Home | History | Annotate | Line # | Download | only in kern
kern_time.c revision 1.145.2.4
      1  1.145.2.4      yamt /*	$NetBSD: kern_time.c,v 1.145.2.4 2010/03/11 15:04:18 yamt Exp $	*/
      2       1.42       cgd 
      3       1.42       cgd /*-
      4  1.145.2.2      yamt  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5       1.42       cgd  * All rights reserved.
      6       1.42       cgd  *
      7       1.42       cgd  * This code is derived from software contributed to The NetBSD Foundation
      8  1.145.2.2      yamt  * by Christopher G. Demetriou, and by Andrew Doran.
      9       1.42       cgd  *
     10       1.42       cgd  * Redistribution and use in source and binary forms, with or without
     11       1.42       cgd  * modification, are permitted provided that the following conditions
     12       1.42       cgd  * are met:
     13       1.42       cgd  * 1. Redistributions of source code must retain the above copyright
     14       1.42       cgd  *    notice, this list of conditions and the following disclaimer.
     15       1.42       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.42       cgd  *    notice, this list of conditions and the following disclaimer in the
     17       1.42       cgd  *    documentation and/or other materials provided with the distribution.
     18       1.42       cgd  *
     19       1.42       cgd  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.42       cgd  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.42       cgd  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.42       cgd  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.42       cgd  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.42       cgd  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.42       cgd  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.42       cgd  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.42       cgd  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.42       cgd  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.42       cgd  * POSSIBILITY OF SUCH DAMAGE.
     30       1.42       cgd  */
     31        1.9       cgd 
     32        1.1       cgd /*
     33        1.8       cgd  * Copyright (c) 1982, 1986, 1989, 1993
     34        1.8       cgd  *	The Regents of the University of California.  All rights reserved.
     35        1.1       cgd  *
     36        1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37        1.1       cgd  * modification, are permitted provided that the following conditions
     38        1.1       cgd  * are met:
     39        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44       1.72       agc  * 3. Neither the name of the University nor the names of its contributors
     45        1.1       cgd  *    may be used to endorse or promote products derived from this software
     46        1.1       cgd  *    without specific prior written permission.
     47        1.1       cgd  *
     48        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58        1.1       cgd  * SUCH DAMAGE.
     59        1.1       cgd  *
     60       1.33      fvdl  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
     61        1.1       cgd  */
     62       1.58     lukem 
     63       1.58     lukem #include <sys/cdefs.h>
     64  1.145.2.4      yamt __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.145.2.4 2010/03/11 15:04:18 yamt Exp $");
     65        1.1       cgd 
     66        1.5   mycroft #include <sys/param.h>
     67        1.5   mycroft #include <sys/resourcevar.h>
     68        1.5   mycroft #include <sys/kernel.h>
     69        1.8       cgd #include <sys/systm.h>
     70        1.5   mycroft #include <sys/proc.h>
     71        1.8       cgd #include <sys/vnode.h>
     72       1.17  christos #include <sys/signalvar.h>
     73       1.25     perry #include <sys/syslog.h>
     74      1.101    kardel #include <sys/timetc.h>
     75      1.143        ad #include <sys/timex.h>
     76       1.99      elad #include <sys/kauth.h>
     77       1.11       cgd #include <sys/mount.h>
     78  1.145.2.2      yamt #include <sys/sa.h>
     79  1.145.2.2      yamt #include <sys/savar.h>
     80       1.11       cgd #include <sys/syscallargs.h>
     81      1.143        ad #include <sys/cpu.h>
     82       1.19  christos 
     83       1.37   thorpej #include <uvm/uvm_extern.h>
     84       1.37   thorpej 
     85  1.145.2.2      yamt #include "opt_sa.h"
     86  1.145.2.2      yamt 
     87      1.142        ad static void	timer_intr(void *);
     88      1.142        ad static void	itimerfire(struct ptimer *);
     89      1.142        ad static void	itimerfree(struct ptimers *, int);
     90      1.142        ad 
     91      1.142        ad kmutex_t	timer_lock;
     92      1.142        ad 
     93      1.142        ad static void	*timer_sih;
     94      1.142        ad static TAILQ_HEAD(, ptimer) timer_queue;
     95      1.131        ad 
     96  1.145.2.3      yamt struct pool ptimer_pool, ptimers_pool;
     97       1.97    simonb 
     98      1.131        ad /*
     99      1.131        ad  * Initialize timekeeping.
    100      1.131        ad  */
    101      1.131        ad void
    102      1.131        ad time_init(void)
    103      1.131        ad {
    104      1.131        ad 
    105  1.145.2.3      yamt 	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
    106  1.145.2.3      yamt 	    &pool_allocator_nointr, IPL_NONE);
    107  1.145.2.3      yamt 	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
    108  1.145.2.3      yamt 	    &pool_allocator_nointr, IPL_NONE);
    109      1.131        ad }
    110      1.131        ad 
    111      1.142        ad void
    112      1.142        ad time_init2(void)
    113      1.142        ad {
    114      1.142        ad 
    115      1.142        ad 	TAILQ_INIT(&timer_queue);
    116      1.142        ad 	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
    117      1.142        ad 	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    118      1.142        ad 	    timer_intr, NULL);
    119      1.142        ad }
    120      1.142        ad 
    121       1.63   thorpej /* Time of day and interval timer support.
    122        1.1       cgd  *
    123        1.1       cgd  * These routines provide the kernel entry points to get and set
    124        1.1       cgd  * the time-of-day and per-process interval timers.  Subroutines
    125        1.1       cgd  * here provide support for adding and subtracting timeval structures
    126        1.1       cgd  * and decrementing interval timers, optionally reloading the interval
    127        1.1       cgd  * timers when they expire.
    128        1.1       cgd  */
    129        1.1       cgd 
    130       1.22       jtc /* This function is used by clock_settime and settimeofday */
    131      1.132      elad static int
    132  1.145.2.2      yamt settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
    133       1.22       jtc {
    134  1.145.2.2      yamt 	struct timespec delta, now;
    135      1.129        ad 	int s;
    136       1.22       jtc 
    137       1.22       jtc 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
    138      1.129        ad 	s = splclock();
    139  1.145.2.2      yamt 	nanotime(&now);
    140  1.145.2.2      yamt 	timespecsub(ts, &now, &delta);
    141      1.132      elad 
    142      1.134      elad 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
    143  1.145.2.2      yamt 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
    144  1.145.2.2      yamt 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
    145      1.129        ad 		splx(s);
    146       1.29       tls 		return (EPERM);
    147       1.55      tron 	}
    148      1.132      elad 
    149       1.29       tls #ifdef notyet
    150      1.109      elad 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
    151      1.129        ad 		splx(s);
    152       1.29       tls 		return (EPERM);
    153       1.55      tron 	}
    154       1.29       tls #endif
    155      1.103    kardel 
    156  1.145.2.2      yamt 	tc_setclock(ts);
    157      1.103    kardel 
    158  1.145.2.2      yamt 	timespecadd(&boottime, &delta, &boottime);
    159      1.103    kardel 
    160       1.22       jtc 	resettodr();
    161      1.129        ad 	splx(s);
    162      1.129        ad 
    163       1.29       tls 	return (0);
    164       1.22       jtc }
    165       1.22       jtc 
    166      1.132      elad int
    167      1.132      elad settime(struct proc *p, struct timespec *ts)
    168      1.132      elad {
    169      1.132      elad 	return (settime1(p, ts, true));
    170      1.132      elad }
    171      1.132      elad 
    172       1.22       jtc /* ARGSUSED */
    173       1.22       jtc int
    174  1.145.2.2      yamt sys___clock_gettime50(struct lwp *l,
    175  1.145.2.2      yamt     const struct sys___clock_gettime50_args *uap, register_t *retval)
    176       1.22       jtc {
    177      1.135       dsl 	/* {
    178       1.22       jtc 		syscallarg(clockid_t) clock_id;
    179       1.23       cgd 		syscallarg(struct timespec *) tp;
    180      1.135       dsl 	} */
    181       1.22       jtc 	clockid_t clock_id;
    182       1.22       jtc 	struct timespec ats;
    183       1.22       jtc 
    184       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    185       1.61    simonb 	switch (clock_id) {
    186       1.61    simonb 	case CLOCK_REALTIME:
    187       1.96    simonb 		nanotime(&ats);
    188       1.61    simonb 		break;
    189       1.61    simonb 	case CLOCK_MONOTONIC:
    190      1.101    kardel 		nanouptime(&ats);
    191       1.61    simonb 		break;
    192       1.61    simonb 	default:
    193       1.22       jtc 		return (EINVAL);
    194       1.61    simonb 	}
    195       1.22       jtc 
    196       1.24       cgd 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
    197       1.22       jtc }
    198       1.22       jtc 
    199       1.22       jtc /* ARGSUSED */
    200       1.22       jtc int
    201  1.145.2.2      yamt sys___clock_settime50(struct lwp *l,
    202  1.145.2.2      yamt     const struct sys___clock_settime50_args *uap, register_t *retval)
    203       1.22       jtc {
    204      1.135       dsl 	/* {
    205       1.22       jtc 		syscallarg(clockid_t) clock_id;
    206       1.23       cgd 		syscallarg(const struct timespec *) tp;
    207      1.135       dsl 	} */
    208  1.145.2.2      yamt 	int error;
    209  1.145.2.2      yamt 	struct timespec ats;
    210       1.22       jtc 
    211  1.145.2.2      yamt 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
    212  1.145.2.2      yamt 		return error;
    213  1.145.2.2      yamt 
    214  1.145.2.2      yamt 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
    215       1.56      manu }
    216       1.56      manu 
    217       1.56      manu 
    218       1.56      manu int
    219      1.132      elad clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
    220      1.132      elad     bool check_kauth)
    221       1.56      manu {
    222       1.56      manu 	int error;
    223       1.56      manu 
    224       1.61    simonb 	switch (clock_id) {
    225       1.61    simonb 	case CLOCK_REALTIME:
    226  1.145.2.2      yamt 		if ((error = settime1(p, tp, check_kauth)) != 0)
    227       1.61    simonb 			return (error);
    228       1.61    simonb 		break;
    229       1.61    simonb 	case CLOCK_MONOTONIC:
    230       1.61    simonb 		return (EINVAL);	/* read-only clock */
    231       1.61    simonb 	default:
    232       1.56      manu 		return (EINVAL);
    233       1.61    simonb 	}
    234       1.22       jtc 
    235       1.22       jtc 	return 0;
    236       1.22       jtc }
    237       1.22       jtc 
    238       1.22       jtc int
