kern_time.c revision 1.142 1 1.142 ad /* $NetBSD: kern_time.c,v 1.142 2008/04/21 00:13:46 ad Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.142 ad * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.72 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 cgd * may be used to endorse or promote products derived from this software
53 1.1 cgd * without specific prior written permission.
54 1.1 cgd *
55 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 cgd * SUCH DAMAGE.
66 1.1 cgd *
67 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 1.1 cgd */
69 1.58 lukem
70 1.58 lukem #include <sys/cdefs.h>
71 1.142 ad __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.142 2008/04/21 00:13:46 ad Exp $");
72 1.1 cgd
73 1.5 mycroft #include <sys/param.h>
74 1.5 mycroft #include <sys/resourcevar.h>
75 1.5 mycroft #include <sys/kernel.h>
76 1.8 cgd #include <sys/systm.h>
77 1.5 mycroft #include <sys/proc.h>
78 1.8 cgd #include <sys/vnode.h>
79 1.17 christos #include <sys/signalvar.h>
80 1.25 perry #include <sys/syslog.h>
81 1.101 kardel #include <sys/timetc.h>
82 1.99 elad #include <sys/kauth.h>
83 1.1 cgd
84 1.11 cgd #include <sys/mount.h>
85 1.11 cgd #include <sys/syscallargs.h>
86 1.19 christos
87 1.37 thorpej #include <uvm/uvm_extern.h>
88 1.37 thorpej
89 1.130 ad #include <sys/cpu.h>
90 1.23 cgd
91 1.142 ad static void timer_intr(void *);
92 1.142 ad static void itimerfire(struct ptimer *);
93 1.142 ad static void itimerfree(struct ptimers *, int);
94 1.142 ad
95 1.131 ad kmutex_t time_lock;
96 1.142 ad kmutex_t timer_lock;
97 1.142 ad
98 1.142 ad static void *timer_sih;
99 1.142 ad static TAILQ_HEAD(, ptimer) timer_queue;
100 1.131 ad
101 1.97 simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
102 1.118 ad &pool_allocator_nointr, IPL_NONE);
103 1.97 simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
104 1.118 ad &pool_allocator_nointr, IPL_NONE);
105 1.97 simonb
106 1.131 ad /*
107 1.131 ad * Initialize timekeeping.
108 1.131 ad */
109 1.131 ad void
110 1.131 ad time_init(void)
111 1.131 ad {
112 1.131 ad
113 1.131 ad mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
114 1.131 ad }
115 1.131 ad
116 1.142 ad void
117 1.142 ad time_init2(void)
118 1.142 ad {
119 1.142 ad
120 1.142 ad TAILQ_INIT(&timer_queue);
121 1.142 ad mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
122 1.142 ad timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
123 1.142 ad timer_intr, NULL);
124 1.142 ad }
125 1.142 ad
126 1.63 thorpej /* Time of day and interval timer support.
127 1.1 cgd *
128 1.1 cgd * These routines provide the kernel entry points to get and set
129 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
130 1.1 cgd * here provide support for adding and subtracting timeval structures
131 1.1 cgd * and decrementing interval timers, optionally reloading the interval
132 1.1 cgd * timers when they expire.
133 1.1 cgd */
134 1.1 cgd
135 1.22 jtc /* This function is used by clock_settime and settimeofday */
136 1.132 elad static int
137 1.132 elad settime1(struct proc *p, struct timespec *ts, bool check_kauth)
138 1.22 jtc {
139 1.98 christos struct timeval delta, tv;
140 1.101 kardel struct timeval now;
141 1.101 kardel struct timespec ts1;
142 1.137 yamt struct bintime btdelta;
143 1.129 ad lwp_t *l;
144 1.129 ad int s;
145 1.22 jtc
146 1.98 christos TIMESPEC_TO_TIMEVAL(&tv, ts);
147 1.98 christos
148 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
149 1.129 ad s = splclock();
150 1.101 kardel microtime(&now);
151 1.101 kardel timersub(&tv, &now, &delta);
152 1.132 elad
153 1.134 elad if (check_kauth && kauth_authorize_system(kauth_cred_get(),
154 1.134 elad KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
155 1.132 elad KAUTH_ARG(check_kauth ? false : true)) != 0) {
156 1.129 ad splx(s);
157 1.29 tls return (EPERM);
158 1.55 tron }
159 1.132 elad
160 1.29 tls #ifdef notyet
161 1.109 elad if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
162 1.129 ad splx(s);
163 1.29 tls return (EPERM);
164 1.55 tron }
165 1.29 tls #endif
166 1.103 kardel
167 1.103 kardel TIMEVAL_TO_TIMESPEC(&tv, &ts1);
168 1.101 kardel tc_setclock(&ts1);
169 1.103 kardel
170 1.22 jtc timeradd(&boottime, &delta, &boottime);
171 1.103 kardel
172 1.47 thorpej /*
173 1.129 ad * XXXSMP: There is a short race between setting the time above
174 1.129 ad * and adjusting LWP's run times. Fixing this properly means
175 1.129 ad * pausing all CPUs while we adjust the clock.
