Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.143
      1  1.143        ad /*	$NetBSD: kern_time.c,v 1.143 2008/04/21 12:56:31 ad Exp $	*/
      2   1.42       cgd 
      3   1.42       cgd /*-
      4  1.142        ad  * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.42       cgd  * All rights reserved.
      6   1.42       cgd  *
      7   1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8   1.42       cgd  * by Christopher G. Demetriou.
      9   1.42       cgd  *
     10   1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11   1.42       cgd  * modification, are permitted provided that the following conditions
     12   1.42       cgd  * are met:
     13   1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14   1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15   1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17   1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18   1.42       cgd  * 3. All advertising materials mentioning features or use of this software
     19   1.42       cgd  *    must display the following acknowledgement:
     20   1.42       cgd  *	This product includes software developed by the NetBSD
     21   1.42       cgd  *	Foundation, Inc. and its contributors.
     22   1.42       cgd  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.42       cgd  *    contributors may be used to endorse or promote products derived
     24   1.42       cgd  *    from this software without specific prior written permission.
     25   1.42       cgd  *
     26   1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     37   1.42       cgd  */
     38    1.9       cgd 
     39    1.1       cgd /*
     40    1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     41    1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     42    1.1       cgd  *
     43    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     44    1.1       cgd  * modification, are permitted provided that the following conditions
     45    1.1       cgd  * are met:
     46    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     47    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     48    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     49    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     50    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     51   1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     52    1.1       cgd  *    may be used to endorse or promote products derived from this software
     53    1.1       cgd  *    without specific prior written permission.
     54    1.1       cgd  *
     55    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65    1.1       cgd  * SUCH DAMAGE.
     66    1.1       cgd  *
     67   1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     68    1.1       cgd  */
     69   1.58     lukem 
     70   1.58     lukem #include <sys/cdefs.h>
     71  1.143        ad __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.143 2008/04/21 12:56:31 ad Exp $");
     72    1.1       cgd 
     73    1.5   mycroft #include <sys/param.h>
     74    1.5   mycroft #include <sys/resourcevar.h>
     75    1.5   mycroft #include <sys/kernel.h>
     76    1.8       cgd #include <sys/systm.h>
     77    1.5   mycroft #include <sys/proc.h>
     78    1.8       cgd #include <sys/vnode.h>
     79   1.17  christos #include <sys/signalvar.h>
     80   1.25     perry #include <sys/syslog.h>
     81  1.101    kardel #include <sys/timetc.h>
     82  1.143        ad #include <sys/timex.h>
     83   1.99      elad #include <sys/kauth.h>
     84   1.11       cgd #include <sys/mount.h>
     85   1.11       cgd #include <sys/syscallargs.h>
     86  1.143        ad #include <sys/cpu.h>
     87   1.19  christos 
     88   1.37   thorpej #include <uvm/uvm_extern.h>
     89   1.37   thorpej 
     90  1.142        ad static void	timer_intr(void *);
     91  1.142        ad static void	itimerfire(struct ptimer *);
     92  1.142        ad static void	itimerfree(struct ptimers *, int);
     93  1.142        ad 
     94  1.131        ad kmutex_t	time_lock;
     95  1.142        ad kmutex_t	timer_lock;
     96  1.142        ad 
     97  1.142        ad static void	*timer_sih;
     98  1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     99  1.131        ad 
    100   1.97    simonb POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    101  1.118        ad     &pool_allocator_nointr, IPL_NONE);
    102   1.97    simonb POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    103  1.118        ad     &pool_allocator_nointr, IPL_NONE);
    104   1.97    simonb 
    105  1.131        ad /*
    106  1.131        ad  * Initialize timekeeping.
    107  1.131        ad  */
    108  1.131        ad void
    109  1.131        ad time_init(void)
    110  1.131        ad {
    111  1.131        ad 
    112  1.131        ad 	mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
    113  1.131        ad }
    114  1.131        ad 
    115  1.142        ad void
    116  1.142        ad time_init2(void)
    117  1.142        ad {
    118  1.142        ad 
    119  1.142        ad 	TAILQ_INIT(&timer_queue);
    120  1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    121  1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    122  1.142        ad 	    timer_intr, NULL);
    123  1.142        ad }
    124  1.142        ad 
    125   1.63   thorpej /* Time of day and interval timer support.
    126    1.1       cgd  *
    127    1.1       cgd  * These routines provide the kernel entry points to get and set
    128    1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    129    1.1       cgd  * here provide support for adding and subtracting timeval structures
    130    1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    131    1.1       cgd  * timers when they expire.
    132    1.1       cgd  */
    133    1.1       cgd 
    134   1.22       jtc /* This function is used by clock_settime and settimeofday */
    135  1.132      elad static int
    136  1.132      elad settime1(struct proc *p, struct timespec *ts, bool check_kauth)
    137   1.22       jtc {
    138   1.98  christos 	struct timeval delta, tv;
    139  1.101    kardel 	struct timeval now;
    140  1.101    kardel 	struct timespec ts1;
    141  1.137      yamt 	struct bintime btdelta;
    142  1.129        ad 	lwp_t *l;
    143  1.129        ad 	int s;
    144   1.22       jtc 
    145   1.98  christos 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    146   1.98  christos 
    147   1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    148  1.129        ad 	s = splclock();
    149  1.101    kardel 	microtime(&now);
    150  1.101    kardel 	timersub(&tv, &now, &delta);
    151  1.132      elad 
    152  1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    153  1.134      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
    154  1.132      elad 	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
    155  1.129        ad 		splx(s);
    156   1.29       tls 		return (EPERM);
    157   1.55      tron 	}
    158  1.132      elad 
    159   1.29       tls #ifdef notyet
    160  1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    161  1.129        ad 		splx(s);
    162   1.29       tls 		return (EPERM);
    163   1.55      tron 	}
    164   1.29       tls #endif
    165  1.103    kardel 
    166  1.103    kardel 	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
    167  1.101    kardel 	tc_setclock(&ts1);
    168  1.103    kardel 
    169   1.22       jtc 	timeradd(&boottime, &delta, &boottime);
    170  1.103    kardel 
    171   1.47   thorpej 	/*
    172  1.129        ad 	 * XXXSMP: There is a short race between setting the time above
    173  1.129        ad 	 * and adjusting LWP's run times.  Fixing this properly means
    174  1.129        ad 	 * pausing all CPUs while we adjust the clock.
