Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.141.2.1
      1  1.141.2.1  christos /*	$NetBSD: kern_time.c,v 1.141.2.1 2008/03/29 20:47:00 christos Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4      1.131        ad  * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8       1.42       cgd  * by Christopher G. Demetriou.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  * 3. All advertising materials mentioning features or use of this software
     19       1.42       cgd  *    must display the following acknowledgement:
     20       1.42       cgd  *	This product includes software developed by the NetBSD
     21       1.42       cgd  *	Foundation, Inc. and its contributors.
     22       1.42       cgd  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23       1.42       cgd  *    contributors may be used to endorse or promote products derived
     24       1.42       cgd  *    from this software without specific prior written permission.
     25       1.42       cgd  *
     26       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     37       1.42       cgd  */
     38        1.9       cgd 
     39        1.1       cgd /*
     40        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     41        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     42        1.1       cgd  *
     43        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     44        1.1       cgd  * modification, are permitted provided that the following conditions
     45        1.1       cgd  * are met:
     46        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     47        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     48        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     49        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     50        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     51       1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     52        1.1       cgd  *    may be used to endorse or promote products derived from this software
     53        1.1       cgd  *    without specific prior written permission.
     54        1.1       cgd  *
     55        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65        1.1       cgd  * SUCH DAMAGE.
     66        1.1       cgd  *
     67       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68        1.1       cgd  */
     69       1.58     lukem 
     70       1.58     lukem #include <sys/cdefs.h>
     71  1.141.2.1  christos __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.141.2.1 2008/03/29 20:47:00 christos Exp $");
     72        1.1       cgd 
     73        1.5   mycroft #include <sys/param.h>
     74        1.5   mycroft #include <sys/resourcevar.h>
     75        1.5   mycroft #include <sys/kernel.h>
     76        1.8       cgd #include <sys/systm.h>
     77        1.5   mycroft #include <sys/proc.h>
     78        1.8       cgd #include <sys/vnode.h>
     79       1.17  christos #include <sys/signalvar.h>
     80       1.25     perry #include <sys/syslog.h>
     81      1.101    kardel #include <sys/timetc.h>
     82       1.99      elad #include <sys/kauth.h>
     83        1.1       cgd 
     84       1.11       cgd #include <sys/mount.h>
     85       1.11       cgd #include <sys/syscallargs.h>
     86       1.19  christos 
     87       1.37   thorpej #include <uvm/uvm_extern.h>
     88       1.37   thorpej 
     89      1.130        ad #include <sys/cpu.h>
     90       1.23       cgd 
     91      1.131        ad kmutex_t	time_lock;
     92      1.131        ad 
     93       1.97    simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
     94      1.118        ad     &pool_allocator_nointr, IPL_NONE);
     95       1.97    simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
     96      1.118        ad     &pool_allocator_nointr, IPL_NONE);
     97       1.97    simonb 
     98      1.131        ad /*
     99      1.131        ad  * Initialize timekeeping.
    100      1.131        ad  */
    101      1.131        ad void
    102      1.131        ad time_init(void)
    103      1.131        ad {
    104      1.131        ad 
    105      1.131        ad 	mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
    106      1.131        ad }
    107      1.131        ad 
    108       1.63   thorpej /* Time of day and interval timer support.
    109        1.1       cgd  *
    110        1.1       cgd  * These routines provide the kernel entry points to get and set
    111        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    112        1.1       cgd  * here provide support for adding and subtracting timeval structures
    113        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    114        1.1       cgd  * timers when they expire.
    115        1.1       cgd  */
    116        1.1       cgd 
    117       1.22       jtc /* This function is used by clock_settime and settimeofday */
    118      1.132      elad static int
    119  1.141.2.1  christos settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    120       1.22       jtc {
    121  1.141.2.1  christos 	struct timespec delta, now;
    122      1.137      yamt 	struct bintime btdelta;
    123      1.129        ad 	lwp_t *l;
    124      1.129        ad 	int s;
    125       1.22       jtc 
    126       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    127      1.129        ad 	s = splclock();
    128  1.141.2.1  christos 	nanotime(&now);
    129  1.141.2.1  christos 	timespecsub(ts, &now, &delta);
    130      1.132      elad 
    131      1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    132  1.141.2.1  christos 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    133  1.141.2.1  christos 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    134      1.129        ad 		splx(s);
    135       1.29       tls 		return (EPERM);
    136       1.55      tron 	}
    137      1.132      elad 
    138       1.29       tls #ifdef notyet
    139      1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    140      1.129        ad 		splx(s);
    141       1.29       tls 		return (EPERM);
    142       1.55      tron 	}
    143       1.29       tls #endif
    144      1.103    kardel 
    145  1.141.2.1  christos 	tc_setclock(ts);
    146      1.103    kardel 
    147  1.141.2.1  christos 	timespecadd(&boottime, &delta, &boottime);
    148      1.103    kardel 
    149       1.47   thorpej 	/*
    150      1.129        ad 	 * XXXSMP: There is a short race between setting the time above
    151      1.129        ad 	 * and adjusting LWP's run times.  Fixing this properly means
    152      1.129        ad 	 * pausing all CPUs while we adjust the clock.