176 1.47 thorpej */
177 1.137 yamt timeval2bintime(&delta, &btdelta);
178 1.129 ad mutex_enter(&proclist_lock);
179 1.129 ad LIST_FOREACH(l, &alllwp, l_list) {
180 1.129 ad lwp_lock(l);
181 1.137 yamt bintime_add(&l->l_stime, &btdelta);
182 1.129 ad lwp_unlock(l);
183 1.129 ad }
184 1.129 ad mutex_exit(&proclist_lock);
185 1.22 jtc resettodr();
186 1.129 ad splx(s);
187 1.129 ad
188 1.29 tls return (0);
189 1.22 jtc }
190 1.22 jtc
191 1.132 elad int
192 1.132 elad settime(struct proc *p, struct timespec *ts)
193 1.132 elad {
194 1.132 elad return (settime1(p, ts, true));
195 1.132 elad }
196 1.132 elad
197 1.22 jtc /* ARGSUSED */
198 1.22 jtc int
199 1.140 yamt sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
200 1.140 yamt register_t *retval)
201 1.22 jtc {
202 1.135 dsl /* {
203 1.22 jtc syscallarg(clockid_t) clock_id;
204 1.23 cgd syscallarg(struct timespec *) tp;
205 1.135 dsl } */
206 1.22 jtc clockid_t clock_id;
207 1.22 jtc struct timespec ats;
208 1.22 jtc
209 1.22 jtc clock_id = SCARG(uap, clock_id);
210 1.61 simonb switch (clock_id) {
211 1.61 simonb case CLOCK_REALTIME:
212 1.96 simonb nanotime(&ats);
213 1.61 simonb break;
214 1.61 simonb case CLOCK_MONOTONIC:
215 1.101 kardel nanouptime(&ats);
216 1.61 simonb break;
217 1.61 simonb default:
218 1.22 jtc return (EINVAL);
219 1.61 simonb }
220 1.22 jtc
221 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
222 1.22 jtc }
223 1.22 jtc
224 1.22 jtc /* ARGSUSED */
225 1.22 jtc int
226 1.140 yamt sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
227 1.140 yamt register_t *retval)
228 1.22 jtc {
229 1.135 dsl /* {
230 1.22 jtc syscallarg(clockid_t) clock_id;
231 1.23 cgd syscallarg(const struct timespec *) tp;
232 1.135 dsl } */
233 1.22 jtc
234 1.132 elad return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
235 1.132 elad true);
236 1.56 manu }
237 1.56 manu
238 1.56 manu
239 1.56 manu int
240 1.132 elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
241 1.132 elad bool check_kauth)
242 1.56 manu {
243 1.60 manu struct timespec ats;
244 1.56 manu int error;
245 1.56 manu
246 1.60 manu if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
247 1.60 manu return (error);
248 1.60 manu
249 1.61 simonb switch (clock_id) {
250 1.61 simonb case CLOCK_REALTIME:
251 1.132 elad if ((error = settime1(p, &ats, check_kauth)) != 0)
252 1.61 simonb return (error);
253 1.61 simonb break;
254 1.61 simonb case CLOCK_MONOTONIC:
255 1.61 simonb return (EINVAL); /* read-only clock */
256 1.61 simonb default:
257 1.56 manu return (EINVAL);
258 1.61 simonb }
259 1.22 jtc
260 1.22 jtc return 0;
261 1.22 jtc }
262 1.22 jtc
263 1.22 jtc int
264 1.140 yamt sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
265 1.140 yamt register_t *retval)
266 1.22 jtc {
267 1.135 dsl /* {
268 1.22 jtc syscallarg(clockid_t) clock_id;
269 1.23 cgd syscallarg(struct timespec *) tp;
270 1.135 dsl } */
271 1.22 jtc clockid_t clock_id;
272 1.22 jtc struct timespec ts;
273 1.22 jtc int error = 0;
274 1.22 jtc
275 1.22 jtc clock_id = SCARG(uap, clock_id);
276 1.61 simonb switch (clock_id) {
277 1.61 simonb case CLOCK_REALTIME:
278 1.61 simonb case CLOCK_MONOTONIC:
279 1.22 jtc ts.tv_sec = 0;
280 1.102 kardel if (tc_getfrequency() > 1000000000)
281 1.102 kardel ts.tv_nsec = 1;
282 1.102 kardel else
283 1.102 kardel ts.tv_nsec = 1000000000 / tc_getfrequency();
284 1.61 simonb break;
285 1.61 simonb default:
286 1.61 simonb return (EINVAL);
287 1.61 simonb }
288 1.22 jtc
289 1.61 simonb if (SCARG(uap, tp))
290 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
291 1.22 jtc
292 1.22 jtc return error;
293 1.22 jtc }
294 1.22 jtc
295 1.27 jtc /* ARGSUSED */
296 1.27 jtc int
297 1.140 yamt sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
298 1.140 yamt register_t *retval)
299 1.27 jtc {
300 1.135 dsl /* {
301 1.101 kardel syscallarg(struct timespec *) rqtp;
302 1.101 kardel syscallarg(struct timespec *) rmtp;
303 1.135 dsl } */
304 1.101 kardel struct timespec rmt, rqt;
305 1.120 dsl int error, error1;
306 1.101 kardel
307 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
308 1.101 kardel if (error)
309 1.101 kardel return (error);
310 1.101 kardel
311 1.120 dsl error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
312 1.120 dsl if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
313 1.120 dsl return error;
314 1.120 dsl
315 1.120 dsl error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
316 1.120 dsl return error1 ? error1 : error;
317 1.120 dsl }
318 1.120 dsl
319 1.120 dsl int
320 1.120 dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
321 1.120 dsl {
322 1.141 yamt struct timespec rmtstart;
323 1.120 dsl int error, timo;
324 1.120 dsl
325 1.120 dsl if (itimespecfix(rqt))
326 1.101 kardel return (EINVAL);
327 1.101 kardel
328 1.120 dsl timo = tstohz(rqt);
329 1.101 kardel /*
330 1.101 kardel * Avoid inadvertantly sleeping forever
331 1.101 kardel */
332 1.101 kardel if (timo == 0)
333 1.101 kardel timo = 1;
334 1.141 yamt getnanouptime(&rmtstart);
335 1.141 yamt again:
336 1.141 yamt error = kpause("nanoslp", true, timo, NULL);
337 1.141 yamt if (rmt != NULL || error == 0) {
338 1.141 yamt struct timespec rmtend;
339 1.141 yamt struct timespec t0;
340 1.141 yamt struct timespec *t;
341 1.101 kardel
342 1.141 yamt getnanouptime(&rmtend);
343 1.141 yamt t = (rmt != NULL) ? rmt : &t0;
344 1.141 yamt timespecsub(&rmtend, &rmtstart, t);
345 1.141 yamt timespecsub(rqt, t, t);
346 1.141 yamt if (t->tv_sec < 0)
347 1.141 yamt timespecclear(t);
348 1.141 yamt if (error == 0) {
349 1.141 yamt timo = tstohz(t);
350 1.141 yamt if (timo > 0)
351 1.141 yamt goto again;
352 1.141 yamt }
353 1.141 yamt }
354 1.104 kardel
355 1.101 kardel if (error == ERESTART)
356 1.101 kardel error = EINTR;
357 1.101 kardel if (error == EWOULDBLOCK)
358 1.101 kardel error = 0;
359 1.101 kardel
360 1.101 kardel return error;
361 1.27 jtc }
362 1.22 jtc
363 1.1 cgd /* ARGSUSED */
364 1.3 andrew int
365 1.140 yamt sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
366 1.140 yamt register_t *retval)
367 1.15 thorpej {
368 1.135 dsl /* {
369 1.11 cgd syscallarg(struct timeval *) tp;
370 1.135 dsl syscallarg(void *) tzp; really "struct timezone *";
371 1.135 dsl } */
372 1.1 cgd struct timeval atv;
373 1.1 cgd int error = 0;
374 1.25 perry struct timezone tzfake;
375 1.1 cgd
376 1.11 cgd if (SCARG(uap, tp)) {
377 1.1 cgd microtime(&atv);
378 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
379 1.17 christos if (error)
380 1.1 cgd return (error);
381 1.1 cgd }
382 1.25 perry if (SCARG(uap, tzp)) {
383 1.25 perry /*
384 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
385 1.25 perry * fake up a timezone struct and return it if demanded.
386 1.25 perry */
387 1.25 perry tzfake.tz_minuteswest = 0;
388 1.25 perry tzfake.tz_dsttime = 0;
389 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
390 1.25 perry }
391 1.1 cgd return (error);
392 1.1 cgd }
393 1.1 cgd
394 1.1 cgd /* ARGSUSED */
395 1.3 andrew int
396 1.140 yamt sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
397 1.140 yamt register_t *retval)
398 1.15 thorpej {
399 1.135 dsl /* {
400 1.24 cgd syscallarg(const struct timeval *) tv;
401 1.140 yamt syscallarg(const void *) tzp; really "const struct timezone *";
402 1.135 dsl } */
403 1.60 manu
404 1.119 dsl return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
405 1.60 manu }
406 1.60 manu
407 1.60 manu int
408 1.119 dsl settimeofday1(const struct timeval *utv, bool userspace,
409 1.119 dsl const void *utzp, struct lwp *l, bool check_kauth)
410 1.60 manu {
411 1.22 jtc struct timeval atv;
412 1.98 christos struct timespec ts;
413 1.22 jtc int error;
414 1.1 cgd
415 1.8 cgd /* Verify all parameters before changing time. */
416 1.119 dsl
417 1.25 perry /*
418 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
419 1.25 perry * obsolete program would try to set it, so we log a warning.
