kern_time.c revision 1.143 1 1.143 ad /* $NetBSD: kern_time.c,v 1.143 2008/04/21 12:56:31 ad Exp $ */
2 1.42 cgd
3 1.42 cgd /*-
4 1.142 ad * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5 1.42 cgd * All rights reserved.
6 1.42 cgd *
7 1.42 cgd * This code is derived from software contributed to The NetBSD Foundation
8 1.42 cgd * by Christopher G. Demetriou.
9 1.42 cgd *
10 1.42 cgd * Redistribution and use in source and binary forms, with or without
11 1.42 cgd * modification, are permitted provided that the following conditions
12 1.42 cgd * are met:
13 1.42 cgd * 1. Redistributions of source code must retain the above copyright
14 1.42 cgd * notice, this list of conditions and the following disclaimer.
15 1.42 cgd * 2. Redistributions in binary form must reproduce the above copyright
16 1.42 cgd * notice, this list of conditions and the following disclaimer in the
17 1.42 cgd * documentation and/or other materials provided with the distribution.
18 1.42 cgd * 3. All advertising materials mentioning features or use of this software
19 1.42 cgd * must display the following acknowledgement:
20 1.42 cgd * This product includes software developed by the NetBSD
21 1.42 cgd * Foundation, Inc. and its contributors.
22 1.42 cgd * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.42 cgd * contributors may be used to endorse or promote products derived
24 1.42 cgd * from this software without specific prior written permission.
25 1.42 cgd *
26 1.42 cgd * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.42 cgd * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.42 cgd * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.42 cgd * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.42 cgd * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.42 cgd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.42 cgd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.42 cgd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.42 cgd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.42 cgd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.42 cgd * POSSIBILITY OF SUCH DAMAGE.
37 1.42 cgd */
38 1.9 cgd
39 1.1 cgd /*
40 1.8 cgd * Copyright (c) 1982, 1986, 1989, 1993
41 1.8 cgd * The Regents of the University of California. All rights reserved.
42 1.1 cgd *
43 1.1 cgd * Redistribution and use in source and binary forms, with or without
44 1.1 cgd * modification, are permitted provided that the following conditions
45 1.1 cgd * are met:
46 1.1 cgd * 1. Redistributions of source code must retain the above copyright
47 1.1 cgd * notice, this list of conditions and the following disclaimer.
48 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 cgd * notice, this list of conditions and the following disclaimer in the
50 1.1 cgd * documentation and/or other materials provided with the distribution.
51 1.72 agc * 3. Neither the name of the University nor the names of its contributors
52 1.1 cgd * may be used to endorse or promote products derived from this software
53 1.1 cgd * without specific prior written permission.
54 1.1 cgd *
55 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.1 cgd * SUCH DAMAGE.
66 1.1 cgd *
67 1.33 fvdl * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
68 1.1 cgd */
69 1.58 lukem
70 1.58 lukem #include <sys/cdefs.h>
71 1.143 ad __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.143 2008/04/21 12:56:31 ad Exp $");
72 1.1 cgd
73 1.5 mycroft #include <sys/param.h>
74 1.5 mycroft #include <sys/resourcevar.h>
75 1.5 mycroft #include <sys/kernel.h>
76 1.8 cgd #include <sys/systm.h>
77 1.5 mycroft #include <sys/proc.h>
78 1.8 cgd #include <sys/vnode.h>
79 1.17 christos #include <sys/signalvar.h>
80 1.25 perry #include <sys/syslog.h>
81 1.101 kardel #include <sys/timetc.h>
82 1.143 ad #include <sys/timex.h>
83 1.99 elad #include <sys/kauth.h>
84 1.11 cgd #include <sys/mount.h>
85 1.11 cgd #include <sys/syscallargs.h>
86 1.143 ad #include <sys/cpu.h>
87 1.19 christos
88 1.37 thorpej #include <uvm/uvm_extern.h>
89 1.37 thorpej
90 1.142 ad static void timer_intr(void *);
91 1.142 ad static void itimerfire(struct ptimer *);
92 1.142 ad static void itimerfree(struct ptimers *, int);
93 1.142 ad
94 1.131 ad kmutex_t time_lock;
95 1.142 ad kmutex_t timer_lock;
96 1.142 ad
97 1.142 ad static void *timer_sih;
98 1.142 ad static TAILQ_HEAD(, ptimer) timer_queue;
99 1.131 ad
100 1.97 simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
101 1.118 ad &pool_allocator_nointr, IPL_NONE);
102 1.97 simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
103 1.118 ad &pool_allocator_nointr, IPL_NONE);
104 1.97 simonb
105 1.131 ad /*
106 1.131 ad * Initialize timekeeping.
107 1.131 ad */
108 1.131 ad void
109 1.131 ad time_init(void)
110 1.131 ad {
111 1.131 ad
112 1.131 ad mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
113 1.131 ad }
114 1.131 ad
115 1.142 ad void
116 1.142 ad time_init2(void)
117 1.142 ad {
118 1.142 ad
119 1.142 ad TAILQ_INIT(&timer_queue);
120 1.142 ad mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
121 1.142 ad timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
122 1.142 ad timer_intr, NULL);
123 1.142 ad }
124 1.142 ad
125 1.63 thorpej /* Time of day and interval timer support.
126 1.1 cgd *
127 1.1 cgd * These routines provide the kernel entry points to get and set
128 1.1 cgd * the time-of-day and per-process interval timers. Subroutines
129 1.1 cgd * here provide support for adding and subtracting timeval structures
130 1.1 cgd * and decrementing interval timers, optionally reloading the interval
131 1.1 cgd * timers when they expire.
132 1.1 cgd */
133 1.1 cgd
134 1.22 jtc /* This function is used by clock_settime and settimeofday */
135 1.132 elad static int
136 1.132 elad settime1(struct proc *p, struct timespec *ts, bool check_kauth)
137 1.22 jtc {
138 1.98 christos struct timeval delta, tv;
139 1.101 kardel struct timeval now;
140 1.101 kardel struct timespec ts1;
141 1.137 yamt struct bintime btdelta;
142 1.129 ad lwp_t *l;
143 1.129 ad int s;
144 1.22 jtc
145 1.98 christos TIMESPEC_TO_TIMEVAL(&tv, ts);
146 1.98 christos
147 1.22 jtc /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
148 1.129 ad s = splclock();
149 1.101 kardel microtime(&now);
150 1.101 kardel timersub(&tv, &now, &delta);
151 1.132 elad
152 1.134 elad if (check_kauth && kauth_authorize_system(kauth_cred_get(),
153 1.134 elad KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
154 1.132 elad KAUTH_ARG(check_kauth ? false : true)) != 0) {
155 1.129 ad splx(s);
156 1.29 tls return (EPERM);
157 1.55 tron }
158 1.132 elad
159 1.29 tls #ifdef notyet
160 1.109 elad if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
161 1.129 ad splx(s);
162 1.29 tls return (EPERM);
163 1.55 tron }
164 1.29 tls #endif
165 1.103 kardel
166 1.103 kardel TIMEVAL_TO_TIMESPEC(&tv, &ts1);
167 1.101 kardel tc_setclock(&ts1);
168 1.103 kardel
169 1.22 jtc timeradd(&boottime, &delta, &boottime);
170 1.103 kardel
171 1.47 thorpej /*
172 1.129 ad * XXXSMP: There is a short race between setting the time above
173 1.129 ad * and adjusting LWP's run times. Fixing this properly means
174 1.129 ad * pausing all CPUs while we adjust the clock.