    239  1.145.2.2      yamt sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
    240      1.140      yamt     register_t *retval)
    241       1.22       jtc {
    242      1.135       dsl 	/* {
    243       1.22       jtc 		syscallarg(clockid_t) clock_id;
    244       1.23       cgd 		syscallarg(struct timespec *) tp;
    245      1.135       dsl 	} */
    246       1.22       jtc 	clockid_t clock_id;
    247       1.22       jtc 	struct timespec ts;
    248       1.22       jtc 	int error = 0;
    249       1.22       jtc 
    250       1.22       jtc 	clock_id = SCARG(uap, clock_id);
    251       1.61    simonb 	switch (clock_id) {
    252       1.61    simonb 	case CLOCK_REALTIME:
    253       1.61    simonb 	case CLOCK_MONOTONIC:
    254       1.22       jtc 		ts.tv_sec = 0;
    255      1.102    kardel 		if (tc_getfrequency() > 1000000000)
    256      1.102    kardel 			ts.tv_nsec = 1;
    257      1.102    kardel 		else
    258      1.102    kardel 			ts.tv_nsec = 1000000000 / tc_getfrequency();
    259       1.61    simonb 		break;
    260       1.61    simonb 	default:
    261       1.61    simonb 		return (EINVAL);
    262       1.61    simonb 	}
    263       1.22       jtc 
    264       1.61    simonb 	if (SCARG(uap, tp))
    265       1.35     perry 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
    266       1.22       jtc 
    267       1.22       jtc 	return error;
    268       1.22       jtc }
    269       1.22       jtc 
    270       1.27       jtc /* ARGSUSED */
    271       1.27       jtc int
    272  1.145.2.2      yamt sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
    273      1.140      yamt     register_t *retval)
    274       1.27       jtc {
    275      1.135       dsl 	/* {
    276      1.101    kardel 		syscallarg(struct timespec *) rqtp;
    277      1.101    kardel 		syscallarg(struct timespec *) rmtp;
    278      1.135       dsl 	} */
    279      1.101    kardel 	struct timespec rmt, rqt;
    280      1.120       dsl 	int error, error1;
    281      1.101    kardel 
    282      1.101    kardel 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
    283      1.101    kardel 	if (error)
    284      1.101    kardel 		return (error);
    285      1.101    kardel 
    286      1.120       dsl 	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
    287      1.120       dsl 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
    288      1.120       dsl 		return error;
    289      1.120       dsl 
    290      1.120       dsl 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
    291      1.120       dsl 	return error1 ? error1 : error;
    292      1.120       dsl }
    293      1.120       dsl 
    294      1.120       dsl int
    295      1.120       dsl nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
    296      1.120       dsl {
    297      1.141      yamt 	struct timespec rmtstart;
    298      1.120       dsl 	int error, timo;
    299      1.120       dsl 
    300  1.145.2.2      yamt 	if ((error = itimespecfix(rqt)) != 0)
    301  1.145.2.2      yamt 		return error;
    302      1.101    kardel 
    303      1.120       dsl 	timo = tstohz(rqt);
    304      1.101    kardel 	/*
    305      1.101    kardel 	 * Avoid inadvertantly sleeping forever
    306      1.101    kardel 	 */
    307      1.101    kardel 	if (timo == 0)
    308      1.101    kardel 		timo = 1;
    309      1.141      yamt 	getnanouptime(&rmtstart);
    310      1.141      yamt again:
    311      1.141      yamt 	error = kpause("nanoslp", true, timo, NULL);
    312      1.141      yamt 	if (rmt != NULL || error == 0) {
    313      1.141      yamt 		struct timespec rmtend;
    314      1.141      yamt 		struct timespec t0;
    315      1.141      yamt 		struct timespec *t;
    316      1.101    kardel 
    317      1.141      yamt 		getnanouptime(&rmtend);
    318      1.141      yamt 		t = (rmt != NULL) ? rmt : &t0;
    319      1.141      yamt 		timespecsub(&rmtend, &rmtstart, t);
    320      1.141      yamt 		timespecsub(rqt, t, t);
    321      1.141      yamt 		if (t->tv_sec < 0)
    322      1.141      yamt 			timespecclear(t);
    323      1.141      yamt 		if (error == 0) {
    324      1.141      yamt 			timo = tstohz(t);
    325      1.141      yamt 			if (timo > 0)
    326      1.141      yamt 				goto again;
    327      1.141      yamt 		}
    328      1.141      yamt 	}
    329      1.104    kardel 
    330      1.101    kardel 	if (error == ERESTART)
    331      1.101    kardel 		error = EINTR;
    332      1.101    kardel 	if (error == EWOULDBLOCK)
    333      1.101    kardel 		error = 0;
    334      1.101    kardel 
    335      1.101    kardel 	return error;
    336       1.27       jtc }
    337       1.22       jtc 
    338        1.1       cgd /* ARGSUSED */
    339        1.3    andrew int
    340  1.145.2.2      yamt sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
    341      1.140      yamt     register_t *retval)
    342       1.15   thorpej {
    343      1.135       dsl 	/* {
    344       1.11       cgd 		syscallarg(struct timeval *) tp;
    345      1.135       dsl 		syscallarg(void *) tzp;		really "struct timezone *";
    346      1.135       dsl 	} */
    347        1.1       cgd 	struct timeval atv;
    348        1.1       cgd 	int error = 0;
    349       1.25     perry 	struct timezone tzfake;
    350        1.1       cgd 
    351       1.11       cgd 	if (SCARG(uap, tp)) {
    352        1.1       cgd 		microtime(&atv);
    353       1.35     perry 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
    354       1.17  christos 		if (error)
    355        1.1       cgd 			return (error);
    356        1.1       cgd 	}
    357       1.25     perry 	if (SCARG(uap, tzp)) {
    358       1.25     perry 		/*
    359       1.32   mycroft 		 * NetBSD has no kernel notion of time zone, so we just
    360       1.25     perry 		 * fake up a timezone struct and return it if demanded.
    361       1.25     perry 		 */
    362       1.25     perry 		tzfake.tz_minuteswest = 0;
    363       1.25     perry 		tzfake.tz_dsttime = 0;
    364       1.35     perry 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
    365       1.25     perry 	}
    366        1.1       cgd 	return (error);
    367        1.1       cgd }
    368        1.1       cgd 
    369        1.1       cgd /* ARGSUSED */
    370        1.3    andrew int
    371  1.145.2.2      yamt sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
    372      1.140      yamt     register_t *retval)
    373       1.15   thorpej {
    374      1.135       dsl 	/* {
    375       1.24       cgd 		syscallarg(const struct timeval *) tv;
    376      1.140      yamt 		syscallarg(const void *) tzp; really "const struct timezone *";
    377      1.135       dsl 	} */
    378       1.60      manu 
    379      1.119       dsl 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
    380       1.60      manu }
    381       1.60      manu 
    382       1.60      manu int
    383      1.119       dsl settimeofday1(const struct timeval *utv, bool userspace,
    384      1.119       dsl     const void *utzp, struct lwp *l, bool check_kauth)
    385       1.60      manu {
    386       1.22       jtc 	struct timeval atv;
    387       1.98  christos 	struct timespec ts;
    388       1.22       jtc 	int error;
    389        1.1       cgd 
    390        1.8       cgd 	/* Verify all parameters before changing time. */
    391      1.119       dsl 
    392       1.25     perry 	/*
    393       1.32   mycroft 	 * NetBSD has no kernel notion of time zone, and only an
    394       1.25     perry 	 * obsolete program would try to set it, so we log a warning.
    395       1.25     perry 	 */
    396       1.98  christos 	if (utzp)
    397       1.25     perry 		log(LOG_WARNING, "pid %d attempted to set the "
    398      1.119       dsl 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
    399       1.98  christos 
    400       1.98  christos 	if (utv == NULL)
    401       1.98  christos 		return 0;
    402       1.98  christos 
    403      1.119       dsl 	if (userspace) {
    404      1.119       dsl 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
    405      1.119       dsl 			return error;
    406      1.119       dsl 		utv = &atv;
    407      1.119       dsl 	}
    408      1.119       dsl 
    409      1.119       dsl 	TIMEVAL_TO_TIMESPEC(utv, &ts);
    410      1.133      elad 	return settime1(l->l_proc, &ts, check_kauth);
    411        1.1       cgd }
    412        1.1       cgd 
    413       1.68       dsl int	time_adjusted;			/* set if an adjustment is made */
    414        1.1       cgd 
    415        1.1       cgd /* ARGSUSED */
    416        1.3    andrew int
    417  1.145.2.2      yamt sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
    418      1.140      yamt     register_t *retval)
    419       1.15   thorpej {
    420      1.135       dsl 	/* {
    421       1.24       cgd 		syscallarg(const struct timeval *) delta;
    422       1.11       cgd 		syscallarg(struct timeval *) olddelta;
    423      1.135       dsl 	} */
    424  1.145.2.2      yamt 	int error = 0;
    425  1.145.2.2      yamt 	struct timeval atv, oldatv;
    426        1.1       cgd 
    427      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
    428      1.106      elad 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
    429  1.145.2.2      yamt 		return error;
    430       1.17  christos 
    431  1.145.2.2      yamt 	if (SCARG(uap, delta)) {
    432  1.145.2.2      yamt 		error = copyin(SCARG(uap, delta), &atv,
    433  1.145.2.2      yamt 		    sizeof(*SCARG(uap, delta)));
    434  1.145.2.2      yamt 		if (error)
    435  1.145.2.2      yamt 			return (error);
    436  1.145.2.2      yamt 	}
    437  1.145.2.2      yamt 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
    438  1.145.2.2      yamt 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
    439  1.145.2.2      yamt 	if (SCARG(uap, olddelta))
    440  1.145.2.2      yamt 		error = copyout(&oldatv, SCARG(uap, olddelta),
    441  1.145.2.2      yamt 		    sizeof(*SCARG(uap, olddelta)));
    442  1.145.2.2      yamt 	return error;
    443       1.56      manu }
    444       1.56      manu 
    445  1.145.2.2      yamt void
    446      1.110      yamt adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
    447       1.56      manu {
    448      1.101    kardel 	extern int64_t time_adjtime;  /* in kern_ntptime.c */
    449      1.101    kardel 
    450      1.101    kardel 	if (olddelta) {
    451      1.143        ad 		mutex_spin_enter(&timecounter_lock);
    452  1.145.2.2      yamt 		olddelta->tv_sec = time_adjtime / 1000000;
    453  1.145.2.2      yamt 		olddelta->tv_usec = time_adjtime % 1000000;
    454  1.145.2.2      yamt 		if (olddelta->tv_usec < 0) {
    455  1.145.2.2      yamt 			olddelta->tv_usec += 1000000;
    456  1.145.2.2      yamt 			olddelta->tv_sec--;
    457      1.101    kardel 		}
    458  1.145.2.2      yamt 		mutex_spin_exit(&timecounter_lock);
    459      1.101    kardel 	}
    460      1.101    kardel 
    461      1.101    kardel 	if (delta) {
    462      1.143        ad 		mutex_spin_enter(&timecounter_lock);
    463  1.145.2.2      yamt 		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
    464  1.145.2.2      yamt 
    465      1.143        ad 		if (time_adjtime) {
    466      1.101    kardel 			/* We need to save the system time during shutdown */
    467      1.101    kardel 			time_adjusted |= 1;
    468      1.143        ad 		}
    469      1.143        ad 		mutex_spin_exit(&timecounter_lock);
    470      1.101    kardel 	}
    471        1.1       cgd }
    472        1.1       cgd 
    473        1.1       cgd /*
    474       1.63   thorpej  * Interval timer support. Both the BSD getitimer() family and the POSIX
    475       1.63   thorpej  * timer_*() family of routines are supported.