    153       1.47   thorpej 	 */
    154  1.141.2.1  christos 	timespec2bintime(&delta, &btdelta);
    155      1.129        ad 	mutex_enter(&proclist_lock);
    156      1.129        ad 	LIST_FOREACH(l, &alllwp, l_list) {
    157      1.129        ad 		lwp_lock(l);
    158      1.137      yamt 		bintime_add(&l->l_stime, &btdelta);
    159      1.129        ad 		lwp_unlock(l);
    160      1.129        ad 	}
    161      1.129        ad 	mutex_exit(&proclist_lock);
    162       1.22       jtc 	resettodr();
    163      1.129        ad 	splx(s);
    164      1.129        ad 
    165       1.29       tls 	return (0);
    166       1.22       jtc }
    167       1.22       jtc 
    168      1.132      elad int
    169      1.132      elad settime(struct proc *p, struct timespec *ts)
    170      1.132      elad {
    171      1.132      elad 	return (settime1(p, ts, true));
    172      1.132      elad }
    173      1.132      elad 
    174       1.22       jtc /* ARGSUSED */
    175       1.22       jtc int
    176  1.141.2.1  christos sys___clock_gettime50(struct lwp *l,
    177  1.141.2.1  christos     const struct sys___clock_gettime50_args *uap, register_t *retval)
    178       1.22       jtc {
    179      1.135       dsl 	/* {
    180       1.22       jtc 		syscallarg(clockid_t) clock_id;
    181       1.23       cgd 		syscallarg(struct timespec *) tp;
    182      1.135       dsl 	} */
    183       1.22       jtc 	clockid_t clock_id;
    184       1.22       jtc 	struct timespec ats;
    185       1.22       jtc 
    186       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    187       1.61    simonb 	switch (clock_id) {
    188       1.61    simonb 	case CLOCK_REALTIME:
    189       1.96    simonb 		nanotime(&ats);
    190       1.61    simonb 		break;
    191       1.61    simonb 	case CLOCK_MONOTONIC:
    192      1.101    kardel 		nanouptime(&ats);
    193       1.61    simonb 		break;
    194       1.61    simonb 	default:
    195       1.22       jtc 		return (EINVAL);
    196       1.61    simonb 	}
    197       1.22       jtc 
    198       1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    199       1.22       jtc }
    200       1.22       jtc 
    201       1.22       jtc /* ARGSUSED */
    202       1.22       jtc int
    203  1.141.2.1  christos sys___clock_settime50(struct lwp *l,
    204  1.141.2.1  christos     const struct sys___clock_settime50_args *uap, register_t *retval)
    205       1.22       jtc {
    206      1.135       dsl 	/* {
    207       1.22       jtc 		syscallarg(clockid_t) clock_id;
    208       1.23       cgd 		syscallarg(const struct timespec *) tp;
    209      1.135       dsl 	} */
    210  1.141.2.1  christos 	int error;
    211  1.141.2.1  christos 	struct timespec ats;
    212  1.141.2.1  christos 
    213  1.141.2.1  christos 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    214  1.141.2.1  christos 		return error;
    215       1.22       jtc 
    216  1.141.2.1  christos 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    217       1.56      manu }
    218       1.56      manu 
    219       1.56      manu 
    220       1.56      manu int
    221      1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    222      1.132      elad     bool check_kauth)
    223       1.56      manu {
    224       1.56      manu 	int error;
    225       1.56      manu 
    226       1.61    simonb 	switch (clock_id) {
    227       1.61    simonb 	case CLOCK_REALTIME:
    228  1.141.2.1  christos 		if ((error = settime1(p, tp, check_kauth)) != 0)
    229       1.61    simonb 			return (error);
    230       1.61    simonb 		break;
    231       1.61    simonb 	case CLOCK_MONOTONIC:
    232       1.61    simonb 		return (EINVAL);	/* read-only clock */
    233       1.61    simonb 	default:
    234       1.56      manu 		return (EINVAL);
    235       1.61    simonb 	}
    236       1.22       jtc 
    237       1.22       jtc 	return 0;
    238       1.22       jtc }
    239       1.22       jtc 
    240       1.22       jtc int
    241  1.141.2.1  christos sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    242      1.140      yamt     register_t *retval)
    243       1.22       jtc {
    244      1.135       dsl 	/* {
    245       1.22       jtc 		syscallarg(clockid_t) clock_id;
    246       1.23       cgd 		syscallarg(struct timespec *) tp;
    247      1.135       dsl 	} */
    248       1.22       jtc 	clockid_t clock_id;
    249       1.22       jtc 	struct timespec ts;
    250       1.22       jtc 	int error = 0;
    251       1.22       jtc 
    252       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    253       1.61    simonb 	switch (clock_id) {
    254       1.61    simonb 	case CLOCK_REALTIME:
    255       1.61    simonb 	case CLOCK_MONOTONIC:
    256       1.22       jtc 		ts.tv_sec = 0;
    257      1.102    kardel 		if (tc_getfrequency() > 1000000000)
    258      1.102    kardel 			ts.tv_nsec = 1;
    259      1.102    kardel 		else
    260      1.102    kardel 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    261       1.61    simonb 		break;
    262       1.61    simonb 	default:
    263       1.61    simonb 		return (EINVAL);
    264       1.61    simonb 	}
    265       1.22       jtc 
    266       1.61    simonb 	if (SCARG(uap, tp))
    267       1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    268       1.22       jtc 
    269       1.22       jtc 	return error;
    270       1.22       jtc }
    271       1.22       jtc 
    272       1.27       jtc /* ARGSUSED */
    273       1.27       jtc int
    274  1.141.2.1  christos sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    275      1.140      yamt     register_t *retval)
    276       1.27       jtc {
    277      1.135       dsl 	/* {
    278      1.101    kardel 		syscallarg(struct timespec *) rqtp;
    279      1.101    kardel 		syscallarg(struct timespec *) rmtp;
    280      1.135       dsl 	} */
    281      1.101    kardel 	struct timespec rmt, rqt;
    282      1.120       dsl 	int error, error1;
    283      1.101    kardel 
    284      1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    285      1.101    kardel 	if (error)
    286      1.101    kardel 		return (error);
    287      1.101    kardel 
    288      1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    289      1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    290      1.120       dsl 		return error;
    291      1.120       dsl 
    292      1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    293      1.120       dsl 	return error1 ? error1 : error;
    294      1.120       dsl }
    295      1.120       dsl 
    296      1.120       dsl int
    297      1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    298      1.120       dsl {
    299      1.141      yamt 	struct timespec rmtstart;
    300      1.120       dsl 	int error, timo;
    301      1.120       dsl 
    302      1.120       dsl 	if (itimespecfix(rqt))
    303      1.101    kardel 		return (EINVAL);
    304      1.101    kardel 
    305      1.120       dsl 	timo = tstohz(rqt);
    306      1.101    kardel 	/*
    307      1.101    kardel 	 * Avoid inadvertantly sleeping forever
    308      1.101    kardel 	 */
    309      1.101    kardel 	if (timo == 0)
    310      1.101    kardel 		timo = 1;
    311      1.141      yamt 	getnanouptime(&rmtstart);
    312      1.141      yamt again:
    313      1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    314      1.141      yamt 	if (rmt != NULL || error == 0) {
    315      1.141      yamt 		struct timespec rmtend;
    316      1.141      yamt 		struct timespec t0;
    317      1.141      yamt 		struct timespec *t;
    318      1.101    kardel 
    319      1.141      yamt 		getnanouptime(&rmtend);
