retval)
819 1.63 thorpej {
820 1.135 dsl /* {
821 1.63 thorpej syscallarg(timer_t) timerid;
822 1.63 thorpej syscallarg(struct itimerspec *) value;
823 1.135 dsl } */
824 1.63 thorpej struct itimerspec its;
825 1.92 cube int error;
826 1.92 cube
827 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
828 1.92 cube &its)) != 0)
829 1.92 cube return error;
830 1.92 cube
831 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
832 1.92 cube }
833 1.92 cube
834 1.92 cube int
835 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
836 1.92 cube {
837 1.92 cube int s;
838 1.63 thorpej struct ptimer *pt;
839 1.92 cube struct itimerval aitv;
840 1.63 thorpej
841 1.63 thorpej if ((p->p_timers == NULL) ||
842 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
843 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
844 1.63 thorpej return (EINVAL);
845 1.63 thorpej
846 1.63 thorpej s = splclock();
847 1.63 thorpej timer_gettime(pt, &aitv);
848 1.1 cgd splx(s);
849 1.63 thorpej
850 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
851 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
852 1.63 thorpej
853 1.92 cube return 0;
854 1.63 thorpej }
855 1.63 thorpej
856 1.63 thorpej /*
857 1.63 thorpej * Return the count of the number of times a periodic timer expired
858 1.63 thorpej * while a notification was already pending. The counter is reset when
859 1.63 thorpej * a timer expires and a notification can be posted.
860 1.63 thorpej */
861 1.63 thorpej int
862 1.140 yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
863 1.140 yamt register_t *retval)
864 1.63 thorpej {
865 1.135 dsl /* {
866 1.63 thorpej syscallarg(timer_t) timerid;
867 1.135 dsl } */
868 1.63 thorpej struct proc *p = l->l_proc;
869 1.63 thorpej int timerid;
870 1.63 thorpej struct ptimer *pt;
871 1.63 thorpej
872 1.63 thorpej timerid = SCARG(uap, timerid);
873 1.63 thorpej
874 1.63 thorpej if ((p->p_timers == NULL) ||
875 1.63 thorpej (timerid < 2) || (timerid >= TIMER_MAX) ||
876 1.63 thorpej ((pt = p->p_timers->pts_timers[timerid]) == NULL))
877 1.63 thorpej return (EINVAL);
878 1.63 thorpej
879 1.63 thorpej *retval = pt->pt_poverruns;
880 1.63 thorpej
881 1.63 thorpej return (0);
882 1.63 thorpej }
883 1.63 thorpej
884 1.63 thorpej /*
885 1.63 thorpej * Real interval timer expired:
886 1.63 thorpej * send process whose timer expired an alarm signal.
887 1.63 thorpej * If time is not set up to reload, then just return.
888 1.63 thorpej * Else compute next time timer should go off which is > current time.
889 1.63 thorpej * This is where delay in processing this timeout causes multiple
890 1.63 thorpej * SIGALRM calls to be compressed into one.
891 1.63 thorpej */
892 1.63 thorpej void
893 1.63 thorpej realtimerexpire(void *arg)
894 1.63 thorpej {
895 1.101 kardel struct timeval now;
896 1.63 thorpej struct ptimer *pt;
897 1.63 thorpej int s;
898 1.63 thorpej
899 1.63 thorpej pt = (struct ptimer *)arg;
900 1.63 thorpej
901 1.63 thorpej itimerfire(pt);
902 1.63 thorpej
903 1.63 thorpej if (!timerisset(&pt->pt_time.it_interval)) {
904 1.63 thorpej timerclear(&pt->pt_time.it_value);
905 1.63 thorpej return;
906 1.63 thorpej }
907 1.101 kardel for (;;) {
908 1.101 kardel s = splclock(); /* XXX need spl now? */
909 1.101 kardel timeradd(&pt->pt_time.it_value,
910 1.101 kardel &pt->pt_time.it_interval, &pt->pt_time.it_value);
911 1.101 kardel getmicrotime(&now);
912 1.101 kardel if (timercmp(&pt->pt_time.it_value, &now, >)) {
913 1.101 kardel /*
914 1.101 kardel * Don't need to check hzto() return value, here.