420 1.25 perry */
421 1.98 christos if (utzp)
422 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
423 1.119 dsl "(obsolete) kernel time zone\n", l->l_proc->p_pid);
424 1.98 christos
425 1.98 christos if (utv == NULL)
426 1.98 christos return 0;
427 1.98 christos
428 1.119 dsl if (userspace) {
429 1.119 dsl if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
430 1.119 dsl return error;
431 1.119 dsl utv = &atv;
432 1.119 dsl }
433 1.119 dsl
434 1.119 dsl TIMEVAL_TO_TIMESPEC(utv, &ts);
435 1.133 elad return settime1(l->l_proc, &ts, check_kauth);
436 1.1 cgd }
437 1.1 cgd
438 1.68 dsl int time_adjusted; /* set if an adjustment is made */
439 1.1 cgd
440 1.1 cgd /* ARGSUSED */
441 1.3 andrew int
442 1.140 yamt sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
443 1.140 yamt register_t *retval)
444 1.15 thorpej {
445 1.135 dsl /* {
446 1.24 cgd syscallarg(const struct timeval *) delta;
447 1.11 cgd syscallarg(struct timeval *) olddelta;
448 1.135 dsl } */
449 1.56 manu int error;
450 1.1 cgd
451 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
452 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
453 1.1 cgd return (error);
454 1.17 christos
455 1.105 ad return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
456 1.56 manu }
457 1.56 manu
458 1.56 manu int
459 1.110 yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
460 1.56 manu {
461 1.60 manu struct timeval atv;
462 1.101 kardel int error = 0;
463 1.101 kardel
464 1.101 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
465 1.101 kardel
466 1.101 kardel if (olddelta) {
467 1.101 kardel atv.tv_sec = time_adjtime / 1000000;
468 1.101 kardel atv.tv_usec = time_adjtime % 1000000;
469 1.101 kardel if (atv.tv_usec < 0) {
470 1.101 kardel atv.tv_usec += 1000000;
471 1.101 kardel atv.tv_sec--;
472 1.101 kardel }
473 1.101 kardel error = copyout(&atv, olddelta, sizeof(struct timeval));
474 1.101 kardel if (error)
475 1.101 kardel return (error);
476 1.101 kardel }
477 1.101 kardel
478 1.101 kardel if (delta) {
479 1.101 kardel error = copyin(delta, &atv, sizeof(struct timeval));
480 1.101 kardel if (error)
481 1.101 kardel return (error);
482 1.101 kardel
483 1.101 kardel time_adjtime = (int64_t)atv.tv_sec * 1000000 +
484 1.101 kardel atv.tv_usec;
485 1.8 cgd
486 1.101 kardel if (time_adjtime)
487 1.101 kardel /* We need to save the system time during shutdown */
488 1.101 kardel time_adjusted |= 1;
489 1.101 kardel }
490 1.101 kardel
491 1.79 chs return error;
492 1.1 cgd }
493 1.1 cgd
494 1.1 cgd /*
495 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
496 1.63 thorpej * timer_*() family of routines are supported.
497 1.1 cgd *
498 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
499 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
500 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
501 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
502 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
503 1.63 thorpej * syscall.
504 1.1 cgd *
505 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
506 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
507 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
508 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
509 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
510 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
511 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
512 1.63 thorpej * given below), to be delayed in real time past when it is supposed
513 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
514 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
515 1.63 thorpej * compute the next time in absolute time the timer should go off. */
516 1.63 thorpej
517 1.63 thorpej /* Allocate a POSIX realtime timer. */
518 1.63 thorpej int
519 1.140 yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
520 1.140 yamt register_t *retval)
521 1.63 thorpej {
522 1.135 dsl /* {
523 1.63 thorpej syscallarg(clockid_t) clock_id;
524 1.63 thorpej syscallarg(struct sigevent *) evp;
525 1.63 thorpej syscallarg(timer_t *) timerid;
526 1.135 dsl } */
527 1.92 cube
528 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
529 1.105 ad SCARG(uap, evp), copyin, l);
530 1.92 cube }
531 1.92 cube
532 1.92 cube int
533 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
534 1.105 ad copyin_t fetch_event, struct lwp *l)
535 1.92 cube {
536 1.92 cube int error;
537 1.92 cube timer_t timerid;
538 1.142 ad struct ptimers *pts;
539 1.63 thorpej struct ptimer *pt;
540 1.105 ad struct proc *p;
541 1.105 ad
542 1.105 ad p = l->l_proc;
543 1.63 thorpej
544 1.142 ad if (id < CLOCK_REALTIME || id > CLOCK_PROF)
545 1.63 thorpej return (EINVAL);
546 1.63 thorpej
547 1.142 ad if ((pts = p->p_timers) == NULL)
548 1.142 ad pts = timers_alloc(p);
549 1.63 thorpej
550 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
551 1.142 ad if (evp != NULL) {
552 1.63 thorpej if (((error =
553 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
554 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
555 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
556 1.63 thorpej pool_put(&ptimer_pool, pt);
557 1.63 thorpej return (error ? error : EINVAL);
558 1.63 thorpej }
559 1.142 ad }
560 1.142 ad
561 1.142 ad /* Find a free timer slot, skipping those reserved for setitimer(). */
562 1.142 ad mutex_spin_enter(&timer_lock);
563 1.142 ad for (timerid = 3; timerid < TIMER_MAX; timerid++)
564 1.142 ad if (pts->pts_timers[timerid] == NULL)
565 1.142 ad break;
566 1.142 ad if (timerid == TIMER_MAX) {
567 1.142 ad mutex_spin_exit(&timer_lock);
568 1.142 ad pool_put(&ptimer_pool, pt);
569 1.142 ad return EAGAIN;
570 1.142 ad }
571 1.142 ad if (evp == NULL) {
572 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
573 1.63 thorpej switch (id) {
574 1.63 thorpej case CLOCK_REALTIME:
575 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
576 1.63 thorpej break;
577 1.63 thorpej case CLOCK_VIRTUAL:
578 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
579 1.63 thorpej break;
580 1.63 thorpej case CLOCK_PROF:
581 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
582 1.63 thorpej break;
583 1.63 thorpej }
584 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
585 1.63 thorpej }
586 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
587 1.73 christos pt->pt_info.ksi_errno = 0;
588 1.73 christos pt->pt_info.ksi_code = 0;
589 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
590 1.105 ad pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
591 1.124 christos pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
592 1.63 thorpej pt->pt_type = id;
593 1.63 thorpej pt->pt_proc = p;
594 1.63 thorpej pt->pt_overruns = 0;
595 1.63 thorpej pt->pt_poverruns = 0;
596 1.64 nathanw pt->pt_entry = timerid;
597 1.142 ad pt->pt_queued = false;
598 1.142 ad pt->pt_active = 0;
599 1.63 thorpej timerclear(&pt->pt_time.it_value);
600 1.142 ad callout_init(&pt->pt_ch, 0);
601 1.142 ad pts->pts_timers[timerid] = pt;
602 1.142 ad mutex_spin_exit(&timer_lock);
603 1.63 thorpej
604 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
605 1.63 thorpej }
606 1.63 thorpej
607 1.63 thorpej /* Delete a POSIX realtime timer */
608 1.3 andrew int
609 1.140 yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
610 1.140 yamt register_t *retval)
611 1.15 thorpej {
612 1.135 dsl /* {
613 1.63 thorpej syscallarg(timer_t) timerid;
614 1.135 dsl } */
615 1.63 thorpej struct proc *p = l->l_proc;
616 1.65 jdolecek timer_t timerid;