    320      1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    321      1.141      yamt 		timespecsub(&rmtend, &rmtstart, t);
    322      1.141      yamt 		timespecsub(rqt, t, t);
    323      1.141      yamt 		if (t->tv_sec < 0)
    324      1.141      yamt 			timespecclear(t);
    325      1.141      yamt 		if (error == 0) {
    326      1.141      yamt 			timo = tstohz(t);
    327      1.141      yamt 			if (timo > 0)
    328      1.141      yamt 				goto again;
    329      1.141      yamt 		}
    330      1.141      yamt 	}
    331      1.104    kardel 
    332      1.101    kardel 	if (error == ERESTART)
    333      1.101    kardel 		error = EINTR;
    334      1.101    kardel 	if (error == EWOULDBLOCK)
    335      1.101    kardel 		error = 0;
    336      1.101    kardel 
    337      1.101    kardel 	return error;
    338       1.27       jtc }
    339       1.22       jtc 
    340        1.1       cgd /* ARGSUSED */
    341        1.3    andrew int
    342  1.141.2.1  christos sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    343      1.140      yamt     register_t *retval)
    344       1.15   thorpej {
    345      1.135       dsl 	/* {
    346       1.11       cgd 		syscallarg(struct timeval *) tp;
    347      1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    348      1.135       dsl 	} */
    349        1.1       cgd 	struct timeval atv;
    350        1.1       cgd 	int error = 0;
    351       1.25     perry 	struct timezone tzfake;
    352        1.1       cgd 
    353       1.11       cgd 	if (SCARG(uap, tp)) {
    354        1.1       cgd 		microtime(&atv);
    355       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    356       1.17  christos 		if (error)
    357        1.1       cgd 			return (error);
    358        1.1       cgd 	}
    359       1.25     perry 	if (SCARG(uap, tzp)) {
    360       1.25     perry 		/*
    361       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    362       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    363       1.25     perry 		 */
    364       1.25     perry 		tzfake.tz_minuteswest = 0;
    365       1.25     perry 		tzfake.tz_dsttime = 0;
    366       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    367       1.25     perry 	}
    368        1.1       cgd 	return (error);
    369        1.1       cgd }
    370        1.1       cgd 
    371        1.1       cgd /* ARGSUSED */
    372        1.3    andrew int
    373  1.141.2.1  christos sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    374      1.140      yamt     register_t *retval)
    375       1.15   thorpej {
    376      1.135       dsl 	/* {
    377       1.24       cgd 		syscallarg(const struct timeval *) tv;
    378      1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    379      1.135       dsl 	} */
    380       1.60      manu 
    381      1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    382       1.60      manu }
    383       1.60      manu 
    384       1.60      manu int
    385      1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    386      1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    387       1.60      manu {
    388       1.22       jtc 	struct timeval atv;
    389       1.98  christos 	struct timespec ts;
    390       1.22       jtc 	int error;
    391        1.1       cgd 
    392        1.8       cgd 	/* Verify all parameters before changing time. */
    393      1.119       dsl 
    394       1.25     perry 	/*
    395       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    396       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    397       1.25     perry 	 */
    398       1.98  christos 	if (utzp)
    399       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    400      1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    401       1.98  christos 
    402       1.98  christos 	if (utv == NULL)
    403       1.98  christos 		return 0;
    404       1.98  christos 
    405      1.119       dsl 	if (userspace) {
    406      1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    407      1.119       dsl 			return error;
    408      1.119       dsl 		utv = &atv;
    409      1.119       dsl 	}
    410      1.119       dsl 
    411      1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    412      1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    413        1.1       cgd }
    414        1.1       cgd 
    415       1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    416        1.1       cgd 
    417        1.1       cgd /* ARGSUSED */
    418        1.3    andrew int
    419  1.141.2.1  christos sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    420      1.140      yamt     register_t *retval)
    421       1.15   thorpej {
    422      1.135       dsl 	/* {
    423       1.24       cgd 		syscallarg(const struct timeval *) delta;
    424       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    425      1.135       dsl 	} */
    426  1.141.2.1  christos 	int error = 0;
    427  1.141.2.1  christos 	struct timeval atv, oldatv;
    428        1.1       cgd 
    429      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    430      1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    431  1.141.2.1  christos 		return error;
    432       1.17  christos 
    433  1.141.2.1  christos 	if (SCARG(uap, delta)) {
    434  1.141.2.1  christos 		error = copyin(SCARG(uap, delta), &atv,
    435  1.141.2.1  christos 		    sizeof(*SCARG(uap, delta)));
    436  1.141.2.1  christos 		if (error)
    437  1.141.2.1  christos 			return (error);
    438  1.141.2.1  christos 	}
    439  1.141.2.1  christos 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    440  1.141.2.1  christos 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    441  1.141.2.1  christos 	if (SCARG(uap, olddelta))
    442  1.141.2.1  christos 		error = copyout(&oldatv, SCARG(uap, olddelta),
    443  1.141.2.1  christos 		    sizeof(*SCARG(uap, olddelta)));
    444  1.141.2.1  christos 	return error;
    445       1.56      manu }
    446       1.56      manu 
    447  1.141.2.1  christos void
    448      1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    449       1.56      manu {
    450       1.60      manu 	struct timeval atv;
    451      1.101    kardel 
    452      1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    453      1.101    kardel 
    454      1.101    kardel 	if (olddelta) {
    455  1.141.2.1  christos 		olddelta->tv_sec = time_adjtime / 1000000;
    456  1.141.2.1  christos 		olddelta->tv_usec = time_adjtime % 1000000;
    457  1.141.2.1  christos 		if (olddelta->tv_usec < 0) {
    458  1.141.2.1  christos 			olddelta->tv_usec += 1000000;
    459  1.141.2.1  christos 			olddelta->tv_sec--;
    460      1.101    kardel 		}
    461      1.101    kardel 	}
    462      1.101    kardel 
    463      1.101    kardel 	if (delta) {
    464  1.141.2.1  christos 		time_adjtime = delta->tv_sec * 1000000 + atv.tv_usec;
    465        1.8       cgd 
    466      1.101    kardel 		if (time_adjtime)
    467      1.101    kardel 			/* We need to save the system time during shutdown */
    468      1.101    kardel 			time_adjusted |= 1;
    469      1.101    kardel 	}
    470        1.1       cgd }
    471        1.1       cgd 
    472        1.1       cgd /*
    473       1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    474       1.63   thorpej  * timer_*() family of routines are supported.
    475        1.1       cgd  *
    476       1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    477       1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    478       1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    479       1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    480       1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    481       1.63   thorpej  * syscall.