915 1.101 kardel * callout_reset() does it for us.
916 1.101 kardel */
917 1.101 kardel callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
918 1.101 kardel realtimerexpire, pt);
919 1.101 kardel splx(s);
920 1.101 kardel return;
921 1.101 kardel }
922 1.101 kardel splx(s);
923 1.101 kardel pt->pt_overruns++;
924 1.101 kardel }
925 1.63 thorpej }
926 1.63 thorpej
927 1.63 thorpej /* BSD routine to get the value of an interval timer. */
928 1.63 thorpej /* ARGSUSED */
929 1.63 thorpej int
930 1.141.2.1 christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
931 1.140 yamt register_t *retval)
932 1.63 thorpej {
933 1.135 dsl /* {
934 1.63 thorpej syscallarg(int) which;
935 1.63 thorpej syscallarg(struct itimerval *) itv;
936 1.135 dsl } */
937 1.63 thorpej struct proc *p = l->l_proc;
938 1.63 thorpej struct itimerval aitv;
939 1.91 cube int error;
940 1.91 cube
941 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
942 1.91 cube if (error)
943 1.91 cube return error;
944 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
945 1.91 cube }
946 1.63 thorpej
947 1.91 cube int
948 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
949 1.91 cube {
950 1.91 cube int s;
951 1.63 thorpej
952 1.63 thorpej if ((u_int)which > ITIMER_PROF)
953 1.63 thorpej return (EINVAL);
954 1.63 thorpej
955 1.63 thorpej if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
956 1.91 cube timerclear(&itvp->it_value);
957 1.91 cube timerclear(&itvp->it_interval);
958 1.63 thorpej } else {
959 1.63 thorpej s = splclock();
960 1.91 cube timer_gettime(p->p_timers->pts_timers[which], itvp);
961 1.63 thorpej splx(s);
962 1.63 thorpej }
963 1.63 thorpej
964 1.91 cube return 0;
965 1.1 cgd }
966 1.1 cgd
967 1.63 thorpej /* BSD routine to set/arm an interval timer. */
968 1.1 cgd /* ARGSUSED */
969 1.3 andrew int
970 1.141.2.1 christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
971 1.140 yamt register_t *retval)
972 1.15 thorpej {
973 1.135 dsl /* {
974 1.30 mycroft syscallarg(int) which;
975 1.24 cgd syscallarg(const struct itimerval *) itv;
976 1.11 cgd syscallarg(struct itimerval *) oitv;
977 1.135 dsl } */
978 1.63 thorpej struct proc *p = l->l_proc;
979 1.30 mycroft int which = SCARG(uap, which);
980 1.141.2.1 christos struct sys___getitimer50_args getargs;
981 1.91 cube const struct itimerval *itvp;
982 1.1 cgd struct itimerval aitv;
983 1.91 cube int error;
984 1.1 cgd
985 1.30 mycroft if ((u_int)which > ITIMER_PROF)
986 1.1 cgd return (EINVAL);
987 1.11 cgd itvp = SCARG(uap, itv);
988 1.63 thorpej if (itvp &&
989 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
990 1.1 cgd return (error);
991 1.21 cgd if (SCARG(uap, oitv) != NULL) {
992 1.30 mycroft SCARG(&getargs, which) = which;
993 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
994 1.141.2.1 christos if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
995 1.21 cgd return (error);
996 1.21 cgd }
997 1.1 cgd if (itvp == 0)
998 1.1 cgd return (0);
999 1.91 cube
1000 1.91 cube return dosetitimer(p, which, &aitv);
1001 1.91 cube }
1002 1.91 cube
1003 1.91 cube int
1004 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1005 1.91 cube {
1006 1.101 kardel struct timeval now;
1007 1.91 cube struct ptimer *pt;
1008 1.91 cube int s;
1009 1.91 cube
1010 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1011 1.1 cgd return (EINVAL);
1012 1.63 thorpej
1013 1.63 thorpej /*
1014 1.63 thorpej * Don't bother allocating data structures if the process just
1015 1.63 thorpej * wants to clear the timer.