    175   1.47   thorpej 	 */
    176  1.137      yamt 	timeval2bintime(&delta, &btdelta);
    177  1.129        ad 	mutex_enter(&proclist_lock);
    178  1.129        ad 	LIST_FOREACH(l, &alllwp, l_list) {
    179  1.129        ad 		lwp_lock(l);
    180  1.137      yamt 		bintime_add(&l->l_stime, &btdelta);
    181  1.129        ad 		lwp_unlock(l);
    182  1.129        ad 	}
    183  1.129        ad 	mutex_exit(&proclist_lock);
    184   1.22       jtc 	resettodr();
    185  1.129        ad 	splx(s);
    186  1.129        ad 
    187   1.29       tls 	return (0);
    188   1.22       jtc }
    189   1.22       jtc 
    190  1.132      elad int
    191  1.132      elad settime(struct proc *p, struct timespec *ts)
    192  1.132      elad {
    193  1.132      elad 	return (settime1(p, ts, true));
    194  1.132      elad }
    195  1.132      elad 
    196   1.22       jtc /* ARGSUSED */
    197   1.22       jtc int
    198  1.140      yamt sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
    199  1.140      yamt     register_t *retval)
    200   1.22       jtc {
    201  1.135       dsl 	/* {
    202   1.22       jtc 		syscallarg(clockid_t) clock_id;
    203   1.23       cgd 		syscallarg(struct timespec *) tp;
    204  1.135       dsl 	} */
    205   1.22       jtc 	clockid_t clock_id;
    206   1.22       jtc 	struct timespec ats;
    207   1.22       jtc 
    208   1.22       jtc 	clock_id = SCARG(uap, clock_id);
    209   1.61    simonb 	switch (clock_id) {
    210   1.61    simonb 	case CLOCK_REALTIME:
    211   1.96    simonb 		nanotime(&ats);
    212   1.61    simonb 		break;
    213   1.61    simonb 	case CLOCK_MONOTONIC:
    214  1.101    kardel 		nanouptime(&ats);
    215   1.61    simonb 		break;
    216   1.61    simonb 	default:
    217   1.22       jtc 		return (EINVAL);
    218   1.61    simonb 	}
    219   1.22       jtc 
    220   1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    221   1.22       jtc }
    222   1.22       jtc 
    223   1.22       jtc /* ARGSUSED */
    224   1.22       jtc int
    225  1.140      yamt sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
    226  1.140      yamt     register_t *retval)
    227   1.22       jtc {
    228  1.135       dsl 	/* {
    229   1.22       jtc 		syscallarg(clockid_t) clock_id;
    230   1.23       cgd 		syscallarg(const struct timespec *) tp;
    231  1.135       dsl 	} */
    232   1.22       jtc 
    233  1.132      elad 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
    234  1.132      elad 	    true);
    235   1.56      manu }
    236   1.56      manu 
    237   1.56      manu 
    238   1.56      manu int
    239  1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    240  1.132      elad     bool check_kauth)
    241   1.56      manu {
    242   1.60      manu 	struct timespec ats;
    243   1.56      manu 	int error;
    244   1.56      manu 
    245   1.60      manu 	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
    246   1.60      manu 		return (error);
    247   1.60      manu 
    248   1.61    simonb 	switch (clock_id) {
    249   1.61    simonb 	case CLOCK_REALTIME:
    250  1.132      elad 		if ((error = settime1(p, &ats, check_kauth)) != 0)
    251   1.61    simonb 			return (error);
    252   1.61    simonb 		break;
    253   1.61    simonb 	case CLOCK_MONOTONIC:
    254   1.61    simonb 		return (EINVAL);	/* read-only clock */
    255   1.61    simonb 	default:
    256   1.56      manu 		return (EINVAL);
    257   1.61    simonb 	}
    258   1.22       jtc 
    259   1.22       jtc 	return 0;
    260   1.22       jtc }
    261   1.22       jtc 
    262   1.22       jtc int
    263  1.140      yamt sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
    264  1.140      yamt     register_t *retval)
    265   1.22       jtc {
    266  1.135       dsl 	/* {
    267   1.22       jtc 		syscallarg(clockid_t) clock_id;
    268   1.23       cgd 		syscallarg(struct timespec *) tp;
    269  1.135       dsl 	} */
    270   1.22       jtc 	clockid_t clock_id;
    271   1.22       jtc 	struct timespec ts;
    272   1.22       jtc 	int error = 0;
    273   1.22       jtc 
    274   1.22       jtc 	clock_id = SCARG(uap, clock_id);
    275   1.61    simonb 	switch (clock_id) {
    276   1.61    simonb 	case CLOCK_REALTIME:
    277   1.61    simonb 	case CLOCK_MONOTONIC:
    278   1.22       jtc 		ts.tv_sec = 0;
    279  1.102    kardel 		if (tc_getfrequency() > 1000000000)
    280  1.102    kardel 			ts.tv_nsec = 1;
    281  1.102    kardel 		else
    282  1.102    kardel 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    283   1.61    simonb 		break;
    284   1.61    simonb 	default:
    285   1.61    simonb 		return (EINVAL);
    286   1.61    simonb 	}
    287   1.22       jtc 
    288   1.61    simonb 	if (SCARG(uap, tp))
    289   1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    290   1.22       jtc 
    291   1.22       jtc 	return error;
    292   1.22       jtc }
    293   1.22       jtc 
    294   1.27       jtc /* ARGSUSED */
    295   1.27       jtc int
    296  1.140      yamt sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
    297  1.140      yamt     register_t *retval)
    298   1.27       jtc {
    299  1.135       dsl 	/* {
    300  1.101    kardel 		syscallarg(struct timespec *) rqtp;
    301  1.101    kardel 		syscallarg(struct timespec *) rmtp;
    302  1.135       dsl 	} */
    303  1.101    kardel 	struct timespec rmt, rqt;
    304  1.120       dsl 	int error, error1;
    305  1.101    kardel 
    306  1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    307  1.101    kardel 	if (error)
    308  1.101    kardel 		return (error);
    309  1.101    kardel 
    310  1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    311  1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    312  1.120       dsl 		return error;
    313  1.120       dsl 
    314  1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    315  1.120       dsl 	return error1 ? error1 : error;
    316  1.120       dsl }
    317  1.120       dsl 
    318  1.120       dsl int
    319  1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    320  1.120       dsl {
    321  1.141      yamt 	struct timespec rmtstart;
    322  1.120       dsl 	int error, timo;
    323  1.120       dsl 
    324  1.120       dsl 	if (itimespecfix(rqt))
    325  1.101    kardel 		return (EINVAL);
    326  1.101    kardel 
    327  1.120       dsl 	timo = tstohz(rqt);
    328  1.101    kardel 	/*
    329  1.101    kardel 	 * Avoid inadvertantly sleeping forever
    330  1.101    kardel 	 */
    331  1.101    kardel 	if (timo == 0)
    332  1.101    kardel 		timo = 1;
    333  1.141      yamt 	getnanouptime(&rmtstart);
    334  1.141      yamt again:
    335  1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    336  1.141      yamt 	if (rmt != NULL || error == 0) {
    337  1.141      yamt 		struct timespec rmtend;
    338  1.141      yamt 		struct timespec t0;
    339  1.141      yamt 		struct timespec *t;
    340  1.101    kardel 
    341  1.141      yamt 		getnanouptime(&rmtend);
    342  1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    343  1.141      yamt 		timespecsub(&rmtend, &rmtstart, t);
    344  1.141      yamt 		timespecsub(rqt, t, t);
    345  1.141      yamt 		if (t->tv_sec < 0)
    346  1.141      yamt 			timespecclear(t);
    347  1.141      yamt 		if (error == 0) {
    348  1.141      yamt 			timo = tstohz(t);
    349  1.141      yamt 			if (timo > 0)
    350  1.141      yamt 				goto again;
    351  1.141      yamt 		}
    352  1.141      yamt 	}
    353  1.104    kardel 
    354  1.101    kardel 	if (error == ERESTART)
    355  1.101    kardel 		error = EINTR;
    356  1.101    kardel 	if (error == EWOULDBLOCK)
    357  1.101    kardel 		error = 0;
    358  1.101    kardel 
    359  1.101    kardel 	return error;
    360   1.27       jtc }
    361   1.22       jtc 
    362    1.1       cgd /* ARGSUSED */
    363    1.3    andrew int
    364  1.140      yamt sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
    365  1.140      yamt     register_t *retval)
    366   1.15   thorpej {
    367  1.135       dsl 	/* {
    368   1.11       cgd 		syscallarg(struct timeval *) tp;
    369  1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    370  1.135       dsl 	} */
    371    1.1       cgd 	struct timeval atv;
    372    1.1       cgd 	int error = 0;
    373   1.25     perry 	struct timezone tzfake;
    374    1.1       cgd 
    375   1.11       cgd 	if (SCARG(uap, tp)) {
    376    1.1       cgd 		microtime(&atv);
    377   1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    378   1.17  christos 		if (error)
    379    1.1       cgd 			return (error);
    380    1.1       cgd 	}
    381   1.25     perry 	if (SCARG(uap, tzp)) {
    382   1.25     perry 		/*
    383   1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    384   1.25     perry 		 * fake up a timezone struct and return it if demanded.