    482        1.1       cgd  *
    483       1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    484       1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    485        1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    486       1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    487       1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    488       1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    489       1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    490       1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    491       1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    492       1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    493       1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    494       1.63   thorpej 
    495       1.63   thorpej /* Allocate a POSIX realtime timer. */
    496       1.63   thorpej int
    497      1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    498      1.140      yamt     register_t *retval)
    499       1.63   thorpej {
    500      1.135       dsl 	/* {
    501       1.63   thorpej 		syscallarg(clockid_t) clock_id;
    502       1.63   thorpej 		syscallarg(struct sigevent *) evp;
    503       1.63   thorpej 		syscallarg(timer_t *) timerid;
    504      1.135       dsl 	} */
    505       1.92      cube 
    506       1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    507      1.105        ad 	    SCARG(uap, evp), copyin, l);
    508       1.92      cube }
    509       1.92      cube 
    510       1.92      cube int
    511       1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    512      1.105        ad     copyin_t fetch_event, struct lwp *l)
    513       1.92      cube {
    514       1.92      cube 	int error;
    515       1.92      cube 	timer_t timerid;
    516       1.63   thorpej 	struct ptimer *pt;
    517      1.105        ad 	struct proc *p;
    518      1.105        ad 
    519      1.105        ad 	p = l->l_proc;
    520       1.63   thorpej 
    521       1.63   thorpej 	if (id < CLOCK_REALTIME ||
    522       1.63   thorpej 	    id > CLOCK_PROF)
    523       1.63   thorpej 		return (EINVAL);
    524       1.63   thorpej 
    525       1.63   thorpej 	if (p->p_timers == NULL)
    526       1.63   thorpej 		timers_alloc(p);
    527       1.63   thorpej 
    528       1.63   thorpej 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    529       1.63   thorpej 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    530       1.63   thorpej 		if (p->p_timers->pts_timers[timerid] == NULL)
    531       1.63   thorpej 			break;
    532       1.63   thorpej 
    533       1.63   thorpej 	if (timerid == TIMER_MAX)
    534       1.63   thorpej 		return EAGAIN;
    535       1.63   thorpej 
    536       1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    537       1.63   thorpej 	if (evp) {
    538       1.63   thorpej 		if (((error =
    539       1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    540       1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    541       1.63   thorpej 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    542       1.63   thorpej 			pool_put(&ptimer_pool, pt);
    543       1.63   thorpej 			return (error ? error : EINVAL);
    544       1.63   thorpej 		}
    545       1.63   thorpej 	} else {
    546       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    547       1.63   thorpej 		switch (id) {
    548       1.63   thorpej 		case CLOCK_REALTIME:
    549       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    550       1.63   thorpej 			break;
    551       1.63   thorpej 		case CLOCK_VIRTUAL:
    552       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    553       1.63   thorpej 			break;
    554       1.63   thorpej 		case CLOCK_PROF:
    555       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    556       1.63   thorpej 			break;
    557       1.63   thorpej 		}
    558       1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    559       1.63   thorpej 	}
    560       1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    561       1.73  christos 	pt->pt_info.ksi_errno = 0;
    562       1.73  christos 	pt->pt_info.ksi_code = 0;
    563       1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    564      1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    565      1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    566       1.63   thorpej 
    567       1.63   thorpej 	pt->pt_type = id;
    568       1.63   thorpej 	pt->pt_proc = p;
    569       1.63   thorpej 	pt->pt_overruns = 0;
    570       1.63   thorpej 	pt->pt_poverruns = 0;
    571       1.64   nathanw 	pt->pt_entry = timerid;
    572       1.63   thorpej 	timerclear(&pt->pt_time.it_value);
    573       1.63   thorpej 	if (id == CLOCK_REALTIME)
    574      1.125        ad 		callout_init(&pt->pt_ch, 0);
    575       1.63   thorpej 	else
    576       1.63   thorpej 		pt->pt_active = 0;
    577       1.63   thorpej 
    578       1.63   thorpej 	p->p_timers->pts_timers[timerid] = pt;
    579       1.63   thorpej 
    580       1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    581       1.63   thorpej }
    582       1.63   thorpej 
    583       1.63   thorpej /* Delete a POSIX realtime timer */
    584        1.3    andrew int
    585      1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    586      1.140      yamt     register_t *retval)
    587       1.15   thorpej {
    588      1.135       dsl 	/* {
    589       1.63   thorpej 		syscallarg(timer_t) timerid;
    590      1.135       dsl 	} */
    591       1.63   thorpej 	struct proc *p = l->l_proc;
    592       1.65  jdolecek 	timer_t timerid;
    593       1.63   thorpej 	struct ptimer *pt, *ptn;
    594        1.1       cgd 	int s;
    595        1.1       cgd 
    596       1.63   thorpej 	timerid = SCARG(uap, timerid);
    597       1.63   thorpej 
    598       1.63   thorpej 	if ((p->p_timers == NULL) ||
    599       1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    600       1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    601        1.1       cgd 		return (EINVAL);
    602       1.63   thorpej 
    603      1.125        ad 	if (pt->pt_type == CLOCK_REALTIME) {
    604       1.63   thorpej 		callout_stop(&pt->pt_ch);
    605      1.125        ad 		callout_destroy(&pt->pt_ch);
    606      1.125        ad 	} else if (pt->pt_active) {
    607       1.63   thorpej 		s = splclock();
    608       1.63   thorpej 		ptn = LIST_NEXT(pt, pt_list);
    609       1.63   thorpej 		LIST_REMOVE(pt, pt_list);
    610       1.63   thorpej 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    611       1.63   thorpej 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    612       1.63   thorpej 			    &ptn->pt_time.it_value);
    613       1.63   thorpej 		splx(s);
    614       1.63   thorpej 	}
    615       1.63   thorpej 
    616       1.63   thorpej 	p->p_timers->pts_timers[timerid] = NULL;
    617       1.63   thorpej 	pool_put(&ptimer_pool, pt);
    618       1.63   thorpej 
    619       1.63   thorpej 	return (0);
    620       1.63   thorpej }
    621       1.63   thorpej 
    622       1.63   thorpej /*
    623       1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    624       1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    625       1.67   nathanw  * time for virtual timers.
    626       1.63   thorpej  * Must be called at splclock().
    627       1.63   thorpej  */
    628       1.63   thorpej void
    629       1.63   thorpej timer_settime(struct ptimer *pt)
    630       1.63   thorpej {
    631       1.63   thorpej 	struct ptimer *ptn, *pptn;
    632       1.63   thorpej 	struct ptlist *ptl;
    633       1.63   thorpej 
    634       1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    635       1.63   thorpej 		callout_stop(&pt->pt_ch);
    636       1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    637       1.63   thorpej 			/*
    638       1.63   thorpej 			 * Don't need to check hzto() return value, here.
    639       1.63   thorpej 			 * callout_reset() does it for us.
    640       1.63   thorpej 			 */
    641       1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    642       1.63   thorpej 			    realtimerexpire, pt);
    643       1.63   thorpej 		}
    644       1.63   thorpej 	} else {
    645       1.63   thorpej 		if (pt->pt_active) {
    646       1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    647       1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    648       1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    649       1.63   thorpej 				timeradd(&pt->pt_time.it_value,
    650       1.63   thorpej 				    &ptn->pt_time.it_value,
    651       1.63   thorpej 				    &ptn->pt_time.it_value);
    652       1.63   thorpej 		}
    653       1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    654       1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    655       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    656       1.63   thorpej 			else
    657       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    658       1.63   thorpej 
    659       1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    660       1.63   thorpej 			     ptn && timercmp(&pt->pt_time.it_value,
    661       1.63   thorpej 				 &ptn->pt_time.it_value, >);
    662       1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    663       1.63   thorpej 				timersub(&pt->pt_time.it_value,
    664       1.63   thorpej 				    &ptn->pt_time.it_value,
    665       1.63   thorpej 				    &pt->pt_time.it_value);
    666       1.63   thorpej 
    667       1.63   thorpej 			if (pptn)
    668       1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    669       1.63   thorpej 			else
    670       1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    671       1.63   thorpej 
    672       1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    673       1.63   thorpej 				timersub(&ptn->pt_time.it_value,
    674       1.63   thorpej 				    &pt->pt_time.it_value,
    675       1.63   thorpej 				    &ptn->pt_time.it_value);
    676       1.63   thorpej 
    677       1.63   thorpej 			pt->pt_active = 1;
    678       1.63   thorpej 		} else
    679       1.63   thorpej 			pt->pt_active = 0;
    680       1.63   thorpej 	}
    681       1.63   thorpej }
    682       1.63   thorpej 
    683       1.63   thorpej void
    684       1.63   thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    685       1.63   thorpej {
    686      1.101    kardel 	struct timeval now;
    687       1.63   thorpej 	struct ptimer *ptn;
    688       1.63   thorpej 
    689       1.63   thorpej 	*aitv = pt->pt_time;
    690       1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    691        1.1       cgd 		/*
    692       1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    693       1.63   thorpej 		 * part of real time timer.  If time for real time
    694       1.63   thorpej 		 * timer has passed return 0, else return difference
    695       1.63   thorpej 		 * between current time and time for the timer to go
    696       1.63   thorpej 		 * off.