175 1.47 thorpej */
176 1.137 yamt timeval2bintime(&delta, &btdelta);
177 1.129 ad mutex_enter(&proclist_lock);
178 1.129 ad LIST_FOREACH(l, &alllwp, l_list) {
179 1.129 ad lwp_lock(l);
180 1.137 yamt bintime_add(&l->l_stime, &btdelta);
181 1.129 ad lwp_unlock(l);
182 1.129 ad }
183 1.129 ad mutex_exit(&proclist_lock);
184 1.22 jtc resettodr();
185 1.129 ad splx(s);
186 1.129 ad
187 1.29 tls return (0);
188 1.22 jtc }
189 1.22 jtc
190 1.132 elad int
191 1.132 elad settime(struct proc *p, struct timespec *ts)
192 1.132 elad {
193 1.132 elad return (settime1(p, ts, true));
194 1.132 elad }
195 1.132 elad
196 1.22 jtc /* ARGSUSED */
197 1.22 jtc int
198 1.140 yamt sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
199 1.140 yamt register_t *retval)
200 1.22 jtc {
201 1.135 dsl /* {
202 1.22 jtc syscallarg(clockid_t) clock_id;
203 1.23 cgd syscallarg(struct timespec *) tp;
204 1.135 dsl } */
205 1.22 jtc clockid_t clock_id;
206 1.22 jtc struct timespec ats;
207 1.22 jtc
208 1.22 jtc clock_id = SCARG(uap, clock_id);
209 1.61 simonb switch (clock_id) {
210 1.61 simonb case CLOCK_REALTIME:
211 1.96 simonb nanotime(&ats);
212 1.61 simonb break;
213 1.61 simonb case CLOCK_MONOTONIC:
214 1.101 kardel nanouptime(&ats);
215 1.61 simonb break;
216 1.61 simonb default:
217 1.22 jtc return (EINVAL);
218 1.61 simonb }
219 1.22 jtc
220 1.24 cgd return copyout(&ats, SCARG(uap, tp), sizeof(ats));
221 1.22 jtc }
222 1.22 jtc
223 1.22 jtc /* ARGSUSED */
224 1.22 jtc int
225 1.140 yamt sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
226 1.140 yamt register_t *retval)
227 1.22 jtc {
228 1.135 dsl /* {
229 1.22 jtc syscallarg(clockid_t) clock_id;
230 1.23 cgd syscallarg(const struct timespec *) tp;
231 1.135 dsl } */
232 1.22 jtc
233 1.132 elad return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
234 1.132 elad true);
235 1.56 manu }
236 1.56 manu
237 1.56 manu
238 1.56 manu int
239 1.132 elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
240 1.132 elad bool check_kauth)
241 1.56 manu {
242 1.60 manu struct timespec ats;
243 1.56 manu int error;
244 1.56 manu
245 1.60 manu if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
246 1.60 manu return (error);
247 1.60 manu
248 1.61 simonb switch (clock_id) {
249 1.61 simonb case CLOCK_REALTIME:
250 1.132 elad if ((error = settime1(p, &ats, check_kauth)) != 0)
251 1.61 simonb return (error);
252 1.61 simonb break;
253 1.61 simonb case CLOCK_MONOTONIC:
254 1.61 simonb return (EINVAL); /* read-only clock */
255 1.61 simonb default:
256 1.56 manu return (EINVAL);
257 1.61 simonb }
258 1.22 jtc
259 1.22 jtc return 0;
260 1.22 jtc }
261 1.22 jtc
262 1.22 jtc int
263 1.140 yamt sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
264 1.140 yamt register_t *retval)
265 1.22 jtc {
266 1.135 dsl /* {
267 1.22 jtc syscallarg(clockid_t) clock_id;
268 1.23 cgd syscallarg(struct timespec *) tp;
269 1.135 dsl } */
270 1.22 jtc clockid_t clock_id;
271 1.22 jtc struct timespec ts;
272 1.22 jtc int error = 0;
273 1.22 jtc
274 1.22 jtc clock_id = SCARG(uap, clock_id);
275 1.61 simonb switch (clock_id) {
276 1.61 simonb case CLOCK_REALTIME:
277 1.61 simonb case CLOCK_MONOTONIC:
278 1.22 jtc ts.tv_sec = 0;
279 1.102 kardel if (tc_getfrequency() > 1000000000)
280 1.102 kardel ts.tv_nsec = 1;
281 1.102 kardel else
282 1.102 kardel ts.tv_nsec = 1000000000 / tc_getfrequency();
283 1.61 simonb break;
284 1.61 simonb default:
285 1.61 simonb return (EINVAL);
286 1.61 simonb }
287 1.22 jtc
288 1.61 simonb if (SCARG(uap, tp))
289 1.35 perry error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
290 1.22 jtc
291 1.22 jtc return error;
292 1.22 jtc }
293 1.22 jtc
294 1.27 jtc /* ARGSUSED */
295 1.27 jtc int
296 1.140 yamt sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
297 1.140 yamt register_t *retval)
298 1.27 jtc {
299 1.135 dsl /* {
300 1.101 kardel syscallarg(struct timespec *) rqtp;
301 1.101 kardel syscallarg(struct timespec *) rmtp;
302 1.135 dsl } */
303 1.101 kardel struct timespec rmt, rqt;
304 1.120 dsl int error, error1;
305 1.101 kardel
306 1.101 kardel error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
307 1.101 kardel if (error)
308 1.101 kardel return (error);
309 1.101 kardel
310 1.120 dsl error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
311 1.120 dsl if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
312 1.120 dsl return error;
313 1.120 dsl
314 1.120 dsl error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
315 1.120 dsl return error1 ? error1 : error;
316 1.120 dsl }
317 1.120 dsl
318 1.120 dsl int
319 1.120 dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
320 1.120 dsl {
321 1.141 yamt struct timespec rmtstart;
322 1.120 dsl int error, timo;
323 1.120 dsl
324 1.120 dsl if (itimespecfix(rqt))
325 1.101 kardel return (EINVAL);
326 1.101 kardel
327 1.120 dsl timo = tstohz(rqt);
328 1.101 kardel /*
329 1.101 kardel * Avoid inadvertantly sleeping forever
330 1.101 kardel */
331 1.101 kardel if (timo == 0)
332 1.101 kardel timo = 1;
333 1.141 yamt getnanouptime(&rmtstart);
334 1.141 yamt again:
335 1.141 yamt error = kpause("nanoslp", true, timo, NULL);
336 1.141 yamt if (rmt != NULL || error == 0) {
337 1.141 yamt struct timespec rmtend;
338 1.141 yamt struct timespec t0;
339 1.141 yamt struct timespec *t;
340 1.101 kardel
341 1.141 yamt getnanouptime(&rmtend);
342 1.141 yamt t = (rmt != NULL) ? rmt : &t0;
343 1.141 yamt timespecsub(&rmtend, &rmtstart, t);
344 1.141 yamt timespecsub(rqt, t, t);
345 1.141 yamt if (t->tv_sec < 0)
346 1.141 yamt timespecclear(t);
347 1.141 yamt if (error == 0) {
348 1.141 yamt timo = tstohz(t);
349 1.141 yamt if (timo > 0)
350 1.141 yamt goto again;
351 1.141 yamt }
352 1.141 yamt }
353 1.104 kardel
354 1.101 kardel if (error == ERESTART)
355 1.101 kardel error = EINTR;
356 1.101 kardel if (error == EWOULDBLOCK)
357 1.101 kardel error = 0;
358 1.101 kardel
359 1.101 kardel return error;
360 1.27 jtc }
361 1.22 jtc
362 1.1 cgd /* ARGSUSED */
363 1.3 andrew int
364 1.140 yamt sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
365 1.140 yamt register_t *retval)
366 1.15 thorpej {
367 1.135 dsl /* {
368 1.11 cgd syscallarg(struct timeval *) tp;
369 1.135 dsl syscallarg(void *) tzp; really "struct timezone *";
370 1.135 dsl } */
371 1.1 cgd struct timeval atv;
372 1.1 cgd int error = 0;
373 1.25 perry struct timezone tzfake;
374 1.1 cgd
375 1.11 cgd if (SCARG(uap, tp)) {
376 1.1 cgd microtime(&atv);
377 1.35 perry error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
378 1.17 christos if (error)
379 1.1 cgd return (error);
380 1.1 cgd }
381 1.25 perry if (SCARG(uap, tzp)) {
382 1.25 perry /*
383 1.32 mycroft * NetBSD has no kernel notion of time zone, so we just
384 1.25 perry * fake up a timezone struct and return it if demanded.