    385   1.25     perry 		 */
    386   1.25     perry 		tzfake.tz_minuteswest = 0;
    387   1.25     perry 		tzfake.tz_dsttime = 0;
    388   1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    389   1.25     perry 	}
    390    1.1       cgd 	return (error);
    391    1.1       cgd }
    392    1.1       cgd 
    393    1.1       cgd /* ARGSUSED */
    394    1.3    andrew int
    395  1.140      yamt sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
    396  1.140      yamt     register_t *retval)
    397   1.15   thorpej {
    398  1.135       dsl 	/* {
    399   1.24       cgd 		syscallarg(const struct timeval *) tv;
    400  1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    401  1.135       dsl 	} */
    402   1.60      manu 
    403  1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    404   1.60      manu }
    405   1.60      manu 
    406   1.60      manu int
    407  1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    408  1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    409   1.60      manu {
    410   1.22       jtc 	struct timeval atv;
    411   1.98  christos 	struct timespec ts;
    412   1.22       jtc 	int error;
    413    1.1       cgd 
    414    1.8       cgd 	/* Verify all parameters before changing time. */
    415  1.119       dsl 
    416   1.25     perry 	/*
    417   1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    418   1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    419   1.25     perry 	 */
    420   1.98  christos 	if (utzp)
    421   1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    422  1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    423   1.98  christos 
    424   1.98  christos 	if (utv == NULL)
    425   1.98  christos 		return 0;
    426   1.98  christos 
    427  1.119       dsl 	if (userspace) {
    428  1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    429  1.119       dsl 			return error;
    430  1.119       dsl 		utv = &atv;
    431  1.119       dsl 	}
    432  1.119       dsl 
    433  1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    434  1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    435    1.1       cgd }
    436    1.1       cgd 
    437   1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    438    1.1       cgd 
    439    1.1       cgd /* ARGSUSED */
    440    1.3    andrew int
    441  1.140      yamt sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
    442  1.140      yamt     register_t *retval)
    443   1.15   thorpej {
    444  1.135       dsl 	/* {
    445   1.24       cgd 		syscallarg(const struct timeval *) delta;
    446   1.11       cgd 		syscallarg(struct timeval *) olddelta;
    447  1.135       dsl 	} */
    448   1.56      manu 	int error;
    449    1.1       cgd 
    450  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    451  1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    452    1.1       cgd 		return (error);
    453   1.17  christos 
    454  1.105        ad 	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
    455   1.56      manu }
    456   1.56      manu 
    457   1.56      manu int
    458  1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    459   1.56      manu {
    460   1.60      manu 	struct timeval atv;
    461  1.101    kardel 	int error = 0;
    462  1.101    kardel 
    463  1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    464  1.101    kardel 
    465  1.101    kardel 	if (olddelta) {
    466  1.143        ad 		mutex_spin_enter(&timecounter_lock);
    467  1.101    kardel 		atv.tv_sec = time_adjtime / 1000000;
    468  1.101    kardel 		atv.tv_usec = time_adjtime % 1000000;
    469  1.143        ad 		mutex_spin_exit(&timecounter_lock);
    470  1.101    kardel 		if (atv.tv_usec < 0) {
    471  1.101    kardel 			atv.tv_usec += 1000000;
    472  1.101    kardel 			atv.tv_sec--;
    473  1.101    kardel 		}
    474  1.101    kardel 		error = copyout(&atv, olddelta, sizeof(struct timeval));
    475  1.101    kardel 		if (error)
    476  1.101    kardel 			return (error);
    477  1.101    kardel 	}
    478  1.101    kardel 
    479  1.101    kardel 	if (delta) {
    480  1.101    kardel 		error = copyin(delta, &atv, sizeof(struct timeval));
    481  1.101    kardel 		if (error)
    482  1.101    kardel 			return (error);
    483  1.101    kardel 
    484  1.143        ad 		mutex_spin_enter(&timecounter_lock);
    485  1.101    kardel 		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
    486  1.101    kardel 			atv.tv_usec;
    487  1.143        ad 		if (time_adjtime) {
    488  1.101    kardel 			/* We need to save the system time during shutdown */
    489  1.101    kardel 			time_adjusted |= 1;
    490  1.143        ad 		}
    491  1.143        ad 		mutex_spin_exit(&timecounter_lock);
    492  1.101    kardel 	}
    493  1.101    kardel 
    494   1.79       chs 	return error;
    495    1.1       cgd }
    496    1.1       cgd 
    497    1.1       cgd /*
    498   1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    499   1.63   thorpej  * timer_*() family of routines are supported.
    500    1.1       cgd  *
    501   1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    502   1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    503   1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    504   1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    505   1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    506   1.63   thorpej  * syscall.
    507    1.1       cgd  *
    508   1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    509   1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    510    1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    511   1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    512   1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    513   1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    514   1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    515   1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    516   1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    517   1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    518   1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    519   1.63   thorpej 
    520   1.63   thorpej /* Allocate a POSIX realtime timer. */
    521   1.63   thorpej int
    522  1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    523  1.140      yamt     register_t *retval)
    524   1.63   thorpej {
    525  1.135       dsl 	/* {
    526   1.63   thorpej 		syscallarg(clockid_t) clock_id;
    527   1.63   thorpej 		syscallarg(struct sigevent *) evp;
    528   1.63   thorpej 		syscallarg(timer_t *) timerid;
    529  1.135       dsl 	} */
    530   1.92      cube 
    531   1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    532  1.105        ad 	    SCARG(uap, evp), copyin, l);
    533   1.92      cube }
    534   1.92      cube 
    535   1.92      cube int
    536   1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    537  1.105        ad     copyin_t fetch_event, struct lwp *l)
    538   1.92      cube {
    539   1.92      cube 	int error;
    540   1.92      cube 	timer_t timerid;
    541  1.142        ad 	struct ptimers *pts;
    542   1.63   thorpej 	struct ptimer *pt;
    543  1.105        ad 	struct proc *p;
    544  1.105        ad 
    545  1.105        ad 	p = l->l_proc;
    546   1.63   thorpej 
    547  1.142        ad 	if (id < CLOCK_REALTIME || id > CLOCK_PROF)
    548   1.63   thorpej 		return (EINVAL);
    549   1.63   thorpej 
    550  1.142        ad 	if ((pts = p->p_timers) == NULL)
    551  1.142        ad 		pts = timers_alloc(p);
    552   1.63   thorpej 
    553   1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    554  1.142        ad 	if (evp != NULL) {
    555   1.63   thorpej 		if (((error =
    556   1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    557   1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    558   1.63   thorpej 			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