    697        1.1       cgd 		 */
    698       1.63   thorpej 		if (timerisset(&aitv->it_value)) {
    699      1.101    kardel 			getmicrotime(&now);
    700      1.101    kardel 			if (timercmp(&aitv->it_value, &now, <))
    701      1.101    kardel 				timerclear(&aitv->it_value);
    702      1.101    kardel 			else
    703      1.101    kardel 				timersub(&aitv->it_value, &now,
    704      1.101    kardel 				    &aitv->it_value);
    705       1.36   thorpej 		}
    706       1.63   thorpej 	} else if (pt->pt_active) {
    707       1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    708       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    709       1.63   thorpej 		else
    710       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    711       1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    712       1.63   thorpej 			timeradd(&aitv->it_value,
    713       1.63   thorpej 			    &ptn->pt_time.it_value, &aitv->it_value);
    714       1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    715        1.1       cgd 	} else
    716       1.63   thorpej 		timerclear(&aitv->it_value);
    717       1.63   thorpej }
    718       1.63   thorpej 
    719       1.63   thorpej 
    720       1.63   thorpej 
    721       1.63   thorpej /* Set and arm a POSIX realtime timer */
    722       1.63   thorpej int
    723  1.141.2.1  christos sys___timer_settime50(struct lwp *l,
    724  1.141.2.1  christos     const struct sys___timer_settime50_args *uap,
    725      1.140      yamt     register_t *retval)
    726       1.63   thorpej {
    727      1.135       dsl 	/* {
    728       1.63   thorpej 		syscallarg(timer_t) timerid;
    729       1.63   thorpej 		syscallarg(int) flags;
    730       1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    731       1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    732      1.135       dsl 	} */
    733       1.92      cube 	int error;
    734       1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    735       1.92      cube 
    736       1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    737       1.92      cube 	    sizeof(struct itimerspec))) != 0)
    738       1.92      cube 		return (error);
    739       1.92      cube 
    740       1.92      cube 	if (SCARG(uap, ovalue))
    741       1.92      cube 		ovp = &ovalue;
    742       1.92      cube 
    743       1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    744       1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    745       1.92      cube 		return error;
    746       1.92      cube 
    747       1.92      cube 	if (ovp)
    748       1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    749       1.92      cube 		    sizeof(struct itimerspec));
    750       1.92      cube 	return 0;
    751       1.92      cube }
    752       1.92      cube 
    753       1.92      cube int
    754       1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    755       1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    756       1.92      cube {
    757      1.101    kardel 	struct timeval now;
    758       1.63   thorpej 	struct itimerval val, oval;
    759       1.63   thorpej 	struct ptimer *pt;
    760      1.101    kardel 	int s;
    761       1.63   thorpej 
    762       1.63   thorpej 	if ((p->p_timers == NULL) ||
    763       1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    764       1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    765       1.63   thorpej 		return (EINVAL);
    766       1.63   thorpej 
    767       1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    768       1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    769       1.63   thorpej 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    770       1.63   thorpej 		return (EINVAL);
    771       1.63   thorpej 
    772       1.63   thorpej 	oval = pt->pt_time;
    773       1.63   thorpej 	pt->pt_time = val;
    774       1.63   thorpej 
    775       1.63   thorpej 	s = splclock();
    776       1.67   nathanw 	/*
    777       1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    778       1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    779       1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    780       1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    781       1.67   nathanw 	 * negative, which would confuse the comparison tests.
    782       1.67   nathanw 	 */
    783       1.67   nathanw 	if (timerisset(&pt->pt_time.it_value)) {
    784       1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    785      1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    786      1.101    kardel 				getmicrotime(&now);
    787      1.101    kardel 				timeradd(&pt->pt_time.it_value, &now,
    788      1.101    kardel 				    &pt->pt_time.it_value);
    789      1.101    kardel 			}
    790       1.67   nathanw 		} else {
    791       1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    792      1.101    kardel 				getmicrotime(&now);
    793      1.101    kardel 				timersub(&pt->pt_time.it_value, &now,
    794      1.101    kardel 				    &pt->pt_time.it_value);
    795       1.67   nathanw 				if (!timerisset(&pt->pt_time.it_value) ||
    796       1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    797       1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    798       1.67   nathanw 					pt->pt_time.it_value.tv_usec = 1;
    799       1.67   nathanw 				}
    800       1.67   nathanw 			}
    801       1.67   nathanw 		}
    802       1.67   nathanw 	}
    803       1.67   nathanw 
    804       1.63   thorpej 	timer_settime(pt);
    805       1.63   thorpej 	splx(s);
    806       1.63   thorpej 
    807       1.92      cube 	if (ovalue) {
    808       1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    809       1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    810       1.63   thorpej 	}
    811       1.63   thorpej 
    812       1.63   thorpej 	return (0);
    813       1.63   thorpej }
    814       1.63   thorpej 
    815       1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    816       1.63   thorpej int
    817  1.141.2.1  christos sys___timer_gettime50(struct lwp *l,
    818  1.141.2.1  christos     const struct sys___timer_gettime50_args *uap, register_t *retval)
    819       1.63   thorpej {
    820      1.135       dsl 	/* {
    821       1.63   thorpej 		syscallarg(timer_t) timerid;
    822       1.63   thorpej 		syscallarg(struct itimerspec *) value;
    823      1.135       dsl 	} */
    824       1.63   thorpej 	struct itimerspec its;
    825       1.92      cube 	int error;
    826       1.92      cube 
    827       1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    828       1.92      cube 	    &its)) != 0)
    829       1.92      cube 		return error;
    830       1.92      cube 
    831       1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    832       1.92      cube }
    833       1.92      cube 
    834       1.92      cube int
    835       1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    836       1.92      cube {
    837       1.92      cube 	int s;
    838       1.63   thorpej 	struct ptimer *pt;
    839       1.92      cube 	struct itimerval aitv;
    840       1.63   thorpej 
    841       1.63   thorpej 	if ((p->p_timers == NULL) ||
    842       1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    843       1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    844       1.63   thorpej 		return (EINVAL);
    845       1.63   thorpej 
    846       1.63   thorpej 	s = splclock();
    847       1.63   thorpej 	timer_gettime(pt, &aitv);
    848        1.1       cgd 	splx(s);
    849       1.63   thorpej 
    850       1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    851       1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    852       1.63   thorpej 
    853       1.92      cube 	return 0;
    854       1.63   thorpej }
    855       1.63   thorpej 
    856       1.63   thorpej /*
    857       1.63   thorpej  * Return the count of the number of times a periodic timer expired
    858       1.63   thorpej  * while a notification was already pending. The counter is reset when
    859       1.63   thorpej  * a timer expires and a notification can be posted.