385 1.25 perry */
386 1.25 perry tzfake.tz_minuteswest = 0;
387 1.25 perry tzfake.tz_dsttime = 0;
388 1.35 perry error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
389 1.25 perry }
390 1.1 cgd return (error);
391 1.1 cgd }
392 1.1 cgd
393 1.1 cgd /* ARGSUSED */
394 1.3 andrew int
395 1.140 yamt sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
396 1.140 yamt register_t *retval)
397 1.15 thorpej {
398 1.135 dsl /* {
399 1.24 cgd syscallarg(const struct timeval *) tv;
400 1.140 yamt syscallarg(const void *) tzp; really "const struct timezone *";
401 1.135 dsl } */
402 1.60 manu
403 1.119 dsl return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
404 1.60 manu }
405 1.60 manu
406 1.60 manu int
407 1.119 dsl settimeofday1(const struct timeval *utv, bool userspace,
408 1.119 dsl const void *utzp, struct lwp *l, bool check_kauth)
409 1.60 manu {
410 1.22 jtc struct timeval atv;
411 1.98 christos struct timespec ts;
412 1.22 jtc int error;
413 1.1 cgd
414 1.8 cgd /* Verify all parameters before changing time. */
415 1.119 dsl
416 1.25 perry /*
417 1.32 mycroft * NetBSD has no kernel notion of time zone, and only an
418 1.25 perry * obsolete program would try to set it, so we log a warning.
419 1.25 perry */
420 1.98 christos if (utzp)
421 1.25 perry log(LOG_WARNING, "pid %d attempted to set the "
422 1.119 dsl "(obsolete) kernel time zone\n", l->l_proc->p_pid);
423 1.98 christos
424 1.98 christos if (utv == NULL)
425 1.98 christos return 0;
426 1.98 christos
427 1.119 dsl if (userspace) {
428 1.119 dsl if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
429 1.119 dsl return error;
430 1.119 dsl utv = &atv;
431 1.119 dsl }
432 1.119 dsl
433 1.119 dsl TIMEVAL_TO_TIMESPEC(utv, &ts);
434 1.133 elad return settime1(l->l_proc, &ts, check_kauth);
435 1.1 cgd }
436 1.1 cgd
437 1.68 dsl int time_adjusted; /* set if an adjustment is made */
438 1.1 cgd
439 1.1 cgd /* ARGSUSED */
440 1.3 andrew int
441 1.140 yamt sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
442 1.140 yamt register_t *retval)
443 1.15 thorpej {
444 1.135 dsl /* {
445 1.24 cgd syscallarg(const struct timeval *) delta;
446 1.11 cgd syscallarg(struct timeval *) olddelta;
447 1.135 dsl } */
448 1.56 manu int error;
449 1.1 cgd
450 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
451 1.106 elad KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
452 1.1 cgd return (error);
453 1.17 christos
454 1.105 ad return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
455 1.56 manu }
456 1.56 manu
457 1.56 manu int
458 1.110 yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
459 1.56 manu {
460 1.60 manu struct timeval atv;
461 1.101 kardel int error = 0;
462 1.101 kardel
463 1.101 kardel extern int64_t time_adjtime; /* in kern_ntptime.c */
464 1.101 kardel
465 1.101 kardel if (olddelta) {
466 1.143 ad mutex_spin_enter(&timecounter_lock);
467 1.101 kardel atv.tv_sec = time_adjtime / 1000000;
468 1.101 kardel atv.tv_usec = time_adjtime % 1000000;
469 1.143 ad mutex_spin_exit(&timecounter_lock);
470 1.101 kardel if (atv.tv_usec < 0) {
471 1.101 kardel atv.tv_usec += 1000000;
472 1.101 kardel atv.tv_sec--;
473 1.101 kardel }
474 1.101 kardel error = copyout(&atv, olddelta, sizeof(struct timeval));
475 1.101 kardel if (error)
476 1.101 kardel return (error);
477 1.101 kardel }
478 1.101 kardel
479 1.101 kardel if (delta) {
480 1.101 kardel error = copyin(delta, &atv, sizeof(struct timeval));
481 1.101 kardel if (error)
482 1.101 kardel return (error);
483 1.101 kardel
484 1.143 ad mutex_spin_enter(&timecounter_lock);
485 1.101 kardel time_adjtime = (int64_t)atv.tv_sec * 1000000 +
486 1.101 kardel atv.tv_usec;
487 1.143 ad if (time_adjtime) {
488 1.101 kardel /* We need to save the system time during shutdown */
489 1.101 kardel time_adjusted |= 1;
490 1.143 ad }
491 1.143 ad mutex_spin_exit(&timecounter_lock);
492 1.101 kardel }
493 1.101 kardel
494 1.79 chs return error;
495 1.1 cgd }
496 1.1 cgd
497 1.1 cgd /*
498 1.63 thorpej * Interval timer support. Both the BSD getitimer() family and the POSIX
499 1.63 thorpej * timer_*() family of routines are supported.
500 1.1 cgd *
501 1.63 thorpej * All timers are kept in an array pointed to by p_timers, which is
502 1.63 thorpej * allocated on demand - many processes don't use timers at all. The
503 1.63 thorpej * first three elements in this array are reserved for the BSD timers:
504 1.63 thorpej * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
505 1.63 thorpej * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
506 1.63 thorpej * syscall.
507 1.1 cgd *
508 1.63 thorpej * Realtime timers are kept in the ptimer structure as an absolute
509 1.63 thorpej * time; virtual time timers are kept as a linked list of deltas.
510 1.1 cgd * Virtual time timers are processed in the hardclock() routine of
511 1.63 thorpej * kern_clock.c. The real time timer is processed by a callout
512 1.63 thorpej * routine, called from the softclock() routine. Since a callout may
513 1.63 thorpej * be delayed in real time due to interrupt processing in the system,
514 1.63 thorpej * it is possible for the real time timeout routine (realtimeexpire,
515 1.63 thorpej * given below), to be delayed in real time past when it is supposed
516 1.63 thorpej * to occur. It does not suffice, therefore, to reload the real timer
517 1.63 thorpej * .it_value from the real time timers .it_interval. Rather, we
518 1.63 thorpej * compute the next time in absolute time the timer should go off. */
519 1.63 thorpej
520 1.63 thorpej /* Allocate a POSIX realtime timer. */
521 1.63 thorpej int
522 1.140 yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
523 1.140 yamt register_t *retval)
524 1.63 thorpej {
525 1.135 dsl /* {
526 1.63 thorpej syscallarg(clockid_t) clock_id;
527 1.63 thorpej syscallarg(struct sigevent *) evp;
528 1.63 thorpej syscallarg(timer_t *) timerid;
529 1.135 dsl } */
530 1.92 cube
531 1.92 cube return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
532 1.105 ad SCARG(uap, evp), copyin, l);
533 1.92 cube }
534 1.92 cube
535 1.92 cube int
536 1.92 cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
537 1.105 ad copyin_t fetch_event, struct lwp *l)
538 1.92 cube {
539 1.92 cube int error;
540 1.92 cube timer_t timerid;
541 1.142 ad struct ptimers *pts;
542 1.63 thorpej struct ptimer *pt;
543 1.105 ad struct proc *p;
544 1.105 ad
545 1.105 ad p = l->l_proc;
546 1.63 thorpej
547 1.142 ad if (id < CLOCK_REALTIME || id > CLOCK_PROF)
548 1.63 thorpej return (EINVAL);
549 1.63 thorpej
550 1.142 ad if ((pts = p->p_timers) == NULL)
551 1.142 ad pts = timers_alloc(p);
552 1.63 thorpej
553 1.63 thorpej pt = pool_get(&ptimer_pool, PR_WAITOK);
554 1.142 ad if (evp != NULL) {
555 1.63 thorpej if (((error =
556 1.92 cube (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