    559   1.63   thorpej 			pool_put(&ptimer_pool, pt);
    560   1.63   thorpej 			return (error ? error : EINVAL);
    561   1.63   thorpej 		}
    562  1.142        ad 	}
    563  1.142        ad 
    564  1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    565  1.142        ad 	mutex_spin_enter(&timer_lock);
    566  1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    567  1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    568  1.142        ad 			break;
    569  1.142        ad 	if (timerid == TIMER_MAX) {
    570  1.142        ad 		mutex_spin_exit(&timer_lock);
    571  1.142        ad 		pool_put(&ptimer_pool, pt);
    572  1.142        ad 		return EAGAIN;
    573  1.142        ad 	}
    574  1.142        ad 	if (evp == NULL) {
    575   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    576   1.63   thorpej 		switch (id) {
    577   1.63   thorpej 		case CLOCK_REALTIME:
    578   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    579   1.63   thorpej 			break;
    580   1.63   thorpej 		case CLOCK_VIRTUAL:
    581   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    582   1.63   thorpej 			break;
    583   1.63   thorpej 		case CLOCK_PROF:
    584   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    585   1.63   thorpej 			break;
    586   1.63   thorpej 		}
    587   1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    588   1.63   thorpej 	}
    589   1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    590   1.73  christos 	pt->pt_info.ksi_errno = 0;
    591   1.73  christos 	pt->pt_info.ksi_code = 0;
    592   1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    593  1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    594  1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    595   1.63   thorpej 	pt->pt_type = id;
    596   1.63   thorpej 	pt->pt_proc = p;
    597   1.63   thorpej 	pt->pt_overruns = 0;
    598   1.63   thorpej 	pt->pt_poverruns = 0;
    599   1.64   nathanw 	pt->pt_entry = timerid;
    600  1.142        ad 	pt->pt_queued = false;
    601  1.142        ad 	pt->pt_active = 0;
    602   1.63   thorpej 	timerclear(&pt->pt_time.it_value);
    603  1.142        ad 	callout_init(&pt->pt_ch, 0);
    604  1.142        ad 	pts->pts_timers[timerid] = pt;
    605  1.142        ad 	mutex_spin_exit(&timer_lock);
    606   1.63   thorpej 
    607   1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    608   1.63   thorpej }
    609   1.63   thorpej 
    610   1.63   thorpej /* Delete a POSIX realtime timer */
    611    1.3    andrew int
    612  1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    613  1.140      yamt     register_t *retval)
    614   1.15   thorpej {
    615  1.135       dsl 	/* {
    616   1.63   thorpej 		syscallarg(timer_t) timerid;
    617  1.135       dsl 	} */
    618   1.63   thorpej 	struct proc *p = l->l_proc;
    619   1.65  jdolecek 	timer_t timerid;
    620  1.142        ad 	struct ptimers *pts;
    621   1.63   thorpej 	struct ptimer *pt, *ptn;
    622    1.1       cgd 
    623   1.63   thorpej 	timerid = SCARG(uap, timerid);
    624  1.142        ad 	pts = p->p_timers;
    625  1.142        ad 
    626  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    627  1.142        ad 		return (EINVAL);
    628   1.63   thorpej 
    629  1.142        ad 	mutex_spin_enter(&timer_lock);
    630  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    631  1.142        ad 		mutex_spin_exit(&timer_lock);
    632    1.1       cgd 		return (EINVAL);
    633  1.142        ad 	}
    634  1.142        ad 	if (pt->pt_active) {
    635   1.63   thorpej 		ptn = LIST_NEXT(pt, pt_list);
    636   1.63   thorpej 		LIST_REMOVE(pt, pt_list);
    637   1.63   thorpej 		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    638   1.63   thorpej 			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
    639   1.63   thorpej 			    &ptn->pt_time.it_value);
    640  1.142        ad 		pt->pt_active = 0;
    641   1.63   thorpej 	}
    642  1.142        ad 	itimerfree(pts, timerid);
    643   1.63   thorpej 
    644   1.63   thorpej 	return (0);
    645   1.63   thorpej }
    646   1.63   thorpej 
    647   1.63   thorpej /*
    648   1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    649   1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    650   1.67   nathanw  * time for virtual timers.
    651   1.63   thorpej  * Must be called at splclock().
    652   1.63   thorpej  */
    653   1.63   thorpej void
    654   1.63   thorpej timer_settime(struct ptimer *pt)
    655   1.63   thorpej {
    656   1.63   thorpej 	struct ptimer *ptn, *pptn;
    657   1.63   thorpej 	struct ptlist *ptl;
    658   1.63   thorpej 
    659  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    660  1.142        ad 
    661   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    662   1.63   thorpej 		callout_stop(&pt->pt_ch);
    663   1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    664   1.63   thorpej 			/*
    665   1.63   thorpej 			 * Don't need to check hzto() return value, here.
    666   1.63   thorpej 			 * callout_reset() does it for us.
    667   1.63   thorpej 			 */
    668   1.63   thorpej 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    669   1.63   thorpej 			    realtimerexpire, pt);
    670   1.63   thorpej 		}
    671   1.63   thorpej 	} else {
    672   1.63   thorpej 		if (pt->pt_active) {
    673   1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    674   1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    675   1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    676   1.63   thorpej 				timeradd(&pt->pt_time.it_value,
    677   1.63   thorpej 				    &ptn->pt_time.it_value,
    678   1.63   thorpej 				    &ptn->pt_time.it_value);
    679   1.63   thorpej 		}
    680   1.63   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    681   1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    682   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    683   1.63   thorpej 			else
    684   1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    685   1.63   thorpej 
    686   1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    687   1.63   thorpej 			     ptn && timercmp(&pt->pt_time.it_value,
    688   1.63   thorpej 				 &ptn->pt_time.it_value, >);
    689   1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    690   1.63   thorpej 				timersub(&pt->pt_time.it_value,
    691   1.63   thorpej 				    &ptn->pt_time.it_value,
    692   1.63   thorpej 				    &pt->pt_time.it_value);
    693   1.63   thorpej 
    694   1.63   thorpej 			if (pptn)
    695   1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    696   1.63   thorpej 			else
    697   1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    698   1.63   thorpej 
    699   1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    700   1.63   thorpej 				timersub(&ptn->pt_time.it_value,
    701   1.63   thorpej 				    &pt->pt_time.it_value,
    702   1.63   thorpej 				    &ptn->pt_time.it_value);
    703   1.63   thorpej 
    704   1.63   thorpej 			pt->pt_active = 1;
    705   1.63   thorpej 		} else
    706   1.63   thorpej 			pt->pt_active = 0;
    707   1.63   thorpej 	}
    708   1.63   thorpej }
    709   1.63   thorpej 
    710   1.63   thorpej void
    711   1.63   thorpej timer_gettime(struct ptimer *pt, struct itimerval *aitv)
    712   1.63   thorpej {
    713  1.101    kardel 	struct timeval now;
    714   1.63   thorpej 	struct ptimer *ptn;
    715   1.63   thorpej 
    716  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    717  1.142        ad 
    718   1.63   thorpej 	*aitv = pt->pt_time;
    719   1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    720    1.1       cgd 		/*
    721   1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    722   1.63   thorpej 		 * part of real time timer.  If time for real time
    723   1.63   thorpej 		 * timer has passed return 0, else return difference
    724   1.63   thorpej 		 * between current time and time for the timer to go
    725   1.63   thorpej 		 * off.