    476        1.1       cgd  *
    477       1.63   thorpej  * All timers are kept in an array pointed to by p_timers, which is
    478       1.63   thorpej  * allocated on demand - many processes don't use timers at all. The
    479       1.63   thorpej  * first three elements in this array are reserved for the BSD timers:
    480       1.63   thorpej  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
    481       1.63   thorpej  * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
    482       1.63   thorpej  * syscall.
    483        1.1       cgd  *
    484       1.63   thorpej  * Realtime timers are kept in the ptimer structure as an absolute
    485       1.63   thorpej  * time; virtual time timers are kept as a linked list of deltas.
    486        1.1       cgd  * Virtual time timers are processed in the hardclock() routine of
    487       1.63   thorpej  * kern_clock.c.  The real time timer is processed by a callout
    488       1.63   thorpej  * routine, called from the softclock() routine.  Since a callout may
    489       1.63   thorpej  * be delayed in real time due to interrupt processing in the system,
    490       1.63   thorpej  * it is possible for the real time timeout routine (realtimeexpire,
    491       1.63   thorpej  * given below), to be delayed in real time past when it is supposed
    492       1.63   thorpej  * to occur.  It does not suffice, therefore, to reload the real timer
    493       1.63   thorpej  * .it_value from the real time timers .it_interval.  Rather, we
    494       1.63   thorpej  * compute the next time in absolute time the timer should go off.  */
    495       1.63   thorpej 
    496       1.63   thorpej /* Allocate a POSIX realtime timer. */
    497       1.63   thorpej int
    498      1.140      yamt sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
    499      1.140      yamt     register_t *retval)
    500       1.63   thorpej {
    501      1.135       dsl 	/* {
    502       1.63   thorpej 		syscallarg(clockid_t) clock_id;
    503       1.63   thorpej 		syscallarg(struct sigevent *) evp;
    504       1.63   thorpej 		syscallarg(timer_t *) timerid;
    505      1.135       dsl 	} */
    506       1.92      cube 
    507       1.92      cube 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
    508      1.105        ad 	    SCARG(uap, evp), copyin, l);
    509       1.92      cube }
    510       1.92      cube 
    511       1.92      cube int
    512       1.92      cube timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
    513      1.105        ad     copyin_t fetch_event, struct lwp *l)
    514       1.92      cube {
    515       1.92      cube 	int error;
    516       1.92      cube 	timer_t timerid;
    517      1.142        ad 	struct ptimers *pts;
    518       1.63   thorpej 	struct ptimer *pt;
    519      1.105        ad 	struct proc *p;
    520      1.105        ad 
    521      1.105        ad 	p = l->l_proc;
    522       1.63   thorpej 
    523      1.142        ad 	if (id < CLOCK_REALTIME || id > CLOCK_PROF)
    524       1.63   thorpej 		return (EINVAL);
    525       1.63   thorpej 
    526      1.142        ad 	if ((pts = p->p_timers) == NULL)
    527      1.142        ad 		pts = timers_alloc(p);
    528       1.63   thorpej 
    529       1.63   thorpej 	pt = pool_get(&ptimer_pool, PR_WAITOK);
    530      1.142        ad 	if (evp != NULL) {
    531       1.63   thorpej 		if (((error =
    532       1.92      cube 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
    533       1.63   thorpej 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
    534  1.145.2.4      yamt 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
    535  1.145.2.4      yamt 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
    536  1.145.2.4      yamt 			 (pt->pt_ev.sigev_signo <= 0 ||
    537  1.145.2.4      yamt 			  pt->pt_ev.sigev_signo >= NSIG))) {
    538       1.63   thorpej 			pool_put(&ptimer_pool, pt);
    539       1.63   thorpej 			return (error ? error : EINVAL);
    540       1.63   thorpej 		}
    541      1.142        ad 	}
    542      1.142        ad 
    543      1.142        ad 	/* Find a free timer slot, skipping those reserved for setitimer(). */
    544      1.142        ad 	mutex_spin_enter(&timer_lock);
    545      1.142        ad 	for (timerid = 3; timerid < TIMER_MAX; timerid++)
    546      1.142        ad 		if (pts->pts_timers[timerid] == NULL)
    547      1.142        ad 			break;
    548      1.142        ad 	if (timerid == TIMER_MAX) {
    549      1.142        ad 		mutex_spin_exit(&timer_lock);
    550      1.142        ad 		pool_put(&ptimer_pool, pt);
    551      1.142        ad 		return EAGAIN;
    552      1.142        ad 	}
    553      1.142        ad 	if (evp == NULL) {
    554       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    555       1.63   thorpej 		switch (id) {
    556       1.63   thorpej 		case CLOCK_REALTIME:
    557       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    558       1.63   thorpej 			break;
    559       1.63   thorpej 		case CLOCK_VIRTUAL:
    560       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    561       1.63   thorpej 			break;
    562       1.63   thorpej 		case CLOCK_PROF:
    563       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    564       1.63   thorpej 			break;
    565       1.63   thorpej 		}
    566       1.63   thorpej 		pt->pt_ev.sigev_value.sival_int = timerid;
    567       1.63   thorpej 	}
    568       1.73  christos 	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
    569       1.73  christos 	pt->pt_info.ksi_errno = 0;
    570       1.73  christos 	pt->pt_info.ksi_code = 0;
    571       1.73  christos 	pt->pt_info.ksi_pid = p->p_pid;
    572      1.105        ad 	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
    573      1.124  christos 	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
    574       1.63   thorpej 	pt->pt_type = id;
    575       1.63   thorpej 	pt->pt_proc = p;
    576       1.63   thorpej 	pt->pt_overruns = 0;
    577       1.63   thorpej 	pt->pt_poverruns = 0;
    578       1.64   nathanw 	pt->pt_entry = timerid;
    579      1.142        ad 	pt->pt_queued = false;
    580  1.145.2.2      yamt 	timespecclear(&pt->pt_time.it_value);
    581  1.145.2.2      yamt 	if (id == CLOCK_REALTIME)
    582  1.145.2.2      yamt 		callout_init(&pt->pt_ch, 0);
    583  1.145.2.2      yamt 	else
    584  1.145.2.2      yamt 		pt->pt_active = 0;
    585  1.145.2.2      yamt 
    586      1.142        ad 	pts->pts_timers[timerid] = pt;
    587      1.142        ad 	mutex_spin_exit(&timer_lock);
    588       1.63   thorpej 
    589       1.92      cube 	return copyout(&timerid, tid, sizeof(timerid));
    590       1.63   thorpej }
    591       1.63   thorpej 
    592       1.63   thorpej /* Delete a POSIX realtime timer */
    593        1.3    andrew int
    594      1.140      yamt sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
    595      1.140      yamt     register_t *retval)
    596       1.15   thorpej {
    597      1.135       dsl 	/* {
    598       1.63   thorpej 		syscallarg(timer_t) timerid;
    599      1.135       dsl 	} */
    600       1.63   thorpej 	struct proc *p = l->l_proc;
    601       1.65  jdolecek 	timer_t timerid;
    602      1.142        ad 	struct ptimers *pts;
    603       1.63   thorpej 	struct ptimer *pt, *ptn;
    604        1.1       cgd 
    605       1.63   thorpej 	timerid = SCARG(uap, timerid);
    606      1.142        ad 	pts = p->p_timers;
    607      1.142        ad 
    608      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    609      1.142        ad 		return (EINVAL);
    610       1.63   thorpej 
    611      1.142        ad 	mutex_spin_enter(&timer_lock);
    612      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    613      1.142        ad 		mutex_spin_exit(&timer_lock);
    614        1.1       cgd 		return (EINVAL);
    615      1.142        ad 	}
    616  1.145.2.2      yamt 	if (pt->pt_type != CLOCK_REALTIME) {
    617  1.145.2.2      yamt 		if (pt->pt_active) {
    618  1.145.2.2      yamt 			ptn = LIST_NEXT(pt, pt_list);
    619  1.145.2.2      yamt 			LIST_REMOVE(pt, pt_list);
    620  1.145.2.2      yamt 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    621  1.145.2.2      yamt 				timespecadd(&pt->pt_time.it_value,
    622  1.145.2.2      yamt 				    &ptn->pt_time.it_value,
    623  1.145.2.2      yamt 				    &ptn->pt_time.it_value);
    624  1.145.2.2      yamt 			pt->pt_active = 0;
    625  1.145.2.2      yamt 		}
    626       1.63   thorpej 	}
    627      1.142        ad 	itimerfree(pts, timerid);
    628       1.63   thorpej 
    629       1.63   thorpej 	return (0);
    630       1.63   thorpej }
    631       1.63   thorpej 
    632       1.63   thorpej /*
    633       1.67   nathanw  * Set up the given timer. The value in pt->pt_time.it_value is taken
    634       1.67   nathanw  * to be an absolute time for CLOCK_REALTIME timers and a relative
    635       1.67   nathanw  * time for virtual timers.