617 1.142 ad struct ptimers *pts;
618 1.63 thorpej struct ptimer *pt, *ptn;
619 1.1 cgd
620 1.63 thorpej timerid = SCARG(uap, timerid);
621 1.142 ad pts = p->p_timers;
622 1.142 ad
623 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
624 1.142 ad return (EINVAL);
625 1.63 thorpej
626 1.142 ad mutex_spin_enter(&timer_lock);
627 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
628 1.142 ad mutex_spin_exit(&timer_lock);
629 1.1 cgd return (EINVAL);
630 1.142 ad }
631 1.142 ad if (pt->pt_active) {
632 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
633 1.63 thorpej LIST_REMOVE(pt, pt_list);
634 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
635 1.63 thorpej timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
636 1.63 thorpej &ptn->pt_time.it_value);
637 1.142 ad pt->pt_active = 0;
638 1.63 thorpej }
639 1.142 ad itimerfree(pts, timerid);
640 1.63 thorpej
641 1.63 thorpej return (0);
642 1.63 thorpej }
643 1.63 thorpej
644 1.63 thorpej /*
645 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
646 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
647 1.67 nathanw * time for virtual timers.
648 1.63 thorpej * Must be called at splclock().
649 1.63 thorpej */
650 1.63 thorpej void
651 1.63 thorpej timer_settime(struct ptimer *pt)
652 1.63 thorpej {
653 1.63 thorpej struct ptimer *ptn, *pptn;
654 1.63 thorpej struct ptlist *ptl;
655 1.63 thorpej
656 1.142 ad KASSERT(mutex_owned(&timer_lock));
657 1.142 ad
658 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
659 1.63 thorpej callout_stop(&pt->pt_ch);
660 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
661 1.63 thorpej /*
662 1.63 thorpej * Don't need to check hzto() return value, here.
663 1.63 thorpej * callout_reset() does it for us.
664 1.63 thorpej */
665 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
666 1.63 thorpej realtimerexpire, pt);
667 1.63 thorpej }
668 1.63 thorpej } else {
669 1.63 thorpej if (pt->pt_active) {
670 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
671 1.63 thorpej LIST_REMOVE(pt, pt_list);
672 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
673 1.63 thorpej timeradd(&pt->pt_time.it_value,
674 1.63 thorpej &ptn->pt_time.it_value,
675 1.63 thorpej &ptn->pt_time.it_value);
676 1.63 thorpej }
677 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
678 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
679 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
680 1.63 thorpej else
681 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
682 1.63 thorpej
683 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
684 1.63 thorpej ptn && timercmp(&pt->pt_time.it_value,
685 1.63 thorpej &ptn->pt_time.it_value, >);
686 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
687 1.63 thorpej timersub(&pt->pt_time.it_value,
688 1.63 thorpej &ptn->pt_time.it_value,
689 1.63 thorpej &pt->pt_time.it_value);
690 1.63 thorpej
691 1.63 thorpej if (pptn)
692 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
693 1.63 thorpej else
694 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
695 1.63 thorpej
696 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
697 1.63 thorpej timersub(&ptn->pt_time.it_value,
698 1.63 thorpej &pt->pt_time.it_value,
699 1.63 thorpej &ptn->pt_time.it_value);
700 1.63 thorpej
701 1.63 thorpej pt->pt_active = 1;
702 1.63 thorpej } else
703 1.63 thorpej pt->pt_active = 0;
704 1.63 thorpej }
705 1.63 thorpej }
706 1.63 thorpej
707 1.63 thorpej void
708 1.63 thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
709 1.63 thorpej {
710 1.101 kardel struct timeval now;
711 1.63 thorpej struct ptimer *ptn;
712 1.63 thorpej
713 1.142 ad KASSERT(mutex_owned(&timer_lock));
714 1.142 ad
715 1.63 thorpej *aitv = pt->pt_time;
716 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
717 1.1 cgd /*
718 1.12 mycroft * Convert from absolute to relative time in .it_value
719 1.63 thorpej * part of real time timer. If time for real time
720 1.63 thorpej * timer has passed return 0, else return difference
721 1.63 thorpej * between current time and time for the timer to go
722 1.63 thorpej * off.
723 1.1 cgd */
724 1.63 thorpej if (timerisset(&aitv->it_value)) {
725 1.101 kardel getmicrotime(&now);
726 1.101 kardel if (timercmp(&aitv->it_value, &now, <))
727 1.101 kardel timerclear(&aitv->it_value);
728 1.101 kardel else
729 1.101 kardel timersub(&aitv->it_value, &now,
730 1.101 kardel &aitv->it_value);
731 1.36 thorpej }
732 1.63 thorpej } else if (pt->pt_active) {
733 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
734 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
735 1.63 thorpej else
736 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
737 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
738 1.63 thorpej timeradd(&aitv->it_value,
739 1.63 thorpej &ptn->pt_time.it_value, &aitv->it_value);
740 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
741 1.1 cgd } else
742 1.63 thorpej timerclear(&aitv->it_value);
743 1.63 thorpej }
744 1.63 thorpej
745 1.63 thorpej
746 1.63 thorpej
747 1.63 thorpej /* Set and arm a POSIX realtime timer */
748 1.63 thorpej int
749 1.140 yamt sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
750 1.140 yamt register_t *retval)
751 1.63 thorpej {
752 1.135 dsl /* {
753 1.63 thorpej syscallarg(timer_t) timerid;
754 1.63 thorpej syscallarg(int) flags;
755 1.63 thorpej syscallarg(const struct itimerspec *) value;
756 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
757 1.135 dsl } */
758 1.92 cube int error;
759 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
760 1.92 cube
761 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
762 1.92 cube sizeof(struct itimerspec))) != 0)
763 1.92 cube return (error);
764 1.92 cube
765 1.92 cube if (SCARG(uap, ovalue))
766 1.92 cube ovp = &ovalue;
767 1.92 cube
768 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
769 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
770 1.92 cube return error;
771 1.92 cube
772 1.92 cube if (ovp)
773 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
774 1.92 cube sizeof(struct itimerspec));
775 1.92 cube return 0;
776 1.92 cube }
777 1.92 cube
778 1.92 cube int
779 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
780 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
781 1.92 cube {
782 1.101 kardel struct timeval now;
783 1.63 thorpej struct itimerval val, oval;
784 1.142 ad struct ptimers *pts;
785 1.63 thorpej struct ptimer *pt;
786 1.63 thorpej
787 1.142 ad pts = p->p_timers;
788 1.63 thorpej
789 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
790 1.142 ad return EINVAL;
791 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
792 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
793 1.63 thorpej if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
794 1.63 thorpej return (EINVAL);
795 1.63 thorpej
796 1.142 ad mutex_spin_enter(&timer_lock);
797 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
798 1.142 ad mutex_spin_exit(&timer_lock);
799 1.142 ad return (EINVAL);
800 1.142 ad }
801 1.142 ad
802 1.63 thorpej oval = pt->pt_time;
803 1.63 thorpej pt->pt_time = val;
804 1.63 thorpej
805 1.67 nathanw /*
806 1.67 nathanw * If we've been passed a relative time for a realtime timer,
807 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
808 1.67 nathanw * timer, convert it to relative and make sure we don't set it
809 1.67 nathanw * to zero, which would cancel the timer, or let it go
810 1.67 nathanw * negative, which would confuse the comparison tests.