1016 1.63 thorpej */
1017 1.91 cube if (!timerisset(&itvp->it_value) &&
1018 1.63 thorpej ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1019 1.63 thorpej return (0);
1020 1.63 thorpej
1021 1.63 thorpej if (p->p_timers == NULL)
1022 1.63 thorpej timers_alloc(p);
1023 1.63 thorpej if (p->p_timers->pts_timers[which] == NULL) {
1024 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
1025 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1026 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1027 1.63 thorpej pt->pt_overruns = 0;
1028 1.63 thorpej pt->pt_proc = p;
1029 1.63 thorpej pt->pt_type = which;
1030 1.64 nathanw pt->pt_entry = which;
1031 1.63 thorpej switch (which) {
1032 1.63 thorpej case ITIMER_REAL:
1033 1.125 ad callout_init(&pt->pt_ch, 0);
1034 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1035 1.63 thorpej break;
1036 1.63 thorpej case ITIMER_VIRTUAL:
1037 1.63 thorpej pt->pt_active = 0;
1038 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1039 1.63 thorpej break;
1040 1.63 thorpej case ITIMER_PROF:
1041 1.63 thorpej pt->pt_active = 0;
1042 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1043 1.63 thorpej break;
1044 1.1 cgd }
1045 1.1 cgd } else
1046 1.63 thorpej pt = p->p_timers->pts_timers[which];
1047 1.63 thorpej
1048 1.91 cube pt->pt_time = *itvp;
1049 1.63 thorpej p->p_timers->pts_timers[which] = pt;
1050 1.63 thorpej
1051 1.63 thorpej s = splclock();
1052 1.67 nathanw if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1053 1.67 nathanw /* Convert to absolute time */
1054 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1055 1.101 kardel getmicrotime(&now);
1056 1.101 kardel timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1057 1.67 nathanw }
1058 1.63 thorpej timer_settime(pt);
1059 1.1 cgd splx(s);
1060 1.63 thorpej
1061 1.1 cgd return (0);
1062 1.1 cgd }
1063 1.1 cgd
1064 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1065 1.63 thorpej void
1066 1.63 thorpej timers_alloc(struct proc *p)
1067 1.63 thorpej {
1068 1.63 thorpej int i;
1069 1.63 thorpej struct ptimers *pts;
1070 1.63 thorpej
1071 1.100 yamt pts = pool_get(&ptimers_pool, PR_WAITOK);
1072 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1073 1.63 thorpej LIST_INIT(&pts->pts_prof);
1074 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1075 1.63 thorpej pts->pts_timers[i] = NULL;
1076 1.64 nathanw pts->pts_fired = 0;
1077 1.63 thorpej p->p_timers = pts;
1078 1.63 thorpej }
1079 1.63 thorpej
1080 1.1 cgd /*
1081 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1082 1.63 thorpej * then clean up all timers and free all the data structures. If
1083 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1084 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1085 1.63 thorpej * structure if none of those remain.