    636       1.63   thorpej  * Must be called at splclock().
    637       1.63   thorpej  */
    638       1.63   thorpej void
    639       1.63   thorpej timer_settime(struct ptimer *pt)
    640       1.63   thorpej {
    641       1.63   thorpej 	struct ptimer *ptn, *pptn;
    642       1.63   thorpej 	struct ptlist *ptl;
    643       1.63   thorpej 
    644      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    645      1.142        ad 
    646       1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    647       1.63   thorpej 		callout_stop(&pt->pt_ch);
    648  1.145.2.2      yamt 		if (timespecisset(&pt->pt_time.it_value)) {
    649       1.63   thorpej 			/*
    650  1.145.2.2      yamt 			 * Don't need to check tshzto() return value, here.
    651       1.63   thorpej 			 * callout_reset() does it for us.
    652       1.63   thorpej 			 */
    653  1.145.2.2      yamt 			callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
    654       1.63   thorpej 			    realtimerexpire, pt);
    655       1.63   thorpej 		}
    656       1.63   thorpej 	} else {
    657       1.63   thorpej 		if (pt->pt_active) {
    658       1.63   thorpej 			ptn = LIST_NEXT(pt, pt_list);
    659       1.63   thorpej 			LIST_REMOVE(pt, pt_list);
    660       1.63   thorpej 			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
    661  1.145.2.2      yamt 				timespecadd(&pt->pt_time.it_value,
    662       1.63   thorpej 				    &ptn->pt_time.it_value,
    663       1.63   thorpej 				    &ptn->pt_time.it_value);
    664       1.63   thorpej 		}
    665  1.145.2.2      yamt 		if (timespecisset(&pt->pt_time.it_value)) {
    666       1.63   thorpej 			if (pt->pt_type == CLOCK_VIRTUAL)
    667       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_virtual;
    668       1.63   thorpej 			else
    669       1.63   thorpej 				ptl = &pt->pt_proc->p_timers->pts_prof;
    670       1.63   thorpej 
    671       1.63   thorpej 			for (ptn = LIST_FIRST(ptl), pptn = NULL;
    672  1.145.2.2      yamt 			     ptn && timespeccmp(&pt->pt_time.it_value,
    673       1.63   thorpej 				 &ptn->pt_time.it_value, >);
    674       1.63   thorpej 			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
    675  1.145.2.2      yamt 				timespecsub(&pt->pt_time.it_value,
    676       1.63   thorpej 				    &ptn->pt_time.it_value,
    677       1.63   thorpej 				    &pt->pt_time.it_value);
    678       1.63   thorpej 
    679       1.63   thorpej 			if (pptn)
    680       1.63   thorpej 				LIST_INSERT_AFTER(pptn, pt, pt_list);
    681       1.63   thorpej 			else
    682       1.63   thorpej 				LIST_INSERT_HEAD(ptl, pt, pt_list);
    683       1.63   thorpej 
    684       1.63   thorpej 			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
    685  1.145.2.2      yamt 				timespecsub(&ptn->pt_time.it_value,
    686       1.63   thorpej 				    &pt->pt_time.it_value,
    687       1.63   thorpej 				    &ptn->pt_time.it_value);
    688       1.63   thorpej 
    689       1.63   thorpej 			pt->pt_active = 1;
    690       1.63   thorpej 		} else
    691       1.63   thorpej 			pt->pt_active = 0;
    692       1.63   thorpej 	}
    693       1.63   thorpej }
    694       1.63   thorpej 
    695       1.63   thorpej void
    696  1.145.2.2      yamt timer_gettime(struct ptimer *pt, struct itimerspec *aits)
    697       1.63   thorpej {
    698  1.145.2.2      yamt 	struct timespec now;
    699       1.63   thorpej 	struct ptimer *ptn;
    700       1.63   thorpej 
    701      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
    702      1.142        ad 
    703  1.145.2.2      yamt 	*aits = pt->pt_time;
    704       1.63   thorpej 	if (pt->pt_type == CLOCK_REALTIME) {
    705        1.1       cgd 		/*
    706       1.12   mycroft 		 * Convert from absolute to relative time in .it_value
    707       1.63   thorpej 		 * part of real time timer.  If time for real time
    708       1.63   thorpej 		 * timer has passed return 0, else return difference
    709       1.63   thorpej 		 * between current time and time for the timer to go
    710       1.63   thorpej 		 * off.
    711        1.1       cgd 		 */
    712  1.145.2.2      yamt 		if (timespecisset(&aits->it_value)) {
    713  1.145.2.2      yamt 			getnanotime(&now);
    714  1.145.2.2      yamt 			if (timespeccmp(&aits->it_value, &now, <))
    715  1.145.2.2      yamt 				timespecclear(&aits->it_value);
    716      1.101    kardel 			else
    717  1.145.2.2      yamt 				timespecsub(&aits->it_value, &now,
    718  1.145.2.2      yamt 				    &aits->it_value);
    719       1.36   thorpej 		}
    720       1.63   thorpej 	} else if (pt->pt_active) {
    721       1.63   thorpej 		if (pt->pt_type == CLOCK_VIRTUAL)
    722       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
    723       1.63   thorpej 		else
    724       1.63   thorpej 			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
    725       1.63   thorpej 		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
    726  1.145.2.2      yamt 			timespecadd(&aits->it_value,
    727  1.145.2.2      yamt 			    &ptn->pt_time.it_value, &aits->it_value);
    728       1.63   thorpej 		KASSERT(ptn != NULL); /* pt should be findable on the list */
    729        1.1       cgd 	} else
    730  1.145.2.2      yamt 		timespecclear(&aits->it_value);
    731       1.63   thorpej }
    732       1.63   thorpej 
    733       1.63   thorpej 
    734       1.63   thorpej 
    735       1.63   thorpej /* Set and arm a POSIX realtime timer */
    736       1.63   thorpej int
    737  1.145.2.2      yamt sys___timer_settime50(struct lwp *l,
    738  1.145.2.2      yamt     const struct sys___timer_settime50_args *uap,
    739      1.140      yamt     register_t *retval)
    740       1.63   thorpej {
    741      1.135       dsl 	/* {
    742       1.63   thorpej 		syscallarg(timer_t) timerid;
    743       1.63   thorpej 		syscallarg(int) flags;
    744       1.63   thorpej 		syscallarg(const struct itimerspec *) value;
    745       1.63   thorpej 		syscallarg(struct itimerspec *) ovalue;
    746      1.135       dsl 	} */
    747       1.92      cube 	int error;
    748       1.92      cube 	struct itimerspec value, ovalue, *ovp = NULL;
    749       1.92      cube 
    750       1.92      cube 	if ((error = copyin(SCARG(uap, value), &value,
    751       1.92      cube 	    sizeof(struct itimerspec))) != 0)
    752       1.92      cube 		return (error);
    753       1.92      cube 
    754       1.92      cube 	if (SCARG(uap, ovalue))
    755       1.92      cube 		ovp = &ovalue;
    756       1.92      cube 
    757       1.92      cube 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
    758       1.92      cube 	    SCARG(uap, flags), l->l_proc)) != 0)
    759       1.92      cube 		return error;
    760       1.92      cube 
    761       1.92      cube 	if (ovp)
    762       1.92      cube 		return copyout(&ovalue, SCARG(uap, ovalue),
    763       1.92      cube 		    sizeof(struct itimerspec));
    764       1.92      cube 	return 0;
    765       1.92      cube }
    766       1.92      cube 
    767       1.92      cube int
    768       1.92      cube dotimer_settime(int timerid, struct itimerspec *value,
    769       1.92      cube     struct itimerspec *ovalue, int flags, struct proc *p)
    770       1.92      cube {
    771  1.145.2.2      yamt 	struct timespec now;
    772  1.145.2.2      yamt 	struct itimerspec val, oval;
    773      1.142        ad 	struct ptimers *pts;
    774       1.63   thorpej 	struct ptimer *pt;
    775  1.145.2.2      yamt 	int error;
    776       1.63   thorpej 
    777      1.142        ad 	pts = p->p_timers;
    778       1.63   thorpej 
    779      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    780      1.142        ad 		return EINVAL;
    781  1.145.2.2      yamt 	val = *value;
    782  1.145.2.2      yamt 	if ((error = itimespecfix(&val.it_value)) != 0 ||
    783  1.145.2.2      yamt 	    (error = itimespecfix(&val.it_interval)) != 0)
    784  1.145.2.2      yamt 		return error;
    785       1.63   thorpej 
    786      1.142        ad 	mutex_spin_enter(&timer_lock);
    787      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    788      1.142        ad 		mutex_spin_exit(&timer_lock);
    789  1.145.2.2      yamt 		return EINVAL;
    790      1.142        ad 	}
    791      1.142        ad 
    792       1.63   thorpej 	oval = pt->pt_time;
    793       1.63   thorpej 	pt->pt_time = val;
    794       1.63   thorpej 
    795       1.67   nathanw 	/*
    796       1.67   nathanw 	 * If we've been passed a relative time for a realtime timer,
    797       1.67   nathanw 	 * convert it to absolute; if an absolute time for a virtual
    798       1.67   nathanw 	 * timer, convert it to relative and make sure we don't set it
    799       1.67   nathanw 	 * to zero, which would cancel the timer, or let it go
    800       1.67   nathanw 	 * negative, which would confuse the comparison tests.