811 1.67 nathanw */
812 1.67 nathanw if (timerisset(&pt->pt_time.it_value)) {
813 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
814 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
815 1.101 kardel getmicrotime(&now);
816 1.101 kardel timeradd(&pt->pt_time.it_value, &now,
817 1.101 kardel &pt->pt_time.it_value);
818 1.101 kardel }
819 1.67 nathanw } else {
820 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
821 1.101 kardel getmicrotime(&now);
822 1.101 kardel timersub(&pt->pt_time.it_value, &now,
823 1.101 kardel &pt->pt_time.it_value);
824 1.67 nathanw if (!timerisset(&pt->pt_time.it_value) ||
825 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
826 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
827 1.67 nathanw pt->pt_time.it_value.tv_usec = 1;
828 1.67 nathanw }
829 1.67 nathanw }
830 1.67 nathanw }
831 1.67 nathanw }
832 1.67 nathanw
833 1.63 thorpej timer_settime(pt);
834 1.142 ad mutex_spin_exit(&timer_lock);
835 1.63 thorpej
836 1.92 cube if (ovalue) {
837 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
838 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
839 1.63 thorpej }
840 1.63 thorpej
841 1.63 thorpej return (0);
842 1.63 thorpej }
843 1.63 thorpej
844 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
845 1.63 thorpej int
846 1.140 yamt sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
847 1.140 yamt register_t *retval)
848 1.63 thorpej {
849 1.135 dsl /* {
850 1.63 thorpej syscallarg(timer_t) timerid;
851 1.63 thorpej syscallarg(struct itimerspec *) value;
852 1.135 dsl } */
853 1.63 thorpej struct itimerspec its;
854 1.92 cube int error;
855 1.92 cube
856 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
857 1.92 cube &its)) != 0)
858 1.92 cube return error;
859 1.92 cube
860 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
861 1.92 cube }
862 1.92 cube
863 1.92 cube int
864 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
865 1.92 cube {
866 1.63 thorpej struct ptimer *pt;
867 1.142 ad struct ptimers *pts;
868 1.92 cube struct itimerval aitv;
869 1.63 thorpej
870 1.142 ad pts = p->p_timers;
871 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
872 1.63 thorpej return (EINVAL);
873 1.142 ad mutex_spin_enter(&timer_lock);
874 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
875 1.142 ad mutex_spin_exit(&timer_lock);
876 1.142 ad return (EINVAL);
877 1.142 ad }
878 1.63 thorpej timer_gettime(pt, &aitv);
879 1.142 ad mutex_spin_exit(&timer_lock);
880 1.63 thorpej
881 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
882 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
883 1.63 thorpej
884 1.92 cube return 0;
885 1.63 thorpej }
886 1.63 thorpej
887 1.63 thorpej /*
888 1.63 thorpej * Return the count of the number of times a periodic timer expired
889 1.63 thorpej * while a notification was already pending. The counter is reset when
890 1.63 thorpej * a timer expires and a notification can be posted.
891 1.63 thorpej */
892 1.63 thorpej int
893 1.140 yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
894 1.140 yamt register_t *retval)
895 1.63 thorpej {
896 1.135 dsl /* {
897 1.63 thorpej syscallarg(timer_t) timerid;
898 1.135 dsl } */
899 1.63 thorpej struct proc *p = l->l_proc;
900 1.142 ad struct ptimers *pts;
901 1.63 thorpej int timerid;
902 1.63 thorpej struct ptimer *pt;
903 1.63 thorpej
904 1.63 thorpej timerid = SCARG(uap, timerid);
905 1.63 thorpej
906 1.142 ad pts = p->p_timers;
907 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
908 1.142 ad return (EINVAL);
909 1.142 ad mutex_spin_enter(&timer_lock);
910 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
911 1.142 ad mutex_spin_exit(&timer_lock);
912 1.63 thorpej return (EINVAL);
913 1.142 ad }
914 1.63 thorpej *retval = pt->pt_poverruns;
915 1.142 ad mutex_spin_exit(&timer_lock);
916 1.63 thorpej
917 1.63 thorpej return (0);
918 1.63 thorpej }
919 1.63 thorpej
920 1.63 thorpej /*
921 1.63 thorpej * Real interval timer expired:
922 1.63 thorpej * send process whose timer expired an alarm signal.
923 1.63 thorpej * If time is not set up to reload, then just return.
924 1.63 thorpej * Else compute next time timer should go off which is > current time.
925 1.63 thorpej * This is where delay in processing this timeout causes multiple
926 1.63 thorpej * SIGALRM calls to be compressed into one.
927 1.63 thorpej */
928 1.63 thorpej void
929 1.63 thorpej realtimerexpire(void *arg)
930 1.63 thorpej {
931 1.101 kardel struct timeval now;
932 1.63 thorpej struct ptimer *pt;
933 1.63 thorpej
934 1.142 ad pt = arg;
935 1.63 thorpej
936 1.142 ad mutex_spin_enter(&timer_lock);
937 1.63 thorpej itimerfire(pt);
938 1.63 thorpej
939 1.63 thorpej if (!timerisset(&pt->pt_time.it_interval)) {
940 1.63 thorpej timerclear(&pt->pt_time.it_value);
941 1.142 ad mutex_spin_exit(&timer_lock);
942 1.63 thorpej return;
943 1.63 thorpej }
944 1.101 kardel for (;;) {
945 1.101 kardel timeradd(&pt->pt_time.it_value,
946 1.101 kardel &pt->pt_time.it_interval, &pt->pt_time.it_value);
947 1.101 kardel getmicrotime(&now);
948 1.101 kardel if (timercmp(&pt->pt_time.it_value, &now, >)) {
949 1.101 kardel /*
950 1.101 kardel * Don't need to check hzto() return value, here.