    726    1.1       cgd 		 */
    727   1.63   thorpej 		if (timerisset(&aitv->it_value)) {
    728  1.101    kardel 			getmicrotime(&now);
    729  1.101    kardel 			if (timercmp(&aitv->it_value, &now, <))
    730  1.101    kardel 				timerclear(&aitv->it_value);
    731  1.101    kardel 			else
    732  1.101    kardel 				timersub(&aitv->it_value, &now,
    733  1.101    kardel 				    &aitv->it_value);
    734   1.36   thorpej 		}
    735   1.63   thorpej 	} else if (pt->pt_active) {
    736   1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    737   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    738   1.63   thorpej 		else
    739   1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    740   1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    741   1.63   thorpej 			timeradd(&aitv->it_value,
    742   1.63   thorpej 			    &ptn->pt_time.it_value, &aitv->it_value);
    743   1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    744    1.1       cgd 	} else
    745   1.63   thorpej 		timerclear(&aitv->it_value);
    746   1.63   thorpej }
    747   1.63   thorpej 
    748   1.63   thorpej 
    749   1.63   thorpej 
    750   1.63   thorpej /* Set and arm a POSIX realtime timer */
    751   1.63   thorpej int
    752  1.140      yamt sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
    753  1.140      yamt     register_t *retval)
    754   1.63   thorpej {
    755  1.135       dsl 	/* {
    756   1.63   thorpej 		syscallarg(timer_t) timerid;
    757   1.63   thorpej 		syscallarg(int) flags;
    758   1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    759   1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    760  1.135       dsl 	} */
    761   1.92      cube 	int error;
    762   1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    763   1.92      cube 
    764   1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    765   1.92      cube 	    sizeof(struct itimerspec))) != 0)
    766   1.92      cube 		return (error);
    767   1.92      cube 
    768   1.92      cube 	if (SCARG(uap, ovalue))
    769   1.92      cube 		ovp = &ovalue;
    770   1.92      cube 
    771   1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    772   1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    773   1.92      cube 		return error;
    774   1.92      cube 
    775   1.92      cube 	if (ovp)
    776   1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    777   1.92      cube 		    sizeof(struct itimerspec));
    778   1.92      cube 	return 0;
    779   1.92      cube }
    780   1.92      cube 
    781   1.92      cube int
    782   1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    783   1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    784   1.92      cube {
    785  1.101    kardel 	struct timeval now;
    786   1.63   thorpej 	struct itimerval val, oval;
    787  1.142        ad 	struct ptimers *pts;
    788   1.63   thorpej 	struct ptimer *pt;
    789   1.63   thorpej 
    790  1.142        ad 	pts = p->p_timers;
    791   1.63   thorpej 
    792  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    793  1.142        ad 		return EINVAL;
    794   1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
    795   1.92      cube 	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
    796   1.63   thorpej 	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
    797   1.63   thorpej 		return (EINVAL);
    798   1.63   thorpej 
    799  1.142        ad 	mutex_spin_enter(&timer_lock);
    800  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    801  1.142        ad 		mutex_spin_exit(&timer_lock);
    802  1.142        ad 		return (EINVAL);
    803  1.142        ad 	}
    804  1.142        ad 
    805   1.63   thorpej 	oval = pt->pt_time;
    806   1.63   thorpej 	pt->pt_time = val;
    807   1.63   thorpej 
    808   1.67   nathanw 	/*
    809   1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    810   1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    811   1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    812   1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    813   1.67   nathanw 	 * negative, which would confuse the comparison tests.
    814   1.67   nathanw 	 */
    815   1.67   nathanw 	if (timerisset(&pt->pt_time.it_value)) {
    816   1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    817  1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    818  1.101    kardel 				getmicrotime(&now);
    819  1.101    kardel 				timeradd(&pt->pt_time.it_value, &now,
    820  1.101    kardel 				    &pt->pt_time.it_value);
    821  1.101    kardel 			}
    822   1.67   nathanw 		} else {
    823   1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    824  1.101    kardel 				getmicrotime(&now);
    825  1.101    kardel 				timersub(&pt->pt_time.it_value, &now,
    826  1.101    kardel 				    &pt->pt_time.it_value);
    827   1.67   nathanw 				if (!timerisset(&pt->pt_time.it_value) ||
    828   1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    829   1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    830   1.67   nathanw 					pt->pt_time.it_value.tv_usec = 1;
    831   1.67   nathanw 				}
    832   1.67   nathanw 			}
    833   1.67   nathanw 		}
    834   1.67   nathanw 	}
    835   1.67   nathanw 
    836   1.63   thorpej 	timer_settime(pt);
    837  1.142        ad 	mutex_spin_exit(&timer_lock);
    838   1.63   thorpej 
    839   1.92      cube 	if (ovalue) {
    840   1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
    841   1.92      cube 		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
    842   1.63   thorpej 	}
    843   1.63   thorpej 
    844   1.63   thorpej 	return (0);
    845   1.63   thorpej }
    846   1.63   thorpej 
    847   1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    848   1.63   thorpej int
    849  1.140      yamt sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
    850  1.140      yamt     register_t *retval)
    851   1.63   thorpej {
    852  1.135       dsl 	/* {
    853   1.63   thorpej 		syscallarg(timer_t) timerid;
    854   1.63   thorpej 		syscallarg(struct itimerspec *) value;
    855  1.135       dsl 	} */
    856   1.63   thorpej 	struct itimerspec its;
    857   1.92      cube 	int error;
    858   1.92      cube 
    859   1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    860   1.92      cube 	    &its)) != 0)
    861   1.92      cube 		return error;
    862   1.92      cube 
    863   1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    864   1.92      cube }
    865   1.92      cube 
    866   1.92      cube int
    867   1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    868   1.92      cube {
    869   1.63   thorpej 	struct ptimer *pt;
    870  1.142        ad 	struct ptimers *pts;
    871   1.92      cube 	struct itimerval aitv;
    872   1.63   thorpej 
    873  1.142        ad 	pts = p->p_timers;
    874  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    875   1.63   thorpej 		return (EINVAL);
    876  1.142        ad 	mutex_spin_enter(&timer_lock);
    877  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    878  1.142        ad 		mutex_spin_exit(&timer_lock);
    879  1.142        ad 		return (EINVAL);
    880  1.142        ad 	}
    881   1.63   thorpej 	timer_gettime(pt, &aitv);
    882  1.142        ad 	mutex_spin_exit(&timer_lock);
    883   1.63   thorpej 
    884   1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
    885   1.92      cube 	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
    886   1.63   thorpej 
    887   1.92      cube 	return 0;
    888   1.63   thorpej }
    889   1.63   thorpej 
    890   1.63   thorpej /*
    891   1.63   thorpej  * Return the count of the number of times a periodic timer expired
    892   1.63   thorpej  * while a notification was already pending. The counter is reset when
    893   1.63   thorpej  * a timer expires and a notification can be posted.
    894   1.63   thorpej  */
    895   1.63   thorpej int
    896  1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    897  1.140      yamt     register_t *retval)
    898   1.63   thorpej {
    899  1.135       dsl 	/* {
    900   1.63   thorpej 		syscallarg(timer_t) timerid;
    901  1.135       dsl 	} */
    902   1.63   thorpej 	struct proc *p = l->l_proc;
    903  1.142        ad 	struct ptimers *pts;
    904   1.63   thorpej 	int timerid;
    905   1.63   thorpej 	struct ptimer *pt;
    906   1.63   thorpej 
    907   1.63   thorpej 	timerid = SCARG(uap, timerid);
    908   1.63   thorpej 
    909  1.142        ad 	pts = p->p_timers;
    910  1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    911  1.142        ad 		return (EINVAL);
    912  1.142        ad 	mutex_spin_enter(&timer_lock);
    913  1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    914  1.142        ad 		mutex_spin_exit(&timer_lock);
    915   1.63   thorpej 		return (EINVAL);
    916  1.142        ad 	}
    917   1.63   thorpej 	*retval = pt->pt_poverruns;
    918  1.142        ad 	mutex_spin_exit(&timer_lock);
    919   1.63   thorpej 
    920   1.63   thorpej 	return (0);
    921   1.63   thorpej }
    922   1.63   thorpej 
    923   1.63   thorpej /*
    924   1.63   thorpej  * Real interval timer expired:
    925   1.63   thorpej  * send process whose timer expired an alarm signal.
    926   1.63   thorpej  * If time is not set up to reload, then just return.
    927   1.63   thorpej  * Else compute next time timer should go off which is > current time.
    928   1.63   thorpej  * This is where delay in processing this timeout causes multiple
    929   1.63   thorpej  * SIGALRM calls to be compressed into one.