    801       1.67   nathanw 	 */
    802  1.145.2.2      yamt 	if (timespecisset(&pt->pt_time.it_value)) {
    803       1.67   nathanw 		if (pt->pt_type == CLOCK_REALTIME) {
    804      1.101    kardel 			if ((flags & TIMER_ABSTIME) == 0) {
    805  1.145.2.2      yamt 				getnanotime(&now);
    806  1.145.2.2      yamt 				timespecadd(&pt->pt_time.it_value, &now,
    807      1.101    kardel 				    &pt->pt_time.it_value);
    808      1.101    kardel 			}
    809       1.67   nathanw 		} else {
    810       1.92      cube 			if ((flags & TIMER_ABSTIME) != 0) {
    811  1.145.2.2      yamt 				getnanotime(&now);
    812  1.145.2.2      yamt 				timespecsub(&pt->pt_time.it_value, &now,
    813      1.101    kardel 				    &pt->pt_time.it_value);
    814  1.145.2.2      yamt 				if (!timespecisset(&pt->pt_time.it_value) ||
    815       1.67   nathanw 				    pt->pt_time.it_value.tv_sec < 0) {
    816       1.67   nathanw 					pt->pt_time.it_value.tv_sec = 0;
    817  1.145.2.2      yamt 					pt->pt_time.it_value.tv_nsec = 1;
    818       1.67   nathanw 				}
    819       1.67   nathanw 			}
    820       1.67   nathanw 		}
    821       1.67   nathanw 	}
    822       1.67   nathanw 
    823       1.63   thorpej 	timer_settime(pt);
    824      1.142        ad 	mutex_spin_exit(&timer_lock);
    825       1.63   thorpej 
    826  1.145.2.2      yamt 	if (ovalue)
    827  1.145.2.2      yamt 		*ovalue = oval;
    828       1.63   thorpej 
    829       1.63   thorpej 	return (0);
    830       1.63   thorpej }
    831       1.63   thorpej 
    832       1.63   thorpej /* Return the time remaining until a POSIX timer fires. */
    833       1.63   thorpej int
    834  1.145.2.2      yamt sys___timer_gettime50(struct lwp *l,
    835  1.145.2.2      yamt     const struct sys___timer_gettime50_args *uap, register_t *retval)
    836       1.63   thorpej {
    837      1.135       dsl 	/* {
    838       1.63   thorpej 		syscallarg(timer_t) timerid;
    839       1.63   thorpej 		syscallarg(struct itimerspec *) value;
    840      1.135       dsl 	} */
    841       1.63   thorpej 	struct itimerspec its;
    842       1.92      cube 	int error;
    843       1.92      cube 
    844       1.92      cube 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
    845       1.92      cube 	    &its)) != 0)
    846       1.92      cube 		return error;
    847       1.92      cube 
    848       1.92      cube 	return copyout(&its, SCARG(uap, value), sizeof(its));
    849       1.92      cube }
    850       1.92      cube 
    851       1.92      cube int
    852       1.92      cube dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
    853       1.92      cube {
    854       1.63   thorpej 	struct ptimer *pt;
    855      1.142        ad 	struct ptimers *pts;
    856       1.63   thorpej 
    857      1.142        ad 	pts = p->p_timers;
    858      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    859       1.63   thorpej 		return (EINVAL);
    860      1.142        ad 	mutex_spin_enter(&timer_lock);
    861      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    862      1.142        ad 		mutex_spin_exit(&timer_lock);
    863      1.142        ad 		return (EINVAL);
    864      1.142        ad 	}
    865  1.145.2.2      yamt 	timer_gettime(pt, its);
    866      1.142        ad 	mutex_spin_exit(&timer_lock);
    867       1.63   thorpej 
    868       1.92      cube 	return 0;
    869       1.63   thorpej }
    870       1.63   thorpej 
    871       1.63   thorpej /*
    872       1.63   thorpej  * Return the count of the number of times a periodic timer expired
    873       1.63   thorpej  * while a notification was already pending. The counter is reset when
    874       1.63   thorpej  * a timer expires and a notification can be posted.
    875       1.63   thorpej  */
    876       1.63   thorpej int
    877      1.140      yamt sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
    878      1.140      yamt     register_t *retval)
    879       1.63   thorpej {
    880      1.135       dsl 	/* {
    881       1.63   thorpej 		syscallarg(timer_t) timerid;
    882      1.135       dsl 	} */
    883       1.63   thorpej 	struct proc *p = l->l_proc;
    884      1.142        ad 	struct ptimers *pts;
    885       1.63   thorpej 	int timerid;
    886       1.63   thorpej 	struct ptimer *pt;
    887       1.63   thorpej 
    888       1.63   thorpej 	timerid = SCARG(uap, timerid);
    889       1.63   thorpej 
    890      1.142        ad 	pts = p->p_timers;
    891      1.142        ad 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
    892      1.142        ad 		return (EINVAL);
    893      1.142        ad 	mutex_spin_enter(&timer_lock);
    894      1.142        ad 	if ((pt = pts->pts_timers[timerid]) == NULL) {
    895      1.142        ad 		mutex_spin_exit(&timer_lock);
    896       1.63   thorpej 		return (EINVAL);
    897      1.142        ad 	}
    898       1.63   thorpej 	*retval = pt->pt_poverruns;
    899      1.142        ad 	mutex_spin_exit(&timer_lock);
    900       1.63   thorpej 
    901       1.63   thorpej 	return (0);
    902       1.63   thorpej }
    903       1.63   thorpej 
    904  1.145.2.2      yamt #ifdef KERN_SA
    905  1.145.2.2      yamt /* Glue function that triggers an upcall; called from userret(). */
    906  1.145.2.2      yamt void
    907  1.145.2.2      yamt timerupcall(struct lwp *l)
    908  1.145.2.2      yamt {
    909  1.145.2.2      yamt 	struct ptimers *pt = l->l_proc->p_timers;
    910  1.145.2.2      yamt 	struct proc *p = l->l_proc;
    911  1.145.2.2      yamt 	unsigned int i, fired, done;
    912  1.145.2.2      yamt 
    913  1.145.2.2      yamt 	KDASSERT(l->l_proc->p_sa);
    914  1.145.2.2      yamt 	/* Bail out if we do not own the virtual processor */
    915  1.145.2.2      yamt 	if (l->l_savp->savp_lwp != l)
    916  1.145.2.2      yamt 		return ;
    917  1.145.2.2      yamt 
    918  1.145.2.2      yamt 	mutex_enter(p->p_lock);
    919  1.145.2.2      yamt 
    920  1.145.2.2      yamt 	fired = pt->pts_fired;
    921  1.145.2.2      yamt 	done = 0;
    922  1.145.2.2      yamt 	while ((i = ffs(fired)) != 0) {
    923  1.145.2.2      yamt 		siginfo_t *si;
    924  1.145.2.2      yamt 		int mask = 1 << --i;
    925  1.145.2.2      yamt 		int f;
    926  1.145.2.2      yamt 
    927  1.145.2.2      yamt 		f = ~l->l_pflag & LP_SA_NOBLOCK;
    928  1.145.2.2      yamt 		l->l_pflag |= LP_SA_NOBLOCK;
    929  1.145.2.2      yamt 		si = siginfo_alloc(PR_WAITOK);
    930  1.145.2.2      yamt 		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
    931  1.145.2.2      yamt 		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
    932  1.145.2.2      yamt 		    sizeof(*si), si, siginfo_free) != 0) {
    933  1.145.2.2      yamt 			siginfo_free(si);
    934  1.145.2.2      yamt 			/* XXX What do we do here?? */
    935  1.145.2.2      yamt 		} else
    936  1.145.2.2      yamt 			done |= mask;
    937  1.145.2.2      yamt 		fired &= ~mask;
    938  1.145.2.2      yamt 		l->l_pflag ^= f;
    939  1.145.2.2      yamt 	}
    940  1.145.2.2      yamt 	pt->pts_fired &= ~done;
    941  1.145.2.2      yamt 	if (pt->pts_fired == 0)
    942  1.145.2.2      yamt 		l->l_proc->p_timerpend = 0;
    943  1.145.2.2      yamt 
    944  1.145.2.2      yamt 	mutex_exit(p->p_lock);
    945  1.145.2.2      yamt }
    946  1.145.2.2      yamt #endif /* KERN_SA */
    947  1.145.2.2      yamt 
    948       1.63   thorpej /*
    949       1.63   thorpej  * Real interval timer expired:
    950       1.63   thorpej  * send process whose timer expired an alarm signal.
    951       1.63   thorpej  * If time is not set up to reload, then just return.
    952       1.63   thorpej  * Else compute next time timer should go off which is > current time.
    953       1.63   thorpej  * This is where delay in processing this timeout causes multiple
    954       1.63   thorpej  * SIGALRM calls to be compressed into one.