    860       1.63   thorpej  */
    861       1.63   thorpej int
    862      1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    863      1.140      yamt     register_t *retval)
    864       1.63   thorpej {
    865      1.135       dsl 	/* {
    866       1.63   thorpej 		syscallarg(timer_t) timerid;
    867      1.135       dsl 	} */
    868       1.63   thorpej 	struct proc *p = l->l_proc;
    869       1.63   thorpej 	int timerid;
    870       1.63   thorpej 	struct ptimer *pt;
    871       1.63   thorpej 
    872       1.63   thorpej 	timerid = SCARG(uap, timerid);
    873       1.63   thorpej 
    874       1.63   thorpej 	if ((p->p_timers == NULL) ||
    875       1.63   thorpej 	    (timerid < 2) || (timerid >= TIMER_MAX) ||
    876       1.63   thorpej 	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
    877       1.63   thorpej 		return (EINVAL);
    878       1.63   thorpej 
    879       1.63   thorpej 	*retval = pt->pt_poverruns;
    880       1.63   thorpej 
    881       1.63   thorpej 	return (0);
    882       1.63   thorpej }
    883       1.63   thorpej 
    884       1.63   thorpej /*
    885       1.63   thorpej  * Real interval timer expired:
    886       1.63   thorpej  * send process whose timer expired an alarm signal.
    887       1.63   thorpej  * If time is not set up to reload, then just return.
    888       1.63   thorpej  * Else compute next time timer should go off which is > current time.
    889       1.63   thorpej  * This is where delay in processing this timeout causes multiple
    890       1.63   thorpej  * SIGALRM calls to be compressed into one.
    891       1.63   thorpej  */
    892       1.63   thorpej void
    893       1.63   thorpej realtimerexpire(void *arg)
    894       1.63   thorpej {
    895      1.101    kardel 	struct timeval now;
    896       1.63   thorpej 	struct ptimer *pt;
    897       1.63   thorpej 	int s;
    898       1.63   thorpej 
    899       1.63   thorpej 	pt = (struct ptimer *)arg;
    900       1.63   thorpej 
    901       1.63   thorpej 	itimerfire(pt);
    902       1.63   thorpej 
    903       1.63   thorpej 	if (!timerisset(&pt->pt_time.it_interval)) {
    904       1.63   thorpej 		timerclear(&pt->pt_time.it_value);
    905       1.63   thorpej 		return;
    906       1.63   thorpej 	}
    907      1.101    kardel 	for (;;) {
    908      1.101    kardel 		s = splclock();	/* XXX need spl now? */
    909      1.101    kardel 		timeradd(&pt->pt_time.it_value,
    910      1.101    kardel 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    911      1.101    kardel 		getmicrotime(&now);
    912      1.101    kardel 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
    913      1.101    kardel 			/*
    914      1.101    kardel 			 * Don't need to check hzto() return value, here.
    915      1.101    kardel 			 * callout_reset() does it for us.
    916      1.101    kardel 			 */
    917      1.101    kardel 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    918      1.101    kardel 			    realtimerexpire, pt);
    919      1.101    kardel 			splx(s);
    920      1.101    kardel 			return;
    921      1.101    kardel 		}
    922      1.101    kardel 		splx(s);
    923      1.101    kardel 		pt->pt_overruns++;
    924      1.101    kardel 	}
    925       1.63   thorpej }
    926       1.63   thorpej 
    927       1.63   thorpej /* BSD routine to get the value of an interval timer. */
    928       1.63   thorpej /* ARGSUSED */
    929       1.63   thorpej int
    930  1.141.2.1  christos sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
    931      1.140      yamt     register_t *retval)
    932       1.63   thorpej {
    933      1.135       dsl 	/* {
    934       1.63   thorpej 		syscallarg(int) which;
    935       1.63   thorpej 		syscallarg(struct itimerval *) itv;
    936      1.135       dsl 	} */
    937       1.63   thorpej 	struct proc *p = l->l_proc;
    938       1.63   thorpej 	struct itimerval aitv;
    939       1.91      cube 	int error;
    940       1.91      cube 
    941       1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
    942       1.91      cube 	if (error)
    943       1.91      cube 		return error;
    944       1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    945       1.91      cube }
    946       1.63   thorpej 
    947       1.91      cube int
    948       1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
    949       1.91      cube {
    950       1.91      cube 	int s;
    951       1.63   thorpej 
    952       1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
    953       1.63   thorpej 		return (EINVAL);
    954       1.63   thorpej 
    955       1.63   thorpej 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
    956       1.91      cube 		timerclear(&itvp->it_value);
    957       1.91      cube 		timerclear(&itvp->it_interval);
    958       1.63   thorpej 	} else {
    959       1.63   thorpej 		s = splclock();
    960       1.91      cube 		timer_gettime(p->p_timers->pts_timers[which], itvp);
    961       1.63   thorpej 		splx(s);
    962       1.63   thorpej 	}
    963       1.63   thorpej 
    964       1.91      cube 	return 0;
    965        1.1       cgd }
    966        1.1       cgd 
    967       1.63   thorpej /* BSD routine to set/arm an interval timer. */
    968        1.1       cgd /* ARGSUSED */
    969        1.3    andrew int
    970  1.141.2.1  christos sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
    971      1.140      yamt     register_t *retval)
    972       1.15   thorpej {
    973      1.135       dsl 	/* {
    974       1.30   mycroft 		syscallarg(int) which;
    975       1.24       cgd 		syscallarg(const struct itimerval *) itv;
    976       1.11       cgd 		syscallarg(struct itimerval *) oitv;
    977      1.135       dsl 	} */
    978       1.63   thorpej 	struct proc *p = l->l_proc;
    979       1.30   mycroft 	int which = SCARG(uap, which);
    980  1.141.2.1  christos 	struct sys___getitimer50_args getargs;
    981       1.91      cube 	const struct itimerval *itvp;
    982        1.1       cgd 	struct itimerval aitv;
    983       1.91      cube 	int error;
    984        1.1       cgd 
    985       1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
    986        1.1       cgd 		return (EINVAL);
    987       1.11       cgd 	itvp = SCARG(uap, itv);
    988       1.63   thorpej 	if (itvp &&
    989       1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
    990        1.1       cgd 		return (error);
    991       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
    992       1.30   mycroft 		SCARG(&getargs, which) = which;
    993       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    994  1.141.2.1  christos 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
    995       1.21       cgd 			return (error);
    996       1.21       cgd 	}
    997        1.1       cgd 	if (itvp == 0)
    998        1.1       cgd 		return (0);
    999       1.91      cube 
   1000       1.91      cube 	return dosetitimer(p, which, &aitv);
   1001       1.91      cube }
   1002       1.91      cube 
   1003       1.91      cube int
   1004       1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1005       1.91      cube {
   1006      1.101    kardel 	struct timeval now;
   1007       1.91      cube 	struct ptimer *pt;
   1008       1.91      cube 	int s;
   1009       1.91      cube 
   1010       1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1011        1.1       cgd 		return (EINVAL);
   1012       1.63   thorpej 
   1013       1.63   thorpej 	/*
   1014       1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1015       1.63   thorpej 	 * wants to clear the timer.