1086 1.1 cgd */
1087 1.3 andrew void
1088 1.63 thorpej timers_free(struct proc *p, int which)
1089 1.6 cgd {
1090 1.63 thorpej int i, s;
1091 1.63 thorpej struct ptimers *pts;
1092 1.63 thorpej struct ptimer *pt, *ptn;
1093 1.63 thorpej struct timeval tv;
1094 1.63 thorpej
1095 1.63 thorpej if (p->p_timers) {
1096 1.63 thorpej pts = p->p_timers;
1097 1.63 thorpej if (which == TIMERS_ALL)
1098 1.63 thorpej i = 0;
1099 1.63 thorpej else {
1100 1.63 thorpej s = splclock();
1101 1.63 thorpej timerclear(&tv);
1102 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1103 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1104 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1105 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1106 1.63 thorpej LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1107 1.63 thorpej if (ptn) {
1108 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1109 1.63 thorpej &ptn->pt_time.it_value);
1110 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1111 1.63 thorpej ptn, pt_list);
1112 1.63 thorpej }
1113 1.63 thorpej
1114 1.63 thorpej timerclear(&tv);
1115 1.63 thorpej for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1116 1.63 thorpej ptn && ptn != pts->pts_timers[ITIMER_PROF];
1117 1.63 thorpej ptn = LIST_NEXT(ptn, pt_list))
1118 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value, &tv);
1119 1.63 thorpej LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1120 1.63 thorpej if (ptn) {
1121 1.63 thorpej timeradd(&tv, &ptn->pt_time.it_value,
1122 1.63 thorpej &ptn->pt_time.it_value);
1123 1.63 thorpej LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1124 1.63 thorpej pt_list);
1125 1.63 thorpej }
1126 1.1 cgd splx(s);
1127 1.63 thorpej i = 3;
1128 1.63 thorpej }
1129 1.63 thorpej for ( ; i < TIMER_MAX; i++)
1130 1.63 thorpej if ((pt = pts->pts_timers[i]) != NULL) {
1131 1.125 ad if (pt->pt_type == CLOCK_REALTIME) {
1132 1.63 thorpej callout_stop(&pt->pt_ch);
1133 1.125 ad callout_destroy(&pt->pt_ch);
1134 1.125 ad }
1135 1.63 thorpej pts->pts_timers[i] = NULL;
1136 1.63 thorpej pool_put(&ptimer_pool, pt);
1137 1.63 thorpej }
1138 1.63 thorpej if ((pts->pts_timers[0] == NULL) &&
1139 1.63 thorpej (pts->pts_timers[1] == NULL) &&
1140 1.63 thorpej (pts->pts_timers[2] == NULL)) {
1141 1.63 thorpej p->p_timers = NULL;
1142 1.97 simonb pool_put(&ptimers_pool, pts);
1143 1.1 cgd }
1144 1.1 cgd }
1145 1.1 cgd }
1146 1.1 cgd
1147 1.1 cgd /*
1148 1.1 cgd * Decrement an interval timer by a specified number
1149 1.1 cgd * of microseconds, which must be less than a second,
1150 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1151 1.1 cgd * it. In this case, carry over (usec - old value) to
1152 1.8 cgd * reduce the value reloaded into the timer so that
1153 1.1 cgd * the timer does not drift. This routine assumes
1154 1.1 cgd * that it is called in a context where the timers
1155 1.1 cgd * on which it is operating cannot change in value.
1156 1.1 cgd */
1157 1.3 andrew int
1158 1.63 thorpej itimerdecr(struct ptimer *pt, int usec)
1159 1.63 thorpej {
1160 1.45 augustss struct itimerval *itp;
1161 1.1 cgd
1162 1.63 thorpej itp = &pt->pt_time;
1163 1.1 cgd if (itp->it_value.tv_usec < usec) {
1164 1.1 cgd if (itp->it_value.tv_sec == 0) {
1165 1.1 cgd /* expired, and already in next interval */
1166 1.1 cgd usec -= itp->it_value.tv_usec;
1167 1.1 cgd goto expire;
1168 1.1 cgd }
1169 1.1 cgd itp->it_value.tv_usec += 1000000;
1170 1.1 cgd itp->it_value.tv_sec--;
1171 1.1 cgd }
1172 1.1 cgd itp->it_value.tv_usec -= usec;
1173 1.1 cgd usec = 0;
1174 1.1 cgd if (timerisset(&itp->it_value))
1175 1.1 cgd return (1);
1176 1.1 cgd /* expired, exactly at end of interval */
1177 1.1 cgd expire:
1178 1.1 cgd if (timerisset(&itp->it_interval)) {
1179 1.1 cgd itp->it_value = itp->it_interval;
1180 1.1 cgd itp->it_value.tv_usec -= usec;
1181 1.1 cgd if (itp->it_value.tv_usec < 0) {
1182 1.1 cgd itp->it_value.tv_usec += 1000000;
1183 1.1 cgd itp->it_value.tv_sec--;
1184 1.1 cgd }
1185 1.63 thorpej timer_settime(pt);
1186 1.1 cgd } else
1187 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1188 1.1 cgd return (0);
1189 1.42 cgd }
1190 1.42 cgd
1191 1.63 thorpej void
1192 1.63 thorpej itimerfire(struct ptimer *pt)
1193 1.63 thorpej {
1194 1.63 thorpej struct proc *p = pt->pt_proc;
1195 1.78 cl
1196 1.63 thorpej if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1197 1.63 thorpej /*
1198 1.63 thorpej * No RT signal infrastructure exists at this time;
1199 1.63 thorpej * just post the signal number and throw away the
1200 1.63 thorpej * value.