    955       1.63   thorpej  */
    956       1.63   thorpej void
    957       1.63   thorpej realtimerexpire(void *arg)
    958       1.63   thorpej {
    959  1.145.2.2      yamt 	uint64_t last_val, next_val, interval, now_ms;
    960  1.145.2.2      yamt 	struct timespec now, next;
    961       1.63   thorpej 	struct ptimer *pt;
    962  1.145.2.2      yamt 	int backwards;
    963       1.63   thorpej 
    964      1.142        ad 	pt = arg;
    965       1.63   thorpej 
    966      1.142        ad 	mutex_spin_enter(&timer_lock);
    967       1.63   thorpej 	itimerfire(pt);
    968       1.63   thorpej 
    969  1.145.2.2      yamt 	if (!timespecisset(&pt->pt_time.it_interval)) {
    970  1.145.2.2      yamt 		timespecclear(&pt->pt_time.it_value);
    971      1.142        ad 		mutex_spin_exit(&timer_lock);
    972       1.63   thorpej 		return;
    973       1.63   thorpej 	}
    974  1.145.2.2      yamt 
    975  1.145.2.2      yamt 	getnanotime(&now);
    976  1.145.2.2      yamt 	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
    977  1.145.2.2      yamt 	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
    978  1.145.2.2      yamt 	/* Handle the easy case of non-overflown timers first. */
    979  1.145.2.2      yamt 	if (!backwards && timespeccmp(&next, &now, >)) {
    980  1.145.2.2      yamt 		pt->pt_time.it_value = next;
    981  1.145.2.2      yamt 	} else {
    982  1.145.2.2      yamt 		now_ms = timespec2ns(&now);
    983  1.145.2.2      yamt 		last_val = timespec2ns(&pt->pt_time.it_value);
    984  1.145.2.2      yamt 		interval = timespec2ns(&pt->pt_time.it_interval);
    985  1.145.2.2      yamt 
    986  1.145.2.2      yamt 		next_val = now_ms +
    987  1.145.2.2      yamt 		    (now_ms - last_val + interval - 1) % interval;
    988  1.145.2.2      yamt 
    989  1.145.2.2      yamt 		if (backwards)
    990  1.145.2.2      yamt 			next_val += interval;
    991  1.145.2.2      yamt 		else
    992  1.145.2.2      yamt 			pt->pt_overruns += (now_ms - last_val) / interval;
    993  1.145.2.2      yamt 
    994  1.145.2.2      yamt 		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
    995  1.145.2.2      yamt 		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
    996      1.101    kardel 	}
    997  1.145.2.2      yamt 
    998  1.145.2.2      yamt 	/*
    999  1.145.2.2      yamt 	 * Don't need to check tshzto() return value, here.
   1000  1.145.2.2      yamt 	 * callout_reset() does it for us.
   1001  1.145.2.2      yamt 	 */
   1002  1.145.2.2      yamt 	callout_reset(&pt->pt_ch, tshzto(&pt->pt_time.it_value),
   1003  1.145.2.2      yamt 	    realtimerexpire, pt);
   1004  1.145.2.2      yamt 	mutex_spin_exit(&timer_lock);
   1005       1.63   thorpej }
   1006       1.63   thorpej 
   1007       1.63   thorpej /* BSD routine to get the value of an interval timer. */
   1008       1.63   thorpej /* ARGSUSED */
   1009       1.63   thorpej int
   1010  1.145.2.2      yamt sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
   1011      1.140      yamt     register_t *retval)
   1012       1.63   thorpej {
   1013      1.135       dsl 	/* {
   1014       1.63   thorpej 		syscallarg(int) which;
   1015       1.63   thorpej 		syscallarg(struct itimerval *) itv;
   1016      1.135       dsl 	} */
   1017       1.63   thorpej 	struct proc *p = l->l_proc;
   1018       1.63   thorpej 	struct itimerval aitv;
   1019       1.91      cube 	int error;
   1020       1.91      cube 
   1021       1.91      cube 	error = dogetitimer(p, SCARG(uap, which), &aitv);
   1022       1.91      cube 	if (error)
   1023       1.91      cube 		return error;
   1024       1.91      cube 	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
   1025       1.91      cube }
   1026       1.63   thorpej 
   1027       1.91      cube int
   1028       1.91      cube dogetitimer(struct proc *p, int which, struct itimerval *itvp)
   1029       1.91      cube {
   1030      1.142        ad 	struct ptimers *pts;
   1031      1.142        ad 	struct ptimer *pt;
   1032  1.145.2.2      yamt 	struct itimerspec its;
   1033       1.63   thorpej 
   1034       1.63   thorpej 	if ((u_int)which > ITIMER_PROF)
   1035       1.63   thorpej 		return (EINVAL);
   1036       1.63   thorpej 
   1037      1.142        ad 	mutex_spin_enter(&timer_lock);
   1038      1.142        ad 	pts = p->p_timers;
   1039      1.142        ad 	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
   1040       1.91      cube 		timerclear(&itvp->it_value);
   1041       1.91      cube 		timerclear(&itvp->it_interval);
   1042  1.145.2.2      yamt 	} else {
   1043  1.145.2.2      yamt 		timer_gettime(pt, &its);
   1044  1.145.2.2      yamt 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
   1045  1.145.2.2      yamt 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
   1046  1.145.2.2      yamt 	}
   1047      1.142        ad 	mutex_spin_exit(&timer_lock);
   1048       1.63   thorpej 
   1049       1.91      cube 	return 0;
   1050        1.1       cgd }
   1051        1.1       cgd 
   1052       1.63   thorpej /* BSD routine to set/arm an interval timer. */
   1053        1.1       cgd /* ARGSUSED */
   1054        1.3    andrew int
   1055  1.145.2.2      yamt sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
   1056      1.140      yamt     register_t *retval)
   1057       1.15   thorpej {
   1058      1.135       dsl 	/* {
   1059       1.30   mycroft 		syscallarg(int) which;
   1060       1.24       cgd 		syscallarg(const struct itimerval *) itv;
   1061       1.11       cgd 		syscallarg(struct itimerval *) oitv;
   1062      1.135       dsl 	} */
   1063       1.63   thorpej 	struct proc *p = l->l_proc;
   1064       1.30   mycroft 	int which = SCARG(uap, which);
   1065  1.145.2.2      yamt 	struct sys___getitimer50_args getargs;
   1066       1.91      cube 	const struct itimerval *itvp;
   1067        1.1       cgd 	struct itimerval aitv;
   1068       1.91      cube 	int error;
   1069        1.1       cgd 
   1070       1.30   mycroft 	if ((u_int)which > ITIMER_PROF)
   1071        1.1       cgd 		return (EINVAL);
   1072       1.11       cgd 	itvp = SCARG(uap, itv);
   1073       1.63   thorpej 	if (itvp &&
   1074       1.56      manu 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
   1075        1.1       cgd 		return (error);
   1076       1.21       cgd 	if (SCARG(uap, oitv) != NULL) {
   1077       1.30   mycroft 		SCARG(&getargs, which) = which;
   1078       1.21       cgd 		SCARG(&getargs, itv) = SCARG(uap, oitv);
   1079  1.145.2.2      yamt 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
   1080       1.21       cgd 			return (error);
   1081       1.21       cgd 	}
   1082        1.1       cgd 	if (itvp == 0)
   1083        1.1       cgd 		return (0);
   1084       1.91      cube 
   1085       1.91      cube 	return dosetitimer(p, which, &aitv);
   1086       1.91      cube }
   1087       1.91      cube 
   1088       1.91      cube int
   1089       1.91      cube dosetitimer(struct proc *p, int which, struct itimerval *itvp)
   1090       1.91      cube {
   1091  1.145.2.2      yamt 	struct timespec now;
   1092      1.142        ad 	struct ptimers *pts;
   1093      1.142        ad 	struct ptimer *pt, *spare;
   1094       1.91      cube 
   1095       1.91      cube 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
   1096        1.1       cgd 		return (EINVAL);
   1097       1.63   thorpej 
   1098       1.63   thorpej 	/*
   1099       1.63   thorpej 	 * Don't bother allocating data structures if the process just
   1100       1.63   thorpej 	 * wants to clear the timer.
   1101       1.63   thorpej 	 */
   1102      1.142        ad 	spare = NULL;
   1103      1.142        ad 	pts = p->p_timers;
   1104      1.142        ad  retry:
   1105      1.142        ad 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
   1106      1.142        ad 	    pts->pts_timers[which] == NULL))
   1107       1.63   thorpej 		return (0);
   1108      1.142        ad 	if (pts == NULL)
   1109      1.142        ad 		pts = timers_alloc(p);
   1110      1.142        ad 	mutex_spin_enter(&timer_lock);
   1111      1.142        ad 	pt = pts->pts_timers[which];
   1112      1.142        ad 	if (pt == NULL) {
   1113      1.142        ad 		if (spare == NULL) {
   1114      1.142        ad 			mutex_spin_exit(&timer_lock);
   1115      1.142        ad 			spare = pool_get(&ptimer_pool, PR_WAITOK);
   1116      1.142        ad 			goto retry;
   1117      1.142        ad 		}
   1118      1.142        ad 		pt = spare;
   1119      1.142        ad 		spare = NULL;
   1120       1.63   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
   1121       1.76  christos 		pt->pt_ev.sigev_value.sival_int = which;
   1122       1.63   thorpej 		pt->pt_overruns = 0;
   1123       1.63   thorpej 		pt->pt_proc = p;
   1124       1.63   thorpej 		pt->pt_type = which;
   1125       1.64   nathanw 		pt->pt_entry = which;
   1126      1.142        ad 		pt->pt_queued = false;
   1127  1.145.2.2      yamt 		if (pt->pt_type == CLOCK_REALTIME)
   1128  1.145.2.2      yamt 			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
   1129  1.145.2.2      yamt 		else
   1130  1.145.2.2      yamt 			pt->pt_active = 0;
   1131  1.145.2.2      yamt 
   1132       1.63   thorpej 		switch (which) {
   1133       1.63   thorpej 		case ITIMER_REAL:
   1134       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
   1135       1.63   thorpej 			break;
   1136       1.63   thorpej 		case ITIMER_VIRTUAL:
   1137       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
   1138       1.63   thorpej 			break;
   1139       1.63   thorpej 		case ITIMER_PROF:
   1140       1.63   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
   1141       1.63   thorpej 			break;
   1142        1.1       cgd 		}
   1143      1.142        ad 		pts->pts_timers[which] = pt;
   1144      1.142        ad 	}
   1145       1.63   thorpej 
   1146  1.145.2.2      yamt 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
   1147  1.145.2.2      yamt 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
   1148  1.145.2.2      yamt 
   1149  1.145.2.2      yamt 	if ((which == ITIMER_REAL) && timespecisset(&pt->pt_time.it_value)) {
   1150       1.67   nathanw 		/* Convert to absolute time */
   1151      1.101    kardel 		/* XXX need to wrap in splclock for timecounters case? */
   1152  1.145.2.2      yamt 		getnanotime(&now);
   1153  1.145.2.2      yamt 		timespecadd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
   1154       1.67   nathanw 	}
   1155       1.63   thorpej 	timer_settime(pt);
   1156      1.142        ad 	mutex_spin_exit(&timer_lock);
   1157      1.142        ad 	if (spare != NULL)
   1158      1.142        ad 		pool_put(&ptimer_pool, spare);
   1159       1.63   thorpej 
   1160        1.1       cgd 	return (0);
   1161        1.1       cgd }
   1162        1.1       cgd 
   1163       1.63   thorpej /* Utility routines to manage the array of pointers to timers. */
   1164      1.142        ad struct ptimers *
   1165       1.63   thorpej timers_alloc(struct proc *p)
   1166       1.63   thorpej {
   1167      1.142        ad 	struct ptimers *pts;
   1168       1.63   thorpej 	int i;
   1169       1.63   thorpej 
   1170      1.100      yamt 	pts = pool_get(&ptimers_pool, PR_WAITOK);
   1171       1.63   thorpej 	LIST_INIT(&pts->pts_virtual);
   1172       1.63   thorpej 	LIST_INIT(&pts->pts_prof);
   1173       1.63   thorpej 	for (i = 0; i < TIMER_MAX; i++)
   1174       1.63   thorpej 		pts->pts_timers[i] = NULL;
   1175       1.64   nathanw 	pts->pts_fired = 0;
   1176      1.142        ad 	mutex_spin_enter(&timer_lock);
   1177      1.142        ad 	if (p->p_timers == NULL) {
   1178      1.142        ad 		p->p_timers = pts;
   1179      1.142        ad 		mutex_spin_exit(&timer_lock);
   1180      1.142        ad 		return pts;
   1181      1.142        ad 	}
   1182      1.142        ad 	mutex_spin_exit(&timer_lock);
   1183      1.142        ad 	pool_put(&ptimers_pool, pts);
   1184      1.142        ad 	return p->p_timers;
   1185       1.63   thorpej }
   1186       1.63   thorpej 
   1187        1.1       cgd /*
   1188       1.63   thorpej  * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
   1189       1.63   thorpej  * then clean up all timers and free all the data structures. If
   1190       1.63   thorpej  * "which" is set to TIMERS_POSIX, only clean up the timers allocated
   1191       1.63   thorpej  * by timer_create(), not the BSD setitimer() timers, and only free the
   1192       1.63   thorpej  * structure if none of those remain.