   1016       1.63   thorpej 	 */
   1017       1.91      cube 	if (!timerisset(&itvp->it_value) &&
   1018       1.63   thorpej 	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
   1019       1.63   thorpej 		return (0);
   1020       1.63   thorpej 
   1021       1.63   thorpej 	if (p->p_timers == NULL)
   1022       1.63   thorpej 		timers_alloc(p);
   1023       1.63   thorpej 	if (p->p_timers->pts_timers[which] == NULL) {
   1024       1.63   thorpej 		pt = pool_get(&ptimer_pool, PR_WAITOK);
   1025       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1026       1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1027       1.63   thorpej 		pt->pt_overruns = 0;
   1028       1.63   thorpej 		pt->pt_proc = p;
   1029       1.63   thorpej 		pt->pt_type = which;
   1030       1.64   nathanw 		pt->pt_entry = which;
   1031       1.63   thorpej 		switch (which) {
   1032       1.63   thorpej 		case ITIMER_REAL:
   1033      1.125        ad 			callout_init(&pt->pt_ch, 0);
   1034       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1035       1.63   thorpej 			break;
   1036       1.63   thorpej 		case ITIMER_VIRTUAL:
   1037       1.63   thorpej 			pt->pt_active = 0;
   1038       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1039       1.63   thorpej 			break;
   1040       1.63   thorpej 		case ITIMER_PROF:
   1041       1.63   thorpej 			pt->pt_active = 0;
   1042       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1043       1.63   thorpej 			break;
   1044        1.1       cgd 		}
   1045        1.1       cgd 	} else
   1046       1.63   thorpej 		pt = p->p_timers->pts_timers[which];
   1047       1.63   thorpej 
   1048       1.91      cube 	pt->pt_time = *itvp;
   1049       1.63   thorpej 	p->p_timers->pts_timers[which] = pt;
   1050       1.63   thorpej 
   1051       1.63   thorpej 	s = splclock();
   1052       1.67   nathanw 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1053       1.67   nathanw 		/* Convert to absolute time */
   1054      1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1055      1.101    kardel 		getmicrotime(&now);
   1056      1.101    kardel 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1057       1.67   nathanw 	}
   1058       1.63   thorpej 	timer_settime(pt);
   1059        1.1       cgd 	splx(s);
   1060       1.63   thorpej 
   1061        1.1       cgd 	return (0);
   1062        1.1       cgd }
   1063        1.1       cgd 
   1064       1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1065       1.63   thorpej void
   1066       1.63   thorpej timers_alloc(struct proc *p)
   1067       1.63   thorpej {
   1068       1.63   thorpej 	int i;
   1069       1.63   thorpej 	struct ptimers *pts;
   1070       1.63   thorpej 
   1071      1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1072       1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1073       1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1074       1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1075       1.63   thorpej 		pts->pts_timers[i] = NULL;
   1076       1.64   nathanw 	pts->pts_fired = 0;
   1077       1.63   thorpej 	p->p_timers = pts;
   1078       1.63   thorpej }
   1079       1.63   thorpej 
   1080        1.1       cgd /*
   1081       1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1082       1.63   thorpej  * then clean up all timers and free all the data structures. If
   1083       1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1084       1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1085       1.63   thorpej  * structure if none of those remain.
   1086        1.1       cgd  */
   1087        1.3    andrew void
   1088       1.63   thorpej timers_free(struct proc *p, int which)
   1089        1.6       cgd {
   1090       1.63   thorpej 	int i, s;
   1091       1.63   thorpej 	struct ptimers *pts;
   1092       1.63   thorpej 	struct ptimer *pt, *ptn;
   1093       1.63   thorpej 	struct timeval tv;
   1094       1.63   thorpej 
   1095       1.63   thorpej 	if (p->p_timers) {
   1096       1.63   thorpej 		pts = p->p_timers;
   1097       1.63   thorpej 		if (which == TIMERS_ALL)
   1098       1.63   thorpej 			i = 0;
   1099       1.63   thorpej 		else {
   1100       1.63   thorpej 			s = splclock();
   1101       1.63   thorpej 			timerclear(&tv);
   1102       1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
   1103       1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1104       1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1105       1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1106       1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
   1107       1.63   thorpej 			if (ptn) {
   1108       1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1109       1.63   thorpej 				    &ptn->pt_time.it_value);
   1110       1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
   1111       1.63   thorpej 				    ptn, pt_list);
   1112       1.63   thorpej 			}
   1113       1.63   thorpej 
   1114       1.63   thorpej 			timerclear(&tv);
   1115       1.63   thorpej 			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
   1116       1.63   thorpej 			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1117       1.63   thorpej 			     ptn = LIST_NEXT(ptn, pt_list))
   1118       1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1119       1.63   thorpej 			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
   1120       1.63   thorpej 			if (ptn) {
   1121       1.63   thorpej 				timeradd(&tv, &ptn->pt_time.it_value,
   1122       1.63   thorpej 				    &ptn->pt_time.it_value);
   1123       1.63   thorpej 				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
   1124       1.63   thorpej 				    pt_list);
   1125       1.63   thorpej 			}
   1126        1.1       cgd 			splx(s);
   1127       1.63   thorpej 			i = 3;
   1128       1.63   thorpej 		}
   1129       1.63   thorpej 		for ( ; i < TIMER_MAX; i++)
   1130       1.63   thorpej 			if ((pt = pts->pts_timers[i]) != NULL) {
   1131      1.125        ad 				if (pt->pt_type == CLOCK_REALTIME) {
   1132       1.63   thorpej 					callout_stop(&pt->pt_ch);
   1133      1.125        ad 					callout_destroy(&pt->pt_ch);
   1134      1.125        ad 				}
   1135       1.63   thorpej 				pts->pts_timers[i] = NULL;
   1136       1.63   thorpej 				pool_put(&ptimer_pool, pt);
   1137       1.63   thorpej 			}
   1138       1.63   thorpej 		if ((pts->pts_timers[0] == NULL) &&
   1139       1.63   thorpej 		    (pts->pts_timers[1] == NULL) &&
   1140       1.63   thorpej 		    (pts->pts_timers[2] == NULL)) {
   1141       1.63   thorpej 			p->p_timers = NULL;
   1142       1.97    simonb 			pool_put(&ptimers_pool, pts);
   1143        1.1       cgd 		}
   1144        1.1       cgd 	}
   1145        1.1       cgd }
   1146        1.1       cgd 
   1147        1.1       cgd /*
   1148        1.1       cgd  * Decrement an interval timer by a specified number
   1149        1.1       cgd  * of microseconds, which must be less than a second,
   1150        1.1       cgd  * i.e. < 1000000.  If the timer expires, then reload
   1151        1.1       cgd  * it.  In this case, carry over (usec - old value) to
   1152        1.8       cgd  * reduce the value reloaded into the timer so that
   1153        1.1       cgd  * the timer does not drift.  This routine assumes
   1154        1.1       cgd  * that it is called in a context where the timers
   1155        1.1       cgd  * on which it is operating cannot change in value.