557 1.63 thorpej ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
558 1.63 thorpej (pt->pt_ev.sigev_notify > SIGEV_SA))) {
559 1.63 thorpej pool_put(&ptimer_pool, pt);
560 1.63 thorpej return (error ? error : EINVAL);
561 1.63 thorpej }
562 1.142 ad }
563 1.142 ad
564 1.142 ad /* Find a free timer slot, skipping those reserved for setitimer(). */
565 1.142 ad mutex_spin_enter(&timer_lock);
566 1.142 ad for (timerid = 3; timerid < TIMER_MAX; timerid++)
567 1.142 ad if (pts->pts_timers[timerid] == NULL)
568 1.142 ad break;
569 1.142 ad if (timerid == TIMER_MAX) {
570 1.142 ad mutex_spin_exit(&timer_lock);
571 1.142 ad pool_put(&ptimer_pool, pt);
572 1.142 ad return EAGAIN;
573 1.142 ad }
574 1.142 ad if (evp == NULL) {
575 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
576 1.63 thorpej switch (id) {
577 1.63 thorpej case CLOCK_REALTIME:
578 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
579 1.63 thorpej break;
580 1.63 thorpej case CLOCK_VIRTUAL:
581 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
582 1.63 thorpej break;
583 1.63 thorpej case CLOCK_PROF:
584 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
585 1.63 thorpej break;
586 1.63 thorpej }
587 1.63 thorpej pt->pt_ev.sigev_value.sival_int = timerid;
588 1.63 thorpej }
589 1.73 christos pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
590 1.73 christos pt->pt_info.ksi_errno = 0;
591 1.73 christos pt->pt_info.ksi_code = 0;
592 1.73 christos pt->pt_info.ksi_pid = p->p_pid;
593 1.105 ad pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
594 1.124 christos pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
595 1.63 thorpej pt->pt_type = id;
596 1.63 thorpej pt->pt_proc = p;
597 1.63 thorpej pt->pt_overruns = 0;
598 1.63 thorpej pt->pt_poverruns = 0;
599 1.64 nathanw pt->pt_entry = timerid;
600 1.142 ad pt->pt_queued = false;
601 1.142 ad pt->pt_active = 0;
602 1.63 thorpej timerclear(&pt->pt_time.it_value);
603 1.142 ad callout_init(&pt->pt_ch, 0);
604 1.142 ad pts->pts_timers[timerid] = pt;
605 1.142 ad mutex_spin_exit(&timer_lock);
606 1.63 thorpej
607 1.92 cube return copyout(&timerid, tid, sizeof(timerid));
608 1.63 thorpej }
609 1.63 thorpej
610 1.63 thorpej /* Delete a POSIX realtime timer */
611 1.3 andrew int
612 1.140 yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
613 1.140 yamt register_t *retval)
614 1.15 thorpej {
615 1.135 dsl /* {
616 1.63 thorpej syscallarg(timer_t) timerid;
617 1.135 dsl } */
618 1.63 thorpej struct proc *p = l->l_proc;
619 1.65 jdolecek timer_t timerid;
620 1.142 ad struct ptimers *pts;
621 1.63 thorpej struct ptimer *pt, *ptn;
622 1.1 cgd
623 1.63 thorpej timerid = SCARG(uap, timerid);
624 1.142 ad pts = p->p_timers;
625 1.142 ad
626 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
627 1.142 ad return (EINVAL);
628 1.63 thorpej
629 1.142 ad mutex_spin_enter(&timer_lock);
630 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
631 1.142 ad mutex_spin_exit(&timer_lock);
632 1.1 cgd return (EINVAL);
633 1.142 ad }
634 1.142 ad if (pt->pt_active) {
635 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
636 1.63 thorpej LIST_REMOVE(pt, pt_list);
637 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
638 1.63 thorpej timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
639 1.63 thorpej &ptn->pt_time.it_value);
640 1.142 ad pt->pt_active = 0;
641 1.63 thorpej }
642 1.142 ad itimerfree(pts, timerid);
643 1.63 thorpej
644 1.63 thorpej return (0);
645 1.63 thorpej }
646 1.63 thorpej
647 1.63 thorpej /*
648 1.67 nathanw * Set up the given timer. The value in pt->pt_time.it_value is taken
649 1.67 nathanw * to be an absolute time for CLOCK_REALTIME timers and a relative
650 1.67 nathanw * time for virtual timers.
651 1.63 thorpej * Must be called at splclock().
652 1.63 thorpej */
653 1.63 thorpej void
654 1.63 thorpej timer_settime(struct ptimer *pt)
655 1.63 thorpej {
656 1.63 thorpej struct ptimer *ptn, *pptn;
657 1.63 thorpej struct ptlist *ptl;
658 1.63 thorpej
659 1.142 ad KASSERT(mutex_owned(&timer_lock));
660 1.142 ad
661 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
662 1.63 thorpej callout_stop(&pt->pt_ch);
663 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
664 1.63 thorpej /*
665 1.63 thorpej * Don't need to check hzto() return value, here.
666 1.63 thorpej * callout_reset() does it for us.
667 1.63 thorpej */
668 1.63 thorpej callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
669 1.63 thorpej realtimerexpire, pt);
670 1.63 thorpej }
671 1.63 thorpej } else {
672 1.63 thorpej if (pt->pt_active) {
673 1.63 thorpej ptn = LIST_NEXT(pt, pt_list);
674 1.63 thorpej LIST_REMOVE(pt, pt_list);
675 1.63 thorpej for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
676 1.63 thorpej timeradd(&pt->pt_time.it_value,
677 1.63 thorpej &ptn->pt_time.it_value,
678 1.63 thorpej &ptn->pt_time.it_value);
679 1.63 thorpej }
680 1.63 thorpej if (timerisset(&pt->pt_time.it_value)) {
681 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
682 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_virtual;
683 1.63 thorpej else
684 1.63 thorpej ptl = &pt->pt_proc->p_timers->pts_prof;
685 1.63 thorpej
686 1.63 thorpej for (ptn = LIST_FIRST(ptl), pptn = NULL;
687 1.63 thorpej ptn && timercmp(&pt->pt_time.it_value,
688 1.63 thorpej &ptn->pt_time.it_value, >);
689 1.63 thorpej pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
690 1.63 thorpej timersub(&pt->pt_time.it_value,
691 1.63 thorpej &ptn->pt_time.it_value,
692 1.63 thorpej &pt->pt_time.it_value);
693 1.63 thorpej
694 1.63 thorpej if (pptn)
695 1.63 thorpej LIST_INSERT_AFTER(pptn, pt, pt_list);
696 1.63 thorpej else
697 1.63 thorpej LIST_INSERT_HEAD(ptl, pt, pt_list);
698 1.63 thorpej
699 1.63 thorpej for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
700 1.63 thorpej timersub(&ptn->pt_time.it_value,
701 1.63 thorpej &pt->pt_time.it_value,
702 1.63 thorpej &ptn->pt_time.it_value);
703 1.63 thorpej
704 1.63 thorpej pt->pt_active = 1;
705 1.63 thorpej } else
706 1.63 thorpej pt->pt_active = 0;
707 1.63 thorpej }
708 1.63 thorpej }
709 1.63 thorpej
710 1.63 thorpej void
711 1.63 thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
712 1.63 thorpej {
713 1.101 kardel struct timeval now;
714 1.63 thorpej struct ptimer *ptn;
715 1.63 thorpej
716 1.142 ad KASSERT(mutex_owned(&timer_lock));
717 1.142 ad
718 1.63 thorpej *aitv = pt->pt_time;
719 1.63 thorpej if (pt->pt_type == CLOCK_REALTIME) {
720 1.1 cgd /*
721 1.12 mycroft * Convert from absolute to relative time in .it_value
722 1.63 thorpej * part of real time timer. If time for real time
723 1.63 thorpej * timer has passed return 0, else return difference
724 1.63 thorpej * between current time and time for the timer to go
725 1.63 thorpej * off.