   1193        1.1       cgd  */
   1194        1.3    andrew void
   1195       1.63   thorpej timers_free(struct proc *p, int which)
   1196        1.6       cgd {
   1197       1.63   thorpej 	struct ptimers *pts;
   1198      1.142        ad 	struct ptimer *ptn;
   1199  1.145.2.2      yamt 	struct timespec ts;
   1200      1.142        ad 	int i;
   1201       1.63   thorpej 
   1202      1.142        ad 	if (p->p_timers == NULL)
   1203      1.142        ad 		return;
   1204       1.63   thorpej 
   1205      1.142        ad 	pts = p->p_timers;
   1206      1.142        ad 	mutex_spin_enter(&timer_lock);
   1207      1.142        ad 	if (which == TIMERS_ALL) {
   1208      1.142        ad 		p->p_timers = NULL;
   1209      1.142        ad 		i = 0;
   1210      1.142        ad 	} else {
   1211  1.145.2.2      yamt 		timespecclear(&ts);
   1212      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_virtual);
   1213      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
   1214  1.145.2.2      yamt 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1215  1.145.2.2      yamt 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1216  1.145.2.2      yamt 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1217  1.145.2.2      yamt 		}
   1218      1.142        ad 		LIST_FIRST(&pts->pts_virtual) = NULL;
   1219      1.142        ad 		if (ptn) {
   1220  1.145.2.2      yamt 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1221  1.145.2.2      yamt 			timespecadd(&ts, &ptn->pt_time.it_value,
   1222      1.142        ad 			    &ptn->pt_time.it_value);
   1223      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
   1224      1.142        ad 		}
   1225  1.145.2.2      yamt 		timespecclear(&ts);
   1226      1.142        ad 		for (ptn = LIST_FIRST(&pts->pts_prof);
   1227      1.142        ad 		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
   1228  1.145.2.2      yamt 		     ptn = LIST_NEXT(ptn, pt_list)) {
   1229  1.145.2.2      yamt 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1230  1.145.2.2      yamt 			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
   1231  1.145.2.2      yamt 		}
   1232      1.142        ad 		LIST_FIRST(&pts->pts_prof) = NULL;
   1233      1.142        ad 		if (ptn) {
   1234  1.145.2.2      yamt 			KASSERT(ptn->pt_type != CLOCK_REALTIME);
   1235  1.145.2.2      yamt 			timespecadd(&ts, &ptn->pt_time.it_value,
   1236      1.142        ad 			    &ptn->pt_time.it_value);
   1237      1.142        ad 			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
   1238       1.63   thorpej 		}
   1239      1.142        ad 		i = 3;
   1240      1.142        ad 	}
   1241      1.142        ad 	for ( ; i < TIMER_MAX; i++) {
   1242      1.142        ad 		if (pts->pts_timers[i] != NULL) {
   1243      1.142        ad 			itimerfree(pts, i);
   1244      1.142        ad 			mutex_spin_enter(&timer_lock);
   1245        1.1       cgd 		}
   1246        1.1       cgd 	}
   1247      1.142        ad 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
   1248      1.142        ad 	    pts->pts_timers[2] == NULL) {
   1249      1.142        ad 		p->p_timers = NULL;
   1250      1.142        ad 		mutex_spin_exit(&timer_lock);
   1251      1.142        ad 		pool_put(&ptimers_pool, pts);
   1252      1.142        ad 	} else
   1253      1.142        ad 		mutex_spin_exit(&timer_lock);
   1254      1.142        ad }
   1255      1.142        ad 
   1256      1.142        ad static void
   1257      1.142        ad itimerfree(struct ptimers *pts, int index)
   1258      1.142        ad {
   1259      1.142        ad 	struct ptimer *pt;
   1260      1.142        ad 
   1261      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1262      1.142        ad 
   1263      1.142        ad 	pt = pts->pts_timers[index];
   1264      1.142        ad 	pts->pts_timers[index] = NULL;
   1265      1.144        ad 	if (pt->pt_type == CLOCK_REALTIME)
   1266      1.144        ad 		callout_halt(&pt->pt_ch, &timer_lock);
   1267      1.144        ad 	else if (pt->pt_queued)
   1268      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1269      1.144        ad 	mutex_spin_exit(&timer_lock);
   1270  1.145.2.2      yamt 	if (pt->pt_type == CLOCK_REALTIME)
   1271  1.145.2.2      yamt 		callout_destroy(&pt->pt_ch);
   1272      1.142        ad 	pool_put(&ptimer_pool, pt);
   1273        1.1       cgd }
   1274        1.1       cgd 
   1275        1.1       cgd /*
   1276        1.1       cgd  * Decrement an interval timer by a specified number
   1277  1.145.2.2      yamt  * of nanoseconds, which must be less than a second,
   1278  1.145.2.2      yamt  * i.e. < 1000000000.  If the timer expires, then reload
   1279  1.145.2.2      yamt  * it.  In this case, carry over (nsec - old value) to
   1280        1.8       cgd  * reduce the value reloaded into the timer so that
   1281        1.1       cgd  * the timer does not drift.  This routine assumes
   1282        1.1       cgd  * that it is called in a context where the timers
   1283        1.1       cgd  * on which it is operating cannot change in value.
   1284        1.1       cgd  */
   1285      1.142        ad static int
   1286  1.145.2.2      yamt itimerdecr(struct ptimer *pt, int nsec)
   1287       1.63   thorpej {
   1288  1.145.2.2      yamt 	struct itimerspec *itp;
   1289        1.1       cgd 
   1290      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1291      1.142        ad 
   1292       1.63   thorpej 	itp = &pt->pt_time;
   1293  1.145.2.2      yamt 	if (itp->it_value.tv_nsec < nsec) {
   1294        1.1       cgd 		if (itp->it_value.tv_sec == 0) {
   1295        1.1       cgd 			/* expired, and already in next interval */
   1296  1.145.2.2      yamt 			nsec -= itp->it_value.tv_nsec;
   1297        1.1       cgd 			goto expire;
   1298        1.1       cgd 		}
   1299  1.145.2.2      yamt 		itp->it_value.tv_nsec += 1000000000;
   1300        1.1       cgd 		itp->it_value.tv_sec--;
   1301        1.1       cgd 	}
   1302  1.145.2.2      yamt 	itp->it_value.tv_nsec -= nsec;
   1303  1.145.2.2      yamt 	nsec = 0;
   1304  1.145.2.2      yamt 	if (timespecisset(&itp->it_value))
   1305        1.1       cgd 		return (1);
   1306        1.1       cgd 	/* expired, exactly at end of interval */
   1307        1.1       cgd expire:
   1308  1.145.2.2      yamt 	if (timespecisset(&itp->it_interval)) {
   1309        1.1       cgd 		itp->it_value = itp->it_interval;
   1310  1.145.2.2      yamt 		itp->it_value.tv_nsec -= nsec;
   1311  1.145.2.2      yamt 		if (itp->it_value.tv_nsec < 0) {
   1312  1.145.2.2      yamt 			itp->it_value.tv_nsec += 1000000000;
   1313        1.1       cgd 			itp->it_value.tv_sec--;
   1314        1.1       cgd 		}
   1315       1.63   thorpej 		timer_settime(pt);
   1316        1.1       cgd 	} else
   1317  1.145.2.2      yamt 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
   1318        1.1       cgd 	return (0);
   1319       1.42       cgd }
   1320       1.42       cgd 
   1321      1.142        ad static void
   1322       1.63   thorpej itimerfire(struct ptimer *pt)
   1323       1.63   thorpej {
   1324       1.78        cl 
   1325      1.142        ad 	KASSERT(mutex_owned(&timer_lock));
   1326      1.142        ad 
   1327      1.142        ad 	/*
   1328      1.142        ad 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
   1329      1.142        ad 	 * XXX Relying on the clock interrupt is stupid.