951 1.101 kardel * callout_reset() does it for us.
952 1.101 kardel */
953 1.101 kardel callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
954 1.101 kardel realtimerexpire, pt);
955 1.142 ad mutex_spin_exit(&timer_lock);
956 1.101 kardel return;
957 1.101 kardel }
958 1.142 ad mutex_spin_exit(&timer_lock);
959 1.101 kardel pt->pt_overruns++;
960 1.142 ad mutex_spin_enter(&timer_lock);
961 1.101 kardel }
962 1.63 thorpej }
963 1.63 thorpej
964 1.63 thorpej /* BSD routine to get the value of an interval timer. */
965 1.63 thorpej /* ARGSUSED */
966 1.63 thorpej int
967 1.140 yamt sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
968 1.140 yamt register_t *retval)
969 1.63 thorpej {
970 1.135 dsl /* {
971 1.63 thorpej syscallarg(int) which;
972 1.63 thorpej syscallarg(struct itimerval *) itv;
973 1.135 dsl } */
974 1.63 thorpej struct proc *p = l->l_proc;
975 1.63 thorpej struct itimerval aitv;
976 1.91 cube int error;
977 1.91 cube
978 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
979 1.91 cube if (error)
980 1.91 cube return error;
981 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
982 1.91 cube }
983 1.63 thorpej
984 1.91 cube int
985 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
986 1.91 cube {
987 1.142 ad struct ptimers *pts;
988 1.142 ad struct ptimer *pt;
989 1.63 thorpej
990 1.63 thorpej if ((u_int)which > ITIMER_PROF)
991 1.63 thorpej return (EINVAL);
992 1.63 thorpej
993 1.142 ad mutex_spin_enter(&timer_lock);
994 1.142 ad pts = p->p_timers;
995 1.142 ad if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
996 1.91 cube timerclear(&itvp->it_value);
997 1.91 cube timerclear(&itvp->it_interval);
998 1.142 ad } else
999 1.142 ad timer_gettime(pt, itvp);
1000 1.142 ad mutex_spin_exit(&timer_lock);
1001 1.63 thorpej
1002 1.91 cube return 0;
1003 1.1 cgd }
1004 1.1 cgd
1005 1.63 thorpej /* BSD routine to set/arm an interval timer. */
1006 1.1 cgd /* ARGSUSED */
1007 1.3 andrew int
1008 1.140 yamt sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
1009 1.140 yamt register_t *retval)
1010 1.15 thorpej {
1011 1.135 dsl /* {
1012 1.30 mycroft syscallarg(int) which;
1013 1.24 cgd syscallarg(const struct itimerval *) itv;
1014 1.11 cgd syscallarg(struct itimerval *) oitv;
1015 1.135 dsl } */
1016 1.63 thorpej struct proc *p = l->l_proc;
1017 1.30 mycroft int which = SCARG(uap, which);
1018 1.21 cgd struct sys_getitimer_args getargs;
1019 1.91 cube const struct itimerval *itvp;
1020 1.1 cgd struct itimerval aitv;
1021 1.91 cube int error;
1022 1.1 cgd
1023 1.30 mycroft if ((u_int)which > ITIMER_PROF)
1024 1.1 cgd return (EINVAL);
1025 1.11 cgd itvp = SCARG(uap, itv);
1026 1.63 thorpej if (itvp &&
1027 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1028 1.1 cgd return (error);
1029 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1030 1.30 mycroft SCARG(&getargs, which) = which;
1031 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1032 1.63 thorpej if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1033 1.21 cgd return (error);
1034 1.21 cgd }
1035 1.1 cgd if (itvp == 0)
1036 1.1 cgd return (0);
1037 1.91 cube
1038 1.91 cube return dosetitimer(p, which, &aitv);
1039 1.91 cube }
1040 1.91 cube
1041 1.91 cube int
1042 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1043 1.91 cube {
1044 1.101 kardel struct timeval now;
1045 1.142 ad struct ptimers *pts;
1046 1.142 ad struct ptimer *pt, *spare;
1047 1.91 cube
1048 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1049 1.1 cgd return (EINVAL);
1050 1.63 thorpej
1051 1.63 thorpej /*
1052 1.63 thorpej * Don't bother allocating data structures if the process just
1053 1.63 thorpej * wants to clear the timer.
1054 1.63 thorpej */
1055 1.142 ad spare = NULL;
1056 1.142 ad pts = p->p_timers;
1057 1.142 ad retry:
1058 1.142 ad if (!timerisset(&itvp->it_value) && (pts == NULL ||
1059 1.142 ad pts->pts_timers[which] == NULL))
1060 1.63 thorpej return (0);
1061 1.142 ad if (pts == NULL)
1062 1.142 ad pts = timers_alloc(p);
1063 1.142 ad mutex_spin_enter(&timer_lock);
1064 1.142 ad pt = pts->pts_timers[which];
1065 1.142 ad if (pt == NULL) {
1066 1.142 ad if (spare == NULL) {
1067 1.142 ad mutex_spin_exit(&timer_lock);
1068 1.142 ad spare = pool_get(&ptimer_pool, PR_WAITOK);
1069 1.142 ad goto retry;
1070 1.142 ad }
1071 1.142 ad pt = spare;
1072 1.142 ad spare = NULL;
1073 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1074 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1075 1.63 thorpej pt->pt_overruns = 0;
1076 1.63 thorpej pt->pt_proc = p;
1077 1.63 thorpej pt->pt_type = which;
1078 1.64 nathanw pt->pt_entry = which;
1079 1.142 ad pt->pt_active = 0;
1080 1.142 ad pt->pt_queued = false;
1081 1.142 ad callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1082 1.63 thorpej switch (which) {
1083 1.63 thorpej case ITIMER_REAL:
1084 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1085 1.63 thorpej break;
1086 1.63 thorpej case ITIMER_VIRTUAL:
1087 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1088 1.63 thorpej break;
1089 1.63 thorpej case ITIMER_PROF:
1090 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1091 1.63 thorpej break;
1092 1.1 cgd }
1093 1.142 ad pts->pts_timers[which] = pt;
1094 1.142 ad }
1095 1.91 cube pt->pt_time = *itvp;
1096 1.63 thorpej
1097 1.67 nathanw if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1098 1.67 nathanw /* Convert to absolute time */
1099 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1100 1.101 kardel getmicrotime(&now);
1101 1.101 kardel timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1102 1.67 nathanw }
1103 1.63 thorpej timer_settime(pt);
1104 1.142 ad mutex_spin_exit(&timer_lock);
1105 1.142 ad if (spare != NULL)
1106 1.142 ad pool_put(&ptimer_pool, spare);
1107 1.63 thorpej
1108 1.1 cgd return (0);
1109 1.1 cgd }
1110 1.1 cgd
1111 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1112 1.142 ad struct ptimers *
1113 1.63 thorpej timers_alloc(struct proc *p)
1114 1.63 thorpej {
1115 1.142 ad struct ptimers *pts;
1116 1.63 thorpej int i;
1117 1.63 thorpej
1118 1.100 yamt pts = pool_get(&ptimers_pool, PR_WAITOK);
1119 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1120 1.63 thorpej LIST_INIT(&pts->pts_prof);
1121 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1122 1.63 thorpej pts->pts_timers[i] = NULL;
1123 1.64 nathanw pts->pts_fired = 0;
1124 1.142 ad mutex_spin_enter(&timer_lock);
1125 1.142 ad if (p->p_timers == NULL) {
1126 1.142 ad p->p_timers = pts;
1127 1.142 ad mutex_spin_exit(&timer_lock);
1128 1.142 ad return pts;
1129 1.142 ad }
1130 1.142 ad mutex_spin_exit(&timer_lock);
1131 1.142 ad pool_put(&ptimers_pool, pts);
1132 1.142 ad return p->p_timers;
1133 1.63 thorpej }
1134 1.63 thorpej
1135 1.1 cgd /*
1136 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1137 1.63 thorpej * then clean up all timers and free all the data structures. If
1138 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1139 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1140 1.63 thorpej * structure if none of those remain.