726 1.1 cgd */
727 1.63 thorpej if (timerisset(&aitv->it_value)) {
728 1.101 kardel getmicrotime(&now);
729 1.101 kardel if (timercmp(&aitv->it_value, &now, <))
730 1.101 kardel timerclear(&aitv->it_value);
731 1.101 kardel else
732 1.101 kardel timersub(&aitv->it_value, &now,
733 1.101 kardel &aitv->it_value);
734 1.36 thorpej }
735 1.63 thorpej } else if (pt->pt_active) {
736 1.63 thorpej if (pt->pt_type == CLOCK_VIRTUAL)
737 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
738 1.63 thorpej else
739 1.63 thorpej ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
740 1.63 thorpej for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
741 1.63 thorpej timeradd(&aitv->it_value,
742 1.63 thorpej &ptn->pt_time.it_value, &aitv->it_value);
743 1.63 thorpej KASSERT(ptn != NULL); /* pt should be findable on the list */
744 1.1 cgd } else
745 1.63 thorpej timerclear(&aitv->it_value);
746 1.63 thorpej }
747 1.63 thorpej
748 1.63 thorpej
749 1.63 thorpej
750 1.63 thorpej /* Set and arm a POSIX realtime timer */
751 1.63 thorpej int
752 1.140 yamt sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
753 1.140 yamt register_t *retval)
754 1.63 thorpej {
755 1.135 dsl /* {
756 1.63 thorpej syscallarg(timer_t) timerid;
757 1.63 thorpej syscallarg(int) flags;
758 1.63 thorpej syscallarg(const struct itimerspec *) value;
759 1.63 thorpej syscallarg(struct itimerspec *) ovalue;
760 1.135 dsl } */
761 1.92 cube int error;
762 1.92 cube struct itimerspec value, ovalue, *ovp = NULL;
763 1.92 cube
764 1.92 cube if ((error = copyin(SCARG(uap, value), &value,
765 1.92 cube sizeof(struct itimerspec))) != 0)
766 1.92 cube return (error);
767 1.92 cube
768 1.92 cube if (SCARG(uap, ovalue))
769 1.92 cube ovp = &ovalue;
770 1.92 cube
771 1.92 cube if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
772 1.92 cube SCARG(uap, flags), l->l_proc)) != 0)
773 1.92 cube return error;
774 1.92 cube
775 1.92 cube if (ovp)
776 1.92 cube return copyout(&ovalue, SCARG(uap, ovalue),
777 1.92 cube sizeof(struct itimerspec));
778 1.92 cube return 0;
779 1.92 cube }
780 1.92 cube
781 1.92 cube int
782 1.92 cube dotimer_settime(int timerid, struct itimerspec *value,
783 1.92 cube struct itimerspec *ovalue, int flags, struct proc *p)
784 1.92 cube {
785 1.101 kardel struct timeval now;
786 1.63 thorpej struct itimerval val, oval;
787 1.142 ad struct ptimers *pts;
788 1.63 thorpej struct ptimer *pt;
789 1.63 thorpej
790 1.142 ad pts = p->p_timers;
791 1.63 thorpej
792 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
793 1.142 ad return EINVAL;
794 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
795 1.92 cube TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
796 1.63 thorpej if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
797 1.63 thorpej return (EINVAL);
798 1.63 thorpej
799 1.142 ad mutex_spin_enter(&timer_lock);
800 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
801 1.142 ad mutex_spin_exit(&timer_lock);
802 1.142 ad return (EINVAL);
803 1.142 ad }
804 1.142 ad
805 1.63 thorpej oval = pt->pt_time;
806 1.63 thorpej pt->pt_time = val;
807 1.63 thorpej
808 1.67 nathanw /*
809 1.67 nathanw * If we've been passed a relative time for a realtime timer,
810 1.67 nathanw * convert it to absolute; if an absolute time for a virtual
811 1.67 nathanw * timer, convert it to relative and make sure we don't set it
812 1.67 nathanw * to zero, which would cancel the timer, or let it go
813 1.67 nathanw * negative, which would confuse the comparison tests.
814 1.67 nathanw */
815 1.67 nathanw if (timerisset(&pt->pt_time.it_value)) {
816 1.67 nathanw if (pt->pt_type == CLOCK_REALTIME) {
817 1.101 kardel if ((flags & TIMER_ABSTIME) == 0) {
818 1.101 kardel getmicrotime(&now);
819 1.101 kardel timeradd(&pt->pt_time.it_value, &now,
820 1.101 kardel &pt->pt_time.it_value);
821 1.101 kardel }
822 1.67 nathanw } else {
823 1.92 cube if ((flags & TIMER_ABSTIME) != 0) {
824 1.101 kardel getmicrotime(&now);
825 1.101 kardel timersub(&pt->pt_time.it_value, &now,
826 1.101 kardel &pt->pt_time.it_value);
827 1.67 nathanw if (!timerisset(&pt->pt_time.it_value) ||
828 1.67 nathanw pt->pt_time.it_value.tv_sec < 0) {
829 1.67 nathanw pt->pt_time.it_value.tv_sec = 0;
830 1.67 nathanw pt->pt_time.it_value.tv_usec = 1;
831 1.67 nathanw }
832 1.67 nathanw }
833 1.67 nathanw }
834 1.67 nathanw }
835 1.67 nathanw
836 1.63 thorpej timer_settime(pt);
837 1.142 ad mutex_spin_exit(&timer_lock);
838 1.63 thorpej
839 1.92 cube if (ovalue) {
840 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
841 1.92 cube TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
842 1.63 thorpej }
843 1.63 thorpej
844 1.63 thorpej return (0);
845 1.63 thorpej }
846 1.63 thorpej
847 1.63 thorpej /* Return the time remaining until a POSIX timer fires. */
848 1.63 thorpej int
849 1.140 yamt sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
850 1.140 yamt register_t *retval)
851 1.63 thorpej {
852 1.135 dsl /* {
853 1.63 thorpej syscallarg(timer_t) timerid;
854 1.63 thorpej syscallarg(struct itimerspec *) value;
855 1.135 dsl } */
856 1.63 thorpej struct itimerspec its;
857 1.92 cube int error;
858 1.92 cube
859 1.92 cube if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
860 1.92 cube &its)) != 0)
861 1.92 cube return error;
862 1.92 cube
863 1.92 cube return copyout(&its, SCARG(uap, value), sizeof(its));
864 1.92 cube }
865 1.92 cube
866 1.92 cube int
867 1.92 cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
868 1.92 cube {
869 1.63 thorpej struct ptimer *pt;
870 1.142 ad struct ptimers *pts;
871 1.92 cube struct itimerval aitv;
872 1.63 thorpej
873 1.142 ad pts = p->p_timers;
874 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
875 1.63 thorpej return (EINVAL);
876 1.142 ad mutex_spin_enter(&timer_lock);
877 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
878 1.142 ad mutex_spin_exit(&timer_lock);
879 1.142 ad return (EINVAL);
880 1.142 ad }
881 1.63 thorpej timer_gettime(pt, &aitv);
882 1.142 ad mutex_spin_exit(&timer_lock);
883 1.63 thorpej
884 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
885 1.92 cube TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
886 1.63 thorpej
887 1.92 cube return 0;
888 1.63 thorpej }
889 1.63 thorpej
890 1.63 thorpej /*
891 1.63 thorpej * Return the count of the number of times a periodic timer expired
892 1.63 thorpej * while a notification was already pending. The counter is reset when
893 1.63 thorpej * a timer expires and a notification can be posted.
894 1.63 thorpej */
895 1.63 thorpej int
896 1.140 yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
897 1.140 yamt register_t *retval)
898 1.63 thorpej {
899 1.135 dsl /* {
900 1.63 thorpej syscallarg(timer_t) timerid;
901 1.135 dsl } */
902 1.63 thorpej struct proc *p = l->l_proc;
903 1.142 ad struct ptimers *pts;
904 1.63 thorpej int timerid;
905 1.63 thorpej struct ptimer *pt;
906 1.63 thorpej
907 1.63 thorpej timerid = SCARG(uap, timerid);
908 1.63 thorpej
909 1.142 ad pts = p->p_timers;
910 1.142 ad if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
911 1.142 ad return (EINVAL);
912 1.142 ad mutex_spin_enter(&timer_lock);
913 1.142 ad if ((pt = pts->pts_timers[timerid]) == NULL) {
914 1.142 ad mutex_spin_exit(&timer_lock);
915 1.63 thorpej return (EINVAL);
916 1.142 ad }
917 1.63 thorpej *retval = pt->pt_poverruns;
918 1.142 ad mutex_spin_exit(&timer_lock);
919 1.63 thorpej
920 1.63 thorpej return (0);
921 1.63 thorpej }
922 1.63 thorpej
923 1.63 thorpej /*
924 1.63 thorpej * Real interval timer expired:
925 1.63 thorpej * send process whose timer expired an alarm signal.