   1330      1.142        ad 	 */
   1331  1.145.2.2      yamt 	if ((pt->pt_ev.sigev_notify == SIGEV_SA && pt->pt_proc->p_sa == NULL) ||
   1332  1.145.2.2      yamt 	    (pt->pt_ev.sigev_notify != SIGEV_SIGNAL &&
   1333  1.145.2.2      yamt 	    pt->pt_ev.sigev_notify != SIGEV_SA) || pt->pt_queued)
   1334      1.142        ad 		return;
   1335      1.142        ad 	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
   1336      1.142        ad 	pt->pt_queued = true;
   1337      1.142        ad 	softint_schedule(timer_sih);
   1338      1.142        ad }
   1339      1.142        ad 
   1340      1.142        ad void
   1341      1.142        ad timer_tick(lwp_t *l, bool user)
   1342      1.142        ad {
   1343      1.142        ad 	struct ptimers *pts;
   1344      1.142        ad 	struct ptimer *pt;
   1345      1.142        ad 	proc_t *p;
   1346      1.142        ad 
   1347      1.142        ad 	p = l->l_proc;
   1348      1.142        ad 	if (p->p_timers == NULL)
   1349      1.142        ad 		return;
   1350      1.142        ad 
   1351      1.142        ad 	mutex_spin_enter(&timer_lock);
   1352      1.142        ad 	if ((pts = l->l_proc->p_timers) != NULL) {
   1353       1.63   thorpej 		/*
   1354      1.142        ad 		 * Run current process's virtual and profile time, as needed.
   1355       1.63   thorpej 		 */
   1356      1.142        ad 		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
   1357  1.145.2.2      yamt 			if (itimerdecr(pt, tick * 1000) == 0)
   1358      1.142        ad 				itimerfire(pt);
   1359      1.142        ad 		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
   1360  1.145.2.2      yamt 			if (itimerdecr(pt, tick * 1000) == 0)
   1361      1.142        ad 				itimerfire(pt);
   1362      1.142        ad 	}
   1363      1.142        ad 	mutex_spin_exit(&timer_lock);
   1364      1.142        ad }
   1365      1.142        ad 
   1366  1.145.2.2      yamt #ifdef KERN_SA
   1367  1.145.2.2      yamt /*
   1368  1.145.2.2      yamt  * timer_sa_intr:
   1369  1.145.2.2      yamt  *
   1370  1.145.2.2      yamt  *	SIGEV_SA handling for timer_intr(). We are called (and return)
   1371  1.145.2.2      yamt  * with the timer lock held. We know that the process had SA enabled
   1372  1.145.2.2      yamt  * when this timer was enqueued. As timer_intr() is a soft interrupt
   1373  1.145.2.2      yamt  * handler, SA should still be enabled by the time we get here.
   1374  1.145.2.2      yamt  */
   1375  1.145.2.2      yamt static void
   1376  1.145.2.2      yamt timer_sa_intr(struct ptimer *pt, proc_t *p)
   1377  1.145.2.2      yamt {
   1378  1.145.2.2      yamt 	unsigned int		i;
   1379  1.145.2.2      yamt 	struct sadata		*sa;
   1380  1.145.2.2      yamt 	struct sadata_vp	*vp;
   1381  1.145.2.2      yamt 
   1382  1.145.2.2      yamt 	/* Cause the process to generate an upcall when it returns. */
   1383  1.145.2.2      yamt 	if (!p->p_timerpend) {
   1384  1.145.2.2      yamt 		/*
   1385  1.145.2.2      yamt 		 * XXX stop signals can be processed inside tsleep,
   1386  1.145.2.2      yamt 		 * which can be inside sa_yield's inner loop, which
   1387  1.145.2.2      yamt 		 * makes testing for sa_idle alone insuffucent to
   1388  1.145.2.2      yamt 		 * determine if we really should call setrunnable.
   1389  1.145.2.2      yamt 		 */
   1390  1.145.2.2      yamt 		pt->pt_poverruns = pt->pt_overruns;
   1391  1.145.2.2      yamt 		pt->pt_overruns = 0;
   1392  1.145.2.2      yamt 		i = 1 << pt->pt_entry;
   1393  1.145.2.2      yamt 		p->p_timers->pts_fired = i;
   1394  1.145.2.2      yamt 		p->p_timerpend = 1;
   1395  1.145.2.2      yamt 
   1396  1.145.2.2      yamt 		sa = p->p_sa;
   1397  1.145.2.2      yamt 		mutex_enter(&sa->sa_mutex);
   1398  1.145.2.2      yamt 		SLIST_FOREACH(vp, &sa->sa_vps, savp_next) {
   1399  1.145.2.2      yamt 			struct lwp *vp_lwp = vp->savp_lwp;
   1400  1.145.2.2      yamt 			lwp_lock(vp_lwp);
   1401  1.145.2.2      yamt 			lwp_need_userret(vp_lwp);
   1402  1.145.2.2      yamt 			if (vp_lwp->l_flag & LW_SA_IDLE) {
   1403  1.145.2.2      yamt 				vp_lwp->l_flag &= ~LW_SA_IDLE;
   1404  1.145.2.2      yamt 				lwp_unsleep(vp_lwp, true);
   1405  1.145.2.2      yamt 				break;
   1406  1.145.2.2      yamt 			}
   1407  1.145.2.2      yamt 			lwp_unlock(vp_lwp);
   1408  1.145.2.2      yamt 		}
   1409  1.145.2.2      yamt 		mutex_exit(&sa->sa_mutex);
   1410  1.145.2.2      yamt 	} else {
   1411  1.145.2.2      yamt 		i = 1 << pt->pt_entry;
   1412  1.145.2.2      yamt 		if ((p->p_timers->pts_fired & i) == 0) {
   1413  1.145.2.2      yamt 			pt->pt_poverruns = pt->pt_overruns;
   1414  1.145.2.2      yamt 			pt->pt_overruns = 0;
   1415  1.145.2.2      yamt 			p->p_timers->pts_fired |= i;
   1416  1.145.2.2      yamt 		} else
   1417  1.145.2.2      yamt 			pt->pt_overruns++;
   1418  1.145.2.2      yamt 	}
   1419  1.145.2.2      yamt }
   1420  1.145.2.2      yamt #endif /* KERN_SA */
   1421  1.145.2.2      yamt 
   1422      1.142        ad static void
   1423      1.142        ad timer_intr(void *cookie)
   1424      1.142        ad {
   1425      1.142        ad 	ksiginfo_t ksi;
   1426      1.142        ad 	struct ptimer *pt;
   1427      1.142        ad 	proc_t *p;
   1428      1.142        ad 
   1429  1.145.2.2      yamt 	mutex_enter(proc_lock);
   1430      1.142        ad 	mutex_spin_enter(&timer_lock);
   1431      1.142        ad 	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
   1432      1.142        ad 		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
   1433      1.142        ad 		KASSERT(pt->pt_queued);
   1434      1.142        ad 		pt->pt_queued = false;
   1435      1.142        ad 
   1436      1.142        ad 		if (pt->pt_proc->p_timers == NULL) {
   1437      1.142        ad 			/* Process is dying. */
   1438      1.142        ad 			continue;
   1439      1.142        ad 		}
   1440  1.145.2.2      yamt 		p = pt->pt_proc;
   1441  1.145.2.2      yamt #ifdef KERN_SA
   1442  1.145.2.2      yamt 		if (pt->pt_ev.sigev_notify == SIGEV_SA) {
   1443  1.145.2.2      yamt 			timer_sa_intr(pt, p);
   1444  1.145.2.2      yamt 			continue;
   1445  1.145.2.2      yamt 		}
   1446  1.145.2.2      yamt #endif /* KERN_SA */
   1447  1.145.2.2      yamt 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
   1448  1.145.2.2      yamt 			continue;
   1449      1.142        ad 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
   1450       1.63   thorpej 			pt->pt_overruns++;
   1451      1.142        ad 			continue;
   1452       1.64   nathanw 		}
   1453      1.142        ad 
   1454      1.142        ad 		KSI_INIT(&ksi);
   1455      1.142        ad 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
   1456      1.142        ad 		ksi.ksi_code = SI_TIMER;
   1457      1.142        ad 		ksi.ksi_value = pt->pt_ev.sigev_value;
   1458      1.142        ad 		pt->pt_poverruns = pt->pt_overruns;
   1459      1.142        ad 		pt->pt_overruns = 0;
   1460      1.142        ad 		mutex_spin_exit(&timer_lock);
   1461      1.142        ad 		kpsignal(p, &ksi, NULL);
   1462      1.142        ad 		mutex_spin_enter(&timer_lock);
   1463       1.63   thorpej 	}
   1464      1.142        ad 	mutex_spin_exit(&timer_lock);
   1465  1.145.2.2      yamt 	mutex_exit(proc_lock);
   1466        1.1       cgd }
   1467  1.145.2.4      yamt 
   1468  1.145.2.4      yamt /*
   1469  1.145.2.4      yamt  * Check if the time will wrap if set to ts.
   1470  1.145.2.4      yamt  *
   1471  1.145.2.4      yamt  * ts - timespec describing the new time
   1472  1.145.2.4      yamt  * delta - the delta between the current time and ts
   1473  1.145.2.4      yamt  */
   1474  1.145.2.4      yamt bool
   1475  1.145.2.4      yamt time_wraps(struct timespec *ts, struct timespec *delta)
   1476  1.145.2.4      yamt {
   1477  1.145.2.4      yamt 
   1478  1.145.2.4      yamt 	/*
   1479  1.145.2.4      yamt 	 * Don't allow the time to be set forward so far it
   1480  1.145.2.4      yamt 	 * will wrap and become negative, thus allowing an
   1481  1.145.2.4      yamt 	 * attacker to bypass the next check below.  The
   1482  1.145.2.4      yamt 	 * cutoff is 1 year before rollover occurs, so even
   1483  1.145.2.4      yamt 	 * if the attacker uses adjtime(2) to move the time
   1484  1.145.2.4      yamt 	 * past the cutoff, it will take a very long time
   1485  1.145.2.4      yamt 	 * to get to the wrap point.
   1486  1.145.2.4      yamt 	 */
   1487  1.145.2.4      yamt 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
   1488  1.145.2.4      yamt 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
   1489  1.145.2.4      yamt 		return true;
   1490  1.145.2.4      yamt 
   1491  1.145.2.4      yamt 	return false;
   1492  1.145.2.4      yamt }
   1493