    930   1.63   thorpej  */
    931   1.63   thorpej void
    932   1.63   thorpej realtimerexpire(void *arg)
    933   1.63   thorpej {
    934  1.101    kardel 	struct timeval now;
    935   1.63   thorpej 	struct ptimer *pt;
    936   1.63   thorpej 
    937  1.142        ad 	pt = arg;
    938   1.63   thorpej 
    939  1.142        ad 	mutex_spin_enter(&timer_lock);
    940   1.63   thorpej 	itimerfire(pt);
    941   1.63   thorpej 
    942   1.63   thorpej 	if (!timerisset(&pt->pt_time.it_interval)) {
    943   1.63   thorpej 		timerclear(&pt->pt_time.it_value);
    944  1.142        ad 		mutex_spin_exit(&timer_lock);
    945   1.63   thorpej 		return;
    946   1.63   thorpej 	}
    947  1.101    kardel 	for (;;) {
    948  1.101    kardel 		timeradd(&pt->pt_time.it_value,
    949  1.101    kardel 		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
    950  1.101    kardel 		getmicrotime(&now);
    951  1.101    kardel 		if (timercmp(&pt->pt_time.it_value, &now, >)) {
    952  1.101    kardel 			/*
    953  1.101    kardel 			 * Don't need to check hzto() return value, here.
    954  1.101    kardel 			 * callout_reset() does it for us.
    955  1.101    kardel 			 */
    956  1.101    kardel 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    957  1.101    kardel 			    realtimerexpire, pt);
    958  1.142        ad 			mutex_spin_exit(&timer_lock);
    959  1.101    kardel 			return;
    960  1.101    kardel 		}
    961  1.142        ad 		mutex_spin_exit(&timer_lock);
    962  1.101    kardel 		pt->pt_overruns++;
    963  1.142        ad 		mutex_spin_enter(&timer_lock);
    964  1.101    kardel 	}
    965   1.63   thorpej }
    966   1.63   thorpej 
    967   1.63   thorpej /* BSD routine to get the value of an interval timer. */
    968   1.63   thorpej /* ARGSUSED */
    969   1.63   thorpej int
    970  1.140      yamt sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
    971  1.140      yamt     register_t *retval)
    972   1.63   thorpej {
    973  1.135       dsl 	/* {
    974   1.63   thorpej 		syscallarg(int) which;
    975   1.63   thorpej 		syscallarg(struct itimerval *) itv;
    976  1.135       dsl 	} */
    977   1.63   thorpej 	struct proc *p = l->l_proc;
    978   1.63   thorpej 	struct itimerval aitv;
    979   1.91      cube 	int error;
    980   1.91      cube 
    981   1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
    982   1.91      cube 	if (error)
    983   1.91      cube 		return error;
    984   1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
    985   1.91      cube }
    986   1.63   thorpej 
    987   1.91      cube int
    988   1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
    989   1.91      cube {
    990  1.142        ad 	struct ptimers *pts;
    991  1.142        ad 	struct ptimer *pt;
    992   1.63   thorpej 
    993   1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
    994   1.63   thorpej 		return (EINVAL);
    995   1.63   thorpej 
    996  1.142        ad 	mutex_spin_enter(&timer_lock);
    997  1.142        ad 	pts = p->p_timers;
    998  1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
    999   1.91      cube 		timerclear(&itvp->it_value);
   1000   1.91      cube 		timerclear(&itvp->it_interval);
   1001  1.142        ad 	} else
   1002  1.142        ad 		timer_gettime(pt, itvp);
   1003  1.142        ad 	mutex_spin_exit(&timer_lock);
   1004   1.63   thorpej 
   1005   1.91      cube 	return 0;
   1006    1.1       cgd }
   1007    1.1       cgd 
   1008   1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1009    1.1       cgd /* ARGSUSED */
   1010    1.3    andrew int
   1011  1.140      yamt sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
   1012  1.140      yamt     register_t *retval)
   1013   1.15   thorpej {
   1014  1.135       dsl 	/* {
   1015   1.30   mycroft 		syscallarg(int) which;
   1016   1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1017   1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1018  1.135       dsl 	} */
   1019   1.63   thorpej 	struct proc *p = l->l_proc;
   1020   1.30   mycroft 	int which = SCARG(uap, which);
   1021   1.21       cgd 	struct sys_getitimer_args getargs;
   1022   1.91      cube 	const struct itimerval *itvp;
   1023    1.1       cgd 	struct itimerval aitv;
   1024   1.91      cube 	int error;
   1025    1.1       cgd 
   1026   1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1027    1.1       cgd 		return (EINVAL);
   1028   1.11       cgd 	itvp = SCARG(uap, itv);
   1029   1.63   thorpej 	if (itvp &&
   1030   1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1031    1.1       cgd 		return (error);
   1032   1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1033   1.30   mycroft 		SCARG(&getargs, which) = which;
   1034   1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1035   1.63   thorpej 		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
   1036   1.21       cgd 			return (error);
   1037   1.21       cgd 	}
   1038    1.1       cgd 	if (itvp == 0)
   1039    1.1       cgd 		return (0);
   1040   1.91      cube 
   1041   1.91      cube 	return dosetitimer(p, which, &aitv);
   1042   1.91      cube }
   1043   1.91      cube 
   1044   1.91      cube int
   1045   1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1046   1.91      cube {
   1047  1.101    kardel 	struct timeval now;
   1048  1.142        ad 	struct ptimers *pts;
   1049  1.142        ad 	struct ptimer *pt, *spare;
   1050   1.91      cube 
   1051   1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1052    1.1       cgd 		return (EINVAL);
   1053   1.63   thorpej 
   1054   1.63   thorpej 	/*
   1055   1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1056   1.63   thorpej 	 * wants to clear the timer.
   1057   1.63   thorpej 	 */
   1058  1.142        ad 	spare = NULL;
   1059  1.142        ad 	pts = p->p_timers;
   1060  1.142        ad  retry:
   1061  1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1062  1.142        ad 	    pts->pts_timers[which] == NULL))
   1063   1.63   thorpej 		return (0);
   1064  1.142        ad 	if (pts == NULL)
   1065  1.142        ad 		pts = timers_alloc(p);
   1066  1.142        ad 	mutex_spin_enter(&timer_lock);
   1067  1.142        ad 	pt = pts->pts_timers[which];
   1068  1.142        ad 	if (pt == NULL) {
   1069  1.142        ad 		if (spare == NULL) {
   1070  1.142        ad 			mutex_spin_exit(&timer_lock);
   1071  1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1072  1.142        ad 			goto retry;
   1073  1.142        ad 		}
   1074  1.142        ad 		pt = spare;
   1075  1.142        ad 		spare = NULL;
   1076   1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1077   1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1078   1.63   thorpej 		pt->pt_overruns = 0;
   1079   1.63   thorpej 		pt->pt_proc = p;
   1080   1.63   thorpej 		pt->pt_type = which;
   1081   1.64   nathanw 		pt->pt_entry = which;
   1082  1.142        ad 		pt->pt_active = 0;
   1083  1.142        ad 		pt->pt_queued = false;
   1084  1.142        ad 		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1085   1.63   thorpej 		switch (which) {
   1086   1.63   thorpej 		case ITIMER_REAL:
   1087   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1088   1.63   thorpej 			break;
   1089   1.63   thorpej 		case ITIMER_VIRTUAL:
   1090   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1091   1.63   thorpej 			break;
   1092   1.63   thorpej 		case ITIMER_PROF:
   1093   1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1094   1.63   thorpej 			break;
   1095    1.1       cgd 		}
   1096  1.142        ad 		pts->pts_timers[which] = pt;
   1097  1.142        ad 	}
   1098   1.91      cube 	pt->pt_time = *itvp;
   1099   1.63   thorpej 
   1100   1.67   nathanw 	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
   1101   1.67   nathanw 		/* Convert to absolute time */
   1102  1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1103  1.101    kardel 		getmicrotime(&now);
   1104  1.101    kardel 		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1105   1.67   nathanw 	}
   1106   1.63   thorpej 	timer_settime(pt);
   1107  1.142        ad 	mutex_spin_exit(&timer_lock);
   1108  1.142        ad 	if (spare != NULL)
   1109  1.142        ad 		pool_put(&ptimer_pool, spare);
   1110   1.63   thorpej 
   1111    1.1       cgd 	return (0);
   1112    1.1       cgd }
   1113    1.1       cgd 
   1114   1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1115  1.142        ad struct ptimers *
   1116   1.63   thorpej timers_alloc(struct proc *p)
   1117   1.63   thorpej {
   1118  1.142        ad 	struct ptimers *pts;
   1119   1.63   thorpej 	int i;
   1120   1.63   thorpej 
   1121  1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1122   1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1123   1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1124   1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1125   1.63   thorpej 		pts->pts_timers[i] = NULL;
   1126   1.64   nathanw 	pts->pts_fired = 0;
   1127  1.142        ad 	mutex_spin_enter(&timer_lock);
   1128  1.142        ad 	if (p->p_timers == NULL) {
   1129  1.142        ad 		p->p_timers = pts;
   1130  1.142        ad 		mutex_spin_exit(&timer_lock);
   1131  1.142        ad 		return pts;
   1132  1.142        ad 	}
   1133  1.142        ad 	mutex_spin_exit(&timer_lock);
   1134  1.142        ad 	pool_put(&ptimers_pool, pts);
   1135  1.142        ad 	return p->p_timers;
   1136   1.63   thorpej }
   1137   1.63   thorpej 
   1138    1.1       cgd /*
   1139   1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1140   1.63   thorpej  * then clean up all timers and free all the data structures. If
   1141   1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1142   1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1143   1.63   thorpej  * structure if none of those remain.