1141 1.1 cgd */
1142 1.3 andrew void
1143 1.63 thorpej timers_free(struct proc *p, int which)
1144 1.6 cgd {
1145 1.63 thorpej struct ptimers *pts;
1146 1.142 ad struct ptimer *ptn;
1147 1.63 thorpej struct timeval tv;
1148 1.142 ad int i;
1149 1.63 thorpej
1150 1.142 ad if (p->p_timers == NULL)
1151 1.142 ad return;
1152 1.63 thorpej
1153 1.142 ad pts = p->p_timers;
1154 1.142 ad mutex_spin_enter(&timer_lock);
1155 1.142 ad if (which == TIMERS_ALL) {
1156 1.142 ad p->p_timers = NULL;
1157 1.142 ad i = 0;
1158 1.142 ad } else {
1159 1.142 ad timerclear(&tv);
1160 1.142 ad for (ptn = LIST_FIRST(&pts->pts_virtual);
1161 1.142 ad ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1162 1.142 ad ptn = LIST_NEXT(ptn, pt_list))
1163 1.142 ad timeradd(&tv, &ptn->pt_time.it_value, &tv);
1164 1.142 ad LIST_FIRST(&pts->pts_virtual) = NULL;
1165 1.142 ad if (ptn) {
1166 1.142 ad timeradd(&tv, &ptn->pt_time.it_value,
1167 1.142 ad &ptn->pt_time.it_value);
1168 1.142 ad LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1169 1.142 ad }
1170 1.142 ad timerclear(&tv);
1171 1.142 ad for (ptn = LIST_FIRST(&pts->pts_prof);
1172 1.142 ad ptn && ptn != pts->pts_timers[ITIMER_PROF];
1173 1.142 ad ptn = LIST_NEXT(ptn, pt_list))
1174 1.142 ad timeradd(&tv, &ptn->pt_time.it_value, &tv);
1175 1.142 ad LIST_FIRST(&pts->pts_prof) = NULL;
1176 1.142 ad if (ptn) {
1177 1.142 ad timeradd(&tv, &ptn->pt_time.it_value,
1178 1.142 ad &ptn->pt_time.it_value);
1179 1.142 ad LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1180 1.63 thorpej }
1181 1.142 ad i = 3;
1182 1.142 ad }
1183 1.142 ad for ( ; i < TIMER_MAX; i++) {
1184 1.142 ad if (pts->pts_timers[i] != NULL) {
1185 1.142 ad itimerfree(pts, i);
1186 1.142 ad mutex_spin_enter(&timer_lock);
1187 1.1 cgd }
1188 1.1 cgd }
1189 1.142 ad if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1190 1.142 ad pts->pts_timers[2] == NULL) {
1191 1.142 ad p->p_timers = NULL;
1192 1.142 ad mutex_spin_exit(&timer_lock);
1193 1.142 ad pool_put(&ptimers_pool, pts);
1194 1.142 ad } else
1195 1.142 ad mutex_spin_exit(&timer_lock);
1196 1.142 ad }
1197 1.142 ad
1198 1.142 ad static void
1199 1.142 ad itimerfree(struct ptimers *pts, int index)
1200 1.142 ad {
1201 1.142 ad struct ptimer *pt;
1202 1.142 ad
1203 1.142 ad KASSERT(mutex_owned(&timer_lock));
1204 1.142 ad
1205 1.142 ad pt = pts->pts_timers[index];
1206 1.142 ad pts->pts_timers[index] = NULL;
1207 1.142 ad if (pt->pt_type == CLOCK_REALTIME) {
1208 1.142 ad mutex_spin_exit(&timer_lock);
1209 1.142 ad callout_halt(&pt->pt_ch);
1210 1.142 ad } else if (pt->pt_queued) {
1211 1.142 ad TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1212 1.142 ad mutex_spin_exit(&timer_lock);
1213 1.142 ad } else
1214 1.142 ad mutex_spin_exit(&timer_lock);
1215 1.142 ad callout_destroy(&pt->pt_ch);
1216 1.142 ad pool_put(&ptimer_pool, pt);
1217 1.1 cgd }
1218 1.1 cgd
1219 1.1 cgd /*
1220 1.1 cgd * Decrement an interval timer by a specified number
1221 1.1 cgd * of microseconds, which must be less than a second,
1222 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1223 1.1 cgd * it. In this case, carry over (usec - old value) to
1224 1.8 cgd * reduce the value reloaded into the timer so that
1225 1.1 cgd * the timer does not drift. This routine assumes
1226 1.1 cgd * that it is called in a context where the timers
1227 1.1 cgd * on which it is operating cannot change in value.
1228 1.1 cgd */
1229 1.142 ad static int
1230 1.63 thorpej itimerdecr(struct ptimer *pt, int usec)
1231 1.63 thorpej {
1232 1.45 augustss struct itimerval *itp;
1233 1.1 cgd
1234 1.142 ad KASSERT(mutex_owned(&timer_lock));
1235 1.142 ad
1236 1.63 thorpej itp = &pt->pt_time;
1237 1.1 cgd if (itp->it_value.tv_usec < usec) {
1238 1.1 cgd if (itp->it_value.tv_sec == 0) {
1239 1.1 cgd /* expired, and already in next interval */
1240 1.1 cgd usec -= itp->it_value.tv_usec;
1241 1.1 cgd goto expire;
1242 1.1 cgd }
1243 1.1 cgd itp->it_value.tv_usec += 1000000;
1244 1.1 cgd itp->it_value.tv_sec--;
1245 1.1 cgd }
1246 1.1 cgd itp->it_value.tv_usec -= usec;
1247 1.1 cgd usec = 0;
1248 1.1 cgd if (timerisset(&itp->it_value))
1249 1.1 cgd return (1);
1250 1.1 cgd /* expired, exactly at end of interval */
1251 1.1 cgd expire:
1252 1.1 cgd if (timerisset(&itp->it_interval)) {
1253 1.1 cgd itp->it_value = itp->it_interval;
1254 1.1 cgd itp->it_value.tv_usec -= usec;
1255 1.1 cgd if (itp->it_value.tv_usec < 0) {
1256 1.1 cgd itp->it_value.tv_usec += 1000000;
1257 1.1 cgd itp->it_value.tv_sec--;
1258 1.1 cgd }
1259 1.63 thorpej timer_settime(pt);
1260 1.1 cgd } else
1261 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1262 1.1 cgd return (0);
1263 1.42 cgd }
1264 1.42 cgd
1265 1.142 ad static void
1266 1.63 thorpej itimerfire(struct ptimer *pt)
1267 1.63 thorpej {
1268 1.78 cl
1269 1.142 ad KASSERT(mutex_owned(&timer_lock));
1270 1.142 ad
1271 1.142 ad /*
1272 1.142 ad * XXX Can overrun, but we don't do signal queueing yet, anyway.