926 1.63 thorpej * If time is not set up to reload, then just return.
927 1.63 thorpej * Else compute next time timer should go off which is > current time.
928 1.63 thorpej * This is where delay in processing this timeout causes multiple
929 1.63 thorpej * SIGALRM calls to be compressed into one.
930 1.63 thorpej */
931 1.63 thorpej void
932 1.63 thorpej realtimerexpire(void *arg)
933 1.63 thorpej {
934 1.101 kardel struct timeval now;
935 1.63 thorpej struct ptimer *pt;
936 1.63 thorpej
937 1.142 ad pt = arg;
938 1.63 thorpej
939 1.142 ad mutex_spin_enter(&timer_lock);
940 1.63 thorpej itimerfire(pt);
941 1.63 thorpej
942 1.63 thorpej if (!timerisset(&pt->pt_time.it_interval)) {
943 1.63 thorpej timerclear(&pt->pt_time.it_value);
944 1.142 ad mutex_spin_exit(&timer_lock);
945 1.63 thorpej return;
946 1.63 thorpej }
947 1.101 kardel for (;;) {
948 1.101 kardel timeradd(&pt->pt_time.it_value,
949 1.101 kardel &pt->pt_time.it_interval, &pt->pt_time.it_value);
950 1.101 kardel getmicrotime(&now);
951 1.101 kardel if (timercmp(&pt->pt_time.it_value, &now, >)) {
952 1.101 kardel /*
953 1.101 kardel * Don't need to check hzto() return value, here.
954 1.101 kardel * callout_reset() does it for us.
955 1.101 kardel */
956 1.101 kardel callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
957 1.101 kardel realtimerexpire, pt);
958 1.142 ad mutex_spin_exit(&timer_lock);
959 1.101 kardel return;
960 1.101 kardel }
961 1.142 ad mutex_spin_exit(&timer_lock);
962 1.101 kardel pt->pt_overruns++;
963 1.142 ad mutex_spin_enter(&timer_lock);
964 1.101 kardel }
965 1.63 thorpej }
966 1.63 thorpej
967 1.63 thorpej /* BSD routine to get the value of an interval timer. */
968 1.63 thorpej /* ARGSUSED */
969 1.63 thorpej int
970 1.140 yamt sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
971 1.140 yamt register_t *retval)
972 1.63 thorpej {
973 1.135 dsl /* {
974 1.63 thorpej syscallarg(int) which;
975 1.63 thorpej syscallarg(struct itimerval *) itv;
976 1.135 dsl } */
977 1.63 thorpej struct proc *p = l->l_proc;
978 1.63 thorpej struct itimerval aitv;
979 1.91 cube int error;
980 1.91 cube
981 1.91 cube error = dogetitimer(p, SCARG(uap, which), &aitv);
982 1.91 cube if (error)
983 1.91 cube return error;
984 1.91 cube return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
985 1.91 cube }
986 1.63 thorpej
987 1.91 cube int
988 1.91 cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
989 1.91 cube {
990 1.142 ad struct ptimers *pts;
991 1.142 ad struct ptimer *pt;
992 1.63 thorpej
993 1.63 thorpej if ((u_int)which > ITIMER_PROF)
994 1.63 thorpej return (EINVAL);
995 1.63 thorpej
996 1.142 ad mutex_spin_enter(&timer_lock);
997 1.142 ad pts = p->p_timers;
998 1.142 ad if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
999 1.91 cube timerclear(&itvp->it_value);
1000 1.91 cube timerclear(&itvp->it_interval);
1001 1.142 ad } else
1002 1.142 ad timer_gettime(pt, itvp);
1003 1.142 ad mutex_spin_exit(&timer_lock);
1004 1.63 thorpej
1005 1.91 cube return 0;
1006 1.1 cgd }
1007 1.1 cgd
1008 1.63 thorpej /* BSD routine to set/arm an interval timer. */
1009 1.1 cgd /* ARGSUSED */
1010 1.3 andrew int
1011 1.140 yamt sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
1012 1.140 yamt register_t *retval)
1013 1.15 thorpej {
1014 1.135 dsl /* {
1015 1.30 mycroft syscallarg(int) which;
1016 1.24 cgd syscallarg(const struct itimerval *) itv;
1017 1.11 cgd syscallarg(struct itimerval *) oitv;
1018 1.135 dsl } */
1019 1.63 thorpej struct proc *p = l->l_proc;
1020 1.30 mycroft int which = SCARG(uap, which);
1021 1.21 cgd struct sys_getitimer_args getargs;
1022 1.91 cube const struct itimerval *itvp;
1023 1.1 cgd struct itimerval aitv;
1024 1.91 cube int error;
1025 1.1 cgd
1026 1.30 mycroft if ((u_int)which > ITIMER_PROF)
1027 1.1 cgd return (EINVAL);
1028 1.11 cgd itvp = SCARG(uap, itv);
1029 1.63 thorpej if (itvp &&
1030 1.56 manu (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1031 1.1 cgd return (error);
1032 1.21 cgd if (SCARG(uap, oitv) != NULL) {
1033 1.30 mycroft SCARG(&getargs, which) = which;
1034 1.21 cgd SCARG(&getargs, itv) = SCARG(uap, oitv);
1035 1.63 thorpej if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1036 1.21 cgd return (error);
1037 1.21 cgd }
1038 1.1 cgd if (itvp == 0)
1039 1.1 cgd return (0);
1040 1.91 cube
1041 1.91 cube return dosetitimer(p, which, &aitv);
1042 1.91 cube }
1043 1.91 cube
1044 1.91 cube int
1045 1.91 cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1046 1.91 cube {
1047 1.101 kardel struct timeval now;
1048 1.142 ad struct ptimers *pts;
1049 1.142 ad struct ptimer *pt, *spare;
1050 1.91 cube
1051 1.91 cube if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1052 1.1 cgd return (EINVAL);
1053 1.63 thorpej
1054 1.63 thorpej /*
1055 1.63 thorpej * Don't bother allocating data structures if the process just
1056 1.63 thorpej * wants to clear the timer.
1057 1.63 thorpej */
1058 1.142 ad spare = NULL;
1059 1.142 ad pts = p->p_timers;
1060 1.142 ad retry:
1061 1.142 ad if (!timerisset(&itvp->it_value) && (pts == NULL ||
1062 1.142 ad pts->pts_timers[which] == NULL))
1063 1.63 thorpej return (0);
1064 1.142 ad if (pts == NULL)
1065 1.142 ad pts = timers_alloc(p);
1066 1.142 ad mutex_spin_enter(&timer_lock);
1067 1.142 ad pt = pts->pts_timers[which];
1068 1.142 ad if (pt == NULL) {
1069 1.142 ad if (spare == NULL) {
1070 1.142 ad mutex_spin_exit(&timer_lock);
1071 1.142 ad spare = pool_get(&ptimer_pool, PR_WAITOK);
1072 1.142 ad goto retry;
1073 1.142 ad }
1074 1.142 ad pt = spare;
1075 1.142 ad spare = NULL;
1076 1.63 thorpej pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1077 1.76 christos pt->pt_ev.sigev_value.sival_int = which;
1078 1.63 thorpej pt->pt_overruns = 0;
1079 1.63 thorpej pt->pt_proc = p;
1080 1.63 thorpej pt->pt_type = which;
1081 1.64 nathanw pt->pt_entry = which;
1082 1.142 ad pt->pt_active = 0;
1083 1.142 ad pt->pt_queued = false;
1084 1.142 ad callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1085 1.63 thorpej switch (which) {
1086 1.63 thorpej case ITIMER_REAL:
1087 1.63 thorpej pt->pt_ev.sigev_signo = SIGALRM;
1088 1.63 thorpej break;
1089 1.63 thorpej case ITIMER_VIRTUAL:
1090 1.63 thorpej pt->pt_ev.sigev_signo = SIGVTALRM;
1091 1.63 thorpej break;
1092 1.63 thorpej case ITIMER_PROF:
1093 1.63 thorpej pt->pt_ev.sigev_signo = SIGPROF;
1094 1.63 thorpej break;
1095 1.1 cgd }
1096 1.142 ad pts->pts_timers[which] = pt;
1097 1.142 ad }
1098 1.91 cube pt->pt_time = *itvp;
1099 1.63 thorpej
1100 1.67 nathanw if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1101 1.67 nathanw /* Convert to absolute time */
1102 1.101 kardel /* XXX need to wrap in splclock for timecounters case? */
1103 1.101 kardel getmicrotime(&now);
1104 1.101 kardel timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1105 1.67 nathanw }
1106 1.63 thorpej timer_settime(pt);
1107 1.142 ad mutex_spin_exit(&timer_lock);
1108 1.142 ad if (spare != NULL)
1109 1.142 ad pool_put(&ptimer_pool, spare);
1110 1.63 thorpej
1111 1.1 cgd return (0);
1112 1.1 cgd }
1113 1.1 cgd
1114 1.63 thorpej /* Utility routines to manage the array of pointers to timers. */
1115 1.142 ad struct ptimers *
1116 1.63 thorpej timers_alloc(struct proc *p)
1117 1.63 thorpej {
1118 1.142 ad struct ptimers *pts;
1119 1.63 thorpej int i;
1120 1.63 thorpej
1121 1.100 yamt pts = pool_get(&ptimers_pool, PR_WAITOK);
1122 1.63 thorpej LIST_INIT(&pts->pts_virtual);
1123 1.63 thorpej LIST_INIT(&pts->pts_prof);
1124 1.63 thorpej for (i = 0; i < TIMER_MAX; i++)
1125 1.63 thorpej pts->pts_timers[i] = NULL;
1126 1.64 nathanw pts->pts_fired = 0;
1127 1.142 ad mutex_spin_enter(&timer_lock);
1128 1.142 ad if (p->p_timers == NULL) {
1129 1.142 ad p->p_timers = pts;
1130 1.142 ad mutex_spin_exit(&timer_lock);
1131 1.142 ad return pts;
1132 1.142 ad }
1133 1.142 ad mutex_spin_exit(&timer_lock);
1134 1.142 ad pool_put(&ptimers_pool, pts);
1135 1.142 ad return p->p_timers;
1136 1.63 thorpej }
1137 1.63 thorpej
1138 1.1 cgd /*
1139 1.63 thorpej * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1140 1.63 thorpej * then clean up all timers and free all the data structures. If
1141 1.63 thorpej * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1142 1.63 thorpej * by timer_create(), not the BSD setitimer() timers, and only free the
1143 1.63 thorpej * structure if none of those remain.
1144 1.1 cgd */
1145 1.3 andrew void
1146 1.63 thorpej timers_free(struct proc *p, int which)
1147 1.6 cgd {
1148 1.63 thorpej struct ptimers *pts;
1149 1.142 ad struct ptimer *ptn;
1150 1.63 thorpej struct timeval tv;
1151 1.142 ad int i;
1152 1.63 thorpej
1153 1.142 ad if (p->p_timers == NULL)
1154 1.142 ad return;
1155 1.63 thorpej
1156 1.142 ad pts = p->p_timers;
1157 1.142 ad mutex_spin_enter(&timer_lock);
1158 1.142 ad if (which == TIMERS_ALL) {
1159 1.142 ad p->p_timers = NULL;
1160 1.142 ad i = 0;
1161 1.142 ad } else {
1162 1.142 ad timerclear(&tv);
1163 1.142 ad for (ptn = LIST_FIRST(&pts->pts_virtual);
1164 1.142 ad ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1165 1.142 ad ptn = LIST_NEXT(ptn, pt_list))
1166 1.142 ad timeradd(&tv, &ptn->pt_time.it_value, &tv);
1167 1.142 ad LIST_FIRST(&pts->pts_virtual) = NULL;
1168 1.142 ad if (ptn) {
1169 1.142 ad timeradd(&tv, &ptn->pt_time.it_value,
1170 1.142 ad &ptn->pt_time.it_value);
1171 1.142 ad LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1172 1.142 ad }
1173 1.142 ad timerclear(&tv);
1174 1.142 ad for (ptn = LIST_FIRST(&pts->pts_prof);
1175 1.142 ad ptn && ptn != pts->pts_timers[ITIMER_PROF];
1176 1.142 ad ptn = LIST_NEXT(ptn, pt_list))
1177 1.142 ad timeradd(&tv, &ptn->pt_time.it_value, &tv);
1178 1.142 ad LIST_FIRST(&pts->pts_prof) = NULL;
1179 1.142 ad if (ptn) {
1180 1.142 ad timeradd(&tv, &ptn->pt_time.it_value,
1181 1.142 ad &ptn->pt_time.it_value);
1182 1.142 ad LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1183 1.63 thorpej }
1184 1.142 ad i = 3;
1185 1.142 ad }
1186 1.142 ad for ( ; i < TIMER_MAX; i++) {
1187 1.142 ad if (pts->pts_timers[i] != NULL) {
1188 1.142 ad itimerfree(pts, i);
1189 1.142 ad mutex_spin_enter(&timer_lock);
1190 1.1 cgd }
1191 1.1 cgd }
1192 1.142 ad if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1193 1.142 ad pts->pts_timers[2] == NULL) {
1194 1.142 ad p->p_timers = NULL;
1195 1.142 ad mutex_spin_exit(&timer_lock);
1196 1.142 ad pool_put(&ptimers_pool, pts);
1197 1.142 ad } else
1198 1.142 ad mutex_spin_exit(&timer_lock);
1199 1.142 ad }
1200 1.142 ad
1201 1.142 ad static void
1202 1.142 ad itimerfree(struct ptimers *pts, int index)
1203 1.142 ad {
1204 1.142 ad struct ptimer *pt;
1205 1.142 ad
1206 1.142 ad KASSERT(mutex_owned(&timer_lock));
1207 1.142 ad
1208 1.142 ad pt = pts->pts_timers[index];
1209 1.142 ad pts->pts_timers[index] = NULL;
1210 1.142 ad if (pt->pt_type == CLOCK_REALTIME) {
1211 1.142 ad mutex_spin_exit(&timer_lock);
1212 1.142 ad callout_halt(&pt->pt_ch);
1213 1.142 ad } else if (pt->pt_queued) {
1214 1.142 ad TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1215 1.142 ad mutex_spin_exit(&timer_lock);
1216 1.142 ad } else
1217 1.142 ad mutex_spin_exit(&timer_lock);
1218 1.142 ad callout_destroy(&pt->pt_ch);
1219 1.142 ad pool_put(&ptimer_pool, pt);
1220 1.1 cgd }
1221 1.1 cgd
1222 1.1 cgd /*
1223 1.1 cgd * Decrement an interval timer by a specified number
1224 1.1 cgd * of microseconds, which must be less than a second,
1225 1.1 cgd * i.e. < 1000000. If the timer expires, then reload
1226 1.1 cgd * it. In this case, carry over (usec - old value) to
1227 1.8 cgd * reduce the value reloaded into the timer so that
1228 1.1 cgd * the timer does not drift. This routine assumes
1229 1.1 cgd * that it is called in a context where the timers
1230 1.1 cgd * on which it is operating cannot change in value.
1231 1.1 cgd */
1232 1.142 ad static int
1233 1.63 thorpej itimerdecr(struct ptimer *pt, int usec)
1234 1.63 thorpej {
1235 1.45 augustss struct itimerval *itp;
1236 1.1 cgd
1237 1.142 ad KASSERT(mutex_owned(&timer_lock));
1238 1.142 ad
1239 1.63 thorpej itp = &pt->pt_time;
1240 1.1 cgd if (itp->it_value.tv_usec < usec) {
1241 1.1 cgd if (itp->it_value.tv_sec == 0) {
1242 1.1 cgd /* expired, and already in next interval */
1243 1.1 cgd usec -= itp->it_value.tv_usec;
1244 1.1 cgd goto expire;
1245 1.1 cgd }
1246 1.1 cgd itp->it_value.tv_usec += 1000000;
1247 1.1 cgd itp->it_value.tv_sec--;
1248 1.1 cgd }
1249 1.1 cgd itp->it_value.tv_usec -= usec;
1250 1.1 cgd usec = 0;
1251 1.1 cgd if (timerisset(&itp->it_value))
1252 1.1 cgd return (1);
1253 1.1 cgd /* expired, exactly at end of interval */
1254 1.1 cgd expire:
1255 1.1 cgd if (timerisset(&itp->it_interval)) {
1256 1.1 cgd itp->it_value = itp->it_interval;
1257 1.1 cgd itp->it_value.tv_usec -= usec;
1258 1.1 cgd if (itp->it_value.tv_usec < 0) {
1259 1.1 cgd itp->it_value.tv_usec += 1000000;
1260 1.1 cgd itp->it_value.tv_sec--;
1261 1.1 cgd }
1262 1.63 thorpej timer_settime(pt);
1263 1.1 cgd } else
1264 1.1 cgd itp->it_value.tv_usec = 0; /* sec is already 0 */
1265 1.1 cgd return (0);
1266 1.42 cgd }
1267 1.42 cgd
1268 1.142 ad static void
1269 1.63 thorpej itimerfire(struct ptimer *pt)
1270 1.63 thorpej {
1271 1.78 cl
1272 1.142 ad KASSERT(mutex_owned(&timer_lock));
1273 1.142 ad
1274 1.142 ad /*
1275 1.142 ad * XXX Can overrun, but we don't do signal queueing yet, anyway.
1276 1.142 ad * XXX Relying on the clock interrupt is stupid.
1277 1.142 ad */
1278 1.142 ad if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued)
1279 1.142 ad return;
1280 1.142 ad TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1281 1.142 ad pt->pt_queued = true;
1282 1.142 ad softint_schedule(timer_sih);
1283 1.142 ad }
1284 1.142 ad
1285 1.142 ad void
1286 1.142 ad timer_tick(lwp_t *l, bool user)
1287 1.142 ad {
1288 1.142 ad struct ptimers *pts;
1289 1.142 ad struct ptimer *pt;
1290 1.142 ad proc_t *p;
1291 1.142 ad
1292 1.142 ad p = l->l_proc;
1293 1.142 ad if (p->p_timers == NULL)
1294 1.142 ad return;
1295 1.142 ad
1296 1.142 ad mutex_spin_enter(&timer_lock);
1297 1.142 ad if ((pts = l->l_proc->p_timers) != NULL) {
1298 1.63 thorpej /*
1299 1.142 ad * Run current process's virtual and profile time, as needed.
1300 1.63 thorpej */
1301 1.142 ad if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1302 1.142 ad if (itimerdecr(pt, tick) == 0)
1303 1.142 ad itimerfire(pt);
1304 1.142 ad if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1305 1.142 ad if (itimerdecr(pt, tick) == 0)
1306 1.142 ad itimerfire(pt);
1307 1.142 ad }
1308 1.142 ad mutex_spin_exit(&timer_lock);
1309 1.142 ad }
1310 1.142 ad
1311 1.142 ad static void
1312 1.142 ad timer_intr(void *cookie)
1313 1.142 ad {
1314 1.142 ad ksiginfo_t ksi;
1315 1.142 ad struct ptimer *pt;
1316 1.142 ad proc_t *p;
1317 1.142 ad
1318 1.142 ad mutex_spin_enter(&timer_lock);
1319 1.142 ad while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1320 1.142 ad TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1321 1.142 ad KASSERT(pt->pt_queued);
1322 1.142 ad pt->pt_queued = false;
1323 1.142 ad
1324 1.142 ad if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1325 1.142 ad continue;
1326 1.142 ad p = pt->pt_proc;
1327 1.142 ad if (pt->pt_proc->p_timers == NULL) {
1328 1.142 ad /* Process is dying. */
1329 1.142 ad continue;
1330 1.142 ad }
1331 1.142 ad if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1332 1.63 thorpej pt->pt_overruns++;
1333 1.142 ad continue;
1334 1.64 nathanw }
1335 1.142 ad
1336 1.142 ad KSI_INIT(&ksi);
1337 1.142 ad ksi.ksi_signo = pt->pt_ev.sigev_signo;
1338 1.142 ad ksi.ksi_code = SI_TIMER;
1339 1.142 ad ksi.ksi_value = pt->pt_ev.sigev_value;
1340 1.142 ad pt->pt_poverruns = pt->pt_overruns;
1341 1.142 ad pt->pt_overruns = 0;
1342 1.142 ad mutex_spin_exit(&timer_lock);
1343 1.142 ad
1344 1.142 ad mutex_enter(&proclist_mutex);
1345 1.142 ad kpsignal(p, &ksi, NULL);
1346 1.142 ad mutex_exit(&proclist_mutex);
1347 1.142 ad
1348 1.142 ad mutex_spin_enter(&timer_lock);
1349 1.63 thorpej }
1350 1.142 ad mutex_spin_exit(&timer_lock);
1351 1.63 thorpej }
1352 1.63 thorpej
1353 1.42 cgd /*
1354 1.42 cgd * ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
1355 1.42 cgd * for usage and rationale.
1356 1.42 cgd */
1357 1.42 cgd int
1358 1.63 thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1359 1.42 cgd {
1360 1.49 itojun struct timeval tv, delta;
1361 1.101 kardel int rv = 0;
1362 1.42 cgd
1363 1.101 kardel getmicrouptime(&tv);
1364 1.49 itojun timersub(&tv, lasttime, &delta);
1365 1.42 cgd
1366 1.42 cgd /*
1367 1.42 cgd * check for 0,0 is so that the message will be seen at least once,
1368 1.42 cgd * even if interval is huge.
1369 1.42 cgd */
1370 1.42 cgd if (timercmp(&delta, mininterval, >=) ||
1371 1.42 cgd (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1372 1.49 itojun *lasttime = tv;
1373 1.42 cgd rv = 1;
1374 1.42 cgd }
1375 1.50 itojun
1376 1.50 itojun return (rv);
1377 1.50 itojun }
1378 1.50 itojun
1379 1.50 itojun /*
1380 1.50 itojun * ppsratecheck(): packets (or events) per second limitation.
1381 1.50 itojun */
1382 1.50 itojun int
1383 1.63 thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1384 1.50 itojun {
1385 1.50 itojun struct timeval tv, delta;
1386 1.101 kardel int rv;
1387 1.50 itojun
1388 1.101 kardel getmicrouptime(&tv);
1389 1.50 itojun timersub(&tv, lasttime, &delta);
1390 1.50 itojun
1391 1.50 itojun /*
1392 1.50 itojun * check for 0,0 is so that the message will be seen at least once.
1393 1.50 itojun * if more than one second have passed since the last update of
1394 1.50 itojun * lasttime, reset the counter.
1395 1.50 itojun *
1396 1.50 itojun * we do increment *curpps even in *curpps < maxpps case, as some may
1397 1.50 itojun * try to use *curpps for stat purposes as well.
1398 1.50 itojun */
1399 1.50 itojun if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1400 1.50 itojun delta.tv_sec >= 1) {
1401 1.50 itojun *lasttime = tv;
1402 1.50 itojun *curpps = 0;
1403 1.69 dyoung }
1404 1.69 dyoung if (maxpps < 0)
1405 1.53 itojun rv = 1;
1406 1.53 itojun else if (*curpps < maxpps)
1407 1.50 itojun rv = 1;
1408 1.50 itojun else
1409 1.50 itojun rv = 0;
1410 1.50 itojun
1411 1.51 jhawk #if 1 /*DIAGNOSTIC?*/
1412 1.50 itojun /* be careful about wrap-around */
1413 1.50 itojun if (*curpps + 1 > *curpps)
1414 1.50 itojun *curpps = *curpps + 1;
1415 1.50 itojun #else
1416 1.50 itojun /*
1417 1.50 itojun * assume that there's not too many calls to this function.
1418 1.50 itojun * not sure if the assumption holds, as it depends on *caller's*
1419 1.50 itojun * behavior, not the behavior of this function.
1420 1.50 itojun * IMHO it is wrong to make assumption on the caller's behavior,
1421 1.51 jhawk * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1422 1.50 itojun */
1423 1.50 itojun *curpps = *curpps + 1;
1424 1.50 itojun #endif
1425 1.42 cgd
1426 1.42 cgd return (rv);
1427 1.1 cgd }
1428