   1156        1.1       cgd  */
   1157        1.3    andrew int
   1158       1.63   thorpej itimerdecr(struct ptimer *pt, int usec)
   1159       1.63   thorpej {
   1160       1.45  augustss 	struct itimerval *itp;
   1161        1.1       cgd 
   1162       1.63   thorpej 	itp = &pt->pt_time;
   1163        1.1       cgd 	if (itp->it_value.tv_usec < usec) {
   1164        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1165        1.1       cgd 			/* expired, and already in next interval */
   1166        1.1       cgd 			usec -= itp->it_value.tv_usec;
   1167        1.1       cgd 			goto expire;
   1168        1.1       cgd 		}
   1169        1.1       cgd 		itp->it_value.tv_usec += 1000000;
   1170        1.1       cgd 		itp->it_value.tv_sec--;
   1171        1.1       cgd 	}
   1172        1.1       cgd 	itp->it_value.tv_usec -= usec;
   1173        1.1       cgd 	usec = 0;
   1174        1.1       cgd 	if (timerisset(&itp->it_value))
   1175        1.1       cgd 		return (1);
   1176        1.1       cgd 	/* expired, exactly at end of interval */
   1177        1.1       cgd expire:
   1178        1.1       cgd 	if (timerisset(&itp->it_interval)) {
   1179        1.1       cgd 		itp->it_value = itp->it_interval;
   1180        1.1       cgd 		itp->it_value.tv_usec -= usec;
   1181        1.1       cgd 		if (itp->it_value.tv_usec < 0) {
   1182        1.1       cgd 			itp->it_value.tv_usec += 1000000;
   1183        1.1       cgd 			itp->it_value.tv_sec--;
   1184        1.1       cgd 		}
   1185       1.63   thorpej 		timer_settime(pt);
   1186        1.1       cgd 	} else
   1187        1.1       cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1188        1.1       cgd 	return (0);
   1189       1.42       cgd }
   1190       1.42       cgd 
   1191       1.63   thorpej void
   1192       1.63   thorpej itimerfire(struct ptimer *pt)
   1193       1.63   thorpej {
   1194       1.63   thorpej 	struct proc *p = pt->pt_proc;
   1195       1.78        cl 
   1196       1.63   thorpej 	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
   1197       1.63   thorpej 		/*
   1198       1.63   thorpej 		 * No RT signal infrastructure exists at this time;
   1199       1.63   thorpej 		 * just post the signal number and throw away the
   1200       1.63   thorpej 		 * value.
   1201       1.63   thorpej 		 */
   1202      1.113        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
   1203       1.63   thorpej 			pt->pt_overruns++;
   1204       1.63   thorpej 		else {
   1205       1.75  christos 			ksiginfo_t ksi;
   1206      1.111      yamt 			KSI_INIT(&ksi);
   1207       1.75  christos 			ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1208       1.75  christos 			ksi.ksi_code = SI_TIMER;
   1209      1.124  christos 			ksi.ksi_value = pt->pt_ev.sigev_value;
   1210       1.63   thorpej 			pt->pt_poverruns = pt->pt_overruns;
   1211       1.63   thorpej 			pt->pt_overruns = 0;
   1212      1.113        ad 			mutex_enter(&proclist_mutex);
   1213       1.75  christos 			kpsignal(p, &ksi, NULL);
   1214      1.113        ad 			mutex_exit(&proclist_mutex);
   1215       1.64   nathanw 		}
   1216       1.63   thorpej 	}
   1217       1.63   thorpej }
   1218       1.63   thorpej 
   1219       1.42       cgd /*
   1220       1.42       cgd  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1221       1.42       cgd  * for usage and rationale.
   1222       1.42       cgd  */
   1223       1.42       cgd int
   1224       1.63   thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1225       1.42       cgd {
   1226       1.49    itojun 	struct timeval tv, delta;
   1227      1.101    kardel 	int rv = 0;
   1228       1.42       cgd 
   1229      1.101    kardel 	getmicrouptime(&tv);
   1230       1.49    itojun 	timersub(&tv, lasttime, &delta);
   1231       1.42       cgd 
   1232       1.42       cgd 	/*
   1233       1.42       cgd 	 * check for 0,0 is so that the message will be seen at least once,
   1234       1.42       cgd 	 * even if interval is huge.
   1235       1.42       cgd 	 */
   1236       1.42       cgd 	if (timercmp(&delta, mininterval, >=) ||
   1237       1.42       cgd 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1238       1.49    itojun 		*lasttime = tv;
   1239       1.42       cgd 		rv = 1;
   1240       1.42       cgd 	}
   1241       1.50    itojun 
   1242       1.50    itojun 	return (rv);
   1243       1.50    itojun }
   1244       1.50    itojun 
   1245       1.50    itojun /*
   1246       1.50    itojun  * ppsratecheck(): packets (or events) per second limitation.
   1247       1.50    itojun  */
   1248       1.50    itojun int
   1249       1.63   thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1250       1.50    itojun {
   1251       1.50    itojun 	struct timeval tv, delta;
   1252      1.101    kardel 	int rv;
   1253       1.50    itojun 
   1254      1.101    kardel 	getmicrouptime(&tv);
   1255       1.50    itojun 	timersub(&tv, lasttime, &delta);
   1256       1.50    itojun 
   1257       1.50    itojun 	/*
   1258       1.50    itojun 	 * check for 0,0 is so that the message will be seen at least once.
   1259       1.50    itojun 	 * if more than one second have passed since the last update of
   1260       1.50    itojun 	 * lasttime, reset the counter.
   1261       1.50    itojun 	 *
   1262       1.50    itojun 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1263       1.50    itojun 	 * try to use *curpps for stat purposes as well.
   1264       1.50    itojun 	 */
   1265       1.50    itojun 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1266       1.50    itojun 	    delta.tv_sec >= 1) {
   1267       1.50    itojun 		*lasttime = tv;
   1268       1.50    itojun 		*curpps = 0;
   1269       1.69    dyoung 	}
   1270       1.69    dyoung 	if (maxpps < 0)
   1271       1.53    itojun 		rv = 1;
   1272       1.53    itojun 	else if (*curpps < maxpps)
   1273       1.50    itojun 		rv = 1;
   1274       1.50    itojun 	else
   1275       1.50    itojun 		rv = 0;
   1276       1.50    itojun 
   1277       1.51     jhawk #if 1 /*DIAGNOSTIC?*/
   1278       1.50    itojun 	/* be careful about wrap-around */
   1279       1.50    itojun 	if (*curpps + 1 > *curpps)
   1280       1.50    itojun 		*curpps = *curpps + 1;
   1281       1.50    itojun #else
   1282       1.50    itojun 	/*
   1283       1.50    itojun 	 * assume that there's not too many calls to this function.
   1284       1.50    itojun 	 * not sure if the assumption holds, as it depends on *caller's*
   1285       1.50    itojun 	 * behavior, not the behavior of this function.
   1286       1.50    itojun 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1287       1.51     jhawk 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1288       1.50    itojun 	 */
   1289       1.50    itojun 	*curpps = *curpps + 1;
   1290       1.50    itojun #endif
   1291       1.42       cgd 
   1292       1.42       cgd 	return (rv);
   1293        1.1       cgd }
   1294