   1144    1.1       cgd  */
   1145    1.3    andrew void
   1146   1.63   thorpej timers_free(struct proc *p, int which)
   1147    1.6       cgd {
   1148   1.63   thorpej 	struct ptimers *pts;
   1149  1.142        ad 	struct ptimer *ptn;
   1150   1.63   thorpej 	struct timeval tv;
   1151  1.142        ad 	int i;
   1152   1.63   thorpej 
   1153  1.142        ad 	if (p->p_timers == NULL)
   1154  1.142        ad 		return;
   1155   1.63   thorpej 
   1156  1.142        ad 	pts = p->p_timers;
   1157  1.142        ad 	mutex_spin_enter(&timer_lock);
   1158  1.142        ad 	if (which == TIMERS_ALL) {
   1159  1.142        ad 		p->p_timers = NULL;
   1160  1.142        ad 		i = 0;
   1161  1.142        ad 	} else {
   1162  1.142        ad 		timerclear(&tv);
   1163  1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1164  1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1165  1.142        ad 		     ptn = LIST_NEXT(ptn, pt_list))
   1166  1.142        ad 			timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1167  1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1168  1.142        ad 		if (ptn) {
   1169  1.142        ad 			timeradd(&tv, &ptn->pt_time.it_value,
   1170  1.142        ad 			    &ptn->pt_time.it_value);
   1171  1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1172  1.142        ad 		}
   1173  1.142        ad 		timerclear(&tv);
   1174  1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1175  1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1176  1.142        ad 		     ptn = LIST_NEXT(ptn, pt_list))
   1177  1.142        ad 			timeradd(&tv, &ptn->pt_time.it_value, &tv);
   1178  1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1179  1.142        ad 		if (ptn) {
   1180  1.142        ad 			timeradd(&tv, &ptn->pt_time.it_value,
   1181  1.142        ad 			    &ptn->pt_time.it_value);
   1182  1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1183   1.63   thorpej 		}
   1184  1.142        ad 		i = 3;
   1185  1.142        ad 	}
   1186  1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1187  1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1188  1.142        ad 			itimerfree(pts, i);
   1189  1.142        ad 			mutex_spin_enter(&timer_lock);
   1190    1.1       cgd 		}
   1191    1.1       cgd 	}
   1192  1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1193  1.142        ad 	    pts->pts_timers[2] == NULL) {
   1194  1.142        ad 		p->p_timers = NULL;
   1195  1.142        ad 		mutex_spin_exit(&timer_lock);
   1196  1.142        ad 		pool_put(&ptimers_pool, pts);
   1197  1.142        ad 	} else
   1198  1.142        ad 		mutex_spin_exit(&timer_lock);
   1199  1.142        ad }
   1200  1.142        ad 
   1201  1.142        ad static void
   1202  1.142        ad itimerfree(struct ptimers *pts, int index)
   1203  1.142        ad {
   1204  1.142        ad 	struct ptimer *pt;
   1205  1.142        ad 
   1206  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1207  1.142        ad 
   1208  1.142        ad 	pt = pts->pts_timers[index];
   1209  1.142        ad 	pts->pts_timers[index] = NULL;
   1210  1.142        ad 	if (pt->pt_type == CLOCK_REALTIME) {
   1211  1.142        ad 		mutex_spin_exit(&timer_lock);
   1212  1.142        ad 		callout_halt(&pt->pt_ch);
   1213  1.142        ad 	} else if (pt->pt_queued) {
   1214  1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1215  1.142        ad 		mutex_spin_exit(&timer_lock);
   1216  1.142        ad 	} else
   1217  1.142        ad 		mutex_spin_exit(&timer_lock);
   1218  1.142        ad 	callout_destroy(&pt->pt_ch);
   1219  1.142        ad 	pool_put(&ptimer_pool, pt);
   1220    1.1       cgd }
   1221    1.1       cgd 
   1222    1.1       cgd /*
   1223    1.1       cgd  * Decrement an interval timer by a specified number
   1224    1.1       cgd  * of microseconds, which must be less than a second,
   1225    1.1       cgd  * i.e. < 1000000.  If the timer expires, then reload
   1226    1.1       cgd  * it.  In this case, carry over (usec - old value) to
   1227    1.8       cgd  * reduce the value reloaded into the timer so that
   1228    1.1       cgd  * the timer does not drift.  This routine assumes
   1229    1.1       cgd  * that it is called in a context where the timers
   1230    1.1       cgd  * on which it is operating cannot change in value.