1201 1.63 thorpej */
1202 1.113 ad if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1203 1.63 thorpej pt->pt_overruns++;
1204 1.63 thorpej else {
1205 1.75 christos ksiginfo_t ksi;
1206 1.111 yamt KSI_INIT(&ksi);
1207 1.75 christos ksi.ksi_signo = pt->pt_ev.sigev_signo;
1208 1.75 christos ksi.ksi_code = SI_TIMER;
1209 1.124 christos ksi.ksi_value = pt->pt_ev.sigev_value;
1210 1.63 thorpej pt->pt_poverruns = pt->pt_overruns;
1211 1.63 thorpej pt->pt_overruns = 0;
1212 1.113 ad mutex_enter(&proclist_mutex);
1213 1.75 christos kpsignal(p, &ksi, NULL);
1214 1.113 ad mutex_exit(&proclist_mutex);
1215 1.64 nathanw }
1216 1.63 thorpej }
1217 1.63 thorpej }
1218 1.63 thorpej
1219 1.42 cgd /*
1220 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1221 1.42 cgd * for usage and rationale.
1222 1.42 cgd */
1223 1.42 cgd int
1224 1.63 thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1225 1.42 cgd {
1226 1.49 itojun struct timeval tv, delta;
1227 1.101 kardel int rv = 0;
1228 1.42 cgd
1229 1.101 kardel getmicrouptime(&tv);
1230 1.49 itojun timersub(&tv, lasttime, &delta);
1231 1.42 cgd
1232 1.42 cgd /*
1233 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1234 1.42 cgd * even if interval is huge.
1235 1.42 cgd */
1236 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1237 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1238 1.49 itojun *lasttime = tv;
1239 1.42 cgd rv = 1;
1240 1.42 cgd }
1241 1.50 itojun
1242 1.50 itojun return (rv);
1243 1.50 itojun }
1244 1.50 itojun
1245 1.50 itojun /*
1246 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1247 1.50 itojun */
1248 1.50 itojun int
1249 1.63 thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1250 1.50 itojun {
1251 1.50 itojun struct timeval tv, delta;
1252 1.101 kardel int rv;
1253 1.50 itojun
1254 1.101 kardel getmicrouptime(&tv);
1255 1.50 itojun timersub(&tv, lasttime, &delta);
1256 1.50 itojun
1257 1.50 itojun /*
1258 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1259 1.50 itojun * if more than one second have passed since the last update of
1260 1.50 itojun * lasttime, reset the counter.
1261 1.50 itojun *
1262 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1263 1.50 itojun * try to use *curpps for stat purposes as well.
1264 1.50 itojun */
1265 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1266 1.50 itojun delta.tv_sec >= 1) {
1267 1.50 itojun *lasttime = tv;
1268 1.50 itojun *curpps = 0;
1269 1.69 dyoung }
1270 1.69 dyoung if (maxpps < 0)
1271 1.53 itojun rv = 1;
1272 1.53 itojun else if (*curpps < maxpps)
1273 1.50 itojun rv = 1;
1274 1.50 itojun else
1275 1.50 itojun rv = 0;
1276 1.50 itojun
1277 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1278 1.50 itojun /* be careful about wrap-around */
1279 1.50 itojun if (*curpps + 1 > *curpps)
1280 1.50 itojun *curpps = *curpps + 1;
1281 1.50 itojun #else
1282 1.50 itojun /*
1283 1.50 itojun * assume that there's not too many calls to this function.
1284 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1285 1.50 itojun * behavior, not the behavior of this function.
1286 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1287 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1288 1.50 itojun */
1289 1.50 itojun *curpps = *curpps + 1;
1290 1.50 itojun #endif
1291 1.42 cgd
1292 1.42 cgd return (rv);
1293 1.1 cgd }
1294