1273 1.142 ad * XXX Relying on the clock interrupt is stupid.
1274 1.142 ad */
1275 1.142 ad if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued)
1276 1.142 ad return;
1277 1.142 ad TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1278 1.142 ad pt->pt_queued = true;
1279 1.142 ad softint_schedule(timer_sih);
1280 1.142 ad }
1281 1.142 ad
1282 1.142 ad void
1283 1.142 ad timer_tick(lwp_t *l, bool user)
1284 1.142 ad {
1285 1.142 ad struct ptimers *pts;
1286 1.142 ad struct ptimer *pt;
1287 1.142 ad proc_t *p;
1288 1.142 ad
1289 1.142 ad p = l->l_proc;
1290 1.142 ad if (p->p_timers == NULL)
1291 1.142 ad return;
1292 1.142 ad
1293 1.142 ad mutex_spin_enter(&timer_lock);
1294 1.142 ad if ((pts = l->l_proc->p_timers) != NULL) {
1295 1.63 thorpej /*
1296 1.142 ad * Run current process's virtual and profile time, as needed.
1297 1.63 thorpej */
1298 1.142 ad if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1299 1.142 ad if (itimerdecr(pt, tick) == 0)
1300 1.142 ad itimerfire(pt);
1301 1.142 ad if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1302 1.142 ad if (itimerdecr(pt, tick) == 0)
1303 1.142 ad itimerfire(pt);
1304 1.142 ad }
1305 1.142 ad mutex_spin_exit(&timer_lock);
1306 1.142 ad }
1307 1.142 ad
1308 1.142 ad static void
1309 1.142 ad timer_intr(void *cookie)
1310 1.142 ad {
1311 1.142 ad ksiginfo_t ksi;
1312 1.142 ad struct ptimer *pt;
1313 1.142 ad proc_t *p;
1314 1.142 ad
1315 1.142 ad mutex_spin_enter(&timer_lock);
1316 1.142 ad while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1317 1.142 ad TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1318 1.142 ad KASSERT(pt->pt_queued);
1319 1.142 ad pt->pt_queued = false;
1320 1.142 ad
1321 1.142 ad if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1322 1.142 ad continue;
1323 1.142 ad p = pt->pt_proc;
1324 1.142 ad if (pt->pt_proc->p_timers == NULL) {
1325 1.142 ad /* Process is dying. */
1326 1.142 ad continue;
1327 1.142 ad }
1328 1.142 ad if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1329 1.63 thorpej pt->pt_overruns++;
1330 1.142 ad continue;
1331 1.64 nathanw }
1332 1.142 ad
1333 1.142 ad KSI_INIT(&ksi);
1334 1.142 ad ksi.ksi_signo = pt->pt_ev.sigev_signo;
1335 1.142 ad ksi.ksi_code = SI_TIMER;
1336 1.142 ad ksi.ksi_value = pt->pt_ev.sigev_value;
1337 1.142 ad pt->pt_poverruns = pt->pt_overruns;
1338 1.142 ad pt->pt_overruns = 0;
1339 1.142 ad mutex_spin_exit(&timer_lock);
1340 1.142 ad
1341 1.142 ad mutex_enter(&proclist_mutex);
1342 1.142 ad kpsignal(p, &ksi, NULL);
1343 1.142 ad mutex_exit(&proclist_mutex);
1344 1.142 ad
1345 1.142 ad mutex_spin_enter(&timer_lock);
1346 1.63 thorpej }
1347 1.142 ad mutex_spin_exit(&timer_lock);
1348 1.63 thorpej }
1349 1.63 thorpej
1350 1.42 cgd /*
1351 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1352 1.42 cgd * for usage and rationale.
1353 1.42 cgd */
1354 1.42 cgd int
1355 1.63 thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1356 1.42 cgd {
1357 1.49 itojun struct timeval tv, delta;
1358 1.101 kardel int rv = 0;
1359 1.42 cgd
1360 1.101 kardel getmicrouptime(&tv);
1361 1.49 itojun timersub(&tv, lasttime, &delta);
1362 1.42 cgd
1363 1.42 cgd /*
1364 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1365 1.42 cgd * even if interval is huge.
1366 1.42 cgd */
1367 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1368 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1369 1.49 itojun *lasttime = tv;
1370 1.42 cgd rv = 1;
1371 1.42 cgd }
1372 1.50 itojun
1373 1.50 itojun return (rv);
1374 1.50 itojun }
1375 1.50 itojun
1376 1.50 itojun /*
1377 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1378 1.50 itojun */
1379 1.50 itojun int
1380 1.63 thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1381 1.50 itojun {
1382 1.50 itojun struct timeval tv, delta;
1383 1.101 kardel int rv;
1384 1.50 itojun
1385 1.101 kardel getmicrouptime(&tv);
1386 1.50 itojun timersub(&tv, lasttime, &delta);
1387 1.50 itojun
1388 1.50 itojun /*
1389 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1390 1.50 itojun * if more than one second have passed since the last update of
1391 1.50 itojun * lasttime, reset the counter.
1392 1.50 itojun *
1393 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1394 1.50 itojun * try to use *curpps for stat purposes as well.
1395 1.50 itojun */
1396 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1397 1.50 itojun delta.tv_sec >= 1) {
1398 1.50 itojun *lasttime = tv;
1399 1.50 itojun *curpps = 0;
1400 1.69 dyoung }
1401 1.69 dyoung if (maxpps < 0)
1402 1.53 itojun rv = 1;
1403 1.53 itojun else if (*curpps < maxpps)
1404 1.50 itojun rv = 1;
1405 1.50 itojun else
1406 1.50 itojun rv = 0;
1407 1.50 itojun
1408 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1409 1.50 itojun /* be careful about wrap-around */
1410 1.50 itojun if (*curpps + 1 > *curpps)
1411 1.50 itojun *curpps = *curpps + 1;
1412 1.50 itojun #else
1413 1.50 itojun /*
1414 1.50 itojun * assume that there's not too many calls to this function.
1415 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1416 1.50 itojun * behavior, not the behavior of this function.
1417 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1418 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1419 1.50 itojun */
1420 1.50 itojun *curpps = *curpps + 1;
1421 1.50 itojun #endif
1422 1.42 cgd
1423 1.42 cgd return (rv);
1424 1.1 cgd }
1425