   1231    1.1       cgd  */
   1232  1.142        ad static int
   1233   1.63   thorpej itimerdecr(struct ptimer *pt, int usec)
   1234   1.63   thorpej {
   1235   1.45  augustss 	struct itimerval *itp;
   1236    1.1       cgd 
   1237  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1238  1.142        ad 
   1239   1.63   thorpej 	itp = &pt->pt_time;
   1240    1.1       cgd 	if (itp->it_value.tv_usec < usec) {
   1241    1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1242    1.1       cgd 			/* expired, and already in next interval */
   1243    1.1       cgd 			usec -= itp->it_value.tv_usec;
   1244    1.1       cgd 			goto expire;
   1245    1.1       cgd 		}
   1246    1.1       cgd 		itp->it_value.tv_usec += 1000000;
   1247    1.1       cgd 		itp->it_value.tv_sec--;
   1248    1.1       cgd 	}
   1249    1.1       cgd 	itp->it_value.tv_usec -= usec;
   1250    1.1       cgd 	usec = 0;
   1251    1.1       cgd 	if (timerisset(&itp->it_value))
   1252    1.1       cgd 		return (1);
   1253    1.1       cgd 	/* expired, exactly at end of interval */
   1254    1.1       cgd expire:
   1255    1.1       cgd 	if (timerisset(&itp->it_interval)) {
   1256    1.1       cgd 		itp->it_value = itp->it_interval;
   1257    1.1       cgd 		itp->it_value.tv_usec -= usec;
   1258    1.1       cgd 		if (itp->it_value.tv_usec < 0) {
   1259    1.1       cgd 			itp->it_value.tv_usec += 1000000;
   1260    1.1       cgd 			itp->it_value.tv_sec--;
   1261    1.1       cgd 		}
   1262   1.63   thorpej 		timer_settime(pt);
   1263    1.1       cgd 	} else
   1264    1.1       cgd 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
   1265    1.1       cgd 	return (0);
   1266   1.42       cgd }
   1267   1.42       cgd 
   1268  1.142        ad static void
   1269   1.63   thorpej itimerfire(struct ptimer *pt)
   1270   1.63   thorpej {
   1271   1.78        cl 
   1272  1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1273  1.142        ad 
   1274  1.142        ad 	/*
   1275  1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1276  1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1277  1.142        ad 	 */
   1278  1.142        ad 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued)
   1279  1.142        ad 		return;
   1280  1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1281  1.142        ad 	pt->pt_queued = true;
   1282  1.142        ad 	softint_schedule(timer_sih);
   1283  1.142        ad }
   1284  1.142        ad 
   1285  1.142        ad void
   1286  1.142        ad timer_tick(lwp_t *l, bool user)
   1287  1.142        ad {
   1288  1.142        ad 	struct ptimers *pts;
   1289  1.142        ad 	struct ptimer *pt;
   1290  1.142        ad 	proc_t *p;
   1291  1.142        ad 
   1292  1.142        ad 	p = l->l_proc;
   1293  1.142        ad 	if (p->p_timers == NULL)
   1294  1.142        ad 		return;
   1295  1.142        ad 
   1296  1.142        ad 	mutex_spin_enter(&timer_lock);
   1297  1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1298   1.63   thorpej 		/*
   1299  1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1300   1.63   thorpej 		 */
   1301  1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1302  1.142        ad 			if (itimerdecr(pt, tick) == 0)
   1303  1.142        ad 				itimerfire(pt);
   1304  1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1305  1.142        ad 			if (itimerdecr(pt, tick) == 0)
   1306  1.142        ad 				itimerfire(pt);
   1307  1.142        ad 	}
   1308  1.142        ad 	mutex_spin_exit(&timer_lock);
   1309  1.142        ad }
   1310  1.142        ad 
   1311  1.142        ad static void
   1312  1.142        ad timer_intr(void *cookie)
   1313  1.142        ad {
   1314  1.142        ad 	ksiginfo_t ksi;
   1315  1.142        ad 	struct ptimer *pt;
   1316  1.142        ad 	proc_t *p;
   1317  1.142        ad 
   1318  1.142        ad 	mutex_spin_enter(&timer_lock);
   1319  1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1320  1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1321  1.142        ad 		KASSERT(pt->pt_queued);
   1322  1.142        ad 		pt->pt_queued = false;
   1323  1.142        ad 
   1324  1.142        ad 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
   1325  1.142        ad 			continue;
   1326  1.142        ad 		p = pt->pt_proc;
   1327  1.142        ad 		if (pt->pt_proc->p_timers == NULL) {
   1328  1.142        ad 			/* Process is dying. */
   1329  1.142        ad 			continue;
   1330  1.142        ad 		}
   1331  1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1332   1.63   thorpej 			pt->pt_overruns++;
   1333  1.142        ad 			continue;
   1334   1.64   nathanw 		}
   1335  1.142        ad 
   1336  1.142        ad 		KSI_INIT(&ksi);
   1337  1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1338  1.142        ad 		ksi.ksi_code = SI_TIMER;
   1339  1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1340  1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1341  1.142        ad 		pt->pt_overruns = 0;
   1342  1.142        ad 		mutex_spin_exit(&timer_lock);
   1343  1.142        ad 
   1344  1.142        ad 		mutex_enter(&proclist_mutex);
   1345  1.142        ad 		kpsignal(p, &ksi, NULL);
   1346  1.142        ad 		mutex_exit(&proclist_mutex);
   1347  1.142        ad 
   1348  1.142        ad 		mutex_spin_enter(&timer_lock);
   1349   1.63   thorpej 	}
   1350  1.142        ad 	mutex_spin_exit(&timer_lock);
   1351   1.63   thorpej }
   1352   1.63   thorpej 
   1353   1.42       cgd /*
   1354   1.42       cgd  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
   1355   1.42       cgd  * for usage and rationale.
   1356   1.42       cgd  */
   1357   1.42       cgd int
   1358   1.63   thorpej ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
   1359   1.42       cgd {
   1360   1.49    itojun 	struct timeval tv, delta;
   1361  1.101    kardel 	int rv = 0;
   1362   1.42       cgd 
   1363  1.101    kardel 	getmicrouptime(&tv);
   1364   1.49    itojun 	timersub(&tv, lasttime, &delta);
   1365   1.42       cgd 
   1366   1.42       cgd 	/*
   1367   1.42       cgd 	 * check for 0,0 is so that the message will be seen at least once,
   1368   1.42       cgd 	 * even if interval is huge.
   1369   1.42       cgd 	 */
   1370   1.42       cgd 	if (timercmp(&delta, mininterval, >=) ||
   1371   1.42       cgd 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
   1372   1.49    itojun 		*lasttime = tv;
   1373   1.42       cgd 		rv = 1;
   1374   1.42       cgd 	}
   1375   1.50    itojun 
   1376   1.50    itojun 	return (rv);
   1377   1.50    itojun }
   1378   1.50    itojun 
   1379   1.50    itojun /*
   1380   1.50    itojun  * ppsratecheck(): packets (or events) per second limitation.
   1381   1.50    itojun  */
   1382   1.50    itojun int
   1383   1.63   thorpej ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
   1384   1.50    itojun {
   1385   1.50    itojun 	struct timeval tv, delta;
   1386  1.101    kardel 	int rv;
   1387   1.50    itojun 
   1388  1.101    kardel 	getmicrouptime(&tv);
   1389   1.50    itojun 	timersub(&tv, lasttime, &delta);
   1390   1.50    itojun 
   1391   1.50    itojun 	/*
   1392   1.50    itojun 	 * check for 0,0 is so that the message will be seen at least once.
   1393   1.50    itojun 	 * if more than one second have passed since the last update of
   1394   1.50    itojun 	 * lasttime, reset the counter.
   1395   1.50    itojun 	 *
   1396   1.50    itojun 	 * we do increment *curpps even in *curpps < maxpps case, as some may
   1397   1.50    itojun 	 * try to use *curpps for stat purposes as well.
   1398   1.50    itojun 	 */
   1399   1.50    itojun 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
   1400   1.50    itojun 	    delta.tv_sec >= 1) {
   1401   1.50    itojun 		*lasttime = tv;
   1402   1.50    itojun 		*curpps = 0;
   1403   1.69    dyoung 	}
   1404   1.69    dyoung 	if (maxpps < 0)
   1405   1.53    itojun 		rv = 1;
   1406   1.53    itojun 	else if (*curpps < maxpps)
   1407   1.50    itojun 		rv = 1;
   1408   1.50    itojun 	else
   1409   1.50    itojun 		rv = 0;
   1410   1.50    itojun 
   1411   1.51     jhawk #if 1 /*DIAGNOSTIC?*/
   1412   1.50    itojun 	/* be careful about wrap-around */
   1413   1.50    itojun 	if (*curpps + 1 > *curpps)
   1414   1.50    itojun 		*curpps = *curpps + 1;
   1415   1.50    itojun #else
   1416   1.50    itojun 	/*
   1417   1.50    itojun 	 * assume that there's not too many calls to this function.
   1418   1.50    itojun 	 * not sure if the assumption holds, as it depends on *caller's*
   1419   1.50    itojun 	 * behavior, not the behavior of this function.
   1420   1.50    itojun 	 * IMHO it is wrong to make assumption on the caller's behavior,
   1421   1.51     jhawk 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
   1422   1.50    itojun 	 */
   1423   1.50    itojun 	*curpps = *curpps + 1;
   1424   1.50    itojun #endif
   1425   1.42       cgd 
   1426   1.42       cgd 	return (rv);
   1427    1.1       cgd